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Abstract. Motivated by Tadmor et al.’s work ([31]) dedicated to multiscale image representation using4
hierarchical (BV,L2) decompositions, we propose transposing their approach to the case of regis-5
tration, task which consists in determining a smooth deformation aligning the salient constituents6
visible in an image into their counterpart in another. The underlying goal is to obtain a hierarchi-7
cal decomposition of the deformation in the form of a composition of intermediate deformations:8
the coarser one, computed from versions of the two images capturing the essential features, en-9
codes the main structural/geometrical deformation, while iterating the procedure and refining the10
versions of the two images yields more accurate deformations that map faithfully small-scale fea-11
tures. The proposed model falls within the framework of variational methods and hyperelasticity12
by viewing the shapes to be matched as Ogden materials. The material behaviour is described by13
means of a specifically tailored strain energy density function, complemented by L∞-penalisations14
ensuring that the computed deformation is a bi-Lipschitz homeomorphism. Theoretical results15
emphasising the mathematical soundness of the model are provided, among which the existence16
of minimisers/asymptotic results, and a suitable numerical algorithm is supplied, along with17
numerical simulations demonstrating the ability of the model to produce accurate hierarchical18
representations of deformations.19
A very preliminary version of this work has been accepted for publication in the Eighth Interna-20
tional Conference on Scale Space and Variational Methods in Computer Vision, 2021 ([14]) but it21
does not include all the theoretical results, nor the detailed related proofs. A more complete and22
detailed analysis of the numerical experiments is also provided. The theoretical analysis of the23
numerical algorithm (introduced in Section 3 and which is a result in itself) will be the subject24
of a separate article in preparation ([13]).25
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1. Introduction.29

1.1. Motivations. The grey-level representation of a real scene, assumed to be an30

L2 observation, encompasses scale-varying and noticeable objects, whether it be edges31

—well-identified within the small subclass of functions of bounded variation (BV ) —,32

homogeneous regions, or oscillating patterns/texture, these latter features requiring the33

introduction of more involved intermediate spaces. Medical images for instance exemplify34

this multiscale structure: they often comprise structural organs irrigated by finer blood35
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vessels, and possibly a noise degradation. The purpose of multiscale representation is thus36

to quantify accurately these subclasses lying in between the rougher space L2 and the37

smaller space BV .38

A special instance of such an algorithm is [31]. This latter is the foundation of our method39

as will be seen later. Taking X as the larger functional space L2, and Y , the smaller space40

BV , the authors in [31] assess how accurately an L2-object can be approximated by its41

BV -characteristics, this being quantified by means of the family of functionals42

J(f, λ) = inf
u+v=f

{
λ ∥v∥2L2 + ∥u∥BV

}
,43

44

with increasing λ’s. (To understand better how TV regularisation and more precisely, how45

the amount of regularisation applied to the image, encodes scale of individual features, we46

refer the reader to [30]. Note however that the focus is shifted in [30] since the tuning47

parameter weights the TV semi-norm). Component u of the decomposition captures the48

geometrical/structural features of the observation f , while component v encodes textures49

and oscillatory patterns, the degree of detail fineness in component v (or symmetrically,50

the level of coarseness of u) being dictated by scale parameter λ: the larger this parameter51

is, the fewer details the v component contains. This latter observation reflects the fact52

that the discrimination between these two components is scale-dependent: what is viewed53

as texture at a fixed scale, will be part of the structural component at a more refined scale54

(higher λ).55

An iterative dyadic refinement scheme is applied, with λ0 a given initial scale, and reads56

as:57

f = u0 + v0, [u0, v0] = argmin
u+v=f

J(f, λ0),58

vj = uj+1 + vj+1, [uj+1, vj+1] = argmin
u+v=vj

J(vj , λ02
j+1), j = 0, 1, · · · ,59

60

producing at the end of the kth step, the following hierarchical decomposition:61

f = u0 + v0 = u0 + u1 + v1 = · · · = u0 + u1 + · · ·+ uk + vk,6263

the dyadic blocks uj = uj(f)’s encoding different scales and resolving finer edges, while vk64

being thought of as a residual in the approximation of f by
∑k

j=0 uj . With an additional65

slight amount of smoothness on f , a strong L2-convergence result of
∑k

j=0 uj towards f66

can be established ([31, Theorem 2.2]).67

68

1.2. Contributions. Equipped with this material, we now focus on the core of the69

contribution which aims to transpose this idea of multiscale representation of an image to70

the multiscale representation of a deformation pairing two images. The underlying goal is71

twofold:72

• (i) obtaining a hierarchical expression of the sought deformation in the form of a73

composition φ0 ◦ · · ·φk ◦ · · · ◦φn, φ0 encoding the main geometry-driven/structural74
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A MULTISCALE DEFORMATION REPRESENTATION 3

deformation, while the φ0 ◦ · · · ◦ φk’s capture more refined deformations —in com-75

parison to [31], the composition of deformations is now a substitute for the sum76

of the scale-varying constituents uj ’s —. This enables one to dissociate the main77

deformation from the more localised displacements, and to handle more accurately78

the different levels of granularity of the deformation. In others words, it allows to79

separate the global deformations of the main features forming the image from the80

more refined and local deformations of smaller items appearing at higher scales. In81

a medical context for instance, the method disassociates the organ matching from82

the vessel one, while isolating the noise, and one can thus answer to questions like:83

do blood vessels have an inherent movement besides the movement induced by the84

organ in which they are lying?85

86

• (ii) opening the way to a posteriori analyses, like disclosing the hidden structure of87

a deformation, or deriving some statistics such as mean deformations or prevailing88

dynamics. Precisely, a line of research in medical image analysis could consist of89

constructing an atlas, i.e. a mean representative of a collection of images, to es-90

timate variability of shapes inside a population and to understand how structural91

changes may affect health (refer to [11] for instance). This involves identifying92

significant shape constituents of the set of images (possibly neglecting very small93

scale details that are not necessary) and mapping this group of images to an un-94

known mean image with the desired level of details, which could be achieved using95

our multiscale registration method (with the mean image as unknown in addition96

to the deformation mappings of each image of the cohort to this average image).97

The added value of the proposed model is that one can control more finely the98

level of detail that should be encoded in the reconstructed mean representative.99

A statistical analysis on the obtained deformations in order to retrieve the main100

modes of variations in terms of geometric distortions in the initial set of images101

could then be conducted at each scale : the first step would yield a mean version102

of the global/structural deformation, while with increasing k, mean representatives103

of more refined deformations could be generated.104

105

To this end, an iterative refinement scheme, straightforwardly connected to [31] is intro-106

duced, incorporating finer details on both images at each step to increase the recovered107

deformation accuracy.108

As in [31], the multiscale model is built on a functional, indifferently called parent functional109

or generating functional, from which the successive minimisation subproblems are designed.110

This parent functional is tailored to comply with some prescribed conditions (smoothness,111

orientation preservation, physical interpretability, etc.). The outline of the article follows112

this progression from the single generating functional to the multiscale scheme, and pro-113

vides theoretical mathematical results ensuring the well-posed character of each step as114

well as intuitive interpretations of them:115

• The structure of Section 2 reflects this linear progression. Subsection 2.2 is devoted116

to the design of the parent functional F related to the basic registration problem and117
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4 N. DEBROUX, C. LE GUYADER AND L.A. VESE

on which the multiscale approach relies. Arguments from the theory of mechanics118

motivate the way this functional is built, the objects to be matched being viewed as119

bodies subjected to external forces. A first theoretical result (Theorem 2.3) ensures120

that given a pair of images (R, T ) ∈ BV (Ω) × BV (Ω), this primary registration121

model admits at least one minimiser exhibiting fine smoothness properties. In122

particular, it is a bi-Lipschitz homeomorphism and self-penetration of the matter123

does not occur, which is mechanically mandatory. Note that the detailed proof was124

not provided in [14];125

• Subsection 2.3 constitutes the core of our contribution, both methodologically and126
theoretically, since it introduces the multiscale model. Its construction is patterned127

after the multiscale image representation [31] insofar as the stage k depends on128

the recovered deformations at the previous stages. However, the composition is129
now a substitute for the addition which was the natural operation in the con-130

text of hierarchical decompositions of images. Given R (resp. T ) the Reference131

(resp. Template) image and its related hierarchical decomposition
∑k

j=0 Rj (resp.132 ∑k
j=0 Tj) obtained from [31], the algorithm reads as133

φ0 = argmin
φ

F(φ;R0, T0),134

...(D)135

φk = argmin
φ

F(φ0 ◦ · · · ◦ φk−1 ◦ φ;
k∑
j=0

Rj ,

k∑
j=0

Tj).136

137

The deformation φ0 thus maps the coarser version R0 of R to the coarser version138

T0 of T , while iterating the procedure yields more refined deformations of the type139

φ0 ◦ · · · ◦ φi pairing versions of the original images encoding finer details (
∑i

j=0Rj140

and
∑i

j=0 Tj).141

A first result (first part of Theorem 2.4) shows that each subproblem of the hier-142

archical scheme admits at least one minimiser on a suitable functional space using143

an induction process, while a second result (second part of Theorem 2.4) which144

proves to be an asymptotic result, emphasises that for k large enough, the recov-145

ered deformation φ0 ◦ · · · ◦φk constitutes a good approximation of the deformation146

that maps R and T . Note that the detailed proof was not provided in [14]; The147

added value of the model is that it allows the control and analysis of the granularity148

of the obtained deformation by selecting carefully the tuning parameter λ of the149

hierarchical decomposition of images.150

• If the model exhibits desirable properties (well-posedness, exhaustiveness of the151

family of generated deformations, physical interpretation) linked in particular to152

its non-linear character, it falls within the non-convex and non-differentiable class of153

optimisation problems which is the hardest one to solve numerically. Section 3 aims154

to split the initial problem into subproblems encoding only a part of the numerical155

difficulty by means of auxiliary variables, the underlying goal being to alleviate the156

computational burden. These auxiliary variables are related to the variables they157

are supposed to simulate by Lp-penalisations weighted by a parameter γ (doomed158

to be large. The larger parameter γ, the closer the auxiliary variable is to the159
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A MULTISCALE DEFORMATION REPRESENTATION 5

quantity it simulates in Lp-norm). As previously mentioned, an asymptotic result160

that is a result by itself and that will be the topic of a paper on its own ([13])161

can be proved. It says in substance that for a sufficiently large parameter γ, the162

decoupled problem is a suitable approximation of the original problem.163

• Section 4 is dedicated to numerical experiments and to their analysis. The question164

of evaluating the potential of the proposed model encompasses several levels of dis-165

cussion: ability of the method to both discriminate between main global tendency166

and more localised displacements and model deformations capturing increasingly167

fine details (in particular, synthetic images have been created, exhibiting features of168

different scales), stability of the algorithm regarding the choice of parameters and169

with respect to noise on the data, variety of the panel of generated deformations170

(large deformations can occur), quantitative evaluation of the registration accuracy171

with several metrics supporting the theoretical asymptotic result, comparisons with172

related methods etc.. Such a discussion was not provided in [14].173

To summarise, our contributions are of different kinds: (i) first, of a methodological nature,174

by providing a nested algorithm capable of representing a deformation pairing two images in175

a multiscale fashion; (ii) second, of a more theoretical nature, by devising several theoretical176

results supporting the soundness of the model and which can be interpreted intuitively;177

(iii) at last, of a more applied nature, with multi-factorial evaluations that sustain the178

theoretical results and the intended objectives.179

1.3. Prior works. Before depicting in depth our model and for the sake of completeness,180

we review some prior related works and highlight the main differences with the proposed181

work.182

Prior related works ([24, 25, 26], [23]) suggest fostering the use of this multiscale represen-183

tation of images —separation of the coarse and fine scales —in the context of registration.184

The work [24] (and then its extensions to landmark-driven registration in a B-spline setting185

from the one hand ([25]), and non-rigid deformations from the other hand ([26])) focuses186

on spatial alignment of medical images degraded by significant levels of noise, the under-187

lying goal being to highlight the real differences due to actual variations of the objects,188

while removing artificial deviation. It is achieved by mapping the truncated hierarchical189

representations of both images. Two main differences can be noticed compared to our190

model: (i) first, unlike our model, there is an independent treatment at each hierarchi-191

cal level. No connection is made between the deformations ϕ0, · · · , ϕk−1 computed at the192

previous iterations and the current deformation ϕk; (ii) second, in [24], the final optimal193

deformation meant to map the two images is computed as a weighted average of the form194
1
m

∑m−1
l=0 blϕl with suitable weights bl’s, while we promote composition of deformations as195

it is the most natural and geometrically meaningful operation the space of non-parametric196

spatial transformations can be endowed with. Indeed, mapping a point through a first197

transformation and then through a second one amounts to mapping the point through the198

composition of these two spatial transformations. On the contrary, except for the case of199

small deformations where linearisation is applied, addition of spatial deformations has no200

geometrical meaning.201

A work closer to ours can be found in [23] in the sense that analogous hierarchical expan-202
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6 N. DEBROUX, C. LE GUYADER AND L.A. VESE

sions of diffeomorphisms as composition of maps are constructed. This model can be viewed203

as a sequence of Large Deformation Diffeomorphic Metric Mapping (LDDMM, [5])-based204

steps fine-tuned with suitable weighting parameters. Here, the adjective multiscale applies205

to the setting of these parameters, i.e., on how strong the penalisations on the similarity206

measure and on the deviation from the identity mapping are. If our method and [23] share207

this idea of composing deformations to refine the registration process, some differentiating208

points can be highlighted in addition to the one mentioned above: among them, the point209

of view we adopt to describe the framework in which the objects to be registered are viewed.210

If physical assumptions and more precisely hyperelasticity arguments promoting large and211

nonlinear deformations rule the design of our model, [23] is purely built on mathematical212

considerations and strays to some extent to the physics of the problem.213

Starting again from the observation that a deformation is a combination of local and214

global deformations of different scales and locations, the work [19] proposes decomposing215

an orientation-preserving deformation into different components —each one inheriting this216

property of sense preservation —, based on the theory of quasiconformal mappings ([2],217

[20]) which are mainly mappings of bounded distortion. Several facts motivate the ap-218

proach: (i) first, a homeomorphism f is K-quasiconformal if and only if f is an L2-solution219

of an equation of the type ∂̄f = µ∂f , where µ, named complex dilation or Beltrami Coef-220

ficient (BC), satisfies |µ(z)| ≤ K−1
K+1 < 1 for almost every z ([20, Theorem 4.1]) —note that221

µ is a measure of non conformality: it quantifies to what extent a deformation deviates222

from a conformal map and ∥µ∥∞ < 1 implies that f is sense-preserving —; (ii) second, by223

shifting the focus ([20, Theorem 4.4]): given a measurable function µ in a domain A with224

∥µ∥∞ < 1, there exists a quasiconformal mapping of A whose complex dilation agrees with225

µ almost everywhere; (iii) third, adjusting a mapping by working with its complex dilation226

is easier than handling its coordinate functions. Thus based on these elements and on227

the fact that a deformation is entirely described by its associated BC, once an orientation-228

mapping f is extracted and its complex dilation µ(z) = µf (z) =
(
∂f
∂z̄ /

∂f
∂z

)
is computed, the229

authors suggest applying a wavelet transform to µ, yielding a decomposition into distinct230

components of different frequencies compactly supported on different sub-domains. The231

multiscale components of the deformation are then recovered by converting the successive232

normalised —in order to ensure that the supreme norm is strictly less than 1 —truncations233

of the wavelet transform into their associated quasiconformal map, yielding a sequence of234

deformations encoding finer and finer details. This is achieved by solving elliptic PDE’s235

derived from Beltrami equations.236

If their method and ours agree on this latter point, there are however, beyond the math-237

ematical formalism, dissimilarities. Mainly, on the structuring of the algorithms: in [19],238

the original orientation-preserving deformation pairing the two images is an input, and the239

multiscale decomposition of the deformation is computed only from the related complex240

dilation by abstraction of the different levels of details encapsulated in the images. The241

procedures of registration and deformation decomposition are thus independent with each242

others. On the contrary, in our method, the deformation allowing to match the two images243

is the expected output, at least from a theoretical point of view since it is viewed as the244

asymptotic behaviour of the intermediate deformation composition, and is computed tak-245
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A MULTISCALE DEFORMATION REPRESENTATION 7

ing into account the level of granularity of the image constituents. Our model thus sticks246

more to the information contained in the images and reflects more faithfully the features of247

the underlying deformation involved in the registration process. Also, in [19], deformation248

analysis can be carried out locally but requires to introduce a mask function on the wavelet249

coefficients, while it is more straightforward in our approach as will be seen in section 2.250

Finally and for the sake of completeness, we refer the reader to [3], [17], [27] and [28] for251

alternative approaches.252

We now turn to the mathematical foundations of our physics-based multiscale registration253

model. We would like to emphasise that the focus of the paper is on the mathematical254

analysis of the proposed model including well-posedness of the original minimisation prob-255

lem, asymptotic behaviour (meaning that the deformation obtained at step k converges to256

the deformation matching the two images as k increases to +∞), suitable algorithm, etc.257

The model is restricted to the two-dimensional case. Further work will be dedicated to258

higher dimensions (2D, 3D, 3D+t) and to the ability of the model to unveil the hidden259

structure of a deformation. The study will also be enriched by a theoretical analysis of the260

proposed numerical algorithm, which will be the subject of a forthcoming paper ([13]).261

2. Mathematical modelling.262

2.1. Motivations. If image decomposition aims to partition a given image f into the263

sum of a structural part encoding the main geometrical features and a texture component264

v capturing the oscillatory patterns or noise, multiscale image representation goes beyond265

by reckoning the different levels of details of an image. In line with this idea of hierarchis-266

ing the information carried by an object —in our case, a mapping —and relying on the267

multiscale image representation [31], we propose quantifying the noticeable characteristics268

of a deformation matching two images through the behaviour of a family of functionals.269

We first introduce the original minimisation problem based on the parent functional F270

from which the multiscale model will be derived.271

2.2. Hyperelastic setting for the original minimisation problem . Let Ω be a convex272

bounded open subset of R2 of class C1 therefore satisfying the cone property. This latter273

requirement is for technical purposes to ensure that Ball’s theorems ([4]) apply. It means274

that there exists a finite cone C such that each point x ∈ Ω is the vertex of a finite275

cone Cx contained in Ω and congruent to C. The moving Template image is represented276

by T : Ω̄ → R, while the fixed Reference image is denoted by R : Ω̄ → R. These are277

assumed to belong to the functional space BV (Ω). For theoretical purposes, we assume278

that T is such that its essential support ess supp(T ) is included in Ω′ ⊂⊂ Ω, Ω′ being a279

bounded open set of Ω.The mapping φ : Ω̄ → R2 is the sought non-parametric non-rigid280

deformation matching the two images. The deformation gradient is ∇φ : Ω→M2(R), with281

M2(R) the set of 2×2 matrices. Mechanically [9], a deformation is a smooth mapping that is282

orientation-preserving and injective except possibly on ∂Ω where self-contact is authorised.283

This translates mathematically into the condition det∇φ > 0 almost everywhere. This284

property should be included into the deformation model prescribing the nature of the285

allowed deformations if one aims to get physically meaningful and sense-preserving ones.286
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8 N. DEBROUX, C. LE GUYADER AND L.A. VESE

287

Remark 2.1. We acknowledge the fact that the deformation should be with values288

in Ω̄ in practice. However, from a mathematical point of view, if we work with such289

elements we lose the structure of vector space which is essential for the theoretical analysis.290

Furthermore, thanks to Ball’s results [4], we show in the sequel that our model generates291

deformations with values in Ω̄.292

Since the registration problem is ill-posed, in a variational setting, the sought deformation
is obtained by minimising a functional F , that we call parent functional, comprising a
fidelity term quantifying how close the deformed Template is to the Reference, and an
additional regularisation acting as a deformation model. Since we focus on mono-modal
registration in this work, we propose using the classical sum of squared difference metric
to measure alignment:

Fid(φ) = ∥T ◦ φ−R∥2L2(Ω).

Several stances can be adopted to depict the deformation model the objects to be matched
fall within. This deformation model must be a good compromise between computational
efficiency and completeness of the generated family of deformations. As suggested in [29],
the geometrical deformations can be classified into three categories: (i) those inspired by
physical models and more precisely, by principles of mechanics: the objects contained in
the images are viewed as bodies subjected to forces; (ii) those derived from interpolation
and approximation theory and at last, (iii) those stemming from models including a priori
knowledge such as biomechanical models whose design is dictated by specific anatomical/-
physiological laws.
Our model falls within the former category and is more particularly part of the hyperelas-
ticity setting, good compromise between computational performance and exhaustiveness
of the panel of generated deformations, since including large deformations (please refer to
[9, Part A, Chapter 4] for an introduction to hyperelasticity). Hyperelasticity provides
a means of modeling the stress-strain behavior of certain highly deformable materials for
which linear elasticity principles are inaccurate since too simplistic/reductive. A common
example of this kind of material is rubber, whose stress-strain relationship can be defined
as non-linearly elastic, isotropic and incompressible. Unlike linear elasticity defined ex-
plicitly by Hooke’s law for small deformations, the hyperelasticity framework postulates
the existence of a stored energy density function whose derivatives with respect to the
deformation in a given direction give the state of stress within the material in this same
direction. Coming back to our model, the objects contained in the images are assumed to
be isotropic (exhibiting the same mechanical properties in every direction), homogeneous
(showing the same behaviour everywhere inside the material), and so hyperelastic (allow-
ing large changes on shape while keeping a mechanical elastic behaviour) materials, and
more precisely as Ogden ones (please refer to [9, Part B, Chapter 7]). Note that the Ogden
material model is often used to describe the non-linear stress–strain behaviour of complex
materials such as rubbers or biological tissues. This perspective drives the design of the
regularisation on the deformations, which is thus based on the stored energy function of
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A MULTISCALE DEFORMATION REPRESENTATION 9

an Ogden material, prescribing then a physically-meaningful nature. These elements are
mathematically formalised next.
In 2D, for such a material [9, Part B, Chapter 7], the general expression of the stored
energy with F ∈M2(R) is :

WO(F ) =

K∑
i=1

ai∥F∥γi + Γ(detF ),

where ∀i ∈ {1, . . . ,K}, ai > 0, γi ≥ 0 are material parameters, ∥·∥ = ∥·∥F being the Frobe-293

nius norm (∥F∥ =
√
trF TF =

√
f211 + f212 + f221 + f222 if one sets F =

(
f11 f12
f21 f22

)
), and294

Γ : ]0,+∞[→ R being any convex function satisfying limδ→0+ Γ(δ) = limδ→+∞ Γ(δ) = +∞.295

Here F denotes the deformation gradient ∇φ. The first terms influence the changes in296

length, while the last one restricts the changes in area and ensures orientation preserva-297

tion by preventing the Jacobian determinant from becoming negative. In this work, we298

introduce the following particular energy —Op stands for Ogden particular —:299

WOp(F ) =WOp(F,detF )300

=

{
a1∥F∥4 + a2(detF − 1)2 + a3

(detF )10
− 4a1 − a3 if detF > 0

+∞ otherwise
,301

302

which fulfils the previous assumptions and exhibits fine theoretical properties useful for
the mathematical analysis conducted in the sequel. In particular, WOp is polyconvex
since WOp := WOp(F, δ) is convex. Moreover, the choice of the power 4 in ∥F∥4 —4
being strictly greater than 2, the dimension of the ambient domain —combined with the
regularisation R(F ) below and the constraint det F > 0 a.e. allows to recover deformations
that are homeomorphisms as will be seen later). The first term controls the smoothness
of the deformation, the second one restricts changes in area since promoting Jacobian
determinant close to 1, while the third one prevents singularities and large contractions by
penalising small values of the determinant. The last two constants are added to comply
with the energy property WOp(I) = 0, I denoting the identity matrix, Jacobian of the
identity mapping. We propose complementing this regularisation by the following term :

R(F ) = 1{∥·∥L∞(Ω,M2(R))≤α}(F ) + 1{∥·∥L∞(Ω,M2(R))≤β}(F
−1),

with α ≥ 1 and β ≥ 1, 1A being the convex characteristic function of a convex set A. This303

ensures that the obtained deformations are bi-Lipschitz homeomorphisms and subsequently,304

T being an element of the space BV (Ω), that T ◦ φ remains in BV (Ω) according to [1,305

Theorem 3.16].306

307

Remark 2.2. This additional constraint implicitly gives an upper and lower bound on308

the Jacobian determinant, controlling thus the amount of contraction and dilation allowed309

while preserving topology.310
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10 N. DEBROUX, C. LE GUYADER AND L.A. VESE

The proposed registration model in a variational setting therefore reads:311

inf
φ∈W

{
F(φ) = F(φ, T,R) = λ

2
Fid(φ) +

∫
Ω
WOp(∇φ) dx+R(∇φ),312

=
λ

2
∥T ◦ φ−R∥2L2(Ω) +

∫
Ω
WOp(∇φ,det∇φ) dx+ 1{∥·∥L∞(Ω,M2(R))≤α}(∇φ)(P)313

+ 1{∥·∥L∞(Ω,M2(R))≤β}((∇φ)
−1)

}
,314

315

with W = {ψ ∈ Id +W 1,∞
0 (Ω,R2) | ∥∇ψ∥L∞(Ω,M2(R)) ≤ α, ∥(∇ψ)−1∥L∞(Ω,M2(R)) ≤ β,316

det∇ψ > 0 a.e. in Ω}, and λ > 0 a weighting parameter balancing the influence of the317

fidelity term with respect to the regularisation one. The first theoretical result claims318

that problem (P) admits at least one minimiser. In particular, this result guarantees that319

the recovered deformations exhibit smoothness properties and that they are mechanically320

admissible with no self-intersection of matter.321

Theorem 2.3. Problem (P) admits at least one minimiser in W.322

Proof. The proof follows the arguments of the classical direct method of the calculus of323

variations. We first derive a coercivity inequality. Using the fact that (a− b)2 ≥ 1
2 a

2 − b2,324

one has325

F(φ) ≥ a1∥∇φ∥4L4(Ω,M2(R))
+
a2
2
∥det∇φ∥2L2(Ω) − a2meas(Ω) + ∥ a3

(det∇φ)10
∥L1(Ω)326

− 4a1meas(Ω)− a3meas(Ω).327328

The quantity F(φ) is thus bounded below by −(4a1 + a2 + a3)meas(Ω) and as for φ =329

Id —and suitable α and β —, F(φ) = λ
2 ∥T − R∥2L2(Ω) is finite (due to the embedding330

BV (Ω) ⊂ L2(Ω) in the two-dimensional case), the infimum is finite.331

Let then (φk)k ∈ W be a minimising sequence —we may omit the index k in the following332

when dealing with a sequence indexed by k —, i.e., limk→+∞ F(φk) = infΨ∈W F(Ψ).333

Hence there exists K ∈ N such that ∀k ∈ N, (k ≥ K ⇒ F(φk) ≤ infΨ∈W F(Ψ) + 1).334

From now on, we assume that k ≥ K. According to the coercivity inequality, one gets:335

• (φk) is uniformly bounded according to k in W 1,4(Ω,R2), using the generalised336

Poincaré inequality ([15, pp. 106-107]) and the fact that φk = Id on ∂Ω;337

• (∇φk) is uniformly bounded according to k in L∞(Ω,M2(R));338

• (∇φk)−1 is uniformly bounded according to k in L∞(Ω,M2(R));339

• (det ∇φk) is uniformly bounded according to k in L2(Ω).340

Thus there exist a subsequence —still denoted by (φk) —and φ̄ ∈W 1,4(Ω,R2) such that341

φk ⇀
k→+∞

φ̄ in W 1,4(Ω,R2).342
343

Moreover, there exist a subsequence (common with the previous one, which is always344

possible) —still denoted by (det ∇φk) —and δ ∈ L2(Ω) such that345

det∇φk ⇀
k→+∞

δ in L2(Ω).346
347
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By applying [10, Theorem 8.20], we deduce that δ = det∇φ̄ and det∇φk ⇀
k→+∞

det∇φ̄ in348

L2(Ω).349

350

Now, recall that according to Gagliardo-Nirenberg inequalities ([6, p.195, Example 3],351

[7]), whenever 1 ≤ q ≤ p ≤ +∞ and r > N (in the general case where Ω ⊂ RN is a bounded352

open set with smooth boundary),353

∥u∥Lp ≤ C ∥u∥1−aLq ∥u∥
a
W 1,r , ∀u ∈W 1,r(Ω),354355

with a =
1
q
− 1
p

1
q
+ 1
N
− 1
r

.356

In our case, (φk) being uniformly bounded in W 1,4(Ω,R2) and taking


p = +∞
q = 4
r = 4

357

(yielding a = 1
2),358

∥φk∥L∞(Ω,R2) ≤ C ∥φk∥
1
2

L4(Ω,R2)
∥φk∥

1
2

W 1,4(Ω,R2)
,359

360

showing in the end that (φk) is uniformly bounded inW 1,∞(Ω,R2). Thus there exist a sub-361

sequence (common with the previous one) —still denoted by (φk) —and ¯̄φ ∈W 1,∞(Ω,R2)362

such that363

φk
∗
⇀

k→+∞
¯̄φ in W 1,∞(Ω,R2).364

365

In particular, one has φk ⇀
k→+∞

φ̄ in L4(Ω,R2) and φk
∗
⇀

k→+∞
¯̄φ in L∞(Ω,R2), so that366

owing to the property of uniqueness of the weak limit in L4(Ω,R2), φ̄ = ¯̄φ in L4(Ω,R2). By367

definition of the functional space W 1,4(Ω,R2), ∀i ∈ {1, 2}, ∃(gij)j=1,2 ∈ L4(Ω) such that368

∀Ψ ∈ C∞0 (Ω),369 ∫
Ω
φ̄i

∂Ψ

∂xj
dx =

∫
Ω

¯̄φi
∂Ψ

∂xj
dx = −

∫
Ω
gijΨ dx,370

371

leading to φ̄ = ¯̄φ ∈ W 1,∞(Ω,R2). At last, by continuity of the trace operator ([6, Theo-372

rem III.9], [7]), we get that φ̄ ∈ Id +W 1,∞
0 (Ω,R2).373

The stored energy function WOp is continuous and convex. If ψn −→
n→+∞

ψ̄ in W 1,4(Ω,R2),374

thus ∇ψn −→
n→+∞

∇ψ̄ in L4(Ω,M2(R)) and one can extract a subsequence still denoted by375

(∇ψn) such that ∇ψn −→
n→+∞

∇ψ̄ almost everywhere in Ω. Similarly, if κn −→
n→+∞

κ̄ in376

L2(Ω), then one can extract a subsequence (common subsequence) still denoted by (κn)377

such that κn −→
n→+∞

κ almost everywhere in Ω. Then, by continuity of WOp, one gets that378

WOp(∇ψn, κn) −→
n→+∞

WOp(∇ψ̄, κ̄) almost everywhere in Ω. Applying Fatou’s lemma then379

yields380 ∫
Ω
WOp(∇ψ̄, κ̄), dx ≤ lim inf

n→+∞

∫
Ω
WOp(∇ψn, κn) dx.381

382
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12 N. DEBROUX, C. LE GUYADER AND L.A. VESE

As WOp is convex, so is
∫
ΩWOp(ξ, κ) dx and invoking [6, Corollaire III.8], [7] leads to:383 ∫

Ω
WOp(∇φ̄,det∇φ̄) dx ≤ lim inf

k→+∞

∫
Ω
WOp(∇φk, det∇φk) dx < +∞.384

385

Since WOp(∇φ̄(x), det∇φ̄(x)) = +∞ when det∇φ̄(x) ≤ 0, the set on which it occurs is386

necessarily of null measure otherwise we would have F (φ̄) = +∞. So det∇φ̄ > 0 almost387

everywhere in Ω. Besides, for all q > 2 and all k ≥ K,388 ∫
Ω
∥(∇φk)−1∥qF det∇φk dx ≤ C,389

390

C = C(α, β, q,Ω) > 0 being a constant depending only on α, β and Ω.391

The assumptions of Ball’s theorems ([4, Theorems 1 and 2]) thus hold yielding that φk392

is a homeomorphism of Ω̄ onto Ω̄ and φ−1
k ∈ W

1,q(Ω,R2). The mapping φk is one-to-one393

almost everywhere, maps measurable sets in Ω̄ to measurable sets in Ω̄, and the change of394

variables formula395 ∫
A
f(φ(x)) det∇φ(x) dx =

∫
φ(A)

f(v) dv396

397

holds for any measurable A ⊂ Ω̄ and any measurable function f : R2 → R, provided398

only that one of the integrals exists. The matrix of weak derivatives of φ−1
k is given by399

∇(φk)−1 = (∇φk)−1(φ−1
k ) almost everywhere in Ω.400

Let Nk ⊂ Ω be such that meas(Nk) = 0 and for all x ∈ Ω \ Nk,401 ∣∣∣(∇φk)−1 (x)
∣∣∣ ≤ ∥ (∇φk)−1 ∥L∞(Ω,M2(R)).402

403

Let now N ′
k be such that N ′

k = φk(Nk). Then meas(N ′
k) = 0 since φk is a Lipschitz map404

(and thus for every measurable set E, meas(φk(E)) ≤ C ′meas(E), C ′ being a constant de-405

pending only on the dimension and on the Lipschitz constant of φk itself uniformly bounded406

with respect to k) and for every y /∈ N ′
k,
∣∣∣(∇φk)−1 (φ−1

k (y))
∣∣∣ ≤ ∥ (∇φk)−1 ∥L∞(Ω,M2(R)). In-407

deed, if y /∈ N ′
k, then y = φk(x) with x /∈ Nk, resulting in (∇φk)−1 (φ−1

k (y)) = (∇φk)−1 (x).408

Consequently,409

∥∇(φ−1
k )∥L∞(Ω,M2(R)) = ∥ (∇φk)

−1 (φ−1
k )∥L∞(Ω,M2(R)) ≤ ∥ (∇φk)

−1 ∥L∞(Ω,M2(R)).410411

Invoking again the generalised Poincaré inequality and Gagliardo-Nirenberg inequalities412

allows to conclude that φ−1
k is uniformly bounded in W 1,∞(Ω,R2).413

Applying the same reasoning as the one we did previously, that is, denoting by Nk ⊂ Ω,414

set of null measure such that ∀x ∈ Ω \ Nk,415 ∣∣∣(∇φk)−1 (φ−1
k )(x)

∣∣∣ ≤ ∥ (∇φk)−1 (φ−1
k )∥L∞(Ω,M2(R)).416

417

Let N ′
k be such that N ′

k = φ−1
k (Nk). Then meas(N ′

k) = 0 since φ−1
k is a Lipschitz map.418

For every y /∈ N ′
k,
∣∣∣(∇φk)−1 (φ−1

k ◦ φk(y))
∣∣∣ ≤ ∥ (∇φk)−1 (φ−1

k )∥L∞(Ω,M2(R)). Consequently,419

∥ (∇φk)−1 ∥L∞(Ω,M2(R)) ≤ ∥ (∇φk)
−1 (φ−1

k )∥L∞(Ω,M2(R)) = ∥ ∇
(
φ−1
k

)
∥L∞(Ω,M2(R)).420421
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By gathering the two previous results, it follows that422

∥ (∇φk)−1 ∥L∞(Ω,M2(R)) = ∥ ∇
(
φ−1
k

)
∥L∞(Ω,M2(R)).423424

By the weak-∗ lower semi-continuity of ∥·∥L∞(Ω,M2(R)), we deduce that ∥∇φ̄∥L∞(Ω,M2(R)) ≤425

lim inf
k→+∞

∥∇φk∥L∞(Ω,M2(R)) ≤ α and426

1{∥·∥L∞(Ω,M2(R))≤α}(∇φ̄) ≤ lim inf
k→+∞

1{∥·∥L∞(Ω,M2(R))≤α}(∇φk). Also, for all q ∈]2, 11],427

∫
Ω
∥(∇φ̄)−1∥qF det∇φ̄ dx=

∫
Ω

1

(det∇ φ̄)q
∥∇φ̄∥qF det∇φ̄ dx,428

=

∫
Ω
∥∇φ̄∥qF (det∇φ̄)1−q dx,429

≤ αq∥ 1

det∇φ̄
∥q−1
Lq−1(Ω)

< +∞,430
431

since det ∇φ̄ > 0 almost everywhere and 1
det ∇φ̄ ∈ L

10(Ω).432

Ball’s theorems ([4, Theorems 1 and 2]) allow to conclude that φ̄ is a homeomorphism from433

Ω̄ to Ω̄, φ̄−1 ∈ W 1,q(Ω,R2) ⊂ L∞(Ω,R2) (continuous embedding) and an upper bound of434

∥φ̄∥L∞(Ω,R2) with respect to ∥φ̄∥W 1,q(Ω,R2) is easily obtained.435

The sequence (φ−1
k ) being uniformly bounded in W 1,∞(Ω,R2), there exists a subsequence436

still denoted by φ−1
k and ū ∈W 1,∞(Ω,R2) such that437

φ−1
k

∗
⇀

k→+∞
ū438

439

in W 1,∞(Ω,R2). Let us now prove that ū = φ̄−1. Due to Rellich-Kondrachov theorem, the440

compact injection W 1,∞(Ω,R2) ⊂ C0(Ω̄,R2) holds so that (φk) uniformly converges to φ̄441

on Ω̄ while (φ−1
k ) uniformly converges to ū on Ω̄. Also,442

∥φ−1
k ◦ φ̄− φ

−1
k ◦ φk∥C0(Ω̄,R2) ≤ β ∥φ̄− φk∥C0(Ω̄,R2) −→

k→+∞
0,443

444

leading to φ−1
k ◦ φ̄ −→

k→+∞
Id pointwise everywhere on Ω̄. But as (φ−1

k ) uniformly converges445

to ū on Ω̄, for all x ∈ Ω̄,446

φ−1
k ◦ φ̄(x) −→k→+∞

ū ◦ φ̄(x).447
448

By uniqueness of the pointwise limit, ū ◦ φ̄ = Id on Ω̄, resulting in ū = φ̄−1 everywhere449

on Ω̄ and φ̄−1 ∈ W 1,∞(Ω,R2). The mapping φ̄ is thus a bi-Lipschitz homeomorphism.450

Invoking again the weak-∗ lower semi-continuity of ∥ · ∥L∞(Ω,M2(R)) and arguing with the451

same arguments as before yields452

∥∇
(
φ̄−1

)
∥L∞(Ω,M2(R)) = ∥ (∇φ̄)

−1 ◦ φ̄−1∥L∞(Ω,M2(R)) = ∥ (∇φ̄)
−1 ∥L∞(Ω,M2(R))453

≤ lim inf
k→+∞

∥∇(φ−1
k )∥L∞(Ω,M2(R)) = lim inf

k→+∞
∥(∇φk)−1∥L∞(Ω,M2(R)) ≤ β,454

455
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14 N. DEBROUX, C. LE GUYADER AND L.A. VESE

so that 1{∥·∥L∞(Ω,M2(R))≤β}((∇φ̄)
−1) ≤ lim inf

k→+∞
1{∥·∥L∞(Ω,M2(R))≤β}((∇φk)

−1).456

Since T ∈ BV (Ω) and all φk and φ̄ are bi-Lipschitz homeomorphisms, we get that T ◦φk ∈457

BV (Ω) ⊂ L2(Ω) for all k ∈ N and T ◦ φ̄ ∈ BV (Ω) from [1, Theorem 3.16]. We first prove458

that φk ◦ φ̄−1 −→
k→+∞

Id in C0,α(Ω̄,R2) with α < 1. Recall that (see [10, Definition 12.5])459

with 0 < α ≤ 1, C0,α(Ω̄,R2) is the set of functions u ∈ C0(Ω̄,R2) such that460

[u]α,Ω̄ := sup
(x,y)∈Ω̄×Ω̄

x ̸=y

|u(x)− u(y)|
|x− y|α

< +∞.461

462

It is equipped with the norm463

∥u∥C0,α(Ω̄,R2) := ∥u∥C0(Ω̄,R2) + [u]α,Ω̄ .464
465

Additionally,W 1,∞(Ω,R2) ⊂ C0,λ(Ω̄,R2) ([10, Sobolev embedding theorem, Theorem 12.11])466

for every λ ∈ [0, 1] and the embedding is compact for every 0 ≤ λ < 1 ([10, Rellich-467

Kondrachov theorem, Theorem 12.12]). Straightforward computations thus give468

∥φk ◦ φ̄−1 − φ̄ ◦ φ̄−1∥C0,α(Ω̄,R2) ≤ sup
x∈Ω̄
|φk(x)− φ̄(x)|469

+ sup
(x,y)∈Ω̄×Ω̄

x ̸=y

|φk ◦ φ̄−1(x)− φk ◦ φ̄−1(y)− φ̄ ◦ φ̄−1(x) + φ̄ ◦ φ̄−1(y)|
|φ̄−1(x)− φ̄−1(y)|α

|φ̄−1(x)− φ̄−1(y)|α

|x− y|α
,470

≤ sup
x∈Ω̄
|φk(x)− φ̄(x)|+ sup

(x,y)∈Ω̄×Ω̄
x̸=y

|φk(x)− φk(y)− φ̄(x) + φ̄(y)|
|x− y|α

sup
(x,y)∈Ω̄×Ω̄

x ̸=y

|φ̄−1(x)− φ̄−1(y)|α

|x− y|α
,471

≤ (1 + ∥φ̄−1∥αC0,1(Ω̄,R2))∥φk − φ̄∥C0,α(Ω̄,R2) −→
k→+∞

0.472
473

The conclusion is immediate. It remains to prove that T ◦ φk −→
k→+∞

T ◦ φ̄ in L2(Ω).474

Let ε > 0 be fixed. Let (Tn)n∈N be a sequence of functions of D(Ω) such that Tn −→
n→+∞

T475

in L2(Ω). Let N(ε) ∈ N be such that ∀n ∈ N,
(
n ≥ N(ε) ⇒ ∥Tn − T∥2L2(Ω) ≤

ε
3

)
. Since476

φk ◦ φ̄−1 −→
k→+∞

Id in C0,α(Ω̄,R2), it strongly converges to Id in L2(Ω,R2), so that there477

exists K = K(ε) ∈ N such that ∀k ∈ N,
(
k ≥ K(ε) ⇒ ∥φk ◦ φ̄−1 − Id∥2L2(Ω,R2)

)
≤ ϵ

3L2
N(ε)

,478

with LN(ε) the Lipschitz constant of TN(ε). Here the constant C = C(α, β,Ω) > 0 may479

change line to line. According to Ball’s theorems ([4, Theorems 1 and 2]), the following480
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change of variable formula holds:481 ∫
Ω
|T ◦ φk − T ◦ φ̄|2 dx =

∫
Ω
|T ◦ φk ◦ φ̄−1 − T |2 det∇

(
φ̄−1

)
dx,482

≤ 1

2
∥∇(φ)−1∥2L∞(Ω,M2(R))

∫
Ω
|T ◦ φk ◦ φ̄−1 − T |2 dx,483

≤ C
(∫

Ω
|T ◦ φk ◦ φ̄−1 − TN(ε) ◦ φk ◦ φ̄−1|2 dx484

+

∫
Ω
|TN(ε) ◦ φk ◦ φ̄−1 − TN(ε)|2 dx+

∫
Ω
|TN(ε) − T |2 dx

)
,485

≤ C
(
∥T − TN(ε)∥2L2(Ω) + L2

N(ε) ∥φk ◦ φ̄
−1 − Id∥2L2(Ω,R2) +

ε

3

)
,486

≤ C ε.487488

We thus have proved that ∀k ∈ N,
(
k ≥ K(ε) ⇒ ∥T ◦ φk − T ◦ φ̄∥2L2(Ω)

)
≤ Cε. By gath-489

ering all the results, we get490

F(φ̄) ≤ lim inf
k→+∞

F(φk) = inf
φ∈W
F(φ) < +∞,491

492

with φ̄ ∈ W, which completes the proof.493

With the basic framework in place, we now see how the multiscale model is constructed494

from this parent functional.495

2.3. Towards a multiscale representation of the deformation . Equipped with this496

original minimisation problem, we now derive a multiscale representation of the deforma-497

tion, relying on the hierarchical decomposition of both the Reference and the Template498

into the sum of scale-varying components [31]. Let then (Tj)j ∈ BV (Ω) ⊂ L2(Ω) and499

(Rj)j ∈ BV (Ω) ⊂ L2(Ω) be the sequence of scale-varying structural features of respec-500

tively T and R computed from the following problems —S standing for either R or T501

below —:502 
(S0, v0) = argmin

(u,v)∈BV (Ω)×L2(Ω) |S=u+v
{λ0 ∥v∥22 + TV (u)},

(Sj+1, vj+1) = argmin
(u,v)∈BV (Ω)×L2(Ω) | vj=u+v

{2j+1λ0 ∥v∥22 + TV (u)}, j = 1, . . . ,
503

504

λ0 being an initial scale parameter provided by the user. It is assumed that T and R have505

similar scale structures and that each level of the following hierarchical decomposition of506

T ,

(
k∑
j=0

Tj

)
, can be matched to the corresponding level of hierarchical decomposition of507

R,

(
k∑
j=0

Rj

)
. The related hierarchical expansion of the deformation, starting from main508

structural deformations to more localised ones, and based on the composition operator —a509

This manuscript is for review purposes only.



16 N. DEBROUX, C. LE GUYADER AND L.A. VESE

more natural and physically meaningful operator than addition —is derived and reads as510

follows, formulation in which one recognises the parent functional :511

(P0) φ0 = argmin
φ∈W

{F(φ, T0, R0)},512

(Pk) φk = argmin
φ∈Xk

{F(φ0 ◦ φ1 ◦ . . . ◦ φk−1 ◦ φ,
k∑
j=0

Tj ,
k∑
j=0

Rj)},513

514

with515

F(φ, T,R) =λ
2
∥T ◦ φ−R∥2L2(Ω) +

∫
Ω
WOp(∇φ,det(∇φ)) dx516

+ 1{∥·∥L∞(Ω,M2(R))≤α}(∇φ) + 1{∥·∥L∞(Ω,M2(R))≤β}((∇φ)
−1),517

518

and519

Xk =
{
ψ | φ0◦φ1◦...◦φk−1◦ψ ∈ Id +W 1,∞

0 (Ω,R2) , det∇ (φ0 ◦ φ1 ◦ . . . ◦ φk−1 ◦ ψ) > 0 a.e.,520

∥(∇(φ0◦φ1◦...◦φk−1◦ψ))∥L∞(Ω,M2(R)) ≤ α, ∥(∇(φ0◦φ1◦...◦φk−1◦ψ))−1∥L∞(Ω,M2(R)) ≤ β
}
.521

522

The next theorem contains two results: a first one that ensures that at each step k, the523

minimisation problem admits at least one solution and that this solution exhibits fine524

properties (smoothness, topology-preserving feature, etc.). The second one is an asymptotic525

result: it highlights the fact that the recovered deformation φ0 ◦ · · · , ◦φk constitutes a526

good approximation of the deformation that would map R and T . The added value, in527

comparison to a standard registration algorithm, is that our proposed algorithm yields a528

good multiscale approximation of this original deformation.529

Theorem 2.4. Problem (Pk) admits at least one minimiser. Additionally, φk denoting530

a minimiser of (Pk) and setting ϕk := φ0 ◦ · · · ◦ φk, one has531

lim
k→+∞

F(ϕk,
k∑
j=0

Tj ,

k∑
j=0

Rj) = F(ϕ̄, T,R) =: F(ϕ̄) = inf
φ∈W

F(φ),532

533

with ϕk
∗
⇀

k→+∞
ϕ̄ in W 1,∞(Ω,R2).534

Before giving the proof, we recall a preliminary result.535

Proposition 2.5. Taken from [1, Proposition 2.13, p.46]536

Let Ω ⊂ RN be a bounded, convex, open set, and u : Ω → R. Then u ∈ W 1,∞(Ω) if and537

only if Lip(u,Ω) < +∞ and ∥∇u∥L∞(Ω) = Lip(u,Ω), with538

Lip(u,Ω) = sup

{
|u(x)− u(y)|
|x− y|

|x ̸= y, x, y ∈ Ω

}
.539

540
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Proof. The proof relies on an induction principle: at stage k, φ0 ◦ · · · ◦φk−1 is assumed541

to be a bi-Lipschitz homeomorphism from Ω̄ to Ω̄ such that ∥∇(φ0◦···◦φk−1)∥L∞(Ω,M2(R))≤α,542

∥ (∇ (φ0 ◦ · · · ◦ φk−1))
−1 ∥L∞(Ω,M2(R)) ≤ β, and det ∇ (φ0 · · ·φk−1) > 0 a.e.. One proves543

that a minimiser of (Pk) exists and is also a bi-Lipschitz homeomorphism from Ω̄ to Ω̄. It544

rests on arguments similar to those previously used, among them the fact that bi-Lipschitz545

orientation-preserving homeomorphisms form a group stable for the composition. At last,546

it is composed of two parts: the first one is devoted to the existence of minimisers to547

problem (Pk) for fixed k, while the second one focuses on the asymptotic result.548

• Existence of minimisers to problem (Pk) for fixed k549

For φ = Id, we have that Fk(φ) := F(φ0◦···◦φk−1◦φ,
∑k
j=0 Tj ,

∑k
j=0 Rj) < +∞ (the uni-550

form bound in n may depend on k), and an inequality of coercivity holds, showing551

that the infimum is finite.552

Let (φk,n)n∈N be a minimising sequence. We then set ϕk,n = φ0◦φ1◦· · ·◦φk−1◦φk,n553

so that for n large enough554

λ

2
∥(

k∑
j=0

Tj) ◦ ϕk,n −
k∑
j=0

Rj∥2L2(Ω) +

∫
Ω
WOp(∇ϕk,n,det∇ϕk,n) dx555

+ 1{∥·∥L∞(Ω,M2(R))≤α}(∇ϕk,n) + 1{∥·∥L∞(Ω,M2(R))≤β}((∇ϕk,n)
−1)556

≤ inf
φ∈Xk

Fk(φ) + 1 < +∞.557
558

Applying again the generalised Poincaré inequality and Gagliardo-Nirenberg inter-559

polation inequalities, it follows that (ϕk,n)n∈N is uniformly bounded inW 1,∞(Ω,R2)560

and thus561

ϕk,n
∗
⇀

n→+∞
ϕ̄k in W 1,∞(Ω,R2).562

563

Reasoning as in the proof of Theorem 2.3, one shows that ϕk,n is a homeomorphism564

of Ω̄ onto Ω̄ and ϕ−1
k,n ∈ W 1,q(Ω,R2). The mapping ϕk,n is one-to-one almost565

everywhere, maps measurable sets in Ω̄ to measurable sets in Ω̄, and the change of566

variables formula holds. Also, ∥∇
(
ϕ−1
k,n

)
∥L∞(Ω,M2(R)) = ∥ (∇ϕk,n)

−1 ∥L∞(Ω,M2(R)).567

Focusing now on ϕ̄k and arguing as before, det ∇ϕ̄k > 0 a.e., 1
det ∇ϕ̄k

∈ L10(Ω) and568

ϕ̄−1
k ∈ W 1,q(Ω,R2) with q ∈]2, 11]. At last, Rellich-Kondrachov theorem enables569

one to conclude that in fact ϕ̄−1
k ∈ W 1,∞(Ω,R2) with ∥∇

(
ϕ̄−1
k

)
∥L∞(Ω,M2(R)) =570

∥
(
∇ϕ̄k

)−1 ∥L∞(Ω,M2(R)) ≤ β. Weak lower semi-continuity arguments among others571

yield572

λ

2
∥
k∑
j=0

Tj ◦ ϕ̄k −
k∑
j=0

Rj∥2L2(Ω) +

∫
Ω
WOp(∇ϕ̄k, det∇ϕ̄k) dx573

1{∥·∥L∞(Ω,M2(R))≤α}(∇ϕ̄k) + 1{∥·∥L∞(Ω,M2(R)))≤β}((∇ϕ̄k)
−1) = inf

φ∈Xk
Fk(φ).574

575

The mapping φ0 ◦ · · · ◦φk−1 being a bi-Lipschitz orientation-preserving homeomor-576

phism from Ω̄ to Ω̄ with Lip(φ0◦· · ·◦φk−1,Ω) ≤ α and Lip((φ0 ◦ · · · ◦ φk−1)
−1 ,Ω) ≤577

This manuscript is for review purposes only.



18 N. DEBROUX, C. LE GUYADER AND L.A. VESE

β from the previous stage of the induction process, setting578

φk,n = (φ0 ◦ · · · ◦ φk−1)
−1 ◦ ϕk,n, one has,579

Lip(φk,n,Ω) ≤ Lip
(
(φ0 ◦ · · · ◦ φk−1)

−1 ,Ω
)
Lip (ϕk,n,Ω) ,580

≤ αβ.581582

φk,n is thus uniformly bounded in W 1,∞(Ω,R2) and there exists φ̄k ∈W 1,∞(Ω,R2)583

(in fact, Id +W 1,∞
0 (Ω,R2)) such that φk,n

∗
⇀ φ̄k
n→+∞

in W 1,∞(Ω,R2) and uniformly584

on Ω̄ up to a subsequence. At the same time, up to a subsequence (common585

subsequence), (ϕk,n)n∈N uniformly converges to ϕ̄k on Ω̄ and thus586 (
φk,n = (φ0 ◦ · · · ◦ φk−1)

−1 ◦ ϕk,n
)
n∈N uniformly converges to (φ0 ◦ · · · ◦ φk−1)

−1 ◦587

ϕ̄k on Ω̄. By uniqueness of the limit, it follows that φ̄k = (φ0 ◦ · · · ◦ φk−1)
−1 ◦588

ϕ̄k. Similar arguments to those previously used enable one to get a bound on589

Lip(φ̄k,Ω), respectively Lip(φ̄−1
k ,Ω). Also, Corollary 2.21 of [15, p. 64] states that590

the derivatives of φ̄k in the sense of distributions are given by the usual derivation591

formulas for composed functions. Thus592

∇ φ̄k = ∇ (φ0 ◦ · · · ◦ φk−1)
−1 (ϕ̄k)∇ϕ̄k a.e.,593594

yielding595

det∇ φ̄k = det∇ϕ̄k det
(
∇ (φ0 ◦ · · · ◦ φk−1)

−1 (ϕ̄k)
)
.596

597

From the above, det∇ϕ̄k > 0 a.e. and det
(
∇ (φ0 ◦ · · · ◦ φk−1)

−1
)
> 0 a.e.. Be-598

sides, let Nk ⊂ Ω be such that meas(Nk) = 0 and for all x ∈ Ω \ Nk,599

det
(
∇ (φ0 ◦ · · · ◦ φk−1)

−1
)
> 0. Now let N ′

k = ϕ̄−1
k (Nk). Then meas(N ′

k) = 0 and600

for every y /∈ N ′
k,601

det
(
∇ (φ0 ◦ · · · ◦ φk−1)

−1 (ϕ̄k(y))
)
= det

(
∇ (φ0 ◦ · · · ◦ φk−1)

−1 (x)
)

602
603

with x ∈ Ω\Nk, yielding det
(
∇ (φ0 ◦ · · · ◦ φk−1)

−1 (ϕ̄k)
)
> 0 a.e. and subsequently604

det∇ φ̄k > 0 a.e..605

• Asymptotic analysis606

Let us now consider the sequence (φk)k∈N of minimisers —φk a minimiser of (Pk)—607

and let φ̄ ∈ W be a minimiser of F(·). Let us set ϕk = φ0 ◦ · · · ◦ φk.608

Since ∀k ∈ N, ∥∇ϕk∥L∞(Ω,M2(R)) ≤ α, invoking the generalised Poincaré inequality609

and Gagliardo-Nirenberg interpolation inequalities yields that (ϕk)k∈N is uniformly610

bounded in W 1,∞(Ω,R2). Thus there exist a subsequence still denoted by (ϕk)k∈N611

and ϕ̄ ∈W 1,∞(Ω,R2) such that612

ϕk
∗
⇀

k→+∞
ϕ̄ in W 1,∞(Ω,R2).613

614
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By continuity of the trace operator and since ϕk ∈ Id +W 1,∞
0 (Ω,R2) by construc-615

tion, one gets that ϕ̄ ∈ Id +W 1,∞
0 (Ω,R2).616

From [10, Theorem 8.20], we have that det∇ϕk ⇀
k→+∞

det∇ϕ̄ in L
p
2 (Ω) for all617

p ∈]1,∞[. We also know that WOp is continuous and convex. If ψn −→
n→+∞

ψ̄ in618

W 1,4(Ω,R2), thus ∇ψn −→
n→+∞

∇ψ̄ in L4(Ω,M2(R)) and we can extract a subse-619

quence such that ∇ψn −→
n→+∞

∇ψ̄ almost everywhere in Ω. If κn −→
n→+∞

κ̄ in L2(Ω),620

then one can extract a subsequence still denoted by (κn) such that κn −→
n→+∞

κ̄621

almost everywhere in Ω. Then by applying Fatou’s lemma, we get622

lim inf
n→+∞

∫
Ω
WOp(∇ψn, κn) dx ≥

∫
Ω
WOp(∇ψ̄, κ̄) dx.623

624

As WOp is convex, so is (ξ, κ) 7→
∫
ΩWOp(ξ, κ) dx and we can apply [6, Corollaire625

III.8], [7] so that
∫
ΩWOp(ξ, κ) dx is also weakly lower semi-continuous in626

L4(Ω,M2(R))× L2(Ω) yielding627 ∫
Ω
WOp(∇ϕ̄, det∇ϕ̄) dx ≤ lim inf

k→+∞

∫
Ω
WOp(∇ϕk,det∇ϕk) dx.628

629

Now, again, due in particular to the property of stability by composition, ∀k ∈ N∗,630

φ−1
k−1 ◦ · · · ◦ φ

−1
0 ◦ φ̄ ∈ Xk and by definition of φk,631

F(φ0 ◦ · · · ◦ φk,
k∑
j=0

Tj ,
k∑
j=0

Rj) ≤F(φ̄,
k∑
j=0

Tj ,
k∑
j=0

Rj),632

=
λ

2
|(

k∑
j=0

Tj) ◦ φ̄− (
k∑
j=0

Rj)∥2L2(Ω) +

∫
Ω
WOp(∇φ̄,det∇φ̄) dx633

+ 1{∥·∥L∞(Ω,M2(R))≤α}(∇φ̄) + 1{∥·∥L∞(Ω,M2(R))≤β}((∇φ̄)
−1).634635

Since (
k∑
j=0

Tj) −→
k→+∞

T and (
k∑
j=0

Rj) −→
k→+∞

R in L2(Ω) and φ̄ is a minimiser of F636

—meaning that φ̄ is a bi-Lipschitz homeomorphism from Ω̄ to Ω̄ with637

det∇φ̄ > 0 a.e., ∥∇φ̄∥L∞(Ω,M2(R)) ≤ α and ∥(∇φ̄)−1∥L∞(Ω,M2(R)) ≤ β —, we get,638

applying the classical change of variable and C = C(β) > 0 denoting a constant639

depending only on β,640

∥(
k∑
j=0

Tj) ◦ φ̄− (
k∑
j=0

Rj)− T ◦ φ̄+R∥L2(Ω)641

≤ ∥(
k∑
j=0

Tj) ◦ φ̄− T ◦ φ̄∥L2(Ω) + ∥(
k∑
j=0

Rj)−R∥L2(Ω),642

≤ C ∥(
k∑
j=0

Tj)− T∥L2(Ω) + ∥(
k∑
j=0

Rj)−R∥L2(Ω) −→
k→+∞

0.643

644
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This results in:645

lim inf
k→+∞

F(ϕk,
k∑
j=0

Tj ,

k∑
j=0

Rj)646

≤ lim inf
k→+∞

λ

2
∥(

k∑
j=0

Tj) ◦ φ̄− (

k∑
j=0

Rj)∥2L2(Ω) +

∫
Ω
WOp(∇φ̄,det∇φ̄) dx647

+ 1{∥·∥L∞(Ω,M2(R))≤α}(∇φ̄) + 1{∥·∥L∞(Ω,M2(R))≤β}((∇φ̄)
−1),648

= lim
k→+∞

λ

2
∥(

k∑
j=0

Tj) ◦ φ̄− (

k∑
j=0

Rj)∥2L2(Ω) +

∫
Ω
WOp(∇φ̄,det∇φ̄) dx649

+ 1{∥·∥L∞(Ω,M2(R))≤α}(∇φ̄) + 1{∥·∥L∞(Ω,M2(R))≤β}((∇φ̄)
−1),650

=
λ

2
∥T ◦ φ̄−R∥2L2(Ω) +

∫
Ω
WOp(∇φ̄,det∇φ̄) dx651

+ 1{∥·∥L∞(Ω,M2(R))≤α}(∇φ̄) + 1{∥·∥L∞(Ω,M2(R))≤β}((∇φ̄)
−1),652

= inf
φ∈W

F(φ) < +∞,653
654

this latter quantity being independent of k. We thus deduce that655 ∫
Ω
WOp(∇ϕ̄,det∇ϕ̄) dx ≤ lim inf

k→+∞

∫
Ω
WOp(∇ϕk,det∇ϕk) dx656

≤ lim inf
k→+∞

F(ϕk,
k∑
j=0

Tj ,

k∑
j=0

Rj),657

≤ inf
φ∈W
F(φ) < +∞.658

659

Since WOp(∇ϕ̄, det∇ϕ̄) = +∞ where det∇ϕ̄ ≤ 0, the set on which it occurs must660

be of null measure, otherwise we would have
∫
ΩWOp(∇ϕ̄,det∇ϕ̄) dx = +∞. Con-661

sequently, det∇ϕ̄ > 0 almost everywhere in Ω. Also, by the weak-∗ lower semicon-662

tinuity of ∥ · ∥L∞(Ω,M2(R)), ∥∇ϕ̄∥L∞(Ω,M2(R)) ≤ lim infk→+∞ ∥∇ϕk∥L∞(Ω,M2(R)) ≤ α,663

1{∥·∥L∞(Ω,M2(R))≤α}(∇ϕ̄) ≤ lim infk→+∞ 1{∥·∥L∞(Ω,M2(R))≤α}(∇ϕk), and for any664

q ∈]2, 11],665 ∫
Ω
∥(∇ϕ̄)−1∥qdet∇ϕ̄ dx ≤

∫
Ω

1

(det∇ϕ̄)q
∥∇ϕ̄∥qF det∇ϕ̄ dx ≤ αq∥ 1

det∇ϕ̄
∥q−1
Lq−1(Ω)

,666

< +∞,667668

owing to the fact that 1
det ∇ϕ̄ ∈ L10(Ω). Ball’s theorems ([4, Theorems 1 and669

2]) enable one to conclude that ϕ̄ is an homeomorphism from Ω̄ to Ω̄ with ϕ̄−1 ∈670

W 1,q(Ω,R2). (Recall that ϕ̄ ∈ Id+W 1,∞
0 (Ω,R2)). Again ((∇ϕk)−1)k∈N is uniformly671

bounded with respect to k in L∞(Ω,M2(R)), which, combined with the generalised672
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Poincaré inequality, Gagliardo-Nirenberg interpolation inequalities and Ball’s the-673

orems, shows that ϕk is a bi-Lipschitz orientation-preserving homeomorphism from674

Ω̄ to Ω̄, ϕ−1
k being uniformly bounded in W 1,∞(Ω,R2). One can thus extract a675

subsequence, still denoted by (ϕ−1
k )k∈N such that676

ϕ−1
k

∗
⇀

k→+∞
ū in W 1,∞(Ω,R2),677

678

and, up to a subsequence, (ϕ−1
k )k∈N uniformly converges to ū in Ω̄. Arguing as679

before, we prove that ū = ϕ̄−1 by demonstrating that ū ◦ ϕ̄ = Id everywhere on Ω̄.680

The mapping ϕ̄ is thus a bi-Lipschitz orientation-preserving homeomorphism from681

Ω̄ to Ω̄, and again, applying the same arguments as before, ∥(∇ϕ̄)−1∥L∞(Ω,M2(R)) =682

∥∇ϕ̄−1∥L∞(Ω,M2(R)) ≤ lim inf
k→+∞

∥∇ϕ−1
k ∥L∞(Ω,M2(R)) = lim inf

k→+∞
∥(∇ϕk)−1∥L∞(Ω,M2(R)) ≤683

β and 1{∥·∥L∞(Ω,M2(R))≤β}((∇ϕ̄)
−1) ≤ lim inf

k→+∞
1{∥·∥L∞(Ω,M2(R))≤β}((∇ϕ̄k)

−1).684

We now prove that ∥
k∑
j=0

Tj ◦ϕk−
k∑
j=0

Rj∥L2(Ω) −→
k→+∞

∥T ◦ ϕ̄−R∥L2(Ω), using the first685

triangle inequality and the classical change of variable. In that purpose, one has686

∥(
k∑
j=0

Tj) ◦ ϕk −
k∑
j=0

Rj − T ◦ ϕ̄+R∥L2(Ω)687

≤∥(
k∑
j=0

Tj) ◦ ϕk − T ◦ ϕ̄∥L2(Ω) + ∥
k∑
j=0

Rj −R∥L2(Ω),688

≤∥(
k∑
j=0

Tj) ◦ ϕk − T ◦ ϕk∥L2(Ω) + ∥T ◦ ϕk − T ◦ ϕ̄∥L2(Ω) + ∥
k∑
j=0

Rj −R∥L2(Ω),689

≤C(β) ∥(
k∑
j=0

Tj)− T∥L2(Ω) + ∥T ◦ ϕk − T ◦ ϕ̄∥L2(Ω) + ∥
k∑
j=0

Rj −R∥L2(Ω).690

691

As
k∑
j=0

Tj −→
k→+∞

T and
k∑
j=0

Rj −→
k→+∞

R in L2(Ω) ([31]), it suffices to show that692

∥T ◦ ϕk − T ◦ ϕ̄∥L2(Ω) converges to 0.693

Let (Tn) ∈ C∞0 (Ω) be a sequence such that Tn −→
n→+∞

T in L2(Ω) (property of694

density of C∞0 (Ω) in L2(Ω)). Let ϵ > 0 be fixed. Let N = N(ϵ) ∈ N be such695

that ∥TN − T∥L2(Ω) ≤ ϵ
3 and let LN(ϵ), be a Lipschitz constant associated to TN .696

According to the Sobolev embedding theorem, there existsK ∈ N such that ∀k ∈ N,697

This manuscript is for review purposes only.



22 N. DEBROUX, C. LE GUYADER AND L.A. VESE(
k ≥ K ⇒ ∥ϕk − ϕ̄∥L2(Ω,R2) ≤ ϵ

3LN(ϵ)

)
. Let us take k ≥ K so that698

∥T ◦ ϕk − T ◦ ϕ̄∥L2(Ω) ≤ ∥T ◦ ϕk − TN ◦ ϕk∥L2(Ω) + ∥TN ◦ ϕk − TN ◦ ϕ̄∥L2(Ω)699

+ ∥TN ◦ ϕ̄− T ◦ ϕ̄∥L2(Ω),700

≤ 2C(β) ∥T − TN∥L2(Ω) + LN∥ϕk − ϕ̄∥L2(Ω),701

≤ 2C(β)ϵ

3
+
ϵ

3
.702

703

We thus have proved that ∃K = K(ϵ) ∈ N such that ∀k ∈ N, one has704 (
k ≥ K(ε) ⇒ ∥T ◦ ϕk − T ◦ ϕ̄∥L2(Ω) ≤

2C(β)ϵ
3 + ϵ

3

)
. Then705

∥(
k∑
j=0

Tj) ◦ ϕk −
k∑
j=0

Rj − T ◦ ϕ̄+R∥L2(Ω) −→
k→+∞

0.706

707

By gathering all the results, we finally get that708

F(ϕ̄) = λ

2
∥T ◦ ϕ̄−R∥2L2(Ω) +

∫
Ω
WOp(∇ϕ̄,det∇ϕ̄) dx+ 1{∥·∥L∞(Ω,M2(R))≤α}(∇ϕ̄)709

+ 1{∥·∥L∞(Ω,M2(R))≤β}((∇ϕ̄)
−1),710

≤ lim inf
k→+∞

F(ϕk,
k∑
j=0

Tj ,
k∑
j=0

Rj) ≤ F(φ̄) = inf
φ∈W
F(φ),711

712

with ϕ̄ ∈ W and ϕk
∗
⇀

k→+∞
ϕ̄ in W 1,∞(Ω,R2). Thus ϕ̄ is a minimiser of the initial713

problem formulated in T and R, and the result is proved.714

3. Numerical Resolution. We assume that the (k− 1)-th stage is reached and we aim715

to numerically solve problem (Pk) for a fixed k.716

3.1. Motivations. Problem (Pk) falls within the non-convex and non-differentiable717

class of optimisation problems which is the hardest one to solve numerically, due to the718

nonlinearity on both the deformation and its Jacobian as well as the L∞ penalties on the719

Jacobian deformation and its inverse. We therefore adopt a common strategy in nonlinear720

elasticity which consists in introducing auxiliary variables to lift the nonlinearity from721

Jacobian deformation to a new variable and to move the nonconvexity from the Jacobian722

deformation and its inverse to new variables. We adjust it to the registration setting723

following [12]. The underlying idea is to obtain either a non-convex differentiable problem724

or a convex non-differentiable problem in each variable which are more tractable from a725

computational point of view.726

3.2. Decoupled problem. We therefore introduce multiple auxiliary variables: (i) ϕ727

simulates the composition of deformations at scale k, i.e. ϕ ≈ φ0 ◦φ1 ◦ . . .◦φk−1 ◦φ to deal728

with the nonlinearity coming from the composition with the Template image at scale k, (ii)729

ψ mimics the inverse of ϕ to facilitate the handling of the inverse Jacobian deformation,730
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(iii) V approximates the Jacobian of the composition of deformations that is V ≈ ∇ϕ to731

deal with the regularisation, (iv) W reproduces the Jacobian of ψ.732

Remark 3.1. To handle the L∞ penalty on (∇φ0◦φ1◦. . .◦φk−1◦φ)−1 we take advantage733

of the following property: if u is a homeomorphism from Ω into Ω, and the inverse function734

u−1 belongs to W 1,q(Ω,R2), the matrix of weak derivatives reads ∇(u−1) = (∇u)−1(u−1)735

([4]) and the property proved in previous computations that for bi-Lipschitz homeomor-736

phisms u, ∥∇(u−1)∥L∞(Ω,M2(R)) = ∥(∇u)−1∥L∞(Ω,M2(R)).737

Let (γk,i)i∈N be an increasing sequence of positive real numbers such that limi→+∞ γk,i =738

+∞ for a fixed k. We then derive a decoupled problem (DPk,i) using Lp-type penalties:739

inf
φ,ϕ,ψ,V,W

{Fk,i(φ, ϕ, ψ, V,W ) =
λ

2

∫
Ω
(

k∑
j=0

Tj −
k∑
j=0

Rj ◦ ψ)2det∇ψ dx+

∫
Ω
WOp(V,detV ) dx740

+ 1{∥.∥L∞(Ω,M2(R))≤α}(V ) + 1{∥.∥L∞(Ω,M2(R))≤β}(W ) (DPk,i)741

+
γk,i
4
∥V −∇ϕ∥4L4(Ω,M2(R))

+
γk,i
4
∥W −∇ψ∥4L4(Ω,M2(R))

742

+
γk,i
2
∥ζ−1
k−1 ◦ ϕ− φ∥

2
L2(Ω,R2) +

γk,i
2
∥ψ ◦ ϕ− Id∥2L2(Ω,R2)},743744

where we have set ζk−1 = φ0 ◦ φ1 ◦ . . . ◦ φk−1, bi-Lipschitz homeomorphism from Ω̄ to Ω̄745

with ζk−1 ∈ Id +W 1,∞
0 (Ω,R2), det ζk−1 > 0 a.e., ∥∇ ζk−1∥L∞(Ω,M2(R)) ≤ α and746

∥(∇ ζk−1)
−1∥L∞(Ω,M2(R)) ≤ β, and with φ ∈ L2(Ω,R2), ϕ ∈ {u ∈ Id + W 1,4

0 (Ω,R2)},747

ψ ∈ {u ∈ Id +W 1,4
0 (Ω,R2), det∇u > 0 a.e.}, V ∈ {u ∈ L4(Ω,M2(R)), (detu)−1 ∈ L10(Ω),748

detu > 0 a.e., ∥u∥L∞(Ω,M2(R)) ≤ α} and W ∈ {u ∈ L∞(Ω,M2(R)), ∥u∥L∞(Ω,M2(R)) ≤ β}.749

In a companion paper [13] in preparation, we prove that for fixed k and for i large enough,750

problem (DPk,i) constitutes a good approximation of problem (Pk).751

Remark 3.2. Little more regularity is assumed on T̄k :=
∑k

j=0 Tj , namely T̄k ∈ L4(Ω).752

With the prescribed functional space for Ψ,753 ∫
Ω
(T̄k − R̄k ◦Ψ)2 det ∇Ψ dx ≤ 2

∫
Ω
|T̄k|2 det ∇Ψ dx+ 2

∫
Ω
(R̄k ◦Ψ)2 det ∇Ψ dx.754

755

While Cauchy-Schwarz inequality guarantees that the first term is finite, Theorem 1 of [4]756

holds, ensuring that the classical change of variable formula applies to the second term757

which is well-defined.758

Remark 3.3. The L4-penalties on both V and W are used for theoretical purposes to759

ensure the Jacobian of ϕ and the Jacobian of ψ are both in L4(Ω,M2(R)) which is needed for760

the asymptotic result derived hereafter. However in practice, the L4-penalties are replaced761

by L2 ones which is not too restrictive since the problem becomes discrete and all the762

norms turn to be equivalent.763

3.3. Numerical algorithm. Since solving the decoupled problem (DPk,i) for fixed scale764

k and large enough γk,i gives a good approximation of a solution to the initial problem (Pk)765

([13]), we propose a numerical algorithm depicted in Algorithm 3.1 based on an alternating766
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minimisation scheme. That is, for each variable, we derive a more computationally tractable767

minimisation sub-problem by fixing the other ones. We now turn to the numerical details of768

each sub-problem. To make the reading more fluid, we remind the reader of the expression769

of the overall functional (the dependence on parameter k is made explicit to enhance the770

fact that the resolution is done for each scale k, while that on index i is omitted)771

inf
φk,ϕk,

ψk,Vk,Wk

{Fk(φk, ϕk, ψk, Vk,Wk) =
λk
2

∫
Ω
(T̄k − R̄k ◦ ψk)2det∇ψk dx772

+

∫
Ω
WOp(Vk, detVk) dx+ 1{∥·∥L∞(Ω,M2(R))≤α}(Vk)773

+ 1{∥·∥L∞(Ω,M2(R))≤β}(Wk) +
γ1,k
4
∥Vk −∇ϕk∥4L4(Ω,M2(R))

774

+
γ2,k
4
∥Wk −∇ψk∥4L4(Ω,M2(R))

+
γ3,k
2
∥ζ−1
k−1 ◦ ϕk − φk∥

2
L2(Ω,R2)775

+
γ4,k
2
∥ψk ◦ ϕk − Id∥2L2(Ω,R2)}, (DPk)776777

and we explicitly state each resulting sub-problem by fixing all but one of the variables.778

Sub-problem 1: Optimisation over V . For each scale k, the sub-problem in Vk reads779

inf
Vk
F (Vk) +Reg(Vk) =

∫
Ω

[
a1,k∥Vk∥4 + (detVk − 1)2 +

a3,k
(detVk)10

]
dx780

+
γ1,k
2
∥Vk −∇ϕk∥2L2(Ω,M2(R))

+ 1{∥·∥L∞(Ω,M2(R))≤α}(Vk).781
782

783

Remark 3.4. Since in the discrete setting all the norms are equivalent, we have replaced784

here the L4 penalty term by an L2 one which is easier to handle from a numerical point of785

view.786

This problem can be seen as the sum of a proper closed convex function

Reg(·) = 1{∥·∥L∞(Ω,M2(R))≤α}(·)

and a smooth function F , and as in [12], we use the simple iterative forward-backward787

splitting algorithm [18]:788

V n+1
k = proxγ1,kReg(V

n
k − γ1,k∇F (V n

k )),789
790

with proxγ1,kReg(y) = min
x

1
2∥x − y∥

2
2 + γ1,kReg(y) = P{∥·∥L∞(Ω,M2(R))≤α}(y), PC being the791

projection operator onto the convex set C.792

793

Sub-problem 2: Optimisation over W . For each scale k, we solve the following794

minimisation problem795

inf
Wk

γ2,k
2
∥Wk −∇ψk∥2L2(Ω,M2(R))

+ 1{∥·∥L∞(Ω,M2(R))≤β}(Wk) = P{∥·∥L∞(Ω,M2(R))≤α}(∇ψk).796
797
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798

799

Sub-problem 3: Optimisation over ϕ. For each scale k, the sub-problem in ϕk800

reads801

inf
ϕk

λk
2

∫
Ω
(T̄k ◦ ϕk − R̄k)2 dx+

γk
2
∥Vk −∇ϕk∥2L2(Ω,M2(R))

+
γ3,k
2
∥ζ−1
k−1 ◦ ϕk − φk∥

2
L2(Ω,R2)802

+
γ4,k
2
∥ψk ◦ ϕk − Id∥2L2(Ω,R2).803

804

We then solve the associated Euler-Lagrange equation using an L2-gradient flow scheme805

with an implicit Euler time stepping.806

807

Sub-problem 4: Optimisation over ψ. For each scale k, the sub-problem in ψk808

reads809

inf
ψk

γ2,k
2
∥Wk −∇ψk∥2L2(Ω,M2(R))

+
γ3,k
2
∥ψk ◦ ϕk − Id∥2L2(Ω,R2)810

811

812

Remark 3.5. Numerically, to be tractable in practice, the fidelity term to the identity813

mapping is re-expressed by means of the change of variable formula.814

We then solve the associated Euler-Lagrange equation using an L2-gradient flow scheme815

with an implicit Euler time stepping.816

817

Sub-problem 5: Optimisation over φ. For each scale k, the problem in φk reads:818

inf
φk

γk
2
∥ζ−1
k−1 ◦ ϕk − φk∥

2
L2(Ω,R2)819

820

which has an explicit solution: φk = ζ−1
k−1 ◦ ϕk. We emphasise that the L∞ penalties are821

applied componentwise in our algorithm.822

We now test our method on both synthetic and real data from the medical imaging field.823

In all experiments, both the Template and Reference images are decomposed into 10 scales824

using Tadmor et al.’s algorithm ([31]) with parameters λ0 = 0.15 and a prescribed number825

of iterations equal to 200, except for the toy example T-shape with texture where we826

consider only 8 scales.827

4. Numerical experiments. This section is devoted to the analysis of numerical exper-828

iments: firstly, on a pair of 2 synthetic binary images ‘device8-1’ from the MPEG7 shape829

database (http://www.dabi.temple.edu) corresponding to T-shapes in order to (i) identify830

the mechanisms at work in the algorithm, (ii) assess the relevance of the results with regard831

to the intended objectives (in particular, the ability of the algorithm to model deformations832

capturing increasingly fine details while the scale grows). Then on real data stemming from833

the medical imaging domain: first on a slice of a 4DMRI sequence acquired during free834

This manuscript is for review purposes only.

http://www.dabi.temple.edu


26 N. DEBROUX, C. LE GUYADER AND L.A. VESE

Algorithm 3.1 Our Proposed Method (L∞ constraints applied componentwise)

1 Start from ϕ−1 ← Id, V11,−1 ← 1, V12,−1 ← 0, V21,−1 ← 0, V22,−1 ← 1,
W11,−1 ← 1, W12,−1 ← 0, W21,−1 ← 0, W22,−1 ← 1 ψ−1 ← Id, φ−1 ← Id,
and ζ−1 ← Id;

2 Choose N , the number of scales.

3 Compute (Tj)j=0,...,N and (Rj)j=0,...,N ;

4 for k = 0, . . . , N :

5 T̄k ←
k∑
j=0

Tj , and R̄k ←
k∑
j=0

Rj;

6 ϕk ← ϕk−1, V11,k ← V11,k−1, V12,k ← V12,k−1, V21,k ← V21,k−1,

V22,k ← V22,k−1, W11,k ←W11,k−1, W12,k ←W12,k−1, W21,k ←W21,k−1,

W22,k ←W22,k−1 ψk ← ψk−1, φk ← Id, and ζk−1 ← ϕk−1;

7 for l = 1, . . . , nbIter:
8 for each pixel:

9 V11,k ← proj{∥.∥L∞(Ω)≤α}(V11,k − (4∥Vk∥2V11,k +2a2(detVk−1)

V22,k − 10a3V22,k

detV 11
k

+ γ1(V11,k − ∂ϕ1,k

∂x )));

10 V12,k ← proj{∥.∥L∞(Ω)≤α}(V12,k − (4∥Vk∥2V12,k −2a2(detVk−1)

V21,k +
10a3V21,k

detV 11
k

+ γ1(V12,k − ∂ϕ1,k

∂y )));

11 V21,k ← proj{∥.∥L∞(Ω)≤α}(V21,k − (4∥Vk∥2V21,k −2a2(detVk−1)

V12,k +
10a3V12,k

detV 11
k

+ γ1(V21,k − ∂ϕ2,k

∂x )));

12 V22,k ← proj{∥.∥L∞(Ω)≤α}(V22,k − (4∥Vk∥2V22,k +2a2(detVk−1)

V11,k − 10a3V11,k

detV 11
k

+ γ1(V22,k − ∂ϕ2,k

∂y )));

13 W11,k ← proj{∥.∥L∞(Ω)≤β}(
∂ψ1,k

∂x );

14 W12,k ← proj{∥.∥L∞(Ω)≤β}(
∂ψ1,k

∂y );

15 W21,k ← proj{∥.∥L∞(Ω)≤β}(
∂ψ2,k

∂x );

16 W22,k ← proj{∥.∥L∞(Ω)≤β}(
∂ψ2,k

∂y );

17 for each pixel:

18 Solve the Euler -Lagrange equation with respect to ϕk
using an L2 gradient flow with implicit Euler time

stepping;

19 Solve the Euler -Lagrange equation with respect to ψk
using an L2 gradient flow with implicit Euler time

stepping;

20 φk ← ζ−1
k−1 ◦ ϕk;

21 return ϕk, ψk, V11,k, V12,k, V21,k, V22,k,W11,k,W12,k, W21,k,W22,k, φk, T̄k ◦ ϕk;

breathing of the right lobe liver [32] http://vision.ee.ethz.ch/∼organmot/chapter download.835

shtml. Second, on a slice of CINE cardiac sequence (courtesy of Caroline Petitjean).836

We recall here that T̄k represents the truncated decomposition of the Template image at837

scale k, R̄k stands for the truncated decomposition of the Reference image at scale k, ϕk838

denotes the composition of deformations at scale k, i.e. ϕk ≈ φ0 ◦ φ1 ◦ . . . ◦ φk, φk is the839

refined deformation obtained at scale k, and ψk presents the inverse deformation at scale840
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k, i.e. ψk ≈ ϕ−1
k ≈ (φ0 ◦ φ1 ◦ . . . ◦ φk)−1.841

Before presenting in depth the results of our multiscale model, we first discuss how to set842

the parameters correctly.843

4.1. Parameter selection. According to (DPk), 10 parameters are involved in the844

problem we numerically solve, and the chosen values for each experiment are reported845

in Table 1. Parameter λk weighs the fidelity term at each scale k. When setting it, a846

trade-off must be met between accuracy of the alignment —requiring then high values847

of this parameter —and physically meaningful deformations —implying smaller values.848

The ranges are rather stable for each experiment as seen in Table 1 and go from 0.2 to849

3. Parameters a1,k, a2,k, and a3,k involved in the Ogden stored energy function serving850

as part of the deformation regularisation to impose physical soundness affect respectively851

the average local change of length and the average local change of area at each scale,852

impacting subsequently the local rigidity of the deformations. The higher the ai,k’s are,853

the more rigid the deformation is. These are rather stable for all experiments and with854

the scale growing, as one can see in Table 1. Parameters γ1,k, γ2,k, γ3,k and γ4,k are855

considered to be fixed for all scales and are chosen rather big as they ensure the closeness856

between the introduced auxiliary variables and those they are supposed to simulate as seen857

in the previous theoretical sections. α and β are fixed for all experiments and all scales858

and ensure that the deformation Jacobian does not become too big. The choice for the859

number of scales k considered follows from the discussion in [31] by using the following860

stopping criterion ∥uk − uk+1∥L2(Ω) ≤ δ with δ being a specified tolerance. Nevertheless,861

rather than the value of this parameter in itself, it seems to us that it is the combination862

of this parameter with the initial parameter λ0 that is important since this latter dictates863

the level of detail contained in the images. To bound above the value of k, a data-driven864

preprocessing step based on [30] could be applied on both images to find the optimal value865

of k or equivalently the optimal regularisation parameter λ0 2
k+1 ensuring that features866

below a user-chosen threshold are removed.867

4.2. Evaluation protocol. In order to quantitatively evaluate the accuracy and prac-868

ticality of our model, in addition to a close and detailed visual inspection of the results,869

we consider the following metrics:870

• the Dice coefficient [16] which measures set agreement (after binarising the images871

at each scale by thresholding). The closer it is to 1, the better the set agreement is872

and therefore the better the accuracy of the registration process is. A comparison873

of the Dice coefficient between T̄k ◦ ϕk and R̄k, and the one between T̄k and R̄k874

allows us to quantitatively evaluate the quality of the registration at each scale.875

Then the Dice coefficient between T and R serves as a baseline to evaluate the im-876

proved quality of the registration process as the scale grows with the Dice coefficient877

between T ◦ ϕk and R.878

• min(det(∇ϕk)) and max(det(∇ϕk)) which ensure topology preservation of the global879

deformation at each scale. This range also indicates how far the deformation is from880

the volume preserving identity mapping and therefore quantifies the level of com-881

pression and dilation. The wider it is, the bigger the local compressions/dilations882
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k λ a1 a2 a3 γ1 γ2 γ3 γ4 α β

Liver MRI

0 2 5 1000 4 80000 1 1 1 100 100

1 2 5 1000 4 80000 1 1 1 100 100

2 2 5 1000 4 80000 1 1 1 100 100

3 2 5 1000 4 80000 1 1 1 100 100

4 2 5 1000 4 80000 1 1 1 100 100

5 2 5 1000 4 80000 1 1 1 100 100

6 2 5 1000 4 80000 1 1 1 100 100

7 2 5 1000 4 80000 1 1 1 100 100

8 1.5 5 1000 4 80000 1 1 1 100 100

9 1.5 5 1000 4 80000 1 1 1 100 100

CINE cardiac MRI

0 2 8 2000 4 80000 1 10 10 100 100

1 2 8 2000 4 80000 1 10 10 100 100

2 2 8 2000 4 80000 1 10 10 100 100

3 2 8 2000 4 80000 1 10 10 100 100

4 2 8 2000 4 80000 1 10 10 100 100

5 2 8 2000 4 80000 1 10 10 100 100

6 2 8 2000 4 80000 1 10 10 100 100

7 2 8 2000 4 80000 1 10 10 100 100

8 2.5 8 3000 4 80000 1 10 10 100 100

9 3 8 3500 4 80000 1 10 10 100 100

T-shape

0 1 5 2000 4 80000 1 1 1 100 100

1 1 5 2000 4 80000 1 1 1 100 100

2 1 5 2000 4 80000 1 1 1 100 100

3 0.5 5 2000 4 80000 1 1 1 100 100

4 0.5 5 2000 4 80000 1 1 1 100 100

5 0.5 5 2000 4 80000 1 1 1 100 100

6 0.5 5 2000 4 80000 1 1 1 100 100

7 0.5 5 2000 4 80000 1 1 1 100 100

8 0.5 5 2000 4 80000 1 1 1 100 100

9 0.2 5 2000 4 80000 1 1 1 100 100

T-shape-texture

0 1 5 3000 4 80000 1 1 1 100 100

1 1 5 3000 4 80000 1 1 1 100 100

2 1 5 3000 4 80000 1 1 1 100 100

3 1 5 3000 4 80000 1 1 1 100 100

4 1 5 3000 4 80000 1 1 1 100 100

5 0.1 5 3000 4 80000 1 1 1 100 100

6 0.1 5 3000 4 80000 1 1 1 100 100

7 0.1 5 3000 4 80000 1 1 1 100 100
Table 1

Selected parameters for the experiments.
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are.883

• Re−SSD(T̄k ◦ϕk, R̄k) = ∥T̄k◦ϕk−R̄k∥2
∥T̄k−R̄k∥2

and Re−SSD(T ◦ϕk, R) = ∥T◦ϕk−R∥2
∥T−R∥2 which884

measure the intensity alignment between the deformed truncated Template and the885

truncated Reference image at each scale and the initial Template image deformed886

by the transformation obtained at scale k and the initial Reference image. The887

closer it is to 0, the better the alignment is. The former one quantifies the quality888

of the registration process at each scale while the latter assesses the refined accuracy889

of the registration as the scale grows.890

The results are reported for each experiment in Table 2, Table 3, Table 5 and Table 6891

respectively. We now turn to the first synthetic numerical experiment.892

4.3. Toy example. The proposed method is first evaluated on a synthetic example893

(Figure 2) to emphasise the ability of the model to generate large deformations and to894

handle noisy data. Indeed, white Gaussian noise is added to the Reference image to il-895

lustrate the benefit of multiscale image registration when dealing with noisy images (see896

Figure 1) while keeping a fidelity term based on intensity comparison. In Figure 2, we

Figure 1. Template T-shape image on the left and noisy T-shape Reference image on the right.

897
observe that on the first scales, the noise in the truncated Reference image is removed898

which allows our multiscale model to produce correct deformations without perturbations899

inherited from the noise. However, the first level is too blurry to generate accurate defor-900

mations, and more levels are needed to correct the displacements of the junctions between901

the vertical and horizontal bars of the T as seen in the zoom-in view at scale 9. This902

may also explain why the amplitude of the determinant range in Table 2 decreases as the903

scale increases: at the first scales, the hierarchical decomposition algorithm produces im-904

ages with blurry and thus rough contours, which may entail larger deformations than the905

one required for pairing the original images. Additionally, it exemplifies the ‘corrective’906

dimension of the proposed algorithm in the latter scales. We see that at the last level,907

the difference map between the deformed Template and the Reference is only composed908

of the noise, which supports the fact that this hierarchical decomposition of the deforma-909

tions can help the registration process in case of noisy data. These observations are also910

supported by quantitative metrics in Table 2. In this case, the Dice coefficient is a much911

more reliable metric than the Re-SSD to evaluate the registration accuracy since Re-SSD912

compares the intensity values and is thus very sensitive to noise. We observe that the913

quantity Dice(T ◦ ϕk,R) increases and gets closer to 1 as k grows and therefore, several914

levels are needed to achieve the best registration accuracy.915
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Figure 2. Multiscale registration results on synthetic T-shape images with noise (size: 100×100, time:
7 minutes): each row represents a scale of the deformation; the first column displays the Template image at
scale k, i.e. T̄k, the second column shows the Reference image at scale k, i.e. R̄k, the third one illustrates
the deformed Template obtained at scale k, i.e. T̄k ◦ ϕk, the fourth one exhibits the absolute difference
|T̄k ◦ ϕk − R̄k| at scale k, the fifth column presents the inverse deformation at scale k, i.e. ψk ≈ ϕ−1

k ≈
(φ0 ◦ φ1 ◦ . . . ◦ φk)−1, the sixth column represents the composition of deformations at scale k, i.e. ϕk ≈
φ0 ◦ φ1 ◦ . . . ◦ φk, and finally the last column displays the deformation obtained at scale k, ie. φk. A few
scales have been removed to improve the readability of the figure.
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k Dice(T̄k,R̄k) Dice(T̄k◦ϕk,R̄k) Dice(T◦ϕk,R) min(det(∇ϕk)) max(det(∇ϕk)) Re-SSD(T◦ϕk,R) Re-SSD(T̄k◦ϕk,R̄k)
0 0.4607 0.9621 0.9095 0.5991 1.4543 0.6773 0.6966
1 0.6168 0.9765 0.9176 0.6461 1.2582 0.6634 0.6828
2 0.6241 0.9649 0.9115 0.6024 1.2824 0.6825 0.6964
3 0.6076 0.9773 0.9205 0.7175 1.2023 0.6625 0.6810
4 0.5983 0.9820 0.9225 0.7434 1.2256 0.6591 0.6703
5 0.5888 0.9874 0.9267 0.7613 1.2562 0.6574 0.6622
6 0.5796 0.9896 0.9285 0.7834 1.2548 0.6546 0.6554
7 0.6203 0.9881 0.9293 0.7676 1.2991 0.6520 0.6540
8 0.6491 0.9810 0.9293 0.7727 1.3352 0.6505 0.6525
9 0.6037 0.9648 0.9303 0.8198 1.2173 0.6556 0.6569

Table 2
Quantitative analysis of the multiscale registration model on synthetic T-shape images (for comparison,

Dice(T ,R) = 0.8227).

4.4. Toy example T-shapes with texture. In this example, two textures with different916

scales are added to the synthetic T-shape pair of images to illustrate the deformation de-917

composition mechanisms at work in our multiscale registration model. The first additional918

texture consists in fine vertical layers while the second one is composed of small black919

circles inside the T-shape. The number of layers and circles is the same in both images920

to comply with the topology preservation assumption of our model. However, the identity921

mapping on the boundary assumption is not fulfilled and we can see that even at the finer922

scale there is a small error in the alignment at the bottom of the image in Figure 3. We923

observe that on the first scales only the T-shape is kept and the deformation maps correctly924

the two simplified images. From scale 2-3, the black circles are appearing and we see in the925

zoom-in views that the deformation φk obtained at this scale corresponds to the movement926

of these circles. The same phenomenon occurs at scale 4 with the apparition of the vertical927

lines. With the zoom-in view at scale 7, we see that after the apparition of all the textures,928

a corrective process is at hand to improve the accuracy of the registration process. This929

is further corroborated by the study of the quantitive metrics in Table 3. Indeed, both930

the Dice scores and the Re-SSD indicate that the matching is accurate at each scale and931

that as the scale grows the alignment between the original deformed Template and the932

original Reference improves significantly. We also notice a gap in the progression of these933

metrics at scale 3 when the circles appear and at scale 4 when the vertical lines emerge.934

It therefore shows the ability of our model to correct the deformations of small textures as935

the scale increases. As we add more deformations through the scales, we see that the range936

of the determinant Jacobian increases. Furthermore, it remains positive at all times and937

by looking at the deformation maps in Figure 3, we see that the produced deformations at938

each scale are topology preserving and invertible as requested.939

We now present the numerical results on the first real medical dataset, that is the right940

lobe liver MRI.941

4.5. Liver. We chose the images of size 195× 166 corresponding to the liver in full ex-942

halation and the liver in full inhalation. The goal is to illustrate the capability of our model943

to deal with large deformations and fine structures, and to refine deformations scale after944

scale. The results are illustrated in Figure 5. We notice that at each scale, the deformed945

truncated Template is well-aligned with the truncated Reference, showing the capability946

of our model to deal with large and complex deformations. At each level, the deformation947
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Figure 3. Multiscale registration results on synthetic T-shape images with texture (size: 100×100,
time: 4 minutes): each row represents a scale of the deformation; the first column displays the Template
image at scale k, i.e. T̄k, the second column shows the Reference image at scale k, i.e. R̄k, the third one
illustrates the deformed Template obtained at scale k, i.e. T̄k ◦ ϕk, the fourth one exhibits the absolute
difference |T̄k ◦ ϕk − R̄k| at scale k, the fifth column presents the inverse deformation at scale k, i.e.
ψk ≈ ϕ−1

k ≈ (φ0 ◦ φ1 ◦ . . . ◦ φk)−1, the sixth column represents the composition of deformations at scale k,
i.e. ϕk ≈ φ0 ◦ φ1 ◦ . . . ◦ φk, and finally the last column displays the deformation obtained at scale k, i.e.
φk. A few scales have been removed to improve the readability of the figure.
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Figure 4. Multiscale registration results from [8] on synthetic T-shape images with texture.

k Dice(T̄k,R̄k) Dice(T̄k◦ϕk,R̄k) Dice(T◦ϕk,R) min(det(∇ϕk)) max(det(∇ϕk)) Re-SSD(T◦ϕk,R) Re-SSD(T̄k◦ϕk,R̄k)
0 0.4805 0.9848 0.8170 0.7674 1.5001 0.5357 0.0357
1 0.4856 0.9860 0.8142 0.7592 1.4674 0.5156 0.0391
2 0.4890 0.9870 0.8221 0.7600 1.4766 0.4321 0.0416
3 0.5390 0.9541 0.8931 0.6118 1.6482 0.2125 0.0652
4 0.5919 0.9478 0.9132 0.4290 1.7419 0.1463 0.0625
5 0.6107 0.9390 0.9177 0.4835 1.7345 0.1582 0.0941
6 0.6110 0.9360 0.9206 0.5260 1.7323 0.1582 0.1393
7 0.6252 0.9373 0.9230 0.5546 1.7342 0.1546 0.1595

Table 3
Quantitative analysis of the multiscale registration model on synthetic T-shape images with texture (for

comparison, Dice(T ,R) = 0.7020).

k Dice(Tk,Rk) Dice(Tk ◦ ϕk,Rk) Re-SSD(Tk ◦ ϕk,Rk) min(det(∇ϕk)) max(det(∇ϕk))
0 0,7826 0,8547 0,1911 0,7420 1,2366
1 0,7243 0,8777 0,1092 0,7010 1,2712
2 0,7063 0,9575 0,0529 0,6546 1,3111

Table 4
Quantitative analysis of the multiscale registration model from [8] on synthetic T-shape images with

texture (for comparison, Dice(T ,R) = 0.7020).

grids do not exhibit overlaps and therefore confirm the theoretical topology preservation948

property of our model, meaning that the produced deformations are physically relevant949
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Figure 5. Multiscale registration results on liver MRI from full inhalation to full exhalation (size:
195×166, time: 78 minutes): each row represents a scale of the deformation; the first column displays the
Template image at scale k, i.e. T̄k, the second column shows the Reference image at scale k, i.e. R̄k, the
third one illustrates the deformed Template obtained at scale k, i.e. T̄k ◦ ϕk, the fourth one exhibits the
absolute difference |T̄k ◦ ϕk − R̄k| at scale k, the fifth column presents the inverse deformation at scale k,
i.e. ψk ≈ ϕ−1

k ≈ (φ0 ◦φ1 ◦ . . . ◦φk)−1, the sixth column represents the composition of deformations at scale
k, i.e. ϕk ≈ φ0 ◦ φ1 ◦ . . . ◦ φk, and finally the last column displays the deformation obtained at scale k, i.e.
φk. A zoom on φk is proposed to see its local nature as the scale grows.
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with a positive Jacobian determinant. One can also see, thanks to the last column, that950

the hierarchical decomposition of the deformations obtained with our model behaves as951

expected. That is, the deformations from the first scales are large and global, representing952

the movements of the main organs, i.e. the liver and the kidney, meanwhile as the scale953

grows, the deformation becomes more localised and refined to model the motion of small954

features or structures inside the organs, i.e. the blood vessels here imaged as white dots.955

The zoom-in view helps to see this refined transformation.956

We observe that at each scale, the Jacobian determinant remains positive, which supports

k Dice(T̄k,R̄k) Dice(T̄k◦ϕk,R̄k) Dice(T◦ϕk,R) min(det(∇ϕk)) max(det(∇ϕk)) Re-SSD(T◦ϕk,R) Re-SSD(T̄k◦ϕk,R̄k)
0 0.7009 0.9850 0.9144 0.8063 1.5046 0.6024 0.4756
1 0.7115 0.980 0.9165 0.7729 1.5282 0.5401 0.4626
2 0.7164 0.9838 0.9189 0.6617 1.5332 0.5022 0.4709
3 0.7209 0.9802 0.9211 0.5785 1.5374 0.4793 0.4768
4 0.7281 0.9749 0.9265 0.5729 1.5454 0.4498 0.4698
5 0.7323 0.9700 0.9301 0.5603 1.5605 0.4392 0.4595
6 0.7349 0.9623 0.9335 0.5572 1.5940 0.4320 0.4476
7 0.7303 0.9539 0.9347 0.5632 1.6538 0.4338 0.4434
8 0.7283 0.9504 0.9366 0.5752 1.6342 0.4357 0.4397
9 0.7271 0.9452 0.9375 0.5604 1.6368 0.4429 0.4451

Table 5
Quantitative analysis of the multiscale registration model on free-breathing liver MRI images (for com-

parison, Dice(T ,R) = 0.7511) .

957

our previous claim that our model produces physically meaningful and reliable deforma-958

tions. Also, at each scale, Dice(T̄k ◦ ϕk, R̄k) is always greater than Dice(T̄k, R̄k) and close959

to one, and Re− SSD(T̄k ◦ ϕk, R̄k) is close to 0 which reinforces the quality and accuracy960

of the registration process at each scale. Finally, one can see that as the scale grows,961

Dice(T ◦ ϕk, R) becomes closer to 1 and Re − SSD(T ◦ ϕk, R) closer to 0 which can be962

interpreted as the alignment refinement through the scales. Indeed, in Figure 5, we see963

that as the scale grows, more localised and refined deformations are added to correct for964

small features displacements. This is further justified by the tendency of the determinant965

range to widen as the scale increases.966

4.6. Cardiac MRI. We were supplied with a whole cardiac MRI examination of a967

patient (courtesy of Caroline Petitjean from the LITIS, University of Rouen Normandie,968

France). It is made of 280 images divided into 14 levels of slice and 20 images per cardiac969

cycle of size 150 × 150. A cardiac cycle is composed of a contraction phase (40% of the970

cycle duration), followed by a dilation phase (60% of the cycle duration). In order to assess971

the accuracy of the proposed algorithm in handling large and nonlinear deformations, we972

propose to register a pair of the type: Reference corresponding to end diastole (ED), that973

is when the heart is the most dilated, and Template corresponding to end systole (ES),974

that is when the heart is the most contracted. This corresponds to the results depicted975

in Figure 6. We can see that at each level the deformed truncated Template and the976

truncated Reference images are well-matched. This visual inspection is confirmed by the977

Dice coefficients Dice(T̄k ◦ϕk, R̄k) close to one and Re-SSD(T̄k ◦ϕk,R̄k) close to 0 in Table 6.978

Our algorithm also gives us as outputs the global deformation grids, the global inverse979

deformation grids and the refined deformation grids at each scale, plotted respectively in980

column 5, 6 and 7 of Figure 6. We see that none of them exhibit overlaps meaning that the981
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Figure 6. Multiscale registration results on CINE cardiac MRI from the end of systole to the end of
diastole (size: 150×150, time: 21 minutes): each row represents a scale of the deformation; the first column
displays the Template image at scale k, i.e. T̄k, the second column shows the Reference image at scale k,
i.e. R̄k, the third one illustrates the deformed Template obtained at scale k, i.e. T̄k ◦ ϕk, the fourth one
exhibits the absolute difference |T̄k ◦ϕk− R̄k| at scale k, the fifth column presents the inverse deformation at
scale k, i.e. ψk ≈ ϕ−1

k ≈ (φ0 ◦φ1 ◦ . . . ◦φk)−1, the sixth column represents the composition of deformations
at scale k, i.e. ϕk ≈ φ0 ◦φ1 ◦ . . . ◦φk, and finally the last column displays the deformation obtained at scale
k, i.e. φk. A zoom on φk is proposed to see its local nature as the scale grows. A few scales have been
removed to improve the readability of the figure.
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Figure 7. Multiscale registration results from [8] on CINE cardiac MRI images.

produced deformations are invertible and preserve topology. This is corroborated by the982

fact that the Jacobian determinant of the global deformation remains positive at each scale983

in Table 6. Finally, the last column displays the deformation produced at each scale and984

we notice that in the first scales the deformation is global encompassing the movements985

of the main parts of the heart while as the scale grows the deformations become more986

localised and refined and correspond to the motion of small black structures as shown in987

the zoom-in views. This allows to correct the registration to capture smaller displacements988

and subsequently, to improve the matching accuracy of the initial Template with the initial989

Reference. This is highlighted by the fact that Dice(T ◦ϕk,R) grows and gets closer to 1 as990

k increases and that the Re-SSD(T ◦ ϕk,R) decreases and becomes closer to 0 in Table 6.991
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Here again, the determinant minimum tends to decrease, while the determinant maximum992

increases as the scale becomes bigger, which means that locally the contractions/expansions993

are bigger to correct the alignment between the original Template and Reference.

k Dice(T̄k,R̄k) Dice(T̄k◦ϕk,R̄k) Dice(T◦ϕk,R) min(det(∇ϕk)) max(det(∇ϕk)) Re-SSD(T◦ϕk,R) Re-SSD(T̄k◦ϕk,R̄k)
0 0.3202 0.8504 0.8528 0.6398 1.9041 0.3124 0.3419
1 0.3489 0.8837 0.8646 0.6248 1.9174 0.2808 0.2957
2 0.3589 0.8917 0.8693 0.6110 1.8978 0.2709 0.2729
3 0.3675 0.8947 0.8746 0.2611 1.9012 0.2611 0.2591
4 0.3774 0.9001 0.8824 0.5857 1.9129 0.2500 0.2444
5 0.3833 0.9007 0.8895 0.5852 1.9324 0.2365 0.2314
6 0.3893 0.9033 0.8946 0.5848 1.9551 0.2261 0.2219
7 0.3936 0.9014 0.8978 0.5761 1.9706 0.2203 0.2175
8 0.3952 0.9035 0.8992 0.5535 1.9567 0.2178 0.2164
9 0.3959 0.9049 0.9049 0.5137 2.0167 0.2086 0.2074

Table 6
Quantitative analysis of the multiscale registration model on CINE cardiac MRI images (for comparison,

Dice(T ,R) = 0.4059).

k Dice(Tk,Rk) Dice(Tk ◦ ϕk,Rk) Re-SSD(Tk ◦ ϕk,Rk) min(det(∇ϕk)) max(det(∇ϕk))
0 0,7391 0,8322 0,4066 0,5458 2,3574
1 0,7210 0,9183 0,1729 0,4848 2,5065
2 0,7217 0,9453 0,1321 0,4821 2,5957
3 0,7122 0,9431 0,1236 0,4776 2,7164

Table 7
Quantitative analysis of the multiscale registration model from [8] on CINE cardiac MRI images (for

comparison, Dice(T ,R) = 0.4059).

994

4.7. Comparative assessment with a well-established method. In order to substan-995

tiate the relevancy of the proposed approach in comparison to well-established methods,996

a comparative assessment is carried out between our method and [8] which is based on997

hyperelasticity principles and multiresolution techniques. Indeed, a parallel can be drawn998

between our approach and multiresolution techniques as described in [21, Chapter 13, Sec-999

tion 6]. In this latter framework, starting with the coarsest resolution, the deformation1000

pairing the two images is computed, generally requiring low computational costs. The1001

coarse resolution deformation is then extended by interpolation on a finer grid, and serves1002

as initial condition for the registration task at finer resolution. Apart from reducing the1003

computational burden, this approach brings some regularisation as structural main changes1004

are captured by all scales, while more subtle displacements are only encoded in finer scales,1005

according to the same principle as the one at work in our model. However, these two1006

methods differ in the meaning given to multiscale/multiresolution. While multiresolution1007

techniques refer primarily to the size of the images manipulated (which are increasingly1008

large at finer scales) and to the implemented interpolation technique to move from one1009

scale to a finer one, our proposed work focuses more on the image content and on the scale1010

of the features (the size of the images manipulated being the same through the process).1011

It seems to us that it is more closely related to the information encoded by the images1012

whereas multiresolution techniques remove arbitrarily some image data.1013

The FAIR code ([22]) (courtesy of Pr. Modersitzki (Institute of Mathematics and Image1014

Computing, University of Lübeck) and Dr. Ruthotto (Emory University, Department of1015

Mathematics)) is used, implementing the method developed in [8]. Our analysis focuses1016
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on the two experiments T-shapes with texture and Cardiac MRI (see Table 4 and Table 7).1017

For the former, three scales are computed in the multiresolution setting of [8], whereas four1018

are considered in the latter.1019

Note that, in the code [8], no boundary conditions are prescribed while in our setting,1020

Dirichlet boundary conditions are enforced. Visually, this may have a slight impact on the1021

reconstructed deformations in particular near the boundaries. Finally, if we consider one1022

step of our algorithm (going from scale k−1 to scale k) as an execution of the multiresolu-1023

tion algorithm [8], the computation times are comparable. At last, the deformation grids1024

have been designed with the same spacing for both methods.1025

Three angles of inquiry are addressed:1026

(i) first of all, of a conceptual nature. As stressed in introduction, multiresolution1027

techniques refer primarily to the size of the images manipulated (which are increas-1028

ingly large at finer scales) and subsequently to the reduction of the computation1029

cost as well as to the implemented interpolation technique to move from one scale1030

to a finer one. On the contrary, our proposed work focuses more on the image con-1031

tent and on the scale of the features (the size of the images manipulated being the1032

same through the process). It thus seems to us that our approach is more closely1033

related to the information encoded by the images and to the interpretation thereof1034

whereas multiresolution techniques remove arbitrarily some image data. From our1035

point of view, the deformations that result from [8] rather encode the structural1036

main changes and subtle localised displacements cannot be discriminated clearly1037

from one step to another (see in particular the deformation grids of Fig. 4 and1038

Fig. 7). A deformation obtained at a given scale appears rather as an upsampling1039

of the deformation achieved at the previous scale).1040

(ii) Second, a qualitative/visual comparison of the results produced by both algorithms.1041

In each case, the deformations generated by the algorithms are smooth and the1042

deformed Templates are faithful to reality (quantified in point (iii)). Note that1043

imposing the deformation to be equal to the identity mapping on the boundary1044

in our approach is a strong constraint (but consistent with our theoretical model),1045

which explains the differences in deformation behaviour that can be observed near1046

the boundaries.1047

Without drawing generalised conclusions, we can nevertheless observe that a slight1048

artefact appears in the deformed Template (scale k = 3, bright region of the left1049

side of the right ventricular cavity) in Fig. 7, while our result is closer to reality.1050

(iii) At last, a quantitative analysis is provided. Again, the figures should be analysed1051

with care as we are not comparing exactly the same thing. Quantitative measures,1052

whether it be Dice coefficient or Re-SSD are slightly better with [8]. Several hy-1053

potheses can be put forward in addition to the different boundary conditions. The1054

first is once again linked to the very nature of the multiresolution approach, which1055

is not exactly in line with the philosophy of our approach. While in the last step1056

of the algorithm [8], the exact data (i.e. the original images) are processed, we1057

deal, in our case, with versions of these from which very small details have been1058

removed. Additionally, in method [8], a regridding technique is at work in an un-1059
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derlying way since at a given k step, the initialisation is done with the deformed1060

Template resulting from the composition of the Template at scale k with the up-1061

sampled (interpolated) deformation obtained at k − 1. In our setting however, the1062

whole composition ϕk is computed at step k from which we derive φk: there is no1063

regridding involved.1064

5. Conclusion. To conclude, we have introduced a multiscale deformation representa-1065

tion consisting of the composition of intermediate deformations: the coarser one encodes1066

the movements of the main structural elements computed from the truncated Template and1067

Reference, reflecting only the essential features, while the finer one encompasses the local1068

and refined motion of small items. The proposed variational model relies on hyperelastic-1069

ity principles to ensure the produced deformations are bi-Lipschitz homeomorphisms and1070

therefore physically meaningful. Theoretical results including the existence of minimisers1071

for the model at each scale and an asymptotic result are provided to support the math-1072

ematical and computational soundness of our approach. Several numerical experiments1073

are conducted on both synthetic and medical images to show the ability of our model to1074

produce accurate hierarchical representations of deformations and to deal with noisy data.1075

A natural extension of our work in 3D is the object of future work, together with an as-1076

ymptotic analysis of the proposed numerical algorithm, which is a work in progress ([13]).1077

Replacing the hyperelastic-based regularisation term in our model by other state of the art1078

regularisation for the registration process could also be interesting to study.1079
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