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CONVERGENCE OF A SECOND-ORDER ENERGY-DECAYING
METHOD FOR THE VISCOUS ROTATING SHALLOW WATER
EQUATION*
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Abstract. An implicit energy-decaying modified Crank—Nicolson time-stepping method is con-
structed for the viscous rotating shallow water equation on the plane. Existence, uniqueness, and
convergence of semidiscrete solutions are proved by using Schaefer’s fixed point theorem and H? es-
timates of the discretized hyperbolic—parabolic system. For practical computation, the semidiscrete
method is further discretized in space, resulting in a fully discrete energy-decaying finite element
scheme. A fixed-point iterative method is proposed for solving the nonlinear algebraic system. The
numerical results show that the proposed method requires only a few iterations to achieve the desired
accuracy, with second-order convergence in time, and preserves energy decay well.
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1. Introduction. Let 2 C R? be a bounded domain with smooth boundary 9f2.
We consider an initial and boundary value problem for the rotating viscous shallow
water equation

(1.1)
O H = —V - (Hu) in 2 x (0,7,

(1.2)
Oru

1 ~
fV(§|u|2 +g(H — Hb)> —(Vxu+ fkxu+G(Hu) in 2x(0,T),
subject to the following initial and homogeneous Dirichlet boundary conditions:

(1.3) u=0 on 9002 x (0,77,
(1.4) Hli—o=H° and w|i—g=u’ in £,

where H : 2 x [0,T] — R and u = (u1,u2)’ : 2 x [0,7] — R? denote the fluid
thickness and velocity, respectively, and

(1.5) G(H,u) = %v. (HVu) — cf%
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consists of the viscous and friction forces, with |u| denoting the magnitude of the
velocity .
In the two-dimensional plane, Vxu := g—x — g—;‘; denotes the curl of the vector field

u, and k x - denotes the rotation operator that rotates a vector field counterclockwise

by the angle 7, i.e.,
Vo (%

The physical parameters and given functions in this model include

g: the gravity acceleration (positive constant),

f: the Coriolis term (function),

w: viscosity of the fluid (positive constant),

cs: Chezy coefficient for the bottom friction (positive constant),

Hyp: the bathymetry (time-independent function).

The shallow water equations (1.1)—(1.2) describe the evolution of an incompress-
ible fluid in response to gravitational and rotational accelerations for small enough
ratio between the vertical and the horizontal scales. They are typically used to de-
scribe vertically averaged flows in three-dimensional domains in terms of horizontal
velocity and depth variation. For smooth initial data such that H° — H;, and u® are
sufficiently small, it is known that the initial and boundary value problem (1.1)—(1.4)
possesses a unique global smooth solution such that H > 0; cf. [27, 25, 26].

The numerical solution of the shallow water equation has wide applications in
ocean modeling to study tidal fluctuations caused by earthquakes and storms and
to study allowable discharge allocations by industries for water quality control. A
nice introduction to the mathematical and computational modeling of ocean circu-
lation, with a detailed derivation of the governing PDEs and an overview of early
computational developments for such problems, is given in [14].

Many efforts have been devoted to developing efficient numerical methods and
analyzing stability and convergence of numerical solutions for the shallow water equa-
tion. The energy boundedness of several first-order time-stepping methods for the
viscous shallow water equation is proved in [1]. Convergence of numerical solutions
to the viscous shallow water equation is established in [8] and [9] for a semidiscrete
finite element method (FEM) and a fully discrete FEM, respectively, for a wave shal-
low water model proposed in [18]. The fully discrete FEM in [9] is linearly implicit
and first-order in time and was shown to be convergent under a grid-ratio condition
7 = O(h), which was used to prove the L* boundedness of numerical solutions via
an inverse inequality for finite element functions. Convergence of a fully discrete,
first-order in time, nonlinearly implicit characteristic method for the shallow water
equation is shown in [11], also under the grid-ratio condition 7 = O(h) for the same
reason. A leap-frog FEM is considered in [28] for the viscous shallow water equa-
tion on the unit sphere, and an error estimate is derived under the same grid-ratio
condition 7 = O(h). Exponential time differencing methods for the shallow water
equations are constructed, discussed, and implemented in the recent paper [21]. A
rigorous proof of convergence of the exponential time differencing method is still open.

Convergence of a Galerkin FEM with explicit Runge-Kutta methods in time
is proved for the hyperbolic shallow water equation in one space dimension in [3],
[4], and [15]. Optimal-order error estimates are established under the hyperbolic
CFL condition 7 = O(h). For an overview of numerical methods for the nonlinear
hyperbolic shallow water equations and related models, with the main emphasis on the
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spatial discretization and on practical issues, as well as for references to the original
literature, we refer to the recent review paper [30].

Since the energy of the solutions to the viscous shallow water equation always
decays in time, it is desirable to preserve this property in numerical solutions. Some
high-order well-balanced and energy-conserving explicit methods have been construc-
ted for the hyperbolic shallow water equation; for example, see [6, 7, 19, 31]. For the
viscous shallow water equation, these explicit methods would preserve energy decay
but require a CFL condition 7 = O(h?). As far as we know, no implicit methods have
been reported to preserve energy decay for the viscous shallow water equation without
requiring a CFL condition. Therefore, the construction of energy-decaying numeri-
cal methods (especially second-order methods without CFL conditions) for viscous
shallow water equations is still challenging.

As far as we know, all existing error analyses of implicit and linearly implicit
time-stepping methods for the viscous shallow water equation require the grid-ratio
condition 7 = O(h), which is natural for the hyperbolic shallow water equation but
may not be necessary for the viscous model. Otherwise the semidiscretization in time
(corresponding to the case h — 0 in the full discretization) may not converge with
optimal-order. The grid-ratio condition was used to prove the L* boundedness of
numerical solutions by an inverse inequality of finite element functions, which may
be avoided if (i) convergence of the semidiscretization method in the H? norm with
respect to the time stepsize can be established and (ii) the error splitting approach
in [16, 17, 29] can be adopted for analysis of the fully discrete FEM. (This approach
requires the temporal semidiscrete solutions to be bounded in the H? norm uniformly
in temporal stepsizes.)

In this paper, we propose a second-order energy-decaying modified Crank—Nicolson
method for the viscous problem (1.1)—(1.4) and establish (i), i.e., optimal-order con-
vergence of the semidiscretization method in the H? norm with respect to the time
stepsize. This would provide a foundation for error analysis of fully discrete FEMs
using the approach mentioned in (i) without a grid-ratio condition. The analysis
of H? convergence of the proposed nonlinearly implicit temporal semidiscretization
for the hyperbolic—parabolic system (1.1)—(1.4) is different from all existing work us-
ing the error splitting approach, e.g., [16, 17, 29], which all concern only nonlinear
parabolic equations and linearly semi-implicit schemes. The derivation of the error
estimates in this paper is based on the boundedness of the numerical solutions in
H?(82) (uniformly with respect to the stepsize 7), proved by Schaefer’s fixed-point
theorem, combined with discrete L>(0,T; H2(£2)) and L?(0,T; H?(§2)) estimates of
the Crank—Nicolson scheme.

2. Energy decay and time discretization. In this section, we present a
second-order implicit modified Crank—Nicolson method preserving the energy decay
property of the viscous shallow water equation.

2.1. Energy decay property. Testing (1.1) by 3|u|>+ g(H — H,) and (1.2) by
Hu, we obtain

(2.1) /Q atH(%m\? +g(H — Hb))dx - /Q V- (Hu)(%|u|2 +g(H — Hb))d:c
and

(2.2) /Qatw(Hu)dx:7/9V<%|u|2+g(Hbe))o(Hu)der/Q G(H,u)-(Hu)dz,
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respectively, where we used the orthogonality (k x u) - (Hu) = 0 in the derivation
of (2.2). By adding the relations (2.1) and (2.2), the first terms on their right-hand
sides cancel, while the first terms on their left-hand sides can be combined using the
product rule of differentiation. Therefore, we obtain

d

(2.3) il

1
= (I H -+ g(H — 1,)?)dz = / G(H,u) - (Hu)dz.
2 19
We infer that the energy E(u, H),
Leie 2
(2.4) E(u, H) = 7(|u| H+ g(H — Hy) )dx,
02

satisfies the relation
(2.5) iE(u,H) = / G(H,u) - (Hu)dx = —,u/ H|Vu|*dz — cf/ lu|® dz < 0

dt o 17} "o

if H > 0, where we have used the expression of G(H,u) in (1.5) and integration by
parts. This shows that the energy is decaying.

2.2. A modified Crank—Nicolson method. Let t, :=n7, n=0,1,..., N, be
the nodes of a uniform partition of the time interval [0,7] with stepsize 7 = T/N,
and denote

O™ = (0" — o™ V) /7 and v"7F = (0" 0" 1)/2.

We consider the temporal discretization of the initial and boundary value problem
(1.1)-(1.2) by the following implicit scheme: for given H"~1 € H!(§2) and u"~! €
[H2(2) N H}(N2)]?, find H™ € HY(N) and u" € [H%(2) N Hi(2)]? satisfying the
following equations:

(2.6)

-,—Hn — _v . (H"L_%un_%)’
= 1
O = =9 (7 (" + [~ ) + g(H" % — )
—(V x unTE 4 f"_%)l% X U —|—Q(H"_%,u"_%), n=1,...,N,
with starting values HY and u° being the given initial values in (1.4).

In the standard Crank-Nicolson method, the term |u|? in (1.2) would be dis-
cretized in the form |u"_% |2; instead, in the second equation of (2.6), we discretized
it by (Ju™|? 4 [u"~*|?)/2; this modification of the Crank-Nicolson method is famil-
iar from [24] for the nonlinear Klein-Gordon equation and from [12] for the nonlin-
ear Schrodinger equation; see also [2]. A different type of modified Crank—Nicolson
method was also used for preserving the energy decay property of the Cahn—Hilliard
equation; see [22].

2.3. Energy decay of discrete solutions.

THEOREM 2.1. If (H™,u") € HY(2) x [H*(2) N H}(2)]?,n = 1,...,N, is a
solution of (2.6) satisfying

H*">0, n=1,...,N,
then the modified Crank-Nicolson scheme (2.6) is energy-decaying, i.e.,

(2.7) E@", H") < E@w" ' H"), n=1,...,N.
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Proof. Testing the first equation in (2.6) by % (Ju"2+|u"~1[?) +g(H" 2 —H,) and
the second by H "‘éu"_%, adding the results, and noticing that, as in the continuous
case, the first terms on the right-hand sides cancel, and the second term on the
right-hand side of the second relation vanishes due to the orthogonality (k x u"~2) -

(H"=2y™"2) = 0, we obtain
_ 1 — 1 1
/ (01 (5 (a2 = 2) + ("5 = Hy)) + Dpu - (H 3 ~H) | da
(2.8) 7¢
= [ gty (e e,
0]

Then, substituting the identities

5Tun . (anéunfé) _ %Hn7%(|un|2 B |un71|2)

1 o
— E(Hn|un|2 _ H" 1|U 1|2)
1
4 E(Hn—1|un|2 _ Hn‘un_1|2),
5 Hn1(|un|2 + |un71|2) — i(Hn|un|2 _ Hn71|un71|2)
T4 4t
1 — n n|,, n—
7E(Hn 1|’LL |27H ‘U 1|2)7
O-H"g(H"™% — Hy) = 2= [(H" — Hy)? — (H"™' = H,)?]

into (2.8), we obtain
1 ny, n|2 n 2 1 n—1|, n—1|2 n—1 2
S (24 (= )" )dw = | S (H T g (B = 1) e
0?2 o2
+T/ G(H™* =) (H™ b F)de.
0
By using the expression (1.5) of the viscous and friction forces, we have
/ Q(ané,unfé) . (H"iéunfé)dx = 7/ (uH"7%|Vu"7%|2 + cf\u"7%\3) dz < 0.
Q 0

This implies the energy decay property (2.7). d

For practical computation, the semidiscrete scheme (2.6) can be further dis-
cretized in space by the FEM: find (H,ul) € Sy x S7, with S, C H{ (£2), satisfying
the weak formulation

(O HP, 6n) — (Hy 2wl 2, Ven) =0 Y o1, € S,

— _1 _1 _1 _1 _1
gy 4O A ) (e )

: 1
n—s3z

1 n n—1
= — (VP [ (i + [ ™) + g(H 2 — Hy)| H P

1

n—1i 7 n—1 S
—((quh 2+f"7%)k><uh * H, zvh) VthS%
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with starting values H} and u) being the Lagrange interpolants of H° and u, re-
spectively. Here, S; and S,Ql are the scalar- and vector-valued finite element spaces,
respectively, consisting of globally continuous piecewise linear polynomials. The L2-
projection Pj, (onto the finite element space Sy) in (2.9) ensures that the energy
decay property is unconditionally preserved also in the fully discrete case. The proof
proceeds along the lines of the proof of Theorem 2.1, i.e., substituting

—Hb)} and Uh:uzf"’

[N

1 _ _
o= P TR + )+ g0
into (2.9) and summing up the two equations, we obtain

1 n|,n n 2 1 n— n— n— 2
/Qi(Hh|uh|2+g(Hh—Hb) )dx:/g§<Hh Hup M g (T = 1) e

1

1 1 —
= [ R ) s
1 n— n— n— 2
< [ (e gt = ) )as,

1
which holds whenever H;Z 2 > 0. This proves the energy decay property of the fully
discrete FEM.

2.4. Existence, uniqueness, and convergence of discrete solutions. For
simplicity, we denote by (-,-) and || - || the inner products and norms on both L?(£2)
and (Lz(()))z, by || - ||zm the norms on H™(2) and on (Hm(Q))2, and similarly for
norms on LP(§2)-based Sobolev spaces.

We assume the following:

(Al) The domain {2 is sufficiently smooth, and the solution (H,u) of the initial
and boundary value problem (1.1)—(1.4) is sufficiently smooth.

(A2) The solution of (1.1)—(1.4) satisfies

inf H(xz,t) > Hpin for some positive constant Hpip.
(z,t)€02x][0,T]

We denote by By, the set of pairs (H,@) € H2(2) x [H3(£2) N HL(2)]? such
that

77 T Hmin
(210)  [|H — H(t)llg2 + [[H — H(tn)[ 2= <

and ||u —u(ty)||gs <1,

where H(t,) := H(-,t,) and u(t,) := u(-,t,) are the exact solutions at the time
level t = t,,. Thus BY;, is a neighborhood of the solution (H (¢,), u(t,)) in the space
H?(02) x [H*(£2) N Hq (2)]%.

The main theoretical result of this paper is the following.

THEOREM 2.2. Under assumptions (A1)—(A2), there exists a positive constant 7
such that, for T < 79, the modified Crank—Nicolson method (2.6) has a unique solution
(H™,u") € Bi, forn=1,...,N. Moreover, the solution satisfies the following error
estimate:

(2.11)

1
2

N
—1
1g@<N(|H<tn>H“|H2+||u<tn>u"||Hz>+<TZl||u<tn_;>u” ) <o
=

with a constant C independent of T.
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Remark 2.1. An immediate consequence of Theorem 2.2 is that the discrete so-
lution satisfies, for T < 79,

(2.12) 1™ |z + [lu™ e + [[(u” = w71 /7]l 2 < C

This result can be used for error analysis of fully discrete FEMs, which can be viewed
as the spatial discretization of the semidiscrete problem (2.6), whose solution has
regularity (2.12). By utilizing this regularity result (uniformly in the stepsize 7), one
can expect that the error between semi and fully discrete solutions has the following
bound:

(2.13) [H" = Hi || + [l = up]| < Ch?

with a right-hand side independent of 7. Such a type of error estimate (independent
of 7) has been proved in [17, 16, 29] for many nonlinear parabolic and wave equations.
With such results as (2.13), convergence and boundedness of fully discrete numerical
solutions in L*°(0,T; L>°(2)) can be proved, for 7 < 79 and h < hg, by using (2.13)
and an inverse inequality, without requiring any grid-ratio condition.

3. Proof of Theorem 2.2. In this section, we prove the existence and unique-

ness of discrete solutions for sufficiently small time stepsize 7 and establish a second-
order error estimate.

3.1. H? and H? estimates for the Crank—Nicolson scheme. In this sub-
section, we present some H? and H?® estimates of the Crank Nicolson scheme for
the heat equation, which will be used in our error estimation for the shallow water
equation. Our main tool will be the following resolvent estimates.

LEMMA 3.1 (resolvent estimates). The Dirichlet Laplacian operator A : H?(2)N
HY(2) — L*(92) satisfies the resolvent estimates
(3.1) Az = A fllze < C| Sz if f€L?(2), 2€C and Rez >0,
(3.2) |A(z = D) il <O|fllgr if f€HY(R), 2€C and Rez >0

with a constant C independent of z.

Proof. Tt is well known that the Dirichlet Laplacian A : H2(2)NHg (2) — L*(£2)
generates a bounded analytic semigroup on L?(2); see [20]. Equivalently, z — A is
invertible for z € C such that Rez > 0 and the resolvent estimate (3.1) holds; see [5,
Example 3.7.5 and Theorem 3.7.11].

For f € H}(92),

1Az = A) 7Ll = [[(—A)2 (2 — A)"H(=A)% flm
<Az — A)7H (=A% f 2
< O(=2)% fllez < C|l fllan,

where we have used (3.1) in the second to last inequality. This proves (3.2) for
f e HLN).

For f € H'(£2), we choose a sequence of functions f, =e" Af € H}(£2), n € N.
Then f,, is the solution of the heat equation at time ¢t = 1/n with initial value f,
satisfying the following standard estimate:

(3.3) fo—= finL?(02) as n — oo and ||fullgr < C|lf|lae-
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In fact, we have f, = e" 2 f — f in L%(£2) because the heat semigroup is strongly
continuous (and analytic) on L?(£2); see [20, Theorem 2.4]. The estimate || f,| g <
C||f Iz can be proved as follows: let v be the solution of the heat equation

O — Av =0 with initial condition v(-,0) = f € H' (),

so that f, = v(-,1/n). Then, testing this equation by ;v yields

d /1
loreli3 + = (5190l3:) =0,

which implies ||Vou(-,¢)||L2 < |[Vv(-,0)||z2. This proves that ||V f,llL2 < ||V fllz2, and,
together with the standard L? stability estimate || fn|/z2 < ||f]|z2, leads to || fullmr <

Sl
Since (3.2) holds for f,, € H}($2), it follows that

(3-4) 1Az = A) " fullmn < Clfallar < Cllf [l

This proves that A(z — A)~1f, is bounded in H!(£2). On the one hand, there exists
a subsequence A(z — A)~1f,, which converges weakly in H*(£2). On the other hand,
A(z—A)~t f,,, converges strongly in L?(£2), because f,,, — fin L?(2) and A(z—A)~!
is a bounded linear operator on L?(2). Thus A(z — A)~'f,, converges weakly in
HY(2) to A(z — A)~Lf. Then (3.4) implies (cf. [10, Theorem 5.12-2])

14 = A) 7l < lim inf [ AG = 2)7 faullm < ClLflm,

where we have used (3.4) in the last inequality. This proves the desired results. 0

LEMMA 3.2. For a given sequence (f")nen C H*(82) with s € {0,1} and starting
value v° = 0 in 2, consider the sequence (V") en with v™ € HY($2) satisfying

(3.5) D" — A" =f" in 2, neN.

Then, there exists a positive constant C, independent of 7 and of the sequence (f™)nen,
such that, for any m € N,

m m
_1
(3.6) max [[o"[[Fee +7 > [0" 72 Frase < OTY S e

1snsm n=1 n=1
Proof. Without loss of generality, we assume that f* = 0 for n > m+1. Otherwise
we set " = 0 for n > m + 1 without affecting the value of v™ for n < m. Then
f=(f")52, is an L?(£2)-valued square summable sequence.
Let v = (v™)22; and f = (f™)%2,, and denote by F the Fourier Z-transform,
which transforms a square summable sequence f = (™), to a function

FrQ) =Y ¢
n=1

defined a.e. for ¢ on the unit disk D on the complex plane.
Multiplying (3.5) by ¢ and summing up the equations for n = 1,2, ..., we obtain

(37) (4 -5ta)mi0 =71
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which furthermore implies

1+¢
2

1
aruq) = a(255-a) Fro)

and therefore (taking the inverse transform of F)

(3.8) (Av""2)22 ) = FIM(QF (F)3,

where M (¢) = A(%%g — A)fl.

Since Re(%%) > 0 for ¢ € OD\{%1}, it follows that the operator M(¢) is

bounded in L?({2) and in H*(£2), uniformly for ¢ € OD\{+£1}; see Lemma 3.1. By
Parseval’s identity, the boundedness of M (¢) implies that the operator F 1M (¢).F is
bounded on both ¢2(L?(£2)) and /2(H'(£2)), i.e.,

oo m 0o m
1 1
7Y A2 <OTY I and Ty (A0 |F < CT Y "
n=1 n=1 n=1 n=1

Since [|[v" 2 || etz < C||Av™ "2 || = for s = 0,1 (cf. [13, Theorem 5, Chapter 6]), these
two inequalities imply

o0 m o0 m
1 1
Y 0" 2 G <OT Y |fMNI7e and 7Y 0" E R < CT Y (70
n=1 n=1 n=1 n=1

This proves the estimate for the second term of (3.6).
Testing (3.5) by —Av" 2 immediately yields

Vo [|7 — Vo

2
L2 4| Av""5 |2, = (f7, Av"T %)

2T
<[ 2| A0 2 12
< I + g lau iz,
which implies
"
(3.9) max [o"3n < O 301"
n=1

This proves the estimate for the first term of (3.6) in the case s = 0.
If f* € H}(2), then Av"~2 € HL(£2), and testing (3.5) by A2v" 2 yields

Ap™ 2 A’Un71 2
20" J 122 | v aum-22, = (v, v a0

_1
<M |V A2 |
1 1
< S0 + 5[V A 3|2,
2 2
which implies

m
max [ Av" (7. <O |75
n=1

1<n<m
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therefore,

1<n<m

(3.10) max |[v"|%: < CTZ (Kl
n=1

If f* € H'(£2), then we choose = ejflAf". Similarly as (3.3), f* has the following
properties:

e Hi(92), = f"in L*(2) and £ [z < Clf"[ln as § — oo.

Then, the corresponding v} satisfies

m

(3.11) max [0} |32 < CT Y I 70 < C7 Y I -
n=1

1<n<m
n=1

Since f;' — [ in L3(2) as j — oo, (3.9) implies that v} — o™ in H'(2). This
together with (3.11) implies that v} is bounded and convergent to v™ weakly in H?(£2).
Letting j — oo, we obtain (3.10) for f* € H'(£2). This proves the estimate for the
first term of (3.6) in the case s = 1. 0

3.2. Consistency of the method. We abbreviate u(-,t) by u(t) and H(-,t) by
H(t). Furthermore, we denote

a1 1
(3.12) H = H(t,), H * = S (! + HI ),
n-t 1
(3.13) wp=ultn),  we = o(ul +ulTh),

and t, 1 = (tn +tn-1)/2.

Let 0% and 7;, be the consistency errors of the modified Crank-Nicolson method
(2.6), defined by
(3.14

~ n—l p_1 "
O-H!+V - (H, 2us ) =n,

_ 1 n_1
O+ V(2 + ™) + (2 — 1)

1
n—y n

JUus 2)=my, n=1,...,N.

Nl

1 —
n—sz n

+(V><u:f*% —&—f”_%)k X uy 2 — G(Hy

It is straightforward to show that

2
(3.15) Jmax (Il + ) < O,

provided that the solution (H,u) is sufficiently smooth.

3.3. Existence of discrete solutions. Let e}, :=u} —u" and e} := H]' — H"
denote the errors of the modified Crank—Nicolson method (2.6). Subtracting (2.6)
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from the consistency equations (3.14), we obtain the error equations
(3.16)

a3 n—1 _1 n—1 n-1
o-e™ 2,,N H 2 2\ —
TeH+V-(eH U4 Hye ey )_nHa

_ 1
8TeZ—H:_lV~(H”_%VeZ 2)
_1 _1 1 1 1
— Ve vl e Y (H TR
H" 3 Hn—%H” 3
1 1
luy Zluy 2 |JutTz|un e
+c ( a1 — 1
H,

1 _1
+ V(s = o TP = [T ?) + g Ve
1. 1 . . 1
+(V xuy 2)k x uy 2—(qun_%)kxun_%—&—f”_%kxez 2 =

Remark 3.1. Obviously, if (e%;,e™) € H?(2) x [H3(§2) N Hg (£2)]? is a solution of
(3.16) with H™ = H} — €% and v = u} — €], then (H",u™) is a solution of (2.6).

To prove the existence of a solution (e%,el’) to (3.16) with H™ = H — €, and
u™ = u} —e], we first prove the existence of a solution for a regularized approximating
problem (for which the proof of existence is easier, as explained in Remark 3.2). To
this end, we let E : L'(£2) — L*(R?) be a linear extension operator that is bounded
also from W*P(£2) to W*P(R?) for all k > 0 and 1 < p < oco. Such an extension
operator indeed exists; see [23, Theorem 5, p. 181]. Then, we let o. be a standard
smooth mollifier in R? and define

Oc % w”_% =o.x BEp" T2,
The mollified function o, * @"_% is smooth and satisfies
(3.17)
low %™ s es) < Cor™ ™M [gmF gy Vo € WHP(2), 0< k < m.

We consider the following regularized problem an approximation to (3.16):
(3.18)

_1
n—3

- _1 _1
O + V- (ez W3 4+ HY Zel, ) =,
Fyen — Hff_%v-(Hf’ﬁveZ 2)
Z n—% n—% 1% n—% n—% n—%
— n,lv'(UE*eH VU* )+ﬁ05*6H V(H* V’LL* )
H. 2 H, *H, *
|u27%|u27% ‘un—%‘un—%
Ty P w1
* €
1 1
+ V(i + ) (=) + (T ) (T ") + gV (o ke )
3 on—1i\7 n—1 n—%.7 n—g  p-1
+ V X (ux w2 )k xu"TT — (VX ux 2)k X (ux u”"2)
+ 3k xen ® =

with

(3.19) H!=H} —o.%efy and u" =ul —e].

£ 3
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Remark 3.2. If (3.18) has a solution (e%,e?) bounded in H?(£2) x [H3(£2) N
H(2)])? uniformly for 1 <n < N and € € (0, 1), then there exists a sequence e — 0
such that the corresponding sequence of solutions of (3.18) converges strongly in
HY(02) x [H?(2) N H}(2)]? and weakly in H2(£2) x [H?(£2) N HE(£2)])? to a solution
of (3.16). The rigorous proof of this “pass to limit” is routine.

To prove the existence of solutions for the regularized problem (3.18), we use
Schaefer’s fixed point theorem (cf. [13, Chapter 9.2, Theorem 4]).

Schaefer’s fixed point theorem: Let Y be a Banach space and let M : Y — Y be
a continuous and compact map (possibly nonlinear). If the set

(3.20) {p €Y : ¢=0M(¢) for some 6 € [0,1]}
is bounded in Y, then the map M has a fixed point.
Construction of the map M: Let X = H'(£2) x (H3(£2)N H&((Z))2 and consider

the space (X, || - [[s=(x)) of sequences (¢, ™), with (¢",¢") € X, endowed with
the following norm:

N —
16" el 7= s 16" #™)x

For any sequence (¢", ¢")N_; € X we define

Hyi 1
3.21 H .= min [ =22 1,
( Poe 2 RTATEA TS
12}1sz O¢ H?2 O¢ oo
1
(3.22) Py = min ( — — , 1),
1gﬁgN(llso [zs + IV - 0" [lL=)
(3.23) Hj . =H] - pge o-x¢" and =y — poo".

Then ||p£t8 0c* ¢"|| oo < min and therefore

H min
2

Hy. >

N

n=

For any fixed € > 0, the quantities pg . and p¢ depend continuously on (¢, ¢")
XN, and

1 €

Hmin w n
(3.24) o oo x 6"l < 2 and gl <1,
(3.25)
[Hg Mz < HP |+ —0 and [ug|gs + V- ullpe < [Julllgs + V- ull|pe + 1.
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For any given (¢", o™)N_; € XV, we define (e7,e?)V_; € XV to be the solution
of the following linear problem:

(3.26)

5763_H:_%V (H) *Ver ?)
¢,
R v n=3yy e a =iy (HT IV R
_Hn_l (Ua*¢ U )+H"_%H"_%UE*¢ ( * * )
¢, ¢, *
_1 n
+ <“* Plur ? _|U<p *ug 2)
1 n_1
H, ® H! ®

(3.27)
+(V x " 7k x ugié + (V x u27%)15 X Q"I 4 Pk x " = My
with starting values €%, = e = 0. The map from (¢", ") _; to (e, e?)N_; is
denoted by M.
LEMMA 3.3. Let 7 be sufficiently small (independent of €),

1

3.28 T< .
(3.28) Tlimoras TV alimorem 7 1

Then, for any given 0%y, n* € H2(£2), given €, and given (¢",")N_, € XN, the
system (3.26)—(3.27) has a unique solution (€%, e) € H?(2) x [H*(2) N HL(2)]?,
n=1,...,N. Moreover, the map M : XN — X is well defined, continuous, and
compact.

Proof. For given e}, ' € H?(£2), (3.26) can be written as

2 p_1 _1 _1 _1 _1
(3.29) ;e?{ 2 tup 7 -Vey 24+ (Voup 2ey > =gy
with 5
’n,—l L .
g = =V (HI 2" ) —€H ' e H* ().

_1
The linear hyperbolic equation (3.29) has a unique solution e}, * € H?(£2) and sat-
isfies the following estimate (see the appendix):

_1
lerr = < Cllg N2

This implies that (3.26) has a unique solution e € H*(2),n=1,...,N.
Similarly, for given e?~! € H3(£2) N HE(£2), (3.27) can be written as a linear
elliptic equation

2 n—3 14 n—1i n—1i n
(3.30) Zew = ——V-(H,_ Ve, *)=—g
T H, 2

,€
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with g" € H?(§2) given by

_1 1 1
gi =~V (0 6"V ) o 6"V (TP VL)
Hn_§ H"_EH”_E
&€ ¢, *
_1 _1 _1 1
e (B
! H”_% H"_%
* b,
1 n ny, .n n—1 n—1\ n—1 n—1
+ V(U +ul)e™ + (ul T +ul ") 4+ g V(o x 677 2)

4
A _1 1. - 2
+(V><g0"7%)k><uz 2 4 (V X uy Z)kxgo"*%Jrf"*%kxga”*%fnng;eZ*l.

ol
It is well known that the elliptic equation (3.30) has a unique solution e,, * € [H*(£2)N
H}($2)]?, satisfying the following estimate:

_1
llew™ 2 s < Cllgalla.

Therefore, the map M : XV — X% is well defined. Furthermore, if (¢, ¢™)_,
is bounded in X, then (e%,e™)N_, is bounded in (H%(£2) x [H*(£2) N HE(2)]?)Y,
which is compactly embedded into X*. Thus the map M : X~ — X¥ is compact.

The continuity of the map can be proved in the standard way, and the proof is
omitted. ]

Remark 3.3. For any fixed £ > 0, the mollified functions H;l;% and o, x ¢"’%
are sufficiently smooth. As a result, the solution of (3.27) is in [H*(£2) N H}(£2))?,
compactly embedded into [H3(£2)NH}(£2))2. Hence, the regularization using mollifiers
guarantees that the map M : X~ — X% is compact. Without the regularization,
the map M : XV — XV is well defined and continuous, but it is difficult to prove its
compactness.

In Lemma 3.3, we proved that the first condition of Schaefer’s fixed point theorem
is satisfied, i.e., that the proposed map M : XV — X% is well defined, continuous,
and compact. In the following lemma, we will prove that the second condition of
Schaefer’s fixed point theorem is also satisfied, i.e., the set defined in (3.20) is bounded
inYy =Xx"V.

LEMMA 3.4. There exists a positive constant 1o such that the following result holds
for T < 791 if (97, 0™, satisfies

(331) (¢n7 (pn)f;/':1 = 9M[(¢n7 (Pn)r]LV:l] fOT some 9 S [07 1]3

then (¢", ™)N_, is bounded in (H?(82) x [H?(£2) N H}(2)2)N — XN uniformly for
0 €[0,1] and € € (0,1). More precisely, pgs =py, =1 and

H..
) 2 n n - < min d n < 1.

(332 max (6" + [¢"1%) < 75" and  max " s <

The proof of Lemma 3.4 is presented in the next two subsections together with
error estimates for the discrete solutions.

Lemma 3.4 and Schaefer’s fixed point theorem imply that the map M has at least
one fixed point, which we denote by (€%, e?)N_;. In the case pga = pg = 1, the fixed
point (€%, e?)N_, of M satisfies

n — n n o __ n n __ n n __ n
Hy =H!—ocxey=H! and wuy=u; —e, =u",

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/19/22 to 158.132.161.181 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ENERGY-DECAYING METHOD FOR SHALLOW WATER EQUATION 279

where H” and u™ are defined in (3.19). Therefore, (3.26)—(3.27) reduces to (3.18).
Hence, Lemma 3.4 implies the existence of a solution to the regularized problem
(3.18).

Lemma 3.4 implies that the fixed point (€%, e") is bounded in (H?(£2) x [H3(£2)N
HE(2)12)N uniformly for e € (0,1). This implies that there exists a subsequence
€r — 0 such that the corresponding solutions of the regularized problem converge to
a solution of (3.16) with

H"=H}—¢e}y and u" =ul} —el.
This proves the existence of a solution for the proposed method (2.6), as explained
in Remark 3.1, while (3.32) implies that the solution is in B ,, which is defined in
(2.10).

Proof of Lemma 3.4. 1If (¢", o™)N_; € XV satisfies (3.31), then (e, em)N_| =
M[(¢™, ©"™)N_,] is the solution of (3.26)—(3.27) and

n=1
(3.33) @" =0y and " =0el.

In view of this, we assume that (e%,e?)_; is the solution of (3.26)—(3.27) for some

e € [0,1] with (¢™, ™) given by (3.33). Then, we estimate e}, and e}l separately in
the next two subsections.

Remark 3.4. Although the proof of Lemma 3.4 only needs the case ¢ € (0, 1), the
estimates obtained in the next two subsections include the case € = 0 (assuming that
there exists a solution in this case).

3.4. Estimation of e},. We rewrite (3.26) as
_ _1 nol
(3.34) Orelfy +up 2 -Vey 2 =nf + 1P+ 10+ 13
with
n—3

(335) I'=—e 2V ul 2, ID=—fQel . VHI' ? IN=_9H'  *V.cl

Let 0; be the partial differentiation operator with respect to ; and let 9;; = 0;0;,4,75 =
1,2. Application of the differential operator 9;0; to (3.34) yields

- nel n_1l
(336) 8—,—8@‘6% + Uy 2 -Vc’)ijeH 2= ijn% + (92][? + 8@‘[? + 8UI§L + IZ
with
(3.37) I} = —0ul % -V el — Ul Vol E — dul T Vel
. 4 = e JYH J %P 1 H 1g Yo H -

Then, testing (3.36) by 20;;e,, *, we obtain

_ _ 1 _1 _ 1
10|l = (V- ug 2,200i5ep; 21?) + (Dimir, 20i5€p )

(3.38) 3 1 —1
+ Z(az'j[?ﬂaije?{ 2)+ (I3, 20i5ep 2).
{=1
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By using the expressions in (3.35) and (3.37), we have

1 nol

n—21 n—2x n—3% n—1 n—1 n—g
(0317, 20556 2)| < [(Oijey 2V -up *,20ie )|+ [(Oiey *V - Oju,p *,20;5ey
ne1l el n—1
+|(8j6H 2V'8iu¢ 2,2(92‘]‘61_1 2)|
no1 el nel
+ ey 2V - Oijup *,20iep *)|

1 _1
< Cllug *llmsller 13,

_1 n1l nl n_1 n_1 n_l n—
(05515, 2055e5; 2)| < [(Oijen 2 - VHL 2,20,y )|+ |(Qieu * - VO;H, ™ 2,20;5€5

n_l

n—l n_1l
+|(6j€u 2 VBZH* 2,261']‘61_1 2)‘
n—1 n—1 n—1
+|(€u 2 V(Q)”H* 2,28¢j6H 2)|
n—1 n—1
<Cllew *llazlley *lla2,

i n

)|

5

_1 nl _1 el nol nol _1
(0515, 20i5ep; *)| < (0 He 2V -ew 2,20i¢y )|+ |(0:H 2V - 0jeu 2,20;ep °)|

n_1 nl n_1

+|(8jH* ZV-aieu 2,281‘]‘6 2)|
n_l _1 _1

+(HST2V - Oijen *,20;ey °)|

_1 _1
< Cllew *|lmsllely * Il

(13, 20;e7 *)| < [(iug * - Vdjeq *,20; e )|

n—1 n—1 n—1 n—1
—|—|(8ju<p 2 -V@ieH 2,282']‘61_[ 2) + |(8iju¢ 2. Ve

n

1
—3 .
. 20iey

n—1 n—1
< Cllug? s llery * 17
Substituting these estimates into (3.38) and using estimate (3.25), we obtain
- _1 _1
O:(10i5e5 1 < Clley * I3z + Cllew * s + Clloymi|?, i.5 =1,2.
Similar estimates can also be obtained for 0;e% and e%,
~ _1 _1
O-l10se|* < Clleg 3 + Cllew s + Cloguill*, 5 =12,
and
~ _1 _1
Ocllefr|* < Clleg *I? + Cllew s + Cllm||*.
Summing up these estimates yields

n—z n—sz

— 1 1
(3.39) O-llef > < Clleg Nz + Cllew * |Izs + Clin |1 72-

3.5. Estimation of e'!. We rewrite (3.27) as

8
_ n—1l
(3.40) Brel — pden * =l + 37
=1
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with
o’ _1 1
Jpr = T_%VH(;E? -Vey 2,
Hy .
0 1 1
Jy = n‘ilv~(05*ez 2Vuy ?),
H 2
¢.e
Ou 1 _1 _1
J:?:_Hn—%Hn—éUE*ez 2V (H 7 2Vuy ?),
b Tx
_1 _1 _1 _1
n A T (T T
J4 - _Cf n_% - TL—%
H, H,.
_1 _ 1 —
_ 9055%*62 T e S L e (R
= ————lux Clux 7 -y o1 ;
H, b qu2
Jg = V(W +ud)en + (i +ulHen ),
_1
J¢ = —0gV (0. %epy 2),
_1 A _1 1 A _1
JP=—0(V x ey kxup 2 —0(Vxuy kxey 2,

JP— 0t ket E
8 — U )

where we have substituted ¢ = fe?};, and ¢™ = fe;, into the expressions above. Notice
that

m m

m 7

3 n—3 n n
> lo-epl = ZHuAeu 2+nu+ZJ"HH1\ S (lew 2 s +Ima+> - Jrl3n)-
n=1 =1

n=1

Therefore, applying Lemma 3.2 with s = 1 to (3.40), we obtain
(3.41)

m 7
1
max el 7 + TZ (19l +llew™* ) < 07 (Inklles + D113 )-
n=1 i=1
By using estimate (3.25), it is straightforward to verify that

n—4i

1 -1 no1l
172l < COEL el Vs [l + 11 lwrallel ™ we)
<Clew 3 || (Sobolev embedding inequality)

_1
< Csllen H HHz +6|lew 2|lmgs (interpolation inequality),

where § € (0,1) can be arbitrarily small at the expense of enlarging the constant Cj.
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Similarly, we have

_1
1951 < Clley a2,

_1
1751z < Clleg * Ml

<
15 e < C(llesllare + len™ ),
_1
176 1z < Clleg * Il 2,

C
_1
1971 < Cllew 2|l a2,
C

By the integral form of the mean value theorem,

_ 1 _ 1 _ 1 _ 1 _1 _ 1 1 _ 1 _ 1
lur a2 = fup P lup = (ur 7 — g 2>-/ 2/(1 — s)ux * +sup ?|ds
0

SIS

n—

- ' -} =4
= P / 2|(1 = s)ux 2 4 sup 2|ds
0

_1 1 _1 _1
= pptei™ [ 21 st sl s,
0

which implies (together with |p| <1 and 6 < 1)

n—x

1 _1
13 < Clleqs e + Cllew ).

Substituting the estimates of ||J*||g1, 4 =1,...,8, into (3.41), we obtain

m
_ n_1l
e+ 73 (10net i + i )

(3.42) . 1 . 1
<Cst Y (N7 + lleallze + et e + ek 2N3e) + 07 Y llew 3.
n=1 n=1

Adding 0x(3.39) to (3.42), we have

m
_ 1
max (6]l |[7= + llepl|Frz) +7 Y (10r€plFn + llew *[[7)
n=1

1<n<m

m m
1 _ 1
<Oy lew 2l +Csm > (Ingllzr= + Izl + lenllze + llen ™ M7= + ek * 1)

n=1 n=1

Choosing here sufficiently small §, the first term on the right-hand side of the above
inequality can be absorbed by the left-hand side, and we infer that

m
= _1
(max (Jlefy |72 + llenlFe) + 73 (10-elll3 + llen = [13s)
Nx —
(3.43) . n=1
_1
< CTZ (I + Il + llepl e + e 13 + e 2l172).
n=1
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Then, by using the discrete Gronwall inequality, for sufficiently small 7 we obtain

N
_ _1
 fmax, (et e + llet ) +7 z_: (I0rei1Fe + llew 2 17)
(3.44) =t

N
<Cr Y (Il + Inelle)-
n=1

This and the consistency estimate (3.15) imply

7 2
(3.45) | nax (leFller= + lletllm=) < CT2,
N 1
(3.46) > llen ®|Hs < CTh
n=1

In all the estimates above, the generic constant C' is independent of €.
Now, (3.46) implies ||e”||gs < ||€*~ || s + C73/? and, therefore,

(3.47) max_||e”| s < C72.

1<n<

In view of (3.45) and (3.47), there exists a positive constant 7 such that, for 0 < 7 <
Tp, we have

(3.48) (el < T2 and max el <1
Thus,
(3.49) max_||¢" || g2 < Humin 04 max lo™llae < 1
1<nEN 2 1<n<N
and we infer that indeed
(3.50) Py =pl =1
In particular, (3.49) implies that (¢", ¢™)N_; is bounded in (H?(£2) x [H3(£2) N

H())?)N — XN uniformly for 0 € [0,1], e € (0,1), and 0 < 7 < 79. This proves
Lemma 3.4.

3.6. Error estimate. The analysis following Lemma 3.4 proves the existence of
a solution to (2.6) in B .

If (H",u") € B}y, is a solution of (2.6), then the error (e, ey;) is a solution of
(3.26)—(3.27) with (¢™, ¢™) given by (3.33), with # = 1 and & = 0. Then, the proof of
Lemma 3.4 implies (3.45)—(3.46); see Remark 3.4 for the case £ = 0. This proves the
error estimate (2.11).

3.7. Uniqueness of discrete solutions. If there are two solutions of (2.6),
say, (H",u") € B}, and (H",4") € B ,,, then the error functions

eH:I;T"—H" and e, =u" —u"
satisfy (3.16) with H} and u? replaced by H"™ and 4", respectively, and with 7% =

Ny = 0. Then, the error estimate (3.44) holds, which implies e}, = e}, = 0. This
proves the uniqueness of discrete solutions.
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. 5 0.11
g4 S 0.1
2 3—“ 4
z 2 0.09
5 2 *
£, 0.08
2
0 :
0 02 04 06 08 1 00702 04 06 o8 1
t t

Fic. 4.1. Number of iterations and energy at each time level.

4. Numerical results. In this section, we present numerical results to support
our theoretical analysis in Theorems 2.1 and 2.2.

We test energy decay and convergence rates of the proposed method by solving
the initial and boundary value problem (1.1)—(1.4) in the domain £ = [0,1] x [0, 1]
with the following initial values:

Hy(z,y) = 1.0 + 0.2sin(7z), wo(z,y) = (sin®(rz)y*(1 —y)2, 22(1 — )2 sin?(wy)) ",

and with g =10 and Hy, = p=cy = 1.

We solve the problem by using the proposed time discretization method with the
FEM in (2.9), with a sufficiently small mesh size h such that the spatial discretization
error is negligible in observing the temporal convergence rates. The nonlinear system
(2.9) is solved by the following fixed-point iteration: choose uj ; = u)~' and compute
(Hp p,ul ), £=1,2,..., by
(41)

- n—l p_1
(D H} g, 61) — (Hp g *up 21, Vn) =0 Y ¢p, € Sh,
— _1 1 _1 _1 _1
(Ol o Hy g 2on) + (Hy, o * Vg ® Von) + (eplug o2 [, * vn)

1

1 — n— n—1i
= = (VP [ (1 o P+ ™) + gt * = Hy) | Hy o)

_1 - _1 _1 .
- ((V x UZ,Zzl + f"ié)k X UZ,ZZ’H}T:,Z ) Yoy, € S7.

1
For given uZ’Zfl, one can determine H}', from the first equation of (4.1) and then

1 1
compute H;LZ 2. By using this computed H:Z ?, one can determine uj, , from the
second equation of (4.1). The iteration is terminated when the following tolerance
error is reached,

(42)  HE = Byl <1077 and  ufl g — uf oy ooy < 107,

which is much smaller than the temporal discretization errors observed in our numer-
ical results.

The number of iterations at each time level, with 7 = 1/128, is presented in
Figure 4.1 (left), which shows that the nonlinear system can be effectively solved with
a few iterations to achieve the accuracy in (4.2). The energy of numerical solutions is
presented in Figure 4.1 (right), which shows that the energy decays in time, consistent
with the theoretical result of Theorem 2.1.
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TABLE 4.1
Numerical results at T = 1.

|3 _H;L\{T/QHLOO(Q) [[ui - _uhN,T/2HL°°(Q)
T=1/8 6.706x 10~ 7.517x1073
T=1/16 1.104x 104 1.805x 103
T=1/32 2.073x107° 4.463x 10~
T=1/64 4.232x1076 1.176 x 10~4
convergence rate 2.28 2.01

Since H?(£2) = L*>°(£2) in the two-dimensional space, the error estimate in The-
orem 2.2 implies that the proposed method has second-order convergence in L ({2).
Since the exact solution is unknown, we present the L (f2)-errors of numerical so-
lutions in Table 4.1 based on the difference between two numerical solutions using
consecutive stepsizes, with a sufficiently small mesh size h such that the spatial dis-
cretization error is negligible in observing the temporal convergence rates, which are
computed by using the formula

Jup o, — up Il Los () >

convergence rate = log (
? ||for - uhNJ—/z”LM(Q)

based on the three finest stepsizes. The numerical results indicate that the proposed
method has second-order convergence in time, consistent with the theoretical result
of Theorem 2.2.

Appendix: Well-posedness of the linear hyperbolic equation (3.29).
First, we prove uniqueness of the solution of (3.29) for sufficiently small 7. If w and
v are solutions of (3.29), then

(A1) %(ww)ﬂ;*% V(w — )+ (V- uly” ) (w — v) = 0.

Testing (A.1) by w — v immediately yields

1

2

2 1 _1 1
2w = vl3s = =5 (7 wp o = o) < IV - up T e = w3

Hence, for

1
(A.2) TS ———1
IV - ue [l
this estimate implies w — v = 0.
1
Second, we prove existence of a solution e}, > € H2(£2) to (3.29). To this end, we

1
let g% and ug 2 be extended to H?(R?) and H?3(R?), respectively, both with compact
supports in some bounded domain 2’ O 2, and consider the viscous approximating
problem

2 n—% n—3
(A.3) “vstup 7 Vs +(Voup *Jvs — 64vs = gy

with a small parameter § > 0. It is well known that, for sufficiently small 7, satisfying
(A.2), the elliptic equation (A.3) has a unique solution vs € H*(R?). Clearly, (3.25)
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and (3.28) imply (A.2). Thus (A.3) has a solution vs € H*(R?) under condition
(3.28).

In the following, we prove that vs converges strongly in H'(f2) and weakly in
H?(£2) to a solution of (3.29) as § — 0. In fact, differentiating (A.3) twice yields

2 n—1 n—1l
~0ijvs + up 2 - Voivs + (V-uy 2)0i0s — §A;;vs
nl n—1 n—1
= ingn{ - 87;u<p 2. Vajvg - 8ju<p 2. V(’),;vg - aij’Uw Z. V’U5
_1 n—1 n—L1
— (V- 0y 2)0jvs — (V- Qjup 2)0vs — (V- Oijug 2 )vs.
Then, testing this equation by 0;;v5, we obtain
2 2 2 n n—g 2
1103051122 o) + 01V 0ijvs L2 ey < Clighllazllvslimz(an + Cllue * e llvsllzre )
nl
< Cligilfz + (C+ Cllug * [lms)llvs | 32 ze) -
Similarly, one can obtain
2 " no1l
;Ilvalliz(mz> + 6] Vsl e ey < CllgiliF + (C + Cllug™ ® || ms) 05|72 (re)
and
2 2 2 n |2 n—3 2
—105vslz2 g2y + 01V OuslT2 (o) < Cllgk 2 + (€ + Cllug * [rr2) [05][7r2 (r2) -
These estimates imply
2 2 2 n (|2 n—3 2
(A4) —llvsllzrz ey +01VOivslLaey < Cllgi i + (C+ Cllug *llm2)llvsllzr2 @)

When 7 is sufficiently small, the last term on the right-hand side of (A.4) can be
absorbed by the left-hand side. Then, we have

vl 2 m2) < Cllgii |l 2

with a constant C' independent of . Hence, there exists a subsequence d; — 0 such
that vs, converges strongly in H'({2) and weakly in H2({2) to some function, which
we denote by e, € H?(£2). Then, by letting § = §; — 0 in (A.3), we obtain that e?,
is the solution of (3.29) on R? (therefore it is also a solution on 2). The uniqueness
of such a solution has already been proved.
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