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FREE VIBRATIONS IN A WAVE EQUATION MODELING MEMS*

CARLOS GARCiA-AZPEITIAT AND JEAN-PHILIPPE LESSARD?

Abstract. We study a nonlinear wave equation appearing as a model for a membrane (without
viscous effects) under the presence of an electrostatic potential with strength A. The membrane has
a unique stable branch of steady states uy for A € [0,\«]. We prove that the branch uy has an
infinite number of branches of periodic solutions (free vibrations) bifurcating when the parameter A
is varied. Furthermore, using a functional setting, we compute numerically the branch u) and their
branches of periodic solutions. This approach is useful to validate rigorously the steady states u) at
the critical value ..
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1. Introduction. We consider an idealized device that consists of an elastic
plate suspended above a rigid ground plate. This device falls in the category of
microelectromechanical systems (MEMS). The membrane is taken to be rectangu-
lar with two fixed parallel sides, while the other sides are considered to be thin and
free. When a potential difference is applied between the membrane and the plate,
the membrane deflects towards the ground plate. We assume that dissipation which
might result from viscous effects on the moving membrane can be neglected. Un-
der these assumptions, the deformation of the elastic membrane is described by the
dimensionless equation

A
(11) Utt—Uxx—Fm :0, T € [—71'/2,71'/2],

where U (x,t) satisfies the Dirichlet boundary conditions U(£7/2) = 0, and the pa-
rameter A represents the strength of the applied voltage. A derivation of the nonlin-
earity leading to a general equation modeling the electrostatic membrane

A
Uyt 1Us — Uy + M@ g

(1+U)*

for which the nonlinear wave equation (1.1) is a particular case, can be found in [27],
where the parameter € represents the strength of the inertial term, v the viscosity and
the function f(z) encodes the dielectric permitivity of the membrane.

In the design of microelectronic devices, it is relevant to study wether or not the
membrane touches the ground plate. This phenomenon is called touchdown or quench-
ing. Mathematically, quenching occurs if there is a point (z, t) such that U(z,t) = —1.
A vast literature exists on the study of MEMS via parabolic and hyperbolic PDE mod-
elling. Equation (1.1) is in fact a special case of the more general MEMS parabolic
and hyperbolic PDE models, and a vast mathematical literature is dedicated to their
study. Let us give a few examples.
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The local existence of solutions and the existence of quenching at a finite time
for a parabolic equation modelling MEMS is analyzed in [12, 18, 19], and references
therein. The case of a nonlocal parabolic equation modelling MEMS is proposed in
[13]. The existence of solutions and the finite-time quenching for a damped wave
equation modelling MEMS is analyzed in [11]. Generalizations of the wave equation
(1.1) have been studied in [5, 22, 31].

The study of periodic orbits in MEMS models have also received their fair share of
attention. Their relevance comes from the fact that they persist as small oscillations
with no quenching. In [21], periodic solutions were observed numerically by solving
an initial value problem for a non-local wave equation modelling MEMS. The study
of periodic solutions in Hamiltonian PDEs (such as equation (1.1)) presents intrinsic
problems associated to infinite-dimensional kernels [28], lack of compactness [10], or
small divisor problems [7]. The small divisor problem was avoided in [1, 24, 28] by
imposing restrictions on the temporal period of the solutions of a nonlinear wave
equation. By imposing similar restrictions, the articles [17] obtains the existence of
continuous branches of periodic solutions for a nonlinear wave equation in a sphere,
and in [6, 15] for a Hamiltonian PDE appearing in the n-vortex filament problem.

The equation (1.1) has a family of stable steady states uy for A € [0,\.]. For
instance, the existence of steady states of (1.1) in the N-dimension ball was proven in
[16]. In the present work, we prove the existence of continuous families of periodic so-
lutions near the branch of steady states (Theorem 1.1). This is our main contribution,
and to the best of our knowledge, this result is new. The main challenge encountered
when proving the existence of the periodic solutions is that the trivial branch uy and
its associated spectrum are not known explicitly. Indeed, while the existence of con-
tinuous families of periodic solutions has been obtained before for Hamiltonian PDEs
in [6, 15, 17, 24], in those articles the trivial branch and the spectrum of its linearized
equation are known explicitly. We overcome this problem with delicate estimates of
the spectrum which depend on an accurate estimate for the steady state uy, at the
critical value A.. While the critical value A, is known (see for instance [13, 22]), no
estimate for the steady state uy, is known. That leads to our second main contri-
bution, which is to obtain precise and rigorous estimate on the steady state uy, at
the critical value A, (Theorem 1.2). Finally, our third contribution is to present a
systematic approach to compute numerically the families of periodic solutions using
Chebyshev series expansion (in space) and Fourier series expansions (in time) (see
Figures 2, 3, 4 and 5).

Specifically, the linear operator of the stationary equation (1.1) at uy is given by

2

. ANu & —5%u —
(1.2) (A) T T )

su: Hf C L? — L,

where HZ([—7/2,7/2];R) is the Sobolev space of functions u(z) satisfying Dirichlet
boundary conditions u(+7/2) = 0. The operator A is self-adjoint and positive definite
for A € [0, A) because the first eigenvalue pq () is positive (Theorem 4.2 in [16]). Thus
A has eigenvalues 0 < p1(A) < po(N) < --- with eigenfunctions satisfying

(1.3) AN vg(z; X)) = pre (N vk (25 A), keN.

Our main theorem regarding the existence of periodic solutions is the following.

THEOREM 1.1. There is an infinite number of non-resonant parameters \g €
(0, A\y), associated with numbers p,q,k € N by the relation pg(ro) = (p/q)Q, such
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that there is a local continuum of 2mq/p-periodic solutions bifurcating from the steady
state uy(x) with A = A\g. The local bifurcation consists of free vibrations satisfying the
estimates

(1.4) U(t, 23 \) = ux, (x) + beos(pt/q)vr(x; Ao) + Oca (b?),
A= X0+ O(),

where b € [0,by] represents a parametrization of the local bifurcation for some by > 0
and Oca(b?) is a function of order b* in the C*-norm. Furthermore, the bifurcation
has symmetries

Ut,z) =U(—t,x) = U(t, —x), for k odd,
U(t,z) =U(—t,x) =U(t+ pr/q, —x), for k even.

The existence of a branch of periodic solutions arising from the family of steady
states u) is set as a branch of zeros for the functional equation

(1.5) LOVu+gwn) =0, L) = (p/q)* 8 + A,

where A()) is given in (1.2) and g = O(u?) is an analytic nonlinearity defined in a
neighborhood of zero. Here u € Hj ,, represents a perturbation from the steady state
uy, where HS,, (S'x[—7/2,7/2];R) is the Sobolev space of even 27-periodic functions
u(t,x) satisfying Dirichlet boundary conditions w(t,£7/2) = 0. The spectrum of
the elliptic operator A(\) is not explicit, but it can be estimated by applying the
Courant-Fischer-Weyl minmax theorem (Chapter 39 in [29]). These estimates are
essential to show that the linear operator L()\g) has a finite-dimensional kernel, which
is non-trivial for a dense set of values Ag in the interval (0,A.). We implement a
Lyapunov—Schmidt reduction for equation (1.5). The range equation is solved by the
contracting mapping theorem and by proving that the linear operator is invertible
(but not compact) in the range. The bifurcation equation is solved for a non-resonant
value A\g € (0, \,) using the Crandall-Rabinowitz theorem [8]. The proof of the main
theorem is finished by showing that the number of non-resonant points A\ in (0, A)
is infinite. It is important to mention that the main theorem in [25] and Remark 2.17
imply that the set of bifurcation points Ag is dense in (0, A«), but the bifurcations
arising from these possibly resonant bifurcation points do not satisfy the estimates or
symmetries of our main theorem.

The proof of Theorem 1.1 requires estimating rigorously the minimum value of
the steady state uy at the critical value A = \,. The proof of a precise estimate for
the steady state u),, is computer-assisted and is done independently using a Newton-
Kantorovich argument based on the radii polynomial approach (e.g. see [9, 20, 32]
and the references therein). To obtain a rigorous control on uy,, we use Chebyshev
polynomials series expansions. Since the Chebyshev polynomials are naturally defined
on the interval [—1, 1], we rescale the space domain [—7/2,7/2] to [-1,1]. Specifically,
let U(t,z;\) be a solution of equation (1.1), then the scaled function U(t,y; \) =
Ulat,z;0~2)) with a = 7/2 and 2 = ay, is a solution of the equation

A p—
(1+0U)
We denote the critical value of the scaled equation (1.6) by A* % (7/2)7% \,. The
articles [13, 22] study the model in the domain [—1/2,1/2] and get an exact implicit

formula for the critical value 4\*, which later is approximated numerically by the value
1.400016469. Using the radii polynomial approach, we prove the following result.

(16) Utt - Uyy + 0, Yy e [—1, 1], U(:l:].) =0.
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THEOREM 1.2. The branch of steady states uy of the MEMS equation (1.6) under-
goes a saddle-node bifurcation at the steady state ux~ satisfying the precise estimates

|’LL)\»« - 17,)\* |CD[—1,1] S r= 5.7 X 10_12,
where uy« 1s the numerical approxrimation portrayed in Figure 1, and such that

A* € 0.350004119342744 + [—r, 7],
ux~(0) € —0.388346718912783 + [—r, 7].
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Fic. 1. The numerical approzimation ux~(t) obtained in Section 3 for the steady state of
equation (1.6) at the critical value X\*.
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F1G. 2. Several branches of periodic solutions for k=1, ¢ =11 and p € {1,...,10}.
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Fic. 3. Periodic solutions on the branches appearing on Figure 2 for p = at A =

0.273478006926454 (left), p = 7 at A = 0.105151105978289 (center), and p = 8 at A
0.180819225410784 (right).
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F1G. 4. Several branches of periodic orbits for k =2, ¢ = 47 and p € {85,...,93}.
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Fi1G. 5. The periodic solutions on the branches p = 88 at A = 0.172417160845949 (left), and
p =90 at A = 0.130674749789634 (right) of Figure 4. Here, k =2 and q = 47.

Uly,t)

The proof of this theorem is performed by solving the boundary value prob-
lem (4.6) with polynomial nonlinearities. This setting simplifies the estimates of
the computer-assisted proof by considering the Banach algebra property of spaces of
Chebyshev sequences with geometric decay (e.g. see [20, 32]). Note that the compu-
tations of the branch of steady states and the spectrum of the linear elliptic operator
are also performed using Chebyshev series and are set as polynomial boundary value
problems given in (3.2) and (3.9), respectively. For the periodic solutions we use
the fact that U(t, ) is a 2mq/p-periodic solution of equation (1.1) if and only if the
rescaled function U(t,y) is a 4¢/p-periodic solution of equation (1.6). The boundary
value problem for periodic solutions of (1.6) is given in (3.15). This setting rep-
resents a control problem where the role of time is taken by the spatial variable y
and the control §(t) is used to determine the initial conditions U(¢,—1) = 0 and
Uy (t,—1) = 6(t) which guarantee that U(¢,1) = 0. Periodic solutions are obtained
numerically by expanding solutions with Fourier series in time and with Chebyshev
series in space. Examples of periodic solutions computed numerically for £ = 1 and
q = 11 are portrayed in Figures 2 and 3.

It is important to remark that the Newton-Kantorovich argument based on the
radii polynomial approach can be used to validate rigorously the full branch of steady
states uy or the eigenfunctions associated to the linear elliptic operator A(\) (e.g.
using the approach of [33, 14]). On the other hand, the validation of the branches
of periodic solutions requires further investigations due to the lack of compactness of
the inverse of the linear hyperbolic operator L(A). Indeed, while computer-assisted
proofs have been used to validate the existence of periodic solutions in a nonlinear
wave equations in [2] and in a nonlinear ill-posed Boussinesq equation (modelling
shallow water waves) in [4], in our case the inverse of the linear hyperbolic operator
L(\) lacks the necessary compactness to apply a similar approach.
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The rest of the paper proceeds as follows. In Section 2, we first prove Theorem 1.1
by combining a Lyapunov-Schmidt reduction and the Crandall-Rabinowitz theorem.
In Section 3, we compute numerically the steady states, the spectrum of the elliptic
operator and the periodic solutions of equation (1.6). Finally, in Section 4 we present
a computer-assisted proof of Theorem 1.2 that allows obtaining rigorous control over
the steady state uy~ at the critical parameter value.

2. Existence of an infinite number of branches of periodic solutions.

2.1. Properties of the linear elliptic operator. In this section we analyze the
properties of the steady states uy of equation (1.1) and properties of the eigenfunctions
of the linear elliptic operator A(\) defined in (1.2).

PROPOSITION 2.1. The steady state uy(x) is even in x and increasing in the in-
terval x € [0,7/2]. Moreover, the steady state uy is decreasing as a function of \.

Proof. This follows from the maximum principle, for instance see the results in
[13] and [16]. O

Now we present properties of the eigenvalues and eigenfunctions of the linear
elliptic operator A(\). By Sturm-Liouville theory the eigenvalues pg(A) are simple
for all k and A € [0,A,]. Furthermore, we can order the eigenvalues of A(\) by
0 < pi(A) < p2(A) < ... such that the eigenfunction vy(x;A) corresponding to
eigenvalue py(A\) has k — 1 simple zeros in (—7/2,7/2).

Remark 2.2. The eigenvalues py (M) for £ = 1,2,3 are computed numerically for
the rescaled problem with A\* = (7/2)” >\, in Section 3 (see Figure 6). Note that,
while we do not perform this in the present paper, our numerical computations of
the eigenvalues and eigenfunctions could be validated rigorously using a Newton-
Kantorovich argument based on the radii polynomial approach similarly to the proof
of Theorem 1.2 in Section 4.

PROPOSITION 2.3. For A € [0, \.] we have the following estimate for the eigen-
values pg (),

(2.1) 2A < k% — i (\) < 9N .
Proof. Let A, B: H? C L? — L? be the operators
w22
(1 +ux(2)®

Then we have that m |“|iz < (Bu,u) < M)y \u|iz, where

A=-0?-B, B

e 1 e . 1
My &2\ sup ————— and my ECID) inf —_—.
wel-n/2,7/2 (1 + ux(z)) w€l-m/2,7/2] (1 + uy(z))

The operator —92 : H3 C L? — L? has eigenvalues k% and eigenfunctions cos kx for
k € 2N + 1 and sinkz for k € 2NT. Since —92 = A + B, the Courant-Fischer-Weyl
theorem implies that

i (N) +ma <k < pp(X) + My
By the properties of uy(z), we have that my = 2\ and My = 2X (1 + u,(0)) > Since
uy, (0) is estimated in Theorem 1.2 with uy, (0) > —0.38834671892, then

(1+uy (0)° <45
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and
My =2X (14 ux(0)) > < 2X (1 +uyx, (0)) "> < 9A .

PROPOSITION 2.4. The eigenvalues () are monotonically decreasing for \ €
[0, \].
Proof. Let Ay < Ag. Since w) is decreasing in A, then
A A
1 . < 2 -
(T +ux (2)” (1 +ua,(2))

Thus the operator

def 22 - 21 CHECI? — L2
(1+urn (@) (L+un(@)®) ° ’

is positive definite, that is there exists ¢ > 0 such that (Cu,u);. > c(u,u);. for
all w € L?. Applying the Courant-Fischer-Weyl theorem to the operator A(\;) =
A(X2) + C : H? — L? we obtain that
O
(A1) = p(A2) + ¢ > pr(A2).

PROPOSITION 2.5. The eigenfunction vi(x;A) corresponding to the eigenvalue
uk(N) of the linear elliptic operator A(N) satisfies

vg(z; ) = (71)k+1vk(7m; A).

Proof. Since uy(x) is even, then v (—x; A) is also an eigenfunction of A(X) for the
eigenvalue px (). Since the eigenvalues are simple, then the eigenfunctions are unique
up to a scalar multiple, that is vg(x; A) = Lo (—x; A). But vg(x; A) has k — 1 simple
zeros in (—7/2,7/2), then vg(x; \) = vp(—x; A) if k is odd and vg(x; \) = —vp(—x; \)
if k is even. |

In particular, we have that

cos(kz), ke€2N+1
vp(@;0) =9
sin(kx), ke 2NT.

2.2. Properties of the linear hyperbolic operator. In this section we ana-
lyze the properties of the spectrum for the linear hyperbolic operator

(2.2) L v 2 (p/g) uge + A(N)u.

We define CZ,,, as the subspace of 27-periodic even functions u(t, ) satisfying

Dirichlet boundary conditions u(+m/2) = 0. Thus functions u € C%,,, have the
expansion

u(t,x) = Z ujk cos(jt)vg(x; A), ujr € R.
(j,k) ENXN+
By the estimates (2.1), the norm

2 def
w2 = Y fu

(j,k) ENXN+

2(j2+k2+1)s7
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is equivalent to the standard Sobolev norm. Thus the standard Sobolev space can be
defined by

H3(S' x [-7/2,7/2];R) = {u(t,z) € L* : |u|, < 0o} .
DEFINITION 2.6. Since the embedding H* C C? holds for s > 3, then the subspace
def
(2.3) HSy = {u(t,z) € H 1 u(t,£7/2) =0, u(t,x) =u(—t,x)}

is well defined for s > 3.
The linear hyperbolic map

L(\p/q) = (p/9)*0; + A(\) : D(L) C H},,, — H

sym
is a closed operator, where the subspace D(L) C H,,, is closed under the norm
2 2 2
ul}, = [Lulg +[ul{
The linear map L has eigenvalues

def

k(N p/a) = — (pj/a)® + ()

and eigenfunctions cos(jt)vg(z) for (j,k) € N x N*t.

LEMMA 2.7. Let X € [e,\]. If pj/q =k, then |pj (N, p/q)| > 2¢. If pj/q # K,
then

(A p/@)| = (pi/a+k) /g — 9.
Proof. 1f pj/q = k, then
i X p/@)] = K = p(A) = 2A > 2e.
If —pj/q+k +#0, then |—pj/q+ k| > 1/q and
|~ i/ + k2| = |=pi/a+ Kl Ipi/a+ k| = (pi/a+F) /.

Thus we have

3k p/a)| = |~ (pifa) + 2| = |an(3) = k| = (pi/a+ k) g — 9

We define N'(\, p/q) as the set of lattice points where L(\, p/q) has a zero eigen-
value,

(2.4) N\ p/a) = {(4,k) - njr(Xp/q) =0}.

DEFINITION 2.8. Notation b < a means that there is a positive constant C' such
that b < Ca.

PROPOSITION 2.9. If X € [g,\s — €], then |u; k(N p/q)| Z € for any (j,k) ¢ N
and N is a bounded set with

(2.5) N c{(j. k) € Nt x N* : pj + gk < 9>\, +1}.
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Proof. Since the first eigenvalue pq(\) is positive for A € [0, A,) and p1(As) = 0,
then pox(A,p/q) = pk(X) 2 € for A < A\ — &, which implies that (j,%k) € N only if
j > 0. From Lemma 2.7, we have that |u;x(\,p/q)| Z € for any (j,k) € NT x N*
except when (pj/q+ k) /q — 9\ < 1/¢>. This inequality is equivalent to

0
pj+ak <INGF +1<9ING + 1.

2.3. The Lyapunov-Schmidt reduction. The 27q/p-periodic solutions of equa-|j
tion (1.1) of the form U(t, x) = ux(z) +u(pt/q, x), where u(t, x) is an even 2m-periodic
perturbation satisfying Dirichlet boundary conditions u(t, +m/2) = 0, are solutions of
the equation

A A
(p/‘J)2 Ut — Ugg + - =0
" Q+uy+u)?  (1+uy)’

Thus the equation for the perturbation u from the steady state u) reads

(2.6) L(Xp/q)u+g(u) =0,
where L is defined in (2.2) and the quadratic nonlinear operator g is

det A A 2

= z 5T 3

(I4uy+u)” (Q4uy)”  (1+4uy)
3(1+uy) +2u .2

(14 ux)® (1 +uy + u)’

(2.7) 9(u; A)

In this section we make a Lyapunov-Schmidt reduction; namely, we solve the
equation (2.6) in the range of the operator L (the range equation) and we obtain an
equivalent equation to (2.6) defined in the kernel of L (the bifurcation equation).

We start by defining the projection in the kernel of L()\g) as

Qu = Z uj k cos(jt) vk (w5 No) : Heyp — HEy,s
(G.k)EN

and the projection P =1 —Q : H,,, — HS _ in the complement to the kernel of

sym sym

L(\g). We have the following result.
COROLLARY 2.10. Since |Hj,k(>\)|_1 <et for (4, k) ¢ N, then

<e ! |Pul, .

S

(2.8) ‘(PLP)*1 u

Thus (PLP)_1 : PHS ~—— PH?  is a bounded operator. However, the operator

sym sym

(PLP)™" is not compact because the embedding D(L) C H* is not necessarily compact.
For s > 3, the space H? ,, is a Banach algebra. Since g(u) = (’)(|u|2) is analytic

sym
in a neighborhood of u = 0, then the nonlinear operator

g(u) = O(|ul?) : B, € HE,,, — H?

sym sym

is continuous and well defined in

B, = {ue HSpy o |ul, <1}

sym
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Setting

v = Qu, w = Pu,
then u = v +w. Thus solutions to equation (2.6) are solutions of the kernel equation
(2.9) QLQu + Qg(v +w) =0,
and the range equation
(2.10) PLPw + Pg(v+w) =0.

The solutions to the range equation (2.10) in a neighborhood of (v,\) = (0, Ag)
are fixed points of the operator

Kw % (PLP) ' g(v+w): PB, C H?,, — H?

sym sym*

The estimate (2.8) and the fact that g(v+w) = (’)(|w|§) imply that K is a contraction
from the domain PB, into itself when we choose r << €. By the contracting mapping
theorem there is a unique fixed point w(v, \) € H,,, of K for (v, A) in a neighborhood
of (0,A9). Thus there is a unique function w(v,\) € Hj,,, that solves the range
equation (2.10) in a neighborhood of (0,\y). We conclude that the solutions to the

equation (2.6) are given by the solutions of the bifurcation equation
(2.11) QLQv + Qg(v +w(v, X)) : QB C ker L(X\g) — ker L(Xo) -

2.4. The bifurcation equation. To solve the bifurcation equation (2.11) we
need to look for values Ao € (0, \,) such that the linearization L(X¢) has a nontrivial
kernel, that is ; x(Ao, p/q) = 0 for some lattice point (j,k) € N.

PROPOSITION 2.11. Define

B, (Vi) k) © (VI =2X0k)

For each rational p/q € By, there is a unique Ao € (0, \) such that p1 (Ao, p/q) = 0.

Proof. Since ug(\;p/q) is decreasing and continuous for A € (0, \,), any Ay such
that w1 k(Ao p/q) = — (p/q)2 + 111(Ao) = 0 is unique. The result follows from the fact
that the eigenvalue () goes from the value (M) < k% — 2\, to ug(0) = k2 for A
in the interval (0, A,). d

For each X\ € (0, \,) such that ;1 (Xo,p/q) = 0, the set N'(A\g, p/q) representing
the kernel of L(\g,p/q) may contain additional resonant points. If these resonances
exist, they are contained in the bounded set given in (2.5).

DEFINITION 2.12. We say that Ay is a non-resonant value if
(2.12) N(Xo,p/a) = {(j,k) e NN 2y x(Xo,p/q) =0} = {(1,k)}.
If \g is non-resonant, then the kernel has dimension one, that is
ker L(M\o,p/q) = {bcos(t)vk(x; No) : b € R}.

To prove the existence of a simple bifurcation, we need to choose non-resonant
values A\g. The following lemma assures the existence of an infinite set of non-resonant
values \g.
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PROPOSITION 2.13. The set of non-resonant points Ao € (0, i) such that

N1,k()\o,p/Q) =0

for some p/q € By, is infinite.

Proof. There is a dense set of rationals p/q € Bj, such that py 5(Ao,p/q) = 0
for some Ag € (0,\:). Fix one of those points Ag. By (2.5), there is at most a
finite number of resonant elements (j, km) € NT x Nt such that p;, k. (Ao, p/q) =
— (pm/q)* + 1k, (No) = 0 for m € {0, ..., M}. Since the eigenvalues ju,(\o) are simple,
then

(Pim/0)? = 1, (No) # b (No) = (pjo/a)”.

Therefore, the numbers j,,,’s are different for different numbers m € {0, ..., M'}. This
implies that there is a unique lattice point denoted by (jo, ko) such that jo is maximal,
that is j,, < jo form=1,..., M.

By choosing py = pjo we have that p1 k, (Ao, po/q) = 0 and p; k(Ao, po/q) # 0 for
all j > 1; otherwise jy would not be maximal. We conclude that any Ay such that
ker L(Ao, p/q) is not trivial is non-resonant for a rational number po/q € By,, that
is N(Xo,po/q) = {(1,ko)}. Moreover, the set of non-resonant values Ao for rational
numbers po/q € By, is infinite, otherwise there has to be at least one point Ag € (0, Ay)
with an infinite number of resonances, which is a contradiction to (2.5). 0

Remark 2.14. The choice of the maximal py is equivalent to the choice of the

minimal period T = 2mq/po. This argument is similar to the argument used in [17],
[6] and [15].

PROPOSITION 2.15. If Ag is a non-resonant value with py ,(Ao) = 0, then equa-
tion (2.6) has a local bifurcation of zeros from (u, Ao) = (0, Ao) such that

(2.13) u(x,t) = b(cost) vy, (z) + Ocz, (b), A=Xo+0O(),

where b € [0,b) and Ocz, . (b%) is a function in C2 . of order b*.

sym

Proof. The estimate
v = b(cost) vg, () + Ob?) , A=X+0(),

is a consequence of the Crandall-Rabinowitz theorem. Thus the result follows from
the Lyapunov-Schmidt reduction and the fact that w(v; A) = O (v?) with HS,, C

sym
ngm for s > 3. To apply the Crandall-Rabinowitz theorem, we only need to verify
that OxL(Xo) (cost) vy, (x) is not in the range of L(\g),

(OxL(Xo) (cost) vy, (), (cost) vk, (z)) 2 # 0.

This condition is equivalent to

w/2 )\
[ (o) dh@dn o
—7/2 (1 +UA) A=Xo

which follows from the fact that w, is decreasing in A. That is, we have —0\uy) > 0
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and

a)\#3 :%—8)&0\% > 0.
(14+wuy) A=A (14 uy) (14 wuy)

2.5. Proof of Theorem 1.1. The proof of Theorem 1.1 is a consequence of
Proposition 2.15 and the fact that

U(t,x) = ux(z) +u(pt/q, x).

It only remains to obtain the symmetries of the local bifurcations. This is a conse-
quence of the following proposition.

PROPOSITION 2.16. The bifurcation (2.13) has the symmetries u(t,x) = u(t, —x)
for k odd and u(t,z) = u(t + 7, —x) for k even.

Proof. Since uy(x) is even, the equation

L(Nu+g(u)=0

is equivariant under the action of the group (x1, k2) € Za X Zy in u(t,r) € Hj,,, given
by

rkru(t,z) = u(t, —x), kou(t,x) = u(t + m,x).

Since

ult,z) = > ujk cos(jt)ur(x),

(j,k)ENXN+

where vy, (—2) = (—1)o(z) and cos j(t+7) = (—1)’ cos jt, the actions of k1 and ks

k+1

in the components u; ; € R are given by k1u; p = (—1)""~ u;x and kouj i = (—l)jujvk.

In particular, for j = 1 we have

R1U1,k = (—1)k+1 U1,k RaU1,k = —Ulk -
Then uy i € ker L(Xg) is fixed by the action of k1 if k is odd and by k1kq if k is even.
The result follows from the fact that u is fixed by the action of x; if it satisfies that

u(t,x) = kru(t, ) = u(t, —x),

and by kqko if
u(t,x) = kikou(t,x) = u(t + 7, —x).

Remark 2.17. Since the equation L(\,p/q)u + g(u;\) = 0 has a gradient struc-
ture and the eigenvalues of L(\) cross zero in the same direction, because they are
decreasing in A, then one can use Conley index to prove that every value Ay where the
kernel of L()g) is not trivial is a bifurcation point [25]. Therefore, for every p/q € By
there is a (possibly resonant) bifurcation value Ag such that ;1 (Xo;p/q) = 0. Thus
the set of bifurcation values \y is dense when considering all possible values of p and
q. However, the result using Conley index does not guarantee that the bifurcation is
a continuum satisfying estimates (2.13).
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3. Numerical computation of branches of periodic solutions. In this sec-
tion we compute numerically the steady states, the spectrum of the elliptic operator
and the periodic solutions of the scaled equation (1.6). This is done in Sections 3.1,
3.2 and 3.3, respectively. For each of these problems, we introduce an infinite di-
mensional zero-finding problem whose solutions correspond to the wanted objects of
interest. Then, a standard predictor-corrector numerical continuation method is ap-
plied to finite dimensional projections of each problem. The reason of introducing
first the infinite dimensional formulation of the problems is twofold. First, it matches
the formulation of Section 4 involved in the rigorous computation of the saddle-node
bifurcation. Second, it would allow to have the proper formulation for possibly doing
rigorous computations of periodic solutions in the future.

3.1. Continuation of the branch of steady states. The steady states of the
MEMS equation (1.6) satisfy the nonlinear boundary value problem

A
(3.1) Uy = T U(-1) = U(1) =0.

To compute the solutions of (3.1), we first transform the equation into a differential
equation with polynomial nonlinearities. Letting u; = U, uy = U, = uj and

ug & ﬁ yields that
Uy = U2
A
ul =U,,= ——5 = )\’U/2
2 vy (1+ U)Q 3
ufy = —éu'l = —upuj.
(]. + U1)2

The boundary conditions u; (—1) = u1(1) = 0 are appended. To fix the right condition
for ug, we impose that ug(—1) = #(*1) = 1. The problem of computing a solution
U(y) of the nonlinear non-polynomial equation (3.1) is then transformed into the

polynomial boundary value problem

u} Ug up(—1) 0
(3.2) uy | = | M3 |, ug(—1) | =10, w(l)=0,
uh —ugu3 uz(—1) 1

where § is the unknown initial velocity U’(—1) which we will solve for. We expand
solutions with Chebyshev series

ui(y) = (a;)0 +2 (aj)nTul(y), j=1,2,3,
k>0

where T, : [-1,1] = R (n > 0) are the Chebyshev polynomials.

Denote by u = (u1, uz,us) and ¥(u) € R? the right-hand side of the polynomial
differential equation given in (3.2). Denote a; = ((a;j)n)n>0 for j = 1,2,3, and a =
(a1, a2,a3). For each j = 1,2, 3, the Chebyshev expansion of ¥;(u(-)) : [-1,1] - Ris
given by

Ui (u(y) = (co+2>_(¢)nTuly), §=1,2,3, ye[-1,1],

n>0
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where
c1 c1(a) as

(3.3) o]l =caNa)| = | 2 |,
C3 c3(a) —aga3

where a% = a3 * a3 and agag = a9 * a3 * a3 are standard discrete convolutions.

For j =1,2,3, let

a; 3 - (a_ -, nN=
34)  (fCV8,0), = ( J)o+2;::1( 1)(aj)e — aj, n=0,

2n(a;)n + (cj(@))ns1 — (cj(@))n-1, n>1,

where
0, 7=1
(3.5) a; 6, j=2.
]-7 j:3

Setting f;eq) = ((f;eQ))n)nzo and n(a1) = (a1)o +2 4= (a1), (this is the Chebyshev
expansion of the extra condition wu;(1) = 0), the resulting map to solve in the space
of Chebyshev coefficients is given by

n(a)
1Y(a)
YN 6,a)
0

(3.6) fED(N, 8,0) =

Define the operators (acting on Chebyshev sequences) by

0 0 0 0 O

0 -1 0 1
and
0 O 0 0 0
0o 2 0 0
0 O 4 0 0
(3.8) A=

Using the above operators, we may write for the cases n > 0

(FY (N, 8, ) = (Aaj + Te;(a)),, = 2n(az)n + (¢;(a))nr1 — (¢(a))n1.
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Hence, for j =1,2,3,

oo
ar ) (@)o+2> (=D)(a)e—aj, n=0,
- =1

(Aaj + Tcj(a)),, n > 0.

(FYN8,a))n

By construction, computing solutions to the nonlinear BVP (3.1) (that is comput-
ing equilibria of the MEMS equation) boils down to computing simultaneously A, 0, a
such that fD(\ 8,a) = 0 where f(°9 is defined in (3.6). Letting z = (8,a) we
can compute branches of steady states by applying a parameter continuation method
(that is a predictor corrector algorithm, see [23]) to a finite dimensional projection of
the problem f (eQ)()\m) = 0, where X is a continuation parameter. Figure 2 contains
the image of the stable branch of steady states (black branch) computed numerically
using the presented method.

3.2. Continuation of eigenfunctions and eigenvalues. The eigenfunctions
and eigenvalues of the linearized problem can be computed similarly. The eigenfunc-
tions and eigenvalues are needed in order to find the initial predictor to compute
numerically the branches of periodic solutions. The eigenvalue problem associated to
(3.1) is given by

A
Uy + —————=0, U(-1)=U(1)=0
w0y (=1 (1)
1% 2y wv=o V(-1)=V(1)=0
- —_ 3 —u =V, — = =0,
Yoo+ 0)?

where (p, V) is an eigenvalue-eigenvector couple associated to the linearization of the
MEMS equation (1.6) about the steady state solution U.

Letting u1 = U, ug = Uy = u}, ug = ﬁ, uy = V and us = V,, yields the system
u} u22 up(—1) 0
ub Aug uz(—1) 01
(3.9 uy | = —ugu? ) us(=1) | =111, (ZIEB) = (8) ,
ul us ug(—1) 0 4
uk —2 \uduy — pruy us(—1) 0o

where §; and d2 are to be (uniquely) determined. Denote § = (d1,d2) and u =
(u1,...,us). The unknown variables in the polynomial boundary value problem (3.9)
are (0,u,u). An extra phase condition (that is one which fixes the length of the
eigenvector uy = V') will be imposed to isolate the solutions (and therefore allowing
the use of Newton’s method).

We solve the eigenvalue problem (3.9) using Chebyshev series expansion, similarly
to the BVP (3.2). We expand solutions with Chebyshev series

u;(y) = (aj)o + QZ(aj)nTn(y), j=1,...,5.
k>0

Denote by ¥(u) € R? the right-hand side of the polynomial differential equation given
in (3.9). Denote a; = ((a;)n)n>0 for j =1,...,5 and a = (aq,...,as). Assume that
the Chebyshev expansion of ¥(u(y)) is given by

U(u(y); = (c)o+2D (c)nTuly), G=1,....5,
n>0
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where ¢ = ¢(a) = (¢1,...,¢5) is given component-wise by
C1 as
2 a3
def 2
C3 = —a20a3 5
Cq as
cs —2)\a§a4 — pay

where a% = asz * as, G,QG% = a9 % ag * ag and a§a4 = a3 * a3 * a3 * ay are discrete
convolutions.
def .
Denote = (0, p,a). For j=1,...,5, let

(aj)o+ 22(—1)5(%)@ —a;, n=0,
=1

(3.10) (gi)n(x) =
2n(a’j)n + (Cj)n+1 - (Cj)n—la n > 1,

where

0, j=1

01, j=2
(3.11) a; £ {1, j=3.

0, j=4

627 .] =5

For j =1,...,5, we set g; £ ((gj)n)n>0- Let
oo
mlar) = (a1)o +2 Z(Ch)n
n=1

n2(as) = (as)o +2Z(a4)n

ns(as) = Uag) — 1,

where [ is linear and acting as a phase condition for the eigenvector V' (by fixing its
length). Set = (11,72,73) € R3. The three extra conditions n(a) = 0 € R? are
the extra conditions (in Chebyshev) enforcing that w;(1) = 0, usa(1l) = 0 and that
the eigenvector uy = V is locally isolated. The resulting map to solve in the space of
Chebyshev coefficients is given by

e (1)

We can then apply a standard predictor-corrector method to continue the eigen-
values pux(A) for £ = 1,2,3 and for A € [0,\*). Having fixed k € {1,2,3}, we begin
the continuation at A = 0 knowing theoretically that at the steady state U = 0, the

eigenvalues are given by u = p(0) = (”—2’“)2, k > 0 with corresponding eigenvectors

given by

sin (k%) , kK even,
(3.13) V) =Velw) =3 (k2v), & odd.

2
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F1G. 6. Continuation of the eigenvalues pi () for k =1,2,3, X € [0, \*).

Hence, recalling that u; = U, us = Uy = u}, uz = Tray) U4 = V and us =V, we get
that at A=0, u1 =0, ue =0, ug = 1, usa(y) = V(y) as in (3.13) and

km kmy
5 cos (T) , k even,

/ !
(3.14) us(y) = V'(y) = Vi(y) _%ﬂ sin (%) K odd,

Using these explicit formulas for u;(y), j =1,...,5, we compute the correspond-
ing Chebyshev series expansions to obtain the sequences ai,as, ..., as. Note that the
sequences a1 = dz = 0 and (@3)n = 0pn,0, Where J; ; is the Kronecker delta function.
The computation of the Chebyshev coefficients a4 and as can be done analytically
or using a numerical software. In our case, we use Chebfun to compute a4 and as.
Moreover, we fix 0 = (01,02) = (ua(—1),us(—1)) = (0,us(—1)), where us(—1) is
determined exactly using (3.14). Letting a = (ai,...,as), g = (”—k)Q, we have an
approximate solution Z = (8, i, @) which satisfies f(hn)(a:, 0) ~ 0. From that approx-
imate solution at A = 0 at a given k € {1,2,3}, we perform a predictor-corrector
continuation method on a finite dimensional projection of (3.12) to obtain a family
of solutions of the form {x(®)()\) : A € [0,A*)}. Denote the second component of
) (X\) by up(N), we obtain a branch of eigenvalues parameterized over A € [0, \*).
See Figure 6 for a picture of the three branches k = 1,2, 3.

3.3. Continuation of periodic solutions. The goal now is to compute peri-
odic orbits U = U(y,t) of (1.6). We fix two relatively prime integer (p,q) and fix a

priori the frequency to be w s 50 We aim at computing 2% _periodic orblts of (1.6).

First, let us transform the problem into a polynomial one. Lettmg Ui(y,t) = Uly,t),

UQ(yJ ) d_d U ( ) = Ul(y7 ) and U3(y7 ) d:d 1+U1(y 1) 1+U1(y DE

)

an Us

) A 9?
an 7Uyy7m+Utt AUZ + 201
O 1y — ;Uy(y,t):—UgUg.

ay P (1+Uy,10)?
The boundary conditions Uy (—1,¢t) = Ui(1,t) = 0 for all t € R are appended. To fix
the right condition for Us, we impose that Us(—1,¢) = ﬁ =1 for all t € R.

After rescaling time from [0, %’T] to [0, 27], the problem of computing a solution
U(y, t) of the nonlinear hyperbolic equation (1.6) is therefore transformed into finding
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a 2m-periodic orbit of the polynomial boundary value problem

D) U, Us , Ui (—1,t) 0
(3.15) % Uy | = | XNUZ +w? 250, |, | Ua(=10) | = [6(t) ], Ur(1,8) =0,
Us —U,U? Us(—1,1) 1

for all ¢ € R, where §(¢) is the apriori unknown initial velocity U,(—1,¢) which we
will solve for. We look for periodic orbits which are even in time. We expand U;
(j =1,2,3) and ¢ in the form

(3'16) Uj(y’t) = Z(aj)n,kmn,an(y) COS(kt) = Z (aj)n’kei(nQ-i-kt)
253 (n,k)€z?

(3.17) 8(t) =Y dxmo cos(kt) = o
k>0 kezZ

where 8 = cos™!(y),
1, n=k=0

ar )2 m=0and k>0
2 n>0and k=0
4 n#0andk #0,

and where (a;)nk = (a1)n), k| a0d Gpk = Ojpp 6 for (n,k) € Z*. Denote a; =
((@)n,k)nk>0, a2 = ((@2)nk)nk>0, a3 = ((a3)n,k)nk>0 and 0 = (0k)r>0. The un-
knowns are then given by

P (9,a1,a9,as).

We integrate the BVP (3.15) in z to get the integral formulation

Ul (y, t) 0 Yy U2 (ga t)2
(318) | Ua(wt) | = (o) | + / AU2(Et) +w? 25U (e, 1) | de, ye [-1,1]
Us(y,t) 1 -1 —Us (&, t)Us(&,1)?

supplemented with the boundary condition U;(1,¢) = 0. We denote by ¥(U;, Us, Us)
the right-hand side of the polynomial problem (3.15). That is,

Ul(y’t) def U2 2
U Ua(y,t) | = [ AUZ+w? 25U |,
Us(y1) ~UUy

U1<yvt)
lI’j U2(yat) = Z(Cj)n,kmn,an(y) COS(kt) = Z (Cj)n,kez(n9+kt)7
Us(y,1) n2g (n,k)ez?

where the terms c¢q, co and c3 involve discrete convolution terms. Explicitly,

(Cl)n,k = (a2)n,k7
(c2)ne = ANa3)n i — W?k*(@1)n ks

(c3)nk = —(a2a3)n ks
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where a2 = a3 * a3 and aza3 = ag * a3 * a3 are standard two-dimensional discrete
convolutions; for instance,

(a * b)n,k = Z Qpy kq bnz,kz'

nit+ng=n
k1+ko=k
ky,n; €L

For j =1,2,3, let

aer ) (a5)0k + 22(—1)6(%‘)@,1@ —(aj)k, n=0,
=1

(3.19) (g5)nk(z) =
2n(aj)nk + (¢)n+1,k — (€)n—1k, 1 >1,
where
0, j=1
(3.20) (k= o, j=2
1, j=3.

Setting g; = ((gj)n,k)n.k>0 and

(o)
me(ar) = (ar)ok + 2 Z(al)n,k =0,

n>1

which is the Fourier-Chebyshev expansion of the extra condition U;(1,¢) = 0 for all
t. The resulting map to solve in Fourier-Chebyshev coefficients space is given by

(3.21) Foe(a, ) | 9

Having identified a map whose zeros correspond to periodic orbits, we wish to
compute (once more) branches of solutions (that is of periodic orbits) using a contin-
uation method. The continuation requires first providing an initial point. Fix & > 1.
For each rational Ay such that pi(Ao) = w? with w = g—g, there is a local continuum of
2m-periodic solution bifurcating from the steady solution uy(y). The initial periodic
orbit (that is the predictor) is given by

def

u(t,y) = ux,(y) +beos (t) vk (y; Xo)

for a small b. After having transformed this initial point as a sequence of Fourier-
Chebyshev coefficients, we initiate the pseudo-arclength continuation (e.g. see [23])
on a finite dimensional projection of the map f®°") defined in (3.21). Using that
approach we performed several branch continuation, which are portrayed in Figures 2
and 3 for k =1 and ¢ = 11, and in Figures 4 and 5 for k = 2 and ¢ = 47.

4. Rigorous computation of the saddle-node bifurcation. In this section,
we prove Theorem 1.2. The proof of the theorem is computer-assisted and is based on
the successful verification of the contraction mapping theorem of Newton-like operator
acting on a ball of radius r = 5.7 x 107!2 centered at a numerical approximation of
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a carefully chosen map defined on a Banach space X of fast decaying Chebyshev
coefficients (the saddle-node map as defined in (4.6)).
To define the space X we require first to define the sequence space

(4.1) L= L= (an)nso : lall, = |ao] + 22 | |v™ <0,
n>1

for some fixed number v > 1. An important property of /. is that it is a Banach
algebra under discrete convolutions, that is ||a * b||, < ||a||,||b||, for all a,b € ¢1. This
is useful to perform the necessary estimates to analyze the nonlinear map . We also
denote by

- o v
(4.2) 411/ “la= (an)n>o0  [lally = |aol + 22 lan|— <0,
n>1 n

to the corresponding space of Chebyshev coefficients with slightly less decay (regular-
ity) than /1. Note that for any v > 1 and for a fixed ), one can show that the map
[ defined in (3.6) satisfies

DR x (£1)% = R x (£1)3.

In order to construct the saddle-node map F, we let

ﬂ(l()l)
ef b)
4. A7) X DsafONsa) ()= I
( 3) g( y 4y s ) d, f ( ) aa)(b) 92(/\,a,’}/,b) )
g3(a7b)
where
(oo}
ar ) 0o +2) (=D (bj)e—a;, n=0,
(g])’ll - =1
(Abj 4+ Tdj(a,b)), , n >0,
for 7 =1,2,3, with
dy dq(b) bo
(4.4) dy | = | da(Na,b) | = 2)\aszbs ,
d3 dg(a, b) —a%bg — 2a2a3b3
and
0, j=1
(45) dj = Ys .7: 2
0, j5=3.

According to (3.6), computing the saddle-node bifurcation point (A, 4, a) requires
solving the augmented system

0y)—1 0y)—1
(4.6) F(z) < FEV(N,8,a) = | £\, 6,a) | =0,
D&af(eq) ()\757 a)(Z) g()‘7a7’77b)
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where
(4.7) (N 0a,7,b) e X ERxRx (1) xR x (£1)3,

b= (by,ba,b3) € (£1)2, and £ : R x (£1)3> — R is a linear functional acting on the
eigenvector (}). We call the map F in (4.6) the saddle-node map. By construction,
a non-degenerate zero T of F' yields the existence of a saddle-node point, that is a
point such that £ (), d,a) = 0 and such that Ds ,f(°? (), §, a) has a one-dimensional
kernel.

We endow the space X with the product norm

(4.8) lzllx = max {|AL 6], llavllv. lazllv, lazllv, Y], 101 llu, 102]1v. [103]}-

Moreover, recalling (4.2), we define
(4.9) Y € RxRx ()3 xR x (£1)3,

and one can easily verify that F': X — Y is well defined.

In this section, we present a computer-assisted approach to solving the saddle-
node map (4.6) using the tools of rigorous numerics in order to obtain a rigorous
control over the value of A*. This approach will give a proof of Theorem 1.2. The idea
of the computer-assisted proof is to demonstrate that a certain Newton-like operator
is a contraction on a closed ball centered at a numerical approximation . To compute
Z, we consider a finite dimensional projection of the saddle-node map F : X — Y.

Given a number m € N, and given a vector a = (a,)n>0 € {4, consider the
projection

o™l — R™
m ~ def m—1 m

a—7m"a = (a,),—, € R™.

Given N € N, we generalize that projection to get 7% : (£1)N — RN™ defined by
e, M) = (amaD L ey e RN™
and I1(") . X — R %3 defined by
oy = H(m)()\, d,a,7,b) S (X, 0, 75 a, y, Ty'b) € RO™ T3,

Often, given z € X, we denote

2™ = Mg ¢ RIS,

Moreover, we define the natural inclusion ™ : R™ — (. as follows. For a =
(an)™=; € R™, we define /™a € £} component-wise by

n=0
ap, n=0,....,m—1
(a), =
("), {O, n>m.

Similarly, let (%t : RN™ — (¢1)N be the natural inclusion defined as follows. Given
a=(aM, ... aM) e (RN ZRN™ we define
a = (Lma(l)7 ce Lma(N)) € (LL)N.
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We define the natural inclusion ¢("™) : R"+3 < X for z € R6™+3 by
My = L(m)()\, 8,a,7,b) = (N6, t5ta,y,15'b) € X.

Let the finite dimensional projection F("™) : R6™+3 _ R6m+3 of the saddle-node
map (4.6) be defined, for z € R +3_ as

(4.10) F () =TI R(™yg),

Assume that a numerical approximation Z € R6™+3 of (4.10) has been obtained using
Newton’s method, that is F(") (Z) =~ 0. We slightly abuse the notation and denote
7 € ROt3 and ™z € X both using z.

The following result is a Newton-Kantorovich theorem with a smoothing approx-
imate inverse. It provides an a-posteriori validation method for proving rigorously
the existence of a point Z such that F'(Z) = 0 and ||Z — Z||x < r for a small radius r.
Recalling the norm on X given in (4.7), denote by

Bi(y) S {zeX:|lz—yllx <r}c X

the ball of radius r centered at y € X.

THEOREM 4.1 (Radii Polynomial Approach). ForZ € X and r > 0 assume
that F' : X — 'Y is Fréchet differentiable on the ball B.(Z). Consider bounded linear
operators AT € B(X,Y) and A € B(Y,X), where A" is an approzimation of DF(Z)
and A is an approzimate inverse of DF(Z). Observe that

(4.11) AF: X — X.

Assume that A is injective. Let Yy, Zy, Z1, Zo > 0 be bounds satisfying

(4.12) [AF(z)|x < Yo,
(4.13) 11— AAT||p(x) < Zo,
(4.14) JA[DF(z) — AM||p(x) < 21,
(4.15) |AIDF(@ + 2) - DF(®)||px) < Zor, ¥ = € B, (0).

Define the radii polynomial

(4.16) p(r) € Zor? +(Z1 + Zo — 1)r + Y,
If there exists 0 < ro < r such that

(4.17) p(ro) <0,

then there exists a unique T € By, (Z) such that F(z) = 0.

The proof of the theorem, which is a generalization of the usual Newton-Kantorovich
theorem can be found (for example in [26]).

4.1. The operators AT and A. To apply the radii polynomial approach of
Theorem 4.1, we need to define the operator AT (an approximation of the derivative
DF(z)) and the operator A (an approximation of the inverse of DF(Z)). Consider
the finite dimensional projection F(™) : R6"+3 _ R6m+3 given in (4.10), and assume
that we computed z € R%*+3 such that F("™)(z) ~ 0.
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We denote by DF(™) (%) € Mgy, 43(R) to the Jacobian matrix of F(™) at z. For
the sake of simplicity, given any N € N, we denote the differentiation operator D
acting on u € (£1) as

2n(u1)n
(4.18) (Du), = 2nu,, = 2”(1:12%
20
And given x € X, we define
(4.19) Aty = T ATy (1 — ™1™ Al g,
where 1™ ATz = DF(™) (z)2(™) and
0
0
(I — ™Ay = | (I — '75) Da
0

(I — ) Db

Recalling the definition of the Banach space Y in (4.9), we can verify that the
operator At : X — Y is a bounded linear operator. For m large enough, it acts as an
approximation of the Fréchet derivative D, F(Z). Its action on the finite dimensional
projection is the Jacobian matrix (the derivative) of F(™) at z, while its action on
the tail only keeps the unbounded terms of the differentiation D defined in (4.18).

Now we consider a matrix A™) € Mg, 3(R) such that A ~ DF(™) (5:)71. In
other words, this means that ||[I — A DF()(z)|| < 1. The computation of A(™)
is done using a numerical software (MATLAB in our case). We decompose the matrix
A™) block-wise as

m m m m m
Aé A A6 é A6 A A5 b

) ,Q 4,y )
A = [ A A A A AT
AN A AN AT AT

so that it acts is defined on (™ = (X, 4,a(™,~,b(™)) € RO"*+3, Thus we define A as

Axy Axs Ara Axy Ay

Asyn Ass Asa Asy  Asp
(4.20) A=A Avs Awa Aer Awy |,

Ay Avs Ava Ayy Agp
Aps Ava Avy Ay

where the action of each block of A is finite (that is they act on (™) = II(")z only)
except for the two diagonal blocks A, , and A which have infinite tails. More
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explicitly, for each j = 1,2, 3,

n
%( )n for n > m,
(( §"b)) forn=0,...m—1,
1
35 (b

Having defined the operators A and Af, we are ready to define the bounds Yy, Zo,
Zy and Zy (satisfying (4.12), (4.13), (4.14) and (4.15), respectively), required to built
the radii polynomial defined in (4.16).

(A J’Z)w;," )i) forn=0,...m—1,

((Ag,a@)j)n = {

0“

((Ap,pb)j)n = {

) for n > m.

4.2. Yy bound. Denote by z = ()\ 5,a,%,b) € X the numerical approximation
with @ = (ay,as,az) € (£1)% and b = (bl,bg,bg) € (£1)2. Recalling the definition of
f in (3.6) (which involves the convolutions in (3.3)) and the definition of g in (4.3)
(which involves the convolutions in (4.4)), one has that

(I — ™™t fi(a) =0 € £2,

(I =2 te?m=1 o (5,a,\) =0 € 02,
(- =2e=2) @) = 0 € 11,

(I — ™ amt g (b) =0 € ¢,

(I — 2 ™= Ngo (N a,7,b) =0 € £},
(I —Pm=2g3m=2)ga(a,b) =0 € £y,

This result follows from the fact that the product of p trigonometric functions of degree
m—1is a trigonometric function of degree p(m —1), and the n entry of the Chebyshev
map f; (resp. g;) has entries of the form (¢;)nt1 — (¢j)n—1 (resp. (d;)n+1 — (d;)n—1)-
Using that information, one concludes that only finitely many entries of F(Z) are
non-zeros, and therefore the computation of the bound Y} satisfying

(4.21) [AF(z)[[x < Yo

is a finite computation that can be performed using interval arithmetic (INTLAB in
our case, see [30]).

4.3. Basic functional analytic background. In this section we present some
elementary functional analytic background used to computing the bounds Zy and Z;.
For an infinite sequence of real numbers a = {ay }»>0, and v > 1, we defined

”aHV = |CL0| +2 Z ‘an|l’n = Z |an|wn7

n>1 n>0

def 1, n = O,
Wy =
2™, n>1.

def |an|
= su

HaHOO,V*l = o
n>0 Wn

where

The dual norm of || - ||, is
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and the set
loov—1 = {{an}nZO : Ha”oo,l/*1 < OO}’

is a Banach space.
We have the following known results (e.g. see [20]),

LEMMA 4.2. Ifa € Ell, and c € £2°,, then
Z CnQn < HC”oo,v*l ||a||V
n>0
LEMMA 4.3. Givenv > 1, k € Z and a € L}, the function I¥: {1 — C defined by

B(h) = (axh)e = > arhe,,  hel,

ki+ko=k
is a bounded linear functional, and
(4.22) 15| = sup ’l’;(h)} <sup |akfj| < 0.
Inll, <1 jez vV

Fix a truncation mode to be m. Given h € £, set

h(m) d:ef (h07h17... ,hm—laO?OV") (S gll,,
B2 Ly p(m) ¢ gL

COROLLARY 4.4. Let N € N and let & = (ag, a1, -+ ,an,0,0,...) € £L. Suppose
that 0 < k < m and define IX € 2 by

E(h) = (@xh>) = Y a by,
k1+ko=k

Then, for all h € €%, such that ||h]|, <1,

(4.23)

Y — e o —J +dk+|
I (h ’ < def M )
ah)| < Wila) = max 50

Proof. Notice that

)= (axh)= " Gp mhiy, = > (Chky + Orgry) ey = Y by,

|k2|>m ko>m 7>0
where

. & Qp—j + Qpyj, ifJ > m,
’ 0, if0<j<m.

Since @y = 0 for all |k| > N, we use (4.22) to obtain

|15 (h)| < sup lesl < max w = U, (a).
>0 Wj j=m,....k+m—1 2v3 O
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4.4. Zy bound. We aim at computing a bound Z; satisfying (4.13). Let B =
I — AAT, which we denote block-wise by

Byxx Bxs Bxa Bxy DBap
Bsy Bss Bsa Bsy Bsp
B = Ba,)x Ba75 Ba,a Ba,'y Ba,b
B%A B%5 B%a B%v B%b
By DBys DBpa DBy~ DBup

Note that the tails of B vanish by the definition of the diagonal tails of A and AT.
We can compute the bound

|Baa| + > 1Ba,allog -1 o€ {r 8,7},
ae{X,6,v} ae{ay,ag,az, ’
Z(a) def b1,bg,b3} .
o > IBaallv+ X max  — > Ba,a wp  oElrazag,
Se{N Ao g, ac{aran,as, 5=0,. o m=1 wg y_g m_l‘( )2,5 by,bg,bg}.
Q1o 1} b1,b3,b3}
letting
4.24 Zy & zZ{ A6 b1, by, b
( . ) 0 = max 0 .Oée{ ,0,7,0a1,a2,as,01, 02, 3} )

by construction we get that
11— AAT||p(x) < Zo.
4.5. Z; bound. For any h € B1(0) C X, let
2z = [DF(z) - Aflh e Y.

Denote

(4.25) h= (h>" hs, hal ’ ha2 ’ hag ) h'yv hbu hbz y hb3)7
<z = (Z)\’ 285 Zayy Ragy Rags #ys #bys Fbyy st).

Note that

=0,  2=2) (ha)e =2 (k)

£>m £>m

Moreover, for j = 1,2,3, we have

2> (=1)%(ha,)e, n=0

(Zaj)n - £>m 9
(T, )n, 0<n
where
0, 0<n<m 1
(haghns n=m I
(25\63%20)) , 0<n<m .
n ) J=2

def
(Way)n = {(2)\a3ha3 +adhy), . n>m
- (QaQaghELZ") + a%h&i”) ., 0<n<m
— (2a2asha, + @3ha,)

. n>m
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Similarly, for 7 = 1,2, 3, we have

22 n=>0

(20,)n = q t>m
(T4y; s 0<n
where
0, 0<n<m i=1
(h'bz)n~ n > m : 7=
5 (aan() L5 (00)
aor ) [P (o) +5and3Y) Pl
(wa)Tl - ( ;‘(‘IShb;; + bghag) + 2a3b3h>\) , m>m
( agbe h(?;) + 2(agbs + agbs)hg%o> + (a% + 2&253))1;);")) S0<m<m
n j=
— (2agbshay + 2(azby + azbs)hag + afhp, + 2&253;Lb3)n . n>m J
Using Corollary 4.4, for each n =0, ..., m, we can easily compute upper bounds

1/)aja1/;bj Z 0 such that

‘(¢aj)n| é (1&&]‘ n
More explicitly, we set (/%)
("/’az)n = 2|5‘|\I’n

|(¥p,)n] < (@bj)n, foralln=0,...,m.
= (), =0 for n=0,...,m, and

~—
2
B
o,

63),

(Iﬁag)n 2V (d a?)) + \Pn(ag)a
(¢b2)n 2|5‘| (\Iln(di’v) + \Pn(l;?»)) )
(V) = 20, (@3bs) + 2W,, (azby + Gobs) + W, (a2) + 20, (G2ds).
Using these bounds, for n = 0,...,m — 1, we compute (24, ), and (Zp,), such that
|(2a; )n| < (24;)n and (25, )n| < (2, )n. More explicitly, for each j =1, 2 ,3, set
) L1
(2a;)0 = (%, )0 = "
and
~ def n ~ def
Gan = (ITWa)n  Go)n = (I T180, ),
for n = 1,...,m — 1, where |T| represents the operator with entries given by the
component-wise absolute values of the entries of T. Moreover, set
e 1 1
ENE—) 25 = —, 2, ==
v v

Recall that z = [DF(Z) — A']h. Denote w = Az and

w = (w)\awévwalawazawa37w7;wb1;wb2;wb3)-

Thus, for each « € {a1,as, a3, b1, ba, b3}, we have the estimate
m—1
[wall, = Z

(m) ,(m)
(a7, ) o+
< ((amE™) ) wnt b S (Tl
n=0

n>m

m—1

1 A
< (1) gt ((A<m> A<m>) T rr b ()
<02 (A1) ) wnt g Il 96,

n=0
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where
2 ||asll, + (@3], , o = as
o) 2||azas |, + ||€l§||u7 i a=a;s
“ 2X(Jlasy + [1bsll») + 2[|lasbs]l., a=by

2||asbsl|, + 2[|asbs + azbsll, + ||@3]l, + 2[|azas|l,, o= bs.
Therefore, we set

(4.26) lemax{z;U, D 21 0 o0 ) L W (1)}7

7a17a27a3”y7 2

where
AN (|A(m)‘2(m))x 2D ot <|A<m>|2<m>) A1) (|A<m>|2<m>)7
4.6. Z2 bound. We look for a bound Z5 in (4.15) such that
|A[DF(z + z) — DF(z)]||px) < Zar, V z € B.(0).

Let z € B,(0) and h € B1(0) (which we denote component-wise as in (4.25)), and
denote

5 i

w=w(z,h) = (DF(F +2) — DF(z)) h.
Note that wy = ws = wy = 0, we, = wp, = 0 € (L. Moreover, for each a €
{az, a3, ba, b3} we have w, = T, with
= 2a3h>Zay + 2Paz N2ay + h>\z + 2a3has2x + 2has Zas 2,

Wa, = —2a3Na,2a, — 203Nay 205 — 2a2ha3,za3 — 2hgy %0y Zay — ha22a3,

3
Wp, = QZ_)gh)\Za3 + 2hy, /_\Za3 + 2ashyzp, + 2hq, S\Zb3
+ 2h>\za32b3 + 263ha32:)\ + 2@3]11,32’)\ + th3za32’)\ + QhQBZbgz)\,
Wp, = _253ha32a2 — 2a3hpy 2q, — 253ha2za3 - 262ha32a3 — 2a3hp, 2q,4
— 2G2hp, 20y — 2Ry ZayZas — P, 223 — 2a3hay 26, — 2hayZas b,
— 2asha, 26, — 26204, 205 — 2Pas Zas 2bs — 2Pay Zas Zbs -
Thus
||wazHV (4||d3||,,+2|5\| +3r) r,
[a, [l < (4lla@slly + 2[azll, + 3r) r,
4|bsl,, + 4l|asll, + 4|A + 6r) 7,
@zl + 262l + 4115l + 8llasl, + 9r) r.

Note that [|T']|p(e1) < 2v, because

[[db, [l < (
|wb3HV < (

. - 1 _
IThll, =2 [ =hjoa +hypal? <wv 2D b/t | + > 2% Ayt

Jj=1 Jj=1 Jj=1

= v (ho| + [18ll) + = (llAlly = 2[ha] = [hol)

il
_ (+1) 1hll, + (—) ol — 2|
< (v 2 )+ (v ) Inll = @Al
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Fix 7* > r (a condition that needs to be checked a posteriori), and set
2@ yag), + 2| + 3,
22 = dljas|l, + 2)aall, + 3,
22 = 4|bs], + 4llasll, + 41N + 67,
2D dfaslly + 2/Bally + 41183l + 8llasl], + 9r*.
Under these assumptions, we can verify that

[A[DF(z + 2) = DF(7)][|px) < [Also) I TlBeery _ max  {[ldall,}-

ac{az,a3,b2,b3}

Therefore, we can set

(4.27) Zy = 20| A p(x) max (2(2) zg§>,z§j),z,5§>),

as

where the computation of || Al p(x) is obtained with the same approach in Section 4.4.

4.7. Proof of Theorem 1.2. We fix m = 65 and obtain (using Newton’s
method) a numerical approximation z € R™*+3 = R3% guch that F(™)(z) ~ 0.
We fixed v = 1.05, and combining the explicit and computable bounds Yy, Zy, Z; and
Zs given respectively by (4.21), (4.24), (4.26) and (4.27), we defined the radii poly-
nomial p(r) as in (4.16) and applied the radii polynomial approach of Theorem 4.1
to show that p(rg) < 0 with ro = 5.7 x 10712, This yields the existence of a unique
Z € By, (Z) C X such that F(Z) = 0. This rigorous error bound implies the proof of
Theorem 1.2. The graph of the solution is portrayed in Figure 1.

Choosing the values for m and v is heuristic, non unique and done essentially so
that the bound Z; satisfies Z; < 1 (this is indeed a necessary condition for (4.17) to
hold for some 7y > 0). Recalling (4.26), and the definition 25 = 2, = 1. it is clear that
Zy < 1onlyif v > 1. However, it cannot be taken too large as the solution itself may
not have enough regularity to be in the space £5. Also, taking v > 1 provides decay in
the bound ¥y (&) in (4.23). Finally the choice of m needs to be large enough so that
the defect bound Yy is small enough and so that the tail terms 7 HT||B(Q)1&((1°O) in the

definition of z((ll) are less than 1. While other choices would have worked, we found
that the choice m = 65 and v = 1.05 yielded the best rigorous error bound possible
in that of 7o = 5.7 x 10712,

5. Conclusion. In this paper, we studied a particular one-dimensional model
for a microelectrical device in equation (1.1). This equation forms part of a wide
range of Hamiltonian PDEs modeling physical phenomena such as the nonlinear wave
equation, the nonlinear Schrédinger equation, beam’s equation, and Euler’s equation
and its multiple approximations appearing in water waves. All these Hamiltonian
PDEs exhibit trivial or steady solutions, and near these steady solutions there are
periodic and quasiperiodic solutions. However, proving existence of such solutions
exhibits a small divisor problem unless one imposes a special relation between the
period and the domain of the equation. In that case the equation can be solved
with a Lyapunov-Schmidt procedure by separating the equation into the kernel and
range equation. Even if the small divisor problem can be avoided, there are other
mathematical difficulties associated to the existence of periodic solutions such as the
lack of compactness of the linearized operator for the range equation or the infinite
dimension of the kernel equation.
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Equation (1.1) has a family of stable steady states (ux,A) for A € [0,A,]. In
this paper, we proved the existence of an infinite number of continuous branches of
periodic solutions arising from the steady solution uy. The local branches have fixed
periods satisfying a rational relation with the space length and arise from wu) for
bifurcation values A € [0, A,]. In order to tackle the difficulties associated to prove
this fact we used a combination of analytic estimates and computer-assisted proofs.
We also introduced a systematic setting to compute numerically these branches of
solutions.

The specific features of equation (1.1) imply that the set of bifurcation values A is
not only infinite, but actually it is a dense subset of parameters in [0, A.]. Moreover,
in the complement of the dense set of [0, A.], KAM theory for Hamiltonian PDEs may
be used to prove the existence of periodic solutions for a subset of almost full measure
of [0, \.]. However, in such case the periods must satisfy some Diophantine relations
and the periodic solutions form cantor-like sets, that is they do not form continuous
families as in our results.

We finish our conclusion by mentioning some of the possible extensions of our
work:

1. The methods presented here can be used to solve similar problems in other
Hamiltonian PDEs. In particular, the same procedure can be implemented
to prove the existence of periodic solutions in the equation of MEMS with
other dielectric permitivity properties f(z) # 1 or for other nonlinear wave
equations of the form wuy — uzr = f(x,u).

2. In order to prove our result, in Section 4 we implement a computer-assisted
proof to validated the steady solution uy, at critical value \.. Actually, the
numerical setting in Sections 3.1 and 3.2, and the methods of Section 4 can be
used to validate also the trivial branch uy and its spectrum (eigenfunctions
and eigenvalues). Furthermore, similar procedures can be used to validate
also radial steady solutions for the nonlinear equation in more dimensions

Au = Af(u), ugp = 0,

with analytic nonlinearities such as f(u) = uP or f(u) =e* (e.g. see [3]).

3. Unfortunately, there are no readily available methods to validate numerically
the periodic solutions obtained in Section 3.3. The problem is that the inverse
of the hyperbolic operator L is only bounded but not compact. Indeed, the
methods of Section 4 depend strongly on the compactness of the inverse oper-
ators to validated the numerical solutions, because the compactness allows to
obtain estimates for the Galerkin approximation or truncation of the linear
operators. Further research and new ideas are required to validate rigorously
the numerical computations of the periodic solutions.

6. Acknowledgments. CGA is indebted to G. Flores and M. Tejada-Wriedt
for discussions related to this project.
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