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SMALL DATA GLOBAL REGULARITY FOR 3-D ERICKSEN-LESLIE’S HYPERBOLIC

LIQUID CRYSTAL MODEL WITHOUT KINEMATIC TRANSPORT

JIAXI HUANG1, NING JIANG2, YI-LONG LUO3, AND LIFENG ZHAO4

ABSTRACT. In this article, we consider the Ericksen-Leslie’s hyperbolic system for incompressible liquid

crystal model without kinematic transport in three spatial dimensions, which is a nonlinear coupling of in-

compressible Navier-Stokes equations with wave map to S
2. Global regularity for small and smooth initial

data near the equilibrium is proved. The proof relies on the idea of space-time resonance.

1. INTRODUCTION

The hydrodynamic theory of incompressible liquid crystals was established by Ericksen [3, 5, 6] and

Leslie [16, 17] in the 1960’s (see also Section 5.1 of [22] ). The general Ericksen-Leslie’s system consists

of the following equations of the velocity field u(x, t) ∈ R3 and the orientation field d(x, t) ∈ S2, and

(x, t) ∈ R3 ×R+:

(1.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu + u ⋅ ∇u +∇p = −div(∇d⊙∇d) + divσ̃ ,
divu = 0 ,

ρ1d̈ =∆d + Γd + λ1(ḋ +Bd) + λ2Ad .

For the detailed derivation of (1.1) from the original form of Ericksen-Leslie’s formulation, see, for exam-

ple [15].

In the above system, ρ1 > 0 is the inertial constant, and the superposed dot denotes the material derivative

∂t + u ⋅ ∇, and

A = 1
2
(∇u +∇⊺u) , B = 1

2
(∇u −∇⊺u) ,

represent the rate of strain tensor and skew-symmetric part of the strain rate, respectively. We also define

N = ḋ+Bd as the rigid rotation part of director changing rate by fluid vorticity. Here Aij = 1
2
(∂jui+∂iuj),

Bij = 1
2
(∂jui − ∂iuj), (Bd)i = Bkidk, and (∇d⊙∇d)ij = ∂idk∂jdk. The stress tensor σ̃ has the following

form:

(1.2) σ̃ji = ν1dkAkpdpdidj + ν2djNi + ν3diNj + ν4Aij + ν5Aikdkdj + ν6diAjkdk .

These coefficients νi(1 ≤ i ≤ 6) which may depend on material and temperature, are usually called Leslie

coefficients, and are related to certain local correlations in the fluid. Usually, the following relations are

frequently introduced in the literatures [3, 16, 28].

(1.3) λ1 = ν2 − ν3 , λ2 = ν5 − ν6 , ν2 + ν3 = ν6 − ν5 .
The first two relations are necessary conditions in order to satisfy the equation of motion identically, while

the third relation is called Parodi’s relation, which is derived from Onsager reciprocal relations expressing

the equality of certain relations between flows and forces in thermodynamic systems out of equilibrium.

Under Parodi’s relation, we see that the dynamics of an incompressible nematic liquid crystal flow involve
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2 Global regularity for Liquid crystal

five independent Leslie coefficients in (1.2). Furthermore, in (1.1), the Lagrangian multiplier Γ is (which

ensures the geometric constraint ∣d∣ = 1):

(1.4) Γ = −ρ1∣ḋ∣2 + ∣∇d∣2 − λ2d
⊺Ad .

We remark that the last two terms in the third equation of (1.1) is the so-called kinematic transport, i.e.

(1.5) g = λ1(ḋ +Bd) + λ2Ad ,

which represents the effect of the macroscopic flow field on the microscopic structure. The material

coefficients λ1 and λ2 reflect the molecular shape and the slippery part between the fluid and particles.

The first term represents the rigid rotation of the molecule , while the second term stands for the streching

of the molecule by the flow.

Recently, the second and third named authors of the current paper studied in [15] the well-posedness in

the context of classical solutions for the hyperbolic case, i.e. ρ1 > 0. More precisely, in [15] under some

natural constraints on the Leslie coefficients which ensure the basic energy law is dissipative, they proved

the local-in-time existence and uniqueness of the classical solution to the system (1.1) with finite initial

energy. Furthermore, with an additional assumption on the coefficients which provides a damping effect,

i.e. λ1 < 0, and the smallness of the initial energy, the unique global classical solution was established.

Here we remark that the assumption λ1 < 0 plays a crucial role in the global-in-time well-posedness.

Cai-Wang [2] recently made progress for the simplied Ericksen-Leslie system, namely, the case with

νi = 0, i = 1 ,⋯ ,6, i ≠ 4. They proved the global regularity of (1.1) near the constant equilibrium by

employing the vector field method.

In the current paper, we consider the more general case: still ν2 = ν3 = 0 and ν4 > 0, but ν5 = ν6 > −ν4,

and ν1 > −2(ν4+ν5). Of course, from (1.3), we still have λ1 = λ2 = 0, i.e. the kinematic transport vanishes.

The aim of this paper is to prove the global regularity of this more general case (but still special, comparing

to the most general case, say, (1.2) and (1.3)) near the constant equilibrium (u, d) = (0⃗, i⃗). More precisely,

we study the Ericksen-Leslie’s hyperbolic liquid crystal model in the following form:

(1.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu + u ⋅ ∇u +∇p = ν4
2
∆u − div(∇d⊙∇d) + divσ,

divu = 0,
d̈ −∆d = (−∣ḋ∣2 + ∣∇d∣2)d.

on R3 ×R+ with the constraint ∣d∣ = 1, where

σji = ν1dkdpAkpdidj + ν5(djdkAki + didkAkj) .

1.1. Historical remarks. Important special case of (1.1) ρ1 = 0, λ1 = −1 is the so-called parabolic

Ericksen-Leslie system, which has been extensively studied from the mid 80’s.The static analogue of

the parabolic Ericksen-Leslie’s system is the so-called Oseen-Frank model, whose mathematical study

was initialed from Hardt-Kinderlehrer-Lin [11]. Since then there have been many works in this direction.

In particular, the existence and regularity or partial regularity of the approximation (usually Ginzburg-

Landau approximation as in [19]) dynamical Ericksen-Leslie’s system was started by the work of Lin and

Liu in [19], [20] and [21]. The simplest system preserving the basic energy law which can be obtained

by neglecting the Leslie stress and by specifying some elastic constants. In 2-D case, the existence of

global weak solutions with at most a finite number of singular times were proved by Lin-Lin-Wang [18].

Recently, Lin and Wang proved global existence of weak solution for 3-D case with the initial director

field lying in the hemisphere in [23].
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For the more general parabolic Ericksen-Leslie’s system, local well-posedness is proved by Wang-

Zhang-Zhang in [26], and existence of global solutions and regularity in R2 was established by Huang-

Lin-Wang in [12]. For more complete review of the works for the parabolic Ericksen-Leslie’s system,

please see the references therein above.

If ρ1 > 0, (1.1) is an incompressible Navier-Stokes equations coupled with a wave map type system

for which there is very few works, comparing the corresponding parabolic model, which is Navier-Stokes

coupled with a heat flow. The only notable exception might be for the most simplified model, say, in (1.1),

taking σ̃ = 0 and u = 0, and the spatial dimension is 1. For this case, the system (1.1) can be reduced to

a so-called nonlinear variational wave equation. Zhang and Zheng studied systematically the dissipative

and energy conservative solutions [29, 30].

For the multidimensional case, there has been some progress on the hyperbolic system of liquid crystal.

Very recently, De Anna and Zarnescu [4] considered the inertial Qian-Sheng model of liquid crystals.

They derived the energy law and proved the local well-posdedness for bounded initial data and global

well-posedness under the assumptions that the initial data is small in suitable norm and the coefficients

satisfy some further damping property. Furthermore, for the inviscid version of the Qian-Sheng model,

in [7], Feireisl-Rocca-Schimperna-Zarnescu proved the global existence of the dissipative solution which

is inspired from that of incompressible Euler equation defined by P-L. Lions [24].

1.2. The main theorem. To state our main theorem, we need some notations. Define the perturbed

angular momentum operators by

Ω̃iu = Ωiu +Aiu, Ω̃id = Ωid,

where Ω = (Ω1,Ω2,Ω3) is the rotation vector-field Ω = x ∧∇ and Ai is defined by

A1 =
⎛
⎜
⎝

0 0 0

0 0 1

0 −1 0

⎞
⎟
⎠
, A2 =

⎛
⎜
⎝

0 0 −1
0 0 0

1 0 0

⎞
⎟
⎠
, A3 =

⎛
⎜
⎝

0 1 0

−1 0 0

0 0 0

⎞
⎟
⎠
.

We define the scaling vector-field S by

S = t∂t + xi∂xi
.

Let

Γ ∈ {∂t, ∂1, ∂2, ∂3, Ω̃1, Ω̃2, Ω̃3}
and Za = Sa1Γa′ , where a = (a1, a′) ∶= (a1, a2,⋯, a8) ∈ Z8

+, Γ
a′ = Γa2Γa3⋯Γa8 , we define

u(a) ∶= Zau, d(a) ∶= Zad.

The main result of this paper is as follows:

Theorem 1.1. Assume that N0 ∶= 60,N1 ∶= 6, h ∶= 6, the fixed coefficients ν1, ν4 and ν5 satisfy

(1.7) ν4 > 0, ν1 > −2(ν4 + ν5), ν5 > −ν4,
and (u0, d0, d1) are initial data near equilibrium (0⃗, i⃗, 0⃗) satisfying the smallness assumptions

(1.8) sup
∣a∣≤N1

{∥u(a)0 ∥HN(a) + ∥∇d(a)0 ∥HN(a) + ∥d(a)1 ∥HN(a)} ≤ ǫ0,

where N(a) = N0 − ∣a∣h for 0 ≤ ∣a∣ ≤ N1. Then there exists a unique global solution (u, d) of the system

(1.6) with initial data

u(0) = u0, d(0) = d0, ∂td(0) = d1,
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satisfies the energy bounds

sup
0≤t≤T

sup
∣a∣≤N1

{∥u(a)(t)∥HN(a) + ∥∇u(a)∥L2([0,t]∶HN(a))} + sup
0≤t≤T
∥∇t,xd(t)∥HN(0) ≲ ǫ0,

sup
0≤t≤T

sup
1≤∣a∣≤N1

∥∇t,xd
(a)(t)∥HN(a) ≲ ǫ0(1 + T )δ̄.

for any T ∈ [0,∞), where δ̄ < 10−7 depends on ǫ0, N0,N1, ν1, ν4, and ν5.

Remark 1.2. (i) Even though only the case ν1, ν5 ≥ 0 was considered in [15], their local wellposedness

results for small data hold true when ν1 or ν5 is negative.

(ii) We don’t intend to get optimal regularity, hence we choose N0,N1 and h sufficiently large just for

convenience. In fact, the regularity index may be lowered.

To understand the stress tensor divσ and the term (−∣ḋ∣2 + ∣∇d∣2)d more clearly, we introduce the polar

coordinates φ1, φ2. Precisely, φ1 represents the angle between x-axis and projection of d onto x − y plane

and φ2 represents the angle between d and x − y plane, namely

(1.9) d = (cosφ1 cosφ2, sinφ1 cosφ2, sinφ2).
Then by the orientation d near i⃗, we know that the angles φ1, φ2 are near 0. Now the systerm (1.6) can be

rewritten as the (u,φ)-system:

(1.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu + L̃u = −u ⋅ ∇u −∇p − ∂j(∇φ ⋅ ∂jφ) +∇⊗ (φ⊗∇u) +Err11 +Err12,

divu = 0,
∂2
t φ −∆φ = −∂tu ⋅ ∇φ − 2u ⋅ ∇∂tφ − u ⋅ ∇(u ⋅ ∇φ) +Err2

where the second order linear operator L̃ is defined by

L̃u ∶= −ν4
2
∆u − (ν5

2
∆u1 + (ν1 + ν5)∂2

1u1,
ν5

2
(∂2

1u2 + ∂1∂2u1), ν5
2
(∂2

1u3 + ∂1∂3u1))⊺,
the quadratic terms are

∇⊗ (φ⊗∇u) ∶=ν1
⎛⎜⎝
∂2(A11φ1) + ∂3(A11φ2) + 2∂1(φ1A12 + φ2A13)

∂1(A11φ1)
∂1(A11φ2)

⎞⎟⎠

+ ν5
⎛⎜⎝

∂2(φ1A11) + ∂3(φ2A11) + ∂1(φ1A21 + φ2A31) + ∂j(φ1A2j + φ2A3j)
∂2(φ1A12) + ∂3(φ2A12) + ∂1(φ1A22 + φ2A32) + ∂j(φ1A1j)
∂2(φ1A13) + ∂3(φ2A13) + ∂1(φ1A23 + φ2A33) + ∂j(φ2A1j)

⎞⎟⎠ ,

and the error terms are

Err11 = (Err111,Err112,Err113)⊺, Err12 ∶= ∂j(sin2 φ2∇φ1∂jφ1),
Err2 ∶= (2 tanφ2(φ̇1φ̇2 −∇φ1∇φ2), 1

2
sin 2φ2(−∣φ̇1∣2 + ∣∇φ1∣2)⊺,
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where

Err11i =ν1∂j(Akp∫
1

0
(φ1∂1 + φ2∂2)2(dkdpdidj)(sφ1, sφ2)(1 − s)ds)

+ ν5∂j(Aki∫
1

0
(φ1∂1 + φ2∂2)2(djdk)(sφ1, sφ2)(1 − s)ds)

+ ν5∂j(Akj ∫
1

0
(φ1∂1 + φ2∂2)2(didk)(sφ1, sφ2)(1 − s)ds).

We refer the readers to the appendix for details.

Now it suffices to consider the system (1.10). For simplicity, we denote

φ(a) ∶= Zaφ.

We establish the following result:

Theorem 1.3. With the notation and hypothesis in Theorem 1.1, the initial data (u0, φj,0, φj,1) satisfies

(1.11) sup
∣a∣≤N1

{∥u(a)0 ∥HN(a) +
2

∑
j=1

(∥∇φ(a)j,0 ∥HN(a) + ∥φ(a)j,1 ∥HN(a))} ≤ ǫ0.
Then there exists a unique global solution (u,φ) of the system (1.10) with initial data

u(0) = u0, φj(0) = φj,0, ∂tφj(0) = φj,1, for j = 1,2,
satisfies the energy bounds

sup
0≤t≤T

sup
∣a∣≤N1

{∥u(a)(t)∥HN(a) + ∥∇u(a)∥L2([0,t]∶HN(a))} + sup
0≤t≤T

∥∇t,xφ(t)∥HN(0) ≲ ǫ0,

sup
0≤t≤T

sup
1≤∣a∣≤N1

∥∇t,xφ
(a)(t)∥HN(a) ≲ ǫ0(1 + T )δ̄.

for any T ∈ [0,∞), where δ̄ < 10−7 depends on ǫ0, N0,N1, ν1, ν4, and ν5.

1.3. Main ideas. The main strategy to prove global regularity relies on an interplay between the control of

high order energies and decay estimates, which is based on the method of space-time resonances developed

by Germain, Masmoudi and Shatah [8–10]. The main ingredients include decay estimates, energy and

weighted energy estimates and L2-bounds on the derivatives of profile Ψ̂ = F(e−it∣∇∣Φ) associated with

normalized solution Φ = ∂tφ + i∣∇∣φ. However, there are still some difficulties to get around.

In the proof of the Theorem 1.3, we need various decay estimates of u. However, for the decay of u,

the presence of linear operator L̃ coming from divσ brings the first difficulty. In order to get around the

difficulty, we introduce the vector v and diagonalize the u-equation, i.e

(1.12) v = Uu ∶= (u1,
−i∂2√
−∂2

2
−∂2

3

u2 + −i∂3√
−∂2

2
−∂2

3

u3,
−i∂3√
−∂2

2
−∂2

3

u2 + i∂2√
−∂2

2
−∂2

3

u3).
Then the system (1.10) can be further rewritten as

(1.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tv +Lv = UP(−Uv ⋅ ∇Uv −
3

∑
j=1

∂j(∇φ∂jφ) +∇⊗ (φ⊗∇u) +Err11 +Err12),
divv = 0,
∂2
t φ −∆φ = −∂tu ⋅ ∇φ − 2u ⋅ ∇∂tφ − u ⋅ ∇(u ⋅ ∇φ) +Err2
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where P is the Leray projection and L is the operator

(1.14) Lv ∶= ( − ν4 + ν5
2

∆v1 + ν1
∂2
1(∂2

2 + ∂2
3)

∣∇∣2 v1,−
ν4 + ν5

2
∆v2 + ν1

∂2
1(∂2

2 + ∂2
3)

∣∇∣2 v2, (−ν4
2
∆ − ν5

2
∂2
1)v3)

⊺
.

Thus we can obtain the linear decay estimates of e−tL, which will be used for the decay of v.

Remark 1.4. The coefficients condition (1.7) is used to ensure that the above v-equation is a parabolic

equation. Note that the system (1.10) is a quasilinear parabolic-hyperbolic system with dissipation and

dispersion effects. Moreover, it is the dissipation of v that ensures the boundedness of the higher order

energies of v which will be used for the higher order energy estimates of φ. In fact, the global existence of

the system (1.10) will be tremendously difficult without dissipation effect.

In the proof of the decay of v, the quadratic term ∇ ⊗ (φ ⊗ ∇u) coming from divσ brings the second

difficulty. In fact, due to the presence of the quadratic term, the argument for the decay of v is not closed

if we only use the decay of heat semi-group e−tL and bootstrap assumptions. Here, we have to exploit the

decay of φ in L∞ and ∇2u in L2.

In proving the energy and weighted energy estimates and L2-bounds on the derivatives of profile Ψ̂, the

quadratic term u ⋅ ∇∂tφ which comes from the second order material derivative term (∂t + u ⋅ ∇)2φ brings

the third difficulty. More precisely, since the decays of u and ∇φ are not good enough, we ultilize the

structure of the quadratic term to gain more decay. To get around the difficulty, we define the normalized

solution Φ and its associated profile by

Φ ∶= ∂tφ + i∣∇∣φ, Ψ ∶= e−it∣∇∣Φ.
We write Duhamel’s formula in Fourier space for the profile Ψ as follows:

Ψ̂(t, ξ) ≈ Φ̂0(ξ) + ∑
ν∈{+,−}

∫
t

0
∫
R3

e−is(∣ξ∣−ν∣η∣)û(ξ − η)iηΨ̂ν(η)dηds,

where Ψ+ = Ψ,Ψ− = Ψ̄. Then from the phase ∣ξ∣ − ν∣η∣ we know that the time resonant sets are

T+ = {(ξ, η) ∶ ∣ξ∣ − ∣η∣ = 0}, T− = {(ξ, η) ∶ ∣ξ∣ + ∣η∣ = 0} = {(0,0)},
and space resonant set is

S± = {(ξ, η) ∶ ∇η(∣ξ∣ ∓ ∣η∣) = 0} = ∅.
From this we obtain the space-time resonant set

R± = T± ∩S± = ∅.
Then, for weighted energy estimates, by φ-equation one needs to consider the space-time integrals

(1.15) ∫
t

0
∫
R6

e−is(∣ξ∣−ν∣η∣)m(ξ, η)Ψ̂(a)(ξ)û(b)(ξ − η)Ψ̂(c)ν (η)dξdηds,
Hence, by the above resonance analysis, for the contribution of high-low interaction, i.e ∣ξ∣ ≈ ∣ξ − η∣ ≫ ∣η∣
and high-high interaction, i.e ∣ξ∣ ≪ ∣ξ − η∣ ≈ ∣η∣, we may integrate by parts in time and then use the decay

of ∂su(b) and ∂sΨ(c) to control (1.15). For the contribution of low-high interaction, i.e ∣ξ∣ ≈ ∣η∣ > ∣ξ − η∣,
since the space resonant set S is null, we may use integration by parts in η and the decay of ∥∇u(b)∥L2

and Φ(c) to control the increment of (1.15)
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For the L2-bounds on the derivatives of Ψ̂(a), by bootstrap assumptions and the following observation

∥F−1(∣ξ∣∂ξΨ̂(a))∥HN ≲ ∥SΨ(a)∥HN + ∥ΩΨ(a)∥HN + ∥Ψ(a)∥HN + ∥t∂tΨ(a)∥HN ,

it suffices to prove

∥∂tΨ(a)∥HN ≲ ǫ0t−1+κ(a)δ .
Since the space-resonant set is empty, we may use integration by parts in η to gain the estimate.

1.4. Notations. The set of all Schwartz functions is called a Schwartz space and is denoted S(Rd). For

any k ∈ Z, let k+ ∶= max(k,0) and k− ∶= min(k,0). For any x ∈ R, denote ⟨x⟩ ∶= √1 + x2. For any two

numbers A and B and a absolute constant C, we denote

A ≲ B, B ≳ A, if A ≤ CB.

Here we will use the following multi-index

(1.16) n ∶= (α,β, γ) ∈ N3,and n0 ∈ {(1,0,0), (0,1,0), (0,0,1)}.
Denote

∣n∣ ∶= α + β + γ, ∂n ∶= ∂α
x1
∂β
x2
∂γ
x3
.

1.5. Outline. In section 2, we fix notations and state the main bootstrap proposition. We also state several

lemmas, such as dispersive linear bounds, Hardy-type estimate and weighted L∞ −L2 estimate. In section

3, we prove the linear decay estimate first, which is the key lemma to derive the decay estimate of ∂φ.

Then using the bootstrap assumptions to derive various decay estimates of v = Uu and ∂φ.

We then start the proof of the main bootstrap proposition in section 4 and 5, where we obtain improved

energy estimates (2.13) and the L2 bounds (2.14) on the derivation of Ψ̂.

2. PRELIMINARIES AND THE MAIN PROPOSITIONS

In this section, we start by summarizing our main definitions and notations.

2.1. Some analysis tools. The Fourier transform of f is defined as follows:

F(f)(ξ) ∶= f̂(ξ) = ∫
R3

e−ix⋅ξf(x)dx.
We use F−1(f) to denote the inverse Fourier transform of f . Fix an even smooth function ϕ ∶ R → [0,1]
supported in [−2,2] and equal to 1 in [−1,1]. For simplicity of notation, we also let ϕ ∶ R3

→ [0,1] denote

the corresponding radial function on R3. For any k ∈ Z, I ⊂ R, let

ϕk(x) ∶= ϕ(x/2k) − ϕ(x/2k−1), ϕI(x) ∶= ∑
m∈I∩Z

ϕm(x),
ϕ≤k(x) ∶=∑

l≤k

ϕl(x), ϕ>k(x) ∶=∑
l>k

ϕl(x).
The frequency projection operator Pk, PI , P≤k and P>k is defined by the Fourier multiplier ϕk(ξ), ϕI(ξ),
ϕ≤k(ξ) and ϕ>k(ξ), i.e.

P̂kf(ξ) = ϕk(ξ)f̂(ξ), P̂If(ξ) = ϕI(ξ)f̂(ξ),
P̂≤kf(ξ) = ϕ≤k(ξ)f̂(ξ) and P̂>kf(ξ) = ϕ>k(ξ)f̂(ξ).

Moreover, we have the following Bernstein inequality: For any k ∈ Z,

(2.1) ∥Pkf∥Lq ≲ 23k( 1p− 1

q
)∥Pkf∥Lp , 1 ≤ p ≤ q ≤∞.
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Let

J ∶= {(k, j) ∈ Z ×Z+ ∶ k + j ≥ 0}.
For any (k, j) ∈ J , let

ϕ̃
(k)
j (x) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ≤−k(x), if k + j = 0 and k ≤ 0,

ϕ≤0(x), if j = 0 and k ≥ 0,

ϕj(x), if k + j ≥ 1 and j ≥ 1,

then for any k ∈ Z fixed, ∑j≥max(−k,0) ϕ̃
(k)
j = 1. For any (k, j) ∈ J , we define the operator Qjk by

(Qjkf)(x) ∶= ϕ̃(k)j (x) ⋅Pkf(x),
and denote

fj,k(x) ∶= P[k−2,k+2]Qjkf(x).
Then Pkf for fix k ∈ Z can be decomposed as

(2.2) Pkf(x) = P[k−2,k+2]Pkf(x) = P[k−2,k+2] ∑
j≥max(−k,0)

ϕ̃
(k)
j (x)Pkf(x) = ∑

j≥max(−k,0)
fj,k(x).

Moreover, for any f ∈ L2(R3) and (k, j) ∈ J , let β ∶= 1/1000, we have

(2.3) ∥f̂j,k∥L∞ ≲ min{23j/2∥Qjkf∥L2 , 2j/2−k2β(j+k) ∑
∣α∣≤1
∥QjkΩ

αf∥L2},

see [13, Lemma 3.4.].

We state several decay estimates and dispersive estimates.

Lemma 2.1 (Decay estimates). (i) For any Schwartz function f ∈ S(R3), we have

∥e−tL∣∇∣lf∥ẆN,q ≲ t−
3

2
( 1
p
− 1

q
)− l

2 ∥f∥ẆN,p, 1 ≤ p ≤ q ≤∞.(2.4)

Proof. By (1.7), we obtain
ν4

2
∣ξ∣2 + ν5

2
ξ21 =

ν4 + ν5
2

ξ21 +
ν4

2
(ξ22 + ξ23),

and
ν4 + ν5

2
∣ξ∣2 + ν1 ξ21

∣ξ∣2(ξ
2
2 + ξ23) =ν4 + ν5

2
∣ξ∣2(1 + 2ν1

ν4 + ν5
( ξ21∣ξ∣2 −

ξ41
∣ξ∣4))

≥
ν4 + ν5

2
∣ξ∣2 ⋅min{1,1 + ν1

2(ν4 + ν5)}.
Then by the above two bounds, we apply a similar argument to decay estimates of heat operator to e−tH

and then obtain the bound (2.4).

�

We also need the following Hardy-type estimate involving localization in frequency and space.

Lemma 2.2 (Lemma 3.5, [13]). For f ∈ L2(R3) and k ∈ Z let

Fk(f) ∶= ∥Pkf∥L2 +
3

∑
l=1

∥ϕk(ξ)∂ξl f̂(ξ)∥L2 , Bk(f) ∶= [ ∑
j≥max(−k,0)

22j∥Qjkf∥2L2]1/2.
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Then, for any k ∈ Z,

Bk ≲
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
∣k′−k∣≤4

Fk′ , if k ≥ 0,

∑
k′∈Z

Fk′2
−∣k−k′∣/2min{1,2k′−k}, if k ≤ 0.

Lemma 2.3 (Lemma 2.2, [27]). If f ∶ R6
→ C and k1, k2 ∈ Z, then the following estimate holds:

∥∫
R6

f(ξ1, ξ2)ei(x1⋅ξ1+x2⋅ξ2)ϕk1(ξ1)ϕk2(ξ2)dξ1ξ2∥L1
x1,x2
≲

7

∑
m=0

2

∑
j=1

2mkj∥∂m
ξj
f∥L∞ .

To obtain the energy estimates, one often needs to analyze the symbols. Define a class of symbol as

follows

S∞ ∶= {m ∶ R6
→ C, m is continous and ∥F−1m∥L1 <∞},

whose associated norms are defined as

∥m∥S∞ ∶= ∥F−1m∥L1 ,

and

∥m∥S∞
k,k1,k2

∶= ∥m(ξ, η)ϕk(ξ)ϕk1(ξ − η)ϕk2(η)∥S∞.
Then we have

Lemma 2.4 (Bilinear estimate, [14]). Given m ∈ S∞ and two well-defined functions f1, f2, then the

following estimate holds:

∥F−1(∫
R3

m(ξ, η)f̂1(ξ − η)f̂2(η)dη)(x)∥Lr ≲ ∥m∥S∞∥fL1∥Lp∥f2∥Lq ,
1

r
=
1

p
+ 1
q
.

By standard Littlewood-Paley decomposition and Hölder, we can obtain the following Hardy-type in-

equality.

Lemma 2.5 (Hardy-type inequality). For any 1 < p < ∞ and two well-defined functions g1, g2, then the

following estimates holds:

∥g1g2∥ḢN ≲∑
k

2Nk+∥Pkg1∥L∞∥g2∥ḢN ,(2.5)

∥g1g2∥WN,p ≲ ∥g1∥WN,p∥g2∥L∞ + ∥g1∥L∞∥g2∥WN,p.(2.6)

Finally, we need to record the following weighted L∞ −L2 estimate

Lemma 2.6 (Lemma 3.3, [25]). Let f ∈H2(R3), r = ∣x∣, then there holds

(2.7) ∥⟨r⟩f∥L∞ ≲ ∑
∣α∣≤1
∥∂rΩ̃αf∥1/2

L2 ∑
∣α∣≤2
∥Ω̃αf∥1/2

L2 ,

provided the right hand side is finite.

Lemma 2.7. For any N ≥ 0 and Schwartz function f ∈ S(R3), we have

(2.8) ∥F−1(∣ξ∣∇ξf̂)∥HN ≲ ∥x ⋅ ∇xf∥HN + ∥Ωf∥HN + ∥f∥HN .

Proof. This bound is obtained by the relation

∣ξ∣∇ξ =
ξ

∣ξ∣(ξ ⋅ ∇ξ) − ξ

∣ξ∣ ∧Ω(ξ),
where Ω(ξ) = ξ ∧∇ξ. �
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2.2. The main bootstrap proposition. By standard argument, after applying vector fields Z to the system

(1.10) and make a change of unknown

v(a) ∶= Uu(a),
we can derive that

(2.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tv
(a) +Lv(a) +UPL1(u) = −UP ∑

b+c=a

Cb
a[u(b) ⋅ ∇u(c) + ∂j(∇(S − 1)b1Γb′φ ⋅ ∂j(S − 1)c1Γc′φ)]

−UP(S + 1)a1Γa′∂j(φ⊗∇u) + (S + 1)a1Γa′(Err11 +Err12)),
divu(a) =0,

∂2
t φ
(a) −∆φ(a) = − ∑

b+c=a

Cb
a(∂tu(b) ⋅ ∇φ(c) + 2u(b) ⋅ ∇∂tφ(c))

− ∑
b+c+e=a

Cb,c
a u(b) ⋅ ∇(u(c) ⋅ ∇φ(e)) + (S + 2)(a1)Γ(a′)Err2,

where L1(u) is the lower order terms from the commutation between S, Ω̃ and ∂,

L1(u) ∶= − ∑
0≤i≤a1−1

ν4

2
C i

a1
(−1)a1−i∆SiΓa′u − (L1,c1u

(c1),L2,c2u
(c2),L3,c3u

(c3))⊺,
and where Lj,cj for 1 ≤ j ≤ 3 are second order differential operator,

Cb
a ∶=

a!

b!(a − b)! , C
b,c
a ∶=

a!

b!c!(a − b − c)! .
To state the main proposition we review the normalized solution Φ and it’s profile Ψ, i.e for ∣a∣ ≤ N1

(2.10) Φ(a) ∶= (∂t + i∣∇∣)φ(a), Ψ(a) ∶= e−it∣∇∣Φ(a).
The function φ can be recovered from the normalized variable Φ by the formulas

φ = 1
2i
∣∇∣−1(Φ −Φ).

Our main result is the following proposition:

Proposition 2.8. Assume that (v,φ) is a solution to (1.13) on some time interval [0, T ], T ≥ 1 with initial

data satisfying the assumptions (1.11). Assume also that the solution satisfies the bootstrap hypothesis

sup
∣a∣≤N1,t∈[0,T ]

{∥v(a)∥HN(a) + ∥∇v(a)∥L2([0,t]∶HN(a)) + ⟨t⟩−κ(a)δ∥Φ(a)∥HN(a)} ≤ ǫ1,(2.11)

sup
∣a∣≤N1−1,t∈[0,T ]

⟨t⟩−κ(∣a∣+1)δ∥F−1(∣ξ∣∂ξΨ̂(a))∥HN(∣a∣+1) ≤ ǫ1,(2.12)

where ǫ1 = ǫ
2/3
0 , δ = 10−10,

κ(0) = 0; κ(a) = 1, for 1 ≤ ∣a∣ ≤ N1 − 2; κ(a) = 2, for N1 − 1 ≤ ∣a∣ ≤ N1.

N(a) = N0 − ∣a∣h, N0 = 60, h = 6.

Then the following improved bounds hold

sup
∣a∣≤N1,t∈[0,T ]

{∥v(a)∥HN(a) + ∥∇v(a)∥L2([0,t]∶HN(a)) + ⟨t⟩−κ(a)δ∥Φ(a)∥HN(a)} ≲ ǫ0,(2.13)

sup
∣a∣≤N1−1,t∈[0,T ]

⟨t⟩−κ(∣a∣+1)δ∥F−1(∣ξ∣∂ξΨ̂(a))∥HN(∣a∣+1) ≲ ǫ0.(2.14)
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The bounds (2.12) and (2.14) are our main L2 bounds on the derivatives of the profile Ψ(a) in the Fourier

space. They correspond to weighted bounds in the physical space which plays an important role in the

energy estimates.

From the assumption (2.12) and Lemma 2.2, we give the following useful bound.

Corollary 2.9. With the notation and hypothesis in Proposition 2.8, we have for any ∣a∣ ≤ N1 − 1,

(2.15) ( ∑
(k,j)∈J

22N(∣a∣+1)k
++2k22j∥QjkΨ

(a)∥2L2)
1/2
≲ ǫ1⟨t⟩κ(∣a∣+1)δ.

Proof. The corollary is an easy consequence of Lemma 2.2 and (2.12). Indeed, if k ≥ 0,

( ∑
(k,j)∈J ;j≥0,k≥0

22N(∣a∣+1)k
++2k22j∥QjkΨ

(a)∥2L2)1/2 ≲∥2N(∣a∣+1)k++k ∑
∣k′−k∣≤4

Fk′(Ψ(a))∥l2
k

≲∥Ψ(a)∥HN(∣a∣+1)+1 + ∥F−1(∣ξ∣∂ξΨ̂(a))∥HN(∣a∣+1)

≲ǫ1⟨t⟩κ(∣a∣+1)δ.
If k < 0, we have

( ∑
(k,j)∈J ;j≥−k,k<0

22N(∣a∣+1)k
++2k22j∥QjkΨ

(a)∥2L2)1/2

≲∥2k∑
k′
Fk′(Ψ(a))2−∣k−k′∣/2min(1,2k′−k)∥l2

k

≲∥∑
k′>k

2k
′

Fk′(Ψ(a))23(k−k′)/2 + ∑
k′≤k

2k
′

Fk′(Ψ(a))2(k′−k)/2∥l2
k

≲∥2kFk(Ψ(a))∥l2
k

≲ǫ1⟨t⟩κ(∣a∣+1)δ.
This completes the proof of the Corollary. �

Once Proposition 2.8 is proved, Theorem 1.3 follows directly from the standard continuity argument.

The rest of this paper focuses on the proof of Proposition 2.8. The key ingredients include Proposition

4.1 − 4.3 and Proposition 5.1.

3. DECAY OF VELOCITY FIELD AND ORIENTATION FIELD

In this section, we give the various decay estimates of v and Φ, which will be useful in the energy

estimates in the next sections.

3.1. Decay of Φ. In order for the decay estimates of Φ, the following frequency localized linear dispersive

estimate is necessary.

Lemma 3.1 (Frequency localized linear decay estimate). For any k ∈ Z and Schwartz function f ∈ S(R3),
we have

(3.1) ∥eit∣∇∣Pkf∥L∞ ≲ ∥P̂kf∥L∞(t−122k + t−1+δ22k+δk) + ∥∇ξP̂kf∥L2(t−123k/2 + t−1+δ23k/2+δk).
Proof. By the similar argument to Lemma 4.1 in [27], the bound (3.1) follows. �

Next, we use the dispersive estimates to give the decay of Φ.
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Lemma 3.2. With the notations and hypothesis in Proposition 2.8, for any k ∈ Z, ∣a∣ ≤ N1−2 and t ∈ [0, T ]
we have

∥PkΦ
(a)(t)∥L∞ ≲ ǫ1⟨t⟩−1+δ+κ(∣a∣+2)δ2k−/22−N(∣a∣+1)k++(h/2+2)k+ ,(3.2)

∥∣∇∣−1Φ(a)(t)∥L∞ ≲ ǫ1⟨t⟩−1/2+2δ.(3.3)

Proof. On one hand, by (2.3) and (2.15) when k > 0, we have

∥P̂kΨ(a)∥L∞ ≲ ∑
j≤hk+

23j/2∥QjkΨ
(a)∥L2 + ∑

j>hk+
2j/2−k+β(j+k) ∑

∣α∣≤1
∥QjkΩ̃

αΨ(a)∥L2

≲2hk+/2ǫ1⟨t⟩κ(∣a∣+2)δ2−N(∣a∣+1)k+−k + 2−hk+/2ǫ1⟨t⟩κ(∣a∣+2)δ2−N(∣a∣+2)k+−k
≲ǫ1⟨t⟩κ(∣a∣+2)δ2−N(∣a∣+1)k++hk+/2−k.

On the other hand, when k ≤ 0 we have

∥P̂kΨ(a)∥L∞ ≲ ∑
j≥−k

2j/2−k+β(j+k) ∑
∣α∣≤1
∥QjkΩ̃

αΨ(a)∥L2

≲ǫ1⟨t⟩κ(∣a∣+2)δ2−3k/2.
Meanwhile, by (2.12) and the definition of Pk, we also have

2k∥∇ξP̂kΨ(a)(ξ)∥L2 = ∥ ξ∣ξ∣ϕ
′
k(ξ)Ψ̂(a)(ξ)∥L2 + 2k∥ϕk(ξ)∇ξΨ̂(a)∥L2 ≲ ǫ1⟨t⟩κ(∣a∣+1)δ2−N(∣a∣+1)k+ .

Thus (3.2) follows from (3.1) and the above three bounds.

Next by (2.1), Hölder inequality, (2.11) and (3.2), we have for p ≥ 2

∥∣∇∣−1Φ(a)(t)∥L∞ ≲∑
k

23k/p−k∥PkΦ
(a)(t)∥Lp ≲∑

k

23k/p−k∥PkΦ
(a)(t)∥2/p

L2 ∥PkΦ
(a)(t)∥1−2/pL∞

≲ ǫ1t(−1+δ+κ(∣a∣+2)δ)(1−2/p)∑
k

2(2/p−1/2)k
−

2(1−2/p)(−N(∣a∣+2)+h/2+2)k
++k+/p.

Choosing p such that 2/p − 1/2 = δ/4, the bound (3.3) follows. �

As a consequence of Lemma 3.2, we have

Corollary 3.3. With the notations and hypothesis in Proposition 2.8, we have

(3.4) ∑
∣b∣+∣c∣≤∣a∣

∥∇φ(b)∇φ(c)∥HN(a) ≲ ǫ21⟨t⟩−1+4δ.

Proof. When ∣a∣ ≥ N1 − 1, by symmetry we may assume that ∣b∣ ≤ ∣c∣, then the bound (3.4) is obtained by

(2.5) and (3.2). When ∣a∣ ≤ N1 − 2, the bound (3.4) is obtained by (2.6) and (3.2). �

3.2. Decay of v. In order for the decay of ∇lv, l = 0,1,2, in a function space X , by v-equation in (1.13)

and Duhamel’s formula, it suffices to estimate

∥∇lv(t)∥X ≲ ∥e−tL∇lv0∥X + ∫
t

0
∥e−(t−s)L∇lf(s)∥Xds,

where f denotes the nonlinearities of v-equation in (1.13). Then we obtain the desired decay estimates by

the linear decay estimates (2.4) and the following bound

∫
t

0
∥e−(t−s)L∇lf(s)∥Xds ≲ ǫ21⟨t⟩−c + ǫ1 sup

s∈[t/2,t]
∥∇lv(s)∥X , for some c > 0,
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which is the main part in the proof of the decay of ∇lv.

Due to the presence of quadratic term ∇(φ∇u), we begin with the decay of ∇2v in L2 space.

Lemma 3.4. With the notations and hypothesis in Proposition 2.8, for any t ∈ [0, T ], ∣a∣ ≤ N1, we have

the decay estimate

∥∇2v(a)∥HN(∣a∣+1) ≲ ǫ1⟨t⟩−1/2+(3+∣a∣)δ .(3.5)

As a consequence, we have

∥∂tv(a)(t)∥HN(∣a∣+1) ≲ ǫ1⟨t⟩−1/2+(3+∣a∣)δ .(3.6)

Furthermore, we obtain the estimate

∥F−1(∣ξ∣∇ξû(a))∥HN(∣a∣+1) ≲ ǫ1⟨t⟩1/2+(3+∣a∣)δ , for ∣a∣ ≤ N1 − 1.(3.7)

Proof. Step 1: Prove the estimate (3.5). We prove the bound by induction. Assume that

(3.8) ∥∇2v(c)∥HN(∣c∣+1) ≲ ǫ1⟨t⟩−1/2+(3+∣c∣δ), for ∣c∣ < ∣a∣,
By Duhamel’s formula and (2.9), it suffices to prove

∥e−tL∇2v
(a)
0 ∥HN(∣a∣+1) ≲ ǫ0t−1,(3.9)

∫
t

0
∥e−(t−s)L∇4u(c)(s)∥HN(∣a∣+1)ds ≲ ǫ1⟨t⟩−1/2+(3+∣a∣)δ , for ∣c∣ < ∣a∣,(3.10)

∫
t

0
∥e−(t−s)L∇2f (a)(s)∥HN(∣a∣+1)ds ≲ ǫ21⟨t⟩−1/2+(3+∣a∣)δ + ǫ1 sup

s∈[t/2,t]
∥∇2v(a)(s)∥HN(∣a∣+1) .(3.11)

where the nonlinearities f (a) is

f (a) = ∇(φ(b)∇u(c)) + u(b) ⋅ ∇u(c) +∇(Φ(b)Φ(c)) +Za(Err11 +Err12).
In fact, once (3.9)-(3.11) hold, from Duhamel’s formula we have

sup
t∈[1,T ]

t1/2−(3+∣a∣)δ∥∇2v(a)(t)∥HN(∣a∣+1) ≲ ǫ21 + ǫ1 sup
t∈[1,T ]

t1/2−(3+∣a∣)δ∥∇2v(a)(t)∥HN(∣a∣+1) ,

which implies the bound (3.5).

Now we begin to prove the bounds (3.9)-(3.11). (3.9) is a consequence of (1.11) and (2.4). For the

second bound (3.10), using (2.4), (2.11) and (3.8) we have

∫
t

0
∥e−(t−s)L∇4u(c)(s)∥HN(∣a∣+1)ds

≲∫
t/2

0
(t − s)−2∥u(c)∥HN(∣a∣+1)ds +∫

t

t/2
⟨t − s⟩−1∥∇2u(c)∥HN(∣a∣+1)ds

≲ǫ1t−1 + ǫ1t−1/2+(3+∣c∣δ) log t ≲ ǫ1t−1/2+(3+∣a∣)δ .
For the last bound (3.11), the contributions of the error terms Za(Err11 + Err12) can be estimated as

same as the quadratic terms, then it suffices to estimate the following two cases

∫
t/2

0
∥e−(t−s)L∇2f̃ (a)(s)∥HN(∣a∣+1)ds + ∫

t

t/2
∥e−(t−s)L∇2f̃ (a)(s)∥HN(∣a∣+1)ds ∶= I + II,
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where f̃ (a) denotes the quadratic terms in f (a). For I we ultilize (2.4) to gain decay. Indeed, by (2.4) and

(2.11) we have

I ≲∫
t/2

0
(t − s)−3/2∥φ(b)∇u(c) + u(b)u(c)∥HN(∣a∣+1) + (t − s)−9/4∥Φ(b)Φ(c)∥WN(∣a∣+1),1ds

≲t−1/2(∥Φ(b)∥HN(∣a∣) + ∥u(b)∥HN(∣a∣))∥u(c)∥HN(∣a∣) + t−5/4∥Φ(b)∥HN(a)∥Φ(c)∥HN(a)

≲ǫ21t−1/2+2δ + ǫ21t−5/4+4δ ≲ ǫ21t−1/2+2δ.
For II we ultilize (3.2) to gain decay. By (2.4) we have

II ≲∫
t

t/2
⟨t − s⟩−3/2∥φ(b)∇u(c)∥HN(∣a∣+1)+3 + ⟨t − s⟩−3/8(t − s)−3/4∥u(b)u(c)∥HN(∣a∣+1)+3/4

+ ⟨t − s⟩−3/2∥Φ(b)Φ(c)∥HN(∣a∣+1)+3ds

≲ sup
s∈[t/2,t]

(∥Φ(b)(s)∥HN(∣a∣)∥∇u(c)(s)∥L∞ + ∥φ(b)(s)∥L∞∥u(c)(s)∥HN(∣a∣))
+ sup

s∈[t/2,t]
∥u(b)(s)∥H2∥∇2u(c)(s)∥HN(∣a∣+1) + ǫ21t−1+4δ.

We then use (2.11), (3.2) and (3.4) to bound this by

II ≲ǫ21tκ(b)−1/2+(3+∣c∣)δ + ǫ1∥∇2u(a)∥HN(∣a∣+1) + ǫ21t−1/2+2δ

≲ǫ21t−1/2+(3+∣a∣)δ + ǫ1 sup
s∈[t/2,t]

∥∇2u(a)(s)∥HN(∣a∣+1) .

This completes the proof of (3.5).

Step 2: Estimate (3.6). From v(a)-equation in (2.9) and (3.5) we have

(3.12)

∥∂tv(a)∥HN(∣a∣+1) ≲ǫ1⟨t⟩−1/2+(3+∣a∣)δ + ∑
∣b∣+∣c∣≤a

(∥∇(φ(b)∇u(c))∥HN(∣a∣+1) + ∥u(b) ⋅ ∇u(c)∥HN(∣a∣+1)

+ ∥∂j(∇φ(b)∂jφ(c))∥HN(∣a∣+1)) + ∥Err11(a)∥HN(∣a∣+1) + ∥Err12(a)∥HN(∣a∣+1) .

The estimate of ∂j(∇φ(b)∂jφ(c)) is obtained by (3.2) and (3.4), we then estimate other terms. By (3.5) it

follows that

∥∇(φ(b)∇u(c))∥HN(∣a∣+1) ≲∥∇φ(b)∥HN(∣a∣+1)∥∇2u(c)∥HN(∣a∣+1)

≲ǫ21t−1/2+κ(b)δ+(3+∣c∣)δ ≲ ǫ21t−1/2+(3+∣a∣)δ ,
and

∥u(b) ⋅ ∇u(c)∥HN(∣a∣+1) ≲ ∥u(b)∥HN(∣a∣+1)∥∇2u(c)∥HN(∣a∣+1) ≲ ǫ21t−1/2+(3+∣a∣)δ .
The error terms Err11 and Err12 can be estimated similarly. Hence, the bound (3.6) follows.

Finally, from (2.8) and (2.11), we have for any ∣a∣ ≤ N1 − 1
∥F−1(∣ξ∣∇ξû(a))∥HN(∣a∣+1) ≲∥Su(a)∥HN(∣a∣+1) + ∥Ωu(a)∥HN(∣a∣+1) + ∥u(a)∥HN(∣a∣+1) + ∥t∂tu(a)∥HN(∣a∣+1)

≲ǫ1 + ∥t∂tv(a)∥HN(∣a∣+1) .

Then by (3.6) we obtain the bound (3.7). This completes the proof of the Lemma.

�

Next, we prove the decay estimates of v.
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Lemma 3.5. With the notations and hypothesis in Proposition 2.8, for any t ∈ [0, T ], ∣a∣ ≤ N1 and p = 3
2δ

,

we have

∥v(a)∥WN(∣a∣+1),p ≲ ǫ1⟨t⟩−3/4+(1+∣a∣)δ ,(3.13)

Proof. Here it suffices to prove (3.13) for t > 1, otherwise this estimate is obtained by Sobolev embedding

and (2.11). We prove (3.13) by induction. Assume that

(3.14) ∥v(c)∥WN(∣c∣+1),p ≲ ǫ1⟨t⟩−3/4+(1+∣c∣)δ, for ∣c∣ < ∣a∣.
By (2.4) and Duhamel’s formula, it suffices to prove

∫
t

0
∥e−(t−s)L∆u(c)∥WN(∣a∣+1),pds ≲ ǫ21t−3/4+(1+∣a∣)δ , for ∣c∣ < ∣a∣,(3.15)

∫
t

0
∥e−(t−s)Lf̃ (a)(s)∥WN(∣a∣+1),pds ≲ ǫ1 sup

s∈[t/2,t]
∥v(a)(s)∥W 1,p + ǫ21t−3/4+(1+∣a∣)δ , .(3.16)

where f̃ (a) denotes the quadratic terms, i.e.

f̃ (a) = ∇(φ(b)∇u(c)) + u(b) ⋅ ∇u(c) +∇(Φ(b)Φ(c)), ∣b∣ + ∣c∣ ≤ ∣a∣.
For the first bound (3.15), it follows from (2.4), (2.11) and (3.14) that

∫
t

0
∥e−(t−s)H∆u(c)(s)∥WN(∣a∣+1),pds

≲∫
t/2

0
(t − s)−7/4+3/2p∥u(c)∥HN(∣a∣+1)ds + ∫

t

t/2
⟨t − s⟩−1∥u(c)∥WN(∣a∣+1)+2,pds

≲ǫ1t−3/4+3/2p + log t sup
s∈[t/2,t]

∥v(c)(s)∥WN(∣a∣+1)+2,p

≲ǫ1t−3/4+δ + ǫ1t−3/4+(2+∣c∣)δ ≲ ǫ1t−3/4+(1+∣a∣)δ .
To prove the second bound (3.16), we divide the left-hand side of (3.16) into

LHS(3.16) = ∫
t/2

0
∥e−(t−s)Lf̃ (a)(s)∥WN(∣a∣+1),pds +∫

t

t/2
∥e−(t−s)Lf̃ (a)(s)∥WN(∣a∣+1),pds ∶= I + II.

We ultilize (2.4) and (2.11) to bound I by

I ≲∫
t/2

0
(t − s)−5/4+3/2p∥φ(b)∇u(c) + u(b) ⋅ u(c)∥HN(∣a∣+1) + (t − s)−2+3/2p∥∇φ(b)∇φ(c))∥WN(∣a∣+1),1ds

≲t−5/4+3/2p ∫
t/2

0
(∥Φ(b)∥HN(∣a∣) + ∥u(b)∥HN(∣a∣))∥∇u(c)∥HN(∣a∣)ds + t−1+δ∥Φ(b)∥HN(a)∥Φ(c)∥HN(a)

≲ǫ21t−3/4+(1+∣a∣)δ + ǫ21t−1+4δ ≲ ǫ21t−3/4+(1+∣a∣)δ .
Next for the other term II , we consider the contributions of ∇(φ(b)∇u(c)), u(b) ⋅ ∇u(c) and ∇(Φ(b)Φ(c)),
respectively. Namely,

II =∫
t

t/2
∥e−(t−s)L∇(φ(b)∇u(c))∥WN(∣a∣+1),pds +∫

t

t/2
∥e−(t−s)Lu(b) ⋅ ∇u(c)∥WN(∣a∣+1),pds

+∫
t

t/2
∇(Φ(b)Φ(c))∥WN(∣a∣+1),pds ∶= II1 + II2 + II3.
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First, we estimate II1. If c = a, using (2.4), (2.6), (2.11), (3.3) and (3.5) it follows that

II11 ∶=∫
t

t/2
∥e−(t−s)L∇(φ(b)∇u(c))∥ẆN(∣a∣+1),pds

≲∫
t−1

t/2
(t − s)−3∥φ∇u(a)∥ẆN(∣a∣+1)−5,pds + ∫

t

t−1
(t − s)−3/4∥φ∇u(a)∥ẆN(∣a∣+1)−1/2,pds

≲ sup
s∈[t/2,t]

(∥Φ(s)∥HN(a)∥∇u(a)(s)∥Lp + ∥φ(s)∥L∞∥∇2u(a)(s)∥HN(∣a∣+1))
≲ǫ1 sup

s∈[t/2,t]
∥∇v(a)(s)∥Lp + ǫ21t−1+(5+∣a∣)δ.

And by integration by parts, (2.4), (2.11), (3.3) and (3.5), we get

II12 ∶=∫
t

t/2
∥e−(t−s)LP<0∇(φ(b)∇u(c))∥Lpds

≲∫
t

t/2
∥e−(t−s)LP<0[∇2(φu(a)) −∇(∇φu(a))]∥Lpds

≲∫
t

t/2
⟨t − s⟩−1∥φu(a)∥W 2,pds + ∫

t

t/2
⟨t − s⟩−5/4+3/2p∥∇φu(a)∥H1ds

≲ǫ1t−1/2+2δ log t sup
s∈[t/2,t]

∥u(a)(s)∥W 2,p + ǫ21t−1+2δ

≲ǫ1 sup
s∈[t/2,t]

∥v(a)(s)∥W 2,p + ǫ21t−1+2δ.

If ∣c∣ < ∣a∣, using (2.4), (3.2), (2.11) and (3.14), we have

II11 ≲∫
t

t/2
⟨t − s⟩−3∥φ(b)∇u(c)∥WN(∣a∣+1)+1,pds ≲ sup

s∈[t/2,t]
∥Φ(b)(s)∥HN(a)∥v(c)(s)∥WN(a),p

≲ǫ21tκ(b)δ−3/4+(1+∣c∣)δ ≲ ǫ21t−3/4+(1+∣a∣)δ ,
and

II12 ≲∫
t

t/2
∥e−(t−s)LP<0[∇2(φ(b)u(c)) −∇(∇φ(b)u(c))]∥Lpds

≲∫
t

t/2
⟨t − s⟩−1−3/2p∥φ(b)u(c)∥W 2,p/2ds + ∫

t

t/2
⟨t − s⟩−5/4+3/2p∥∇φ(b)u(c)∥H1ds

≲ǫ21tκ(b)δ−3/4+(1+∣c∣)δ ≲ ǫ21t−3/4+(1+∣a∣)δ .
These are acceptable for II1.

In order to estimate II2, by divu(b) = 0 and (2.4) we have

II2 ≲ ∫
t

t/2
⟨t − s⟩− 5

4
+

3

2p ∥u(b) ⋅ u(c)∥HN(∣a∣+1)+3ds ≲ sup
s∈[t/2,t]

∥u(b)u(c)∥HN(∣a∣+1)+3 .

If ∣a∣ = 0, by (2.11) we have

sup
s∈[t/2,t]

∥u2∥HN(∣a∣+1)+3 ≲ sup
s∈[t/2,t]

∥u∥HN(0)∥u∥L∞ ≲ ǫ1 sup
s∈[t/2,t]

∥v∥W 1,p.

If ∣a∣ > 0, by symmetry we may assume that ∣c∣ < ∣a∣, then from (2.11) and (3.14) we obtain

sup
s∈[t/2,t]

∥u(b)u(c)∥HN(∣a∣+1)+3 ≲ sup
s∈[t/2,t]

∥u(b)∥HN(a)∥u(c)∥WN(∣c∣+1),p ≲ ǫ21t−3/4+(1+∣c∣)δ.
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Thus the contribution of II2 is acceptable.

Finally, for the term II3, by (2.4), (2.11) and (3.4) we obtain

II3 ≲∫
t

t/2
⟨t − s⟩−5/4+3/2p∥Φ(b)Φ(c)∥HN(∣a∣)ds ≲ ǫ21⟨t⟩−1+4δ.

This concludes the bound (3.16), and hence completes the proof of the lemma. �

Base on the linear decay estimates (2.4), we prove the following decay estimates of ∇lv for l = 1,2.

Lemma 3.6. With the notations and hypothesis in Proposition 2.8. For any t ∈ [0, T ], l = 1,2 and p = 3
2δ

.

If ∣a∣ ≤ N1 − 2, we have

(3.17) ∥∇lv(a)∥WN(∣a∣+2)−l,p ≲ ǫ1⟨t⟩−5/4+(4+∣a∣)δ .
If ∣a∣ = N1 − 1 or N1, we have

∥∇lv(a)∥WN(∣a∣+2)−l,p ≲ ǫ1⟨t⟩−1+(6+∣a∣)δ.(3.18)

Proof. Step 1: Proof of (3.17). We prove the bound (3.17) by induction. Assume that

(3.19) ∥∇lv(c)∥WN(∣a∣+2)−l,p ≲ ǫ1⟨t⟩−5/4+(4+∣c∣)δ, for ∣c∣ < ∣a∣.
Then by (2.4) and Duhamel’s formula, it suffices to prove that

∥∫
t

0
e−(t−s)L∇l+2u(c)∥WN(∣a∣+2)−l,p ≲ ǫ21t−5/4+(4+∣a∣)δ , for ∣c∣ < ∣a∣,(3.20)

∥∫
t

0
e−(t−s)L∇l+1(φ(b)∇u(c))∥WN(∣a∣+2)−l,p ≲ ǫ21⟨t⟩−5/4+(4+∣c∣)δ,(3.21)

∥∫
t

0
e−(t−s)L∇l(u(b) ⋅ ∇u(c))∥WN(∣a∣+2)−l,p ≲ ǫ21⟨t⟩−5/4+δ,(3.22)

and

∥∫
t

0
e−(t−s)L∇l+1(∇φ(b)∇φ(c))ds∥WN(∣a∣+2)−l,p ≲ ǫ21t−5/4, for ∣a∣ ≤ N1 − 2.(3.23)

Next, we prove the above four bounds respectively. From (2.4), (2.11) and the assumption (3.19) we

have

LHS(3.20) ≲∫
t/2

0
(t − s)−3/4+3/2p−l/2−1∥u(c)∥HN(∣a∣+2)ds + ∫

t

t/2
⟨t − s⟩−1∥∇lu(c)∥WN(∣a∣+2)+1,pds

≲ǫ1t−3/4−l/2+3/2p + ǫ1t−5/4+(4+∣c∣)δ log t ≲ ǫ1t−5/4+(4+∣a∣)δ .
This implies the bound (3.20).

For the bound (3.21) with ∣b∣ + ∣c∣ ≤ N1 − 2. Using (2.4) and (2.11), we have

(3.24)

∫
t/2

0
∥e−(t−s)L∇l+1(φ(b)∇u(c))∥WN(∣a∣+2)−l,pds

≲∫
t/2

0
(t − s)−5/4+3/2p−l/2∥φ(b)∇u(c)∥HN(∣a∣+2)ds

≲t−5/4+3/2p−l/2 ∫
t/2

0
∥φ(b)∥L∞∥∇u(c)∥HN(∣a∣+2) + ∥φ(b)∥ḢN(∣a∣+2)∥∇u(c)∥L∞ds

≲t−5/4+3/2p−l/2 ∫
t/2

0
∥Φ(b)∥HN(∣a∣+2)∥∇u(c)∥HN(∣a∣+2)ds ≲ t−5/4+3/2p+2δ .
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By (2.4), (2.6), (3.2) and (3.13), we have

∫
t

t/2
∥e−(t−s)L∇l+1(φ(b)∇u(c))∥WN(∣a∣+2)−l,pds

≲∫
t

t/2
⟨t − s⟩ l+12 ∥φ(b)∇u(c)∥WN(∣a∣+2)+1,pds

≲ log t sup
s∈[t/2,t]

(∥φ(b)∥L∞∥u(c)∥WN(∣a∣+1),p + ∥∇φ(b)∥ẆN(∣a∣+2),p∥∇u(c)∥L∞)
≲tδ(ǫ21⟨t⟩−1/2+2δ−3/4+(1+∣c∣)δ + ǫ21⟨t⟩−1+4δ−3/4+(1+∣c∣)δ) ≲ ǫ21⟨t⟩−5/4+(3+∣c∣)δ.

Hence, the bound (3.21) follows.

Next, for the bound (3.22) with ∣b∣ + ∣c∣ ≤ N1. using (2.4), (2.11) and (3.13), we have

∫
t

0
∥e−(t−s)L∇l(u(b) ⋅ ∇u(c))∥WN(∣a∣+2)−l,pds

≲∫
t/2

0
(t − s)−3/4+3/2p−l/2∥u(b) ⋅ ∇u(c)∥HN(∣a∣+2)ds + ∫

t

t/2
⟨t − s⟩ l+12 ∥u(b)u(c)∥WN(∣a∣+2)+1,pds

≲⟨t⟩−5/4+δ ∫
t/2

0
∥∇u(b)∥HN(a)∥∇u(c)∥HN(a)ds + log t sup

s∈[t/2,t]
∥u(b)(s)∥WN(∣a∣+1),p∥u(c)(s)∥WN(∣a∣+1),p

≲ǫ21t−5/4+δ + ǫ21⟨t⟩−3/2+(3+∣a∣)δ ≲ ǫ21t−5/4+δ,
Finally, for the bound (3.23) with ∣b∣ + ∣c∣ ≤ N1 − 2. By (2.4), (2.11) and (3.2) we have

∫
t

0
∥e−(t−s)L∇l+1(∇φ(b)∇φ(c))∥WN(∣a∣+2)−l,pds

≲∫
t/2

0
(t − s)− 3

2
+ 3

2p
− l+1

2 ∥Φ(b)Φ(c)∥WN(∣a∣+2),1ds + ∫
t−1

t/2
⟨t − s⟩−(l+1)/2∥Φ(b)Φ(c)∥WN(∣a∣+2)−l,pds

+ ∫
t

t−1
(t − s)−1/2∥Φ(b)Φ(c)∥WN(∣a∣+2),pds

≲ǫ21t−5/4 + ǫ21t−2+8δ log t ≲ ǫ21t−5/4.

Hence, the bound (3.23) follows. This completes the proof of (3.17).

Step 2: Proof of (3.18). We prove (3.18) by induction. From (3.17) we may assume that

(3.25) ∥∇lv(c)∥WN(∣c∣+2)−l.p ≲ ǫ1⟨t⟩−1+(6+∣c∣)δ, for ∣c∣ < ∣a∣.
By the assumption and (2.4), we have the bounds (3.22) and

∥∫
t

0
e−(t−s)L∇l+2u(c)∥WN(∣a∣+2)−l,p ≲ ǫ21t−1+(6+∣a∣)δ, for ∣c∣ < ∣a∣ ≤ N1.

Then by Duhamel’s formula, it suffices to prove that for any ∣b∣ + ∣c∣ ≤ ∣a∣

∫
t

0
∥e−(t−s)L∇l+1(φ(b)∇u(c))∥WN(∣a∣+2)−l,pds ≲ ǫ21⟨t⟩−1+(6+∣a∣)δ,(3.26)

∥∫
t

0
e−(t−s)L∇l+1(∇φ(b)∇φ(c))ds∥WN(∣a∣+2)−l,p ≲ ǫ21t−1+4δ, for N1 − 1 ≤ ∣a∣ ≤ N1,(3.27)
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For the first bound (3.26), if ∣c∣ < ∣a∣, using (2.4) and (3.25) we have

∫
t

t/2
∥e−(t−s)L∇l+1(φ(b)∇u(c))∥WN(∣a∣+2)−l,pds

≲∫
t

t/2
⟨t − s⟩−(l+1)/2−3/2p∥φ(b)∇u(c)∥WN(∣a∣+2)+4,p/2ds

≲ sup
s∈[t/2,t]

∥Φ(b)(s)∥HN(∣a∣+1)∥∇lu(c)(s)∥WN(∣a∣+1),p ≲ ǫ21tκ(b)δ−1+(6+∣c∣)δ ≲ ǫ21t−1+(6+∣a∣)δ;

If c = a, we have to use the bounds (2.5), (3.5) and (3.3),

∫
t

t/2
∥e−(t−s)L∇l+1(φ(b)∇u(c))∥WN(∣a∣+2)−l,pds

≲∫
t

t/2
⟨t − s⟩−(l+1)/2∥φ∇u(a)∥WN(∣a∣+2)+1,pds

≲ log t sup
s∈[t/2,t]

(∑
k≥0

2N(∣a∣+2)k∥PkΦ(s)∥p + ∥φ(s)∥∞)∥∇2u(a)(s)∥HN(∣a∣+1)

≲tδ(ǫ1t−1+4δ + ǫ1t−1/2+2δ)ǫ1t−1/2+(3+∣a∣)δ ≲ ǫ21t−1+(6+∣a∣)δ.
which, together with (3.24), gives the bound (3.26).

For the second bound (3.27) with ∣a∣ = N1 − 1 or N1, from (2.4), (2.5), (2.11) and (3.4) we have

∫
t

0
∥e−(t−s)L∇l∂j(∇φ(b)∂jφ(c))∥WN(∣a∣+2)−l,pds

≲∫
t/2

0
(t − s)− 3

2
+ 3

2p
− l+1

2 ∥Φ(b)Φ(c)∥WN(∣a∣+2),1ds + ∫
t

t/2
⟨t − s⟩−3/4+3/2p−(l+1)/2∥Φ(b)Φ(c)∥HN(∣a∣+1)ds

≲ǫ21t−1 + ǫ21t−1+κ(∣b∣+2)δ+δ+κ(c)δ ≲ ǫ21t−1+4δ.

This concludes the bound (3.18).

�

As a consequence of (3.17) and (3.18), we obtain the following estimates.

Lemma 3.7. With the notations and hypothesis in Proposition 2.8. For any t ∈ [0, T ] and p = 3
2δ

, we have

∥∂tv(a)∥WN(∣a∣+2)−2,p ≲ ǫ1⟨t⟩−5/4+(4+∣a∣)δ , if ∣a∣ ≤ N1 − 2,(3.28)

∥∂tv(a)∥WN(∣a∣+2)−2,p ≲ ǫ1⟨t⟩−1+(6+∣a∣)δ , if N1 − 1 ≤ ∣a∣ ≤ N1.(3.29)

Finally, we prove the following Hn-norm estimates.

Lemma 3.8. With the notations and hypothesis in Proposition 2.8. For any t ∈ [0, T ], ∣a∣ ≤ N1, we have

∥∂tv(a)∥Hn ≲ ⟨t⟩2δ ∑
∣c∣≤∣a∣
∥∇u(c)∥Hn+1 + ǫ21⟨t⟩−1+5δ, for n ≤ N(∣a∣) − 1,(3.30)

∥∂tΨ(a)∥Hn + ∥∇2φ(a)∥Hn ≲ ǫ1⟨t⟩4δ(1 + ∑
∣c∣≤∣a∣
∥∇u(c)∥Hn+1), for n = N(∣a∣) − 1,N(∣a∣),(3.31)

∥∂tΨ(a)∥HN(∣a∣)−3 ≲ ǫ21⟨t⟩−3/4+(∣a∣+1)δ .(3.32)
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Proof. First, we prove (3.30). In fact, we have from u(a)-equation in (2.9) that

∥∂tv(a)∥Hn ≲ ∑
∣c∣≤∣a∣
∥∇u(c)∥Hn+1 + ∑

∣b∣+∣c∣≤∣a∣
[∥u(b) ⋅ ∇u(c)∥Hn + ∥∂j(φ(b)∇u(c))∥Hn

+ ∥∂j(∇φ(b)∂jφ(c))∥Hn] + ∑
∣c∣≤∣a∣
∥PZc(Err11 +Err12)∥Hn .

Moreover, from (2.11) it follows that

(3.33) ∥u(b) ⋅ ∇u(c)∥Hn ≲ ∥u(b)∥Hn∥∇u(c)∥Hn ≲ ǫ1∥∇u(c)∥Hn ,

and

∥∇(φ(b)∇u(c))∥Hn ≲∥∇(φ(b)∇u(c))∥L2 + ∥∂j(φ(b)∇u(c))∥Ḣn

≲∥∇φ(b)∥H2∥∇u(c)∥H1 + ∥φ(b)∥Ḣn+1∥∇u(c)∥L∞ + ∥φ(b)∥L∞∥∇u(c)∥Ḣn+1

≲∥Φ(b)∥Hn∥∇u(c)∥Hn+1

≲ǫ1t2δ∥∇u(c)∥Hn+1 .

The term ∥ZaErr11∥Hn can be estimated similarly. Finally, ∥P∂j(∇φ(b)∂jφ(c))∥Hn has beed estimated

in (3.4), and the term ∥ZaErr12∥Hn can be estimated using similar argument. Hence, the bound (3.30)

follows.

Second, we prove (3.31) and (3.32). The bound (3.31) can be obtained directly from (3.30), (2.9) and

(2.11). Then we prove the bound (3.32). In view of (2.9), it suffices to prove that

(3.34)

∑
b+c=a

(∥∂tu(b) ⋅ ∇φ(c)∥HN(a)−3 + ∥u(b) ⋅ ∇∂tφ(c)∥HN(a)−3)
+ ∑

b+c+e=a

∥u(b) ⋅ ∇(u(c) ⋅ ∇φ(e))∥HN(a)−3 + ∥ZaErr2∥HN(a)−3 ≲ ǫ21⟨t⟩−3/4+(∣a∣+1)δ .
Here we only estimate the first term ∂tu(b) ⋅ ∇φ(c) in detail, the other terms in (3.34) are similar.

Case 1: ∣a∣ ≥ N1 − 1.

If ∣b∣ ≤ ∣c∣, using (3.28) and (2.11), it follows that

(3.35)

∥∂tu(b) ⋅ ∇φ(c)∥HN(a)−3 ≲(∑
k≥0

2(N(a)−3)k
+∥∂tPku

(b)∥L∞ + ∥∂tu(b)∥L∞)∥Φ(c)∥HN(a)−3

≲ǫ1⟨t⟩κ(c)δ∥∂tu(b)∥WN(∣b∣+2)−2,p

≲ǫ1⟨t⟩2δ∥∂tv(b)∥WN(∣b∣+2)−2,p

≲ǫ21⟨t⟩−1.
If ∣b∣ > ∣c∣, it follows from (3.2) and (3.30) that

(3.36) ∥∂tu(b) ⋅ ∇φ(c)∥HN(a)−3 ≲ ∥∂tu(b)∥HN(a)−3∑
k

2(N(a)−3)k
+∥Φ(c)∥L∞ ≲ ǫ21⟨t⟩−1+5δ.

Case 2: ∣a∣ ≤ N1 − 2.

Using (3.29), (3.2), (3.30) and (2.11), we get

(3.37) ∥∂tu(b) ⋅ ∇φ(c)∥HN(a)−3 ≲ ∥∂tu(b)∥HN(a)−3∥Φ(c)∥L∞ + ∥∂tu(b)∥L∞∥Φ(c)∥HN(a)−3 ≲ ǫ21⟨t⟩−1+5δ.
From the above two cases, the bound (3.34) for the first term follows. This completes the proof of the

Lemma.

�
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4. ENERGY ESTIMATES

In this section we prove the energy bounds (2.13).

4.1. The bound on v and Φ. We start with the Sobolev bound in (2.13).

Proposition 4.1. With the notation and hypothesis in Proposition 2.8, for any t ∈ [0, T ], we have

∥v∥2
HN(0) + ∫

t

0
∥∇v∥2

HN(0)ds + ∥Φ∥2HN(0) ≲ ǫ20.

Proof. From (1.7) and (1.14), the operator L1/2 can be defined as

L1/2 ∶= diag{[ν4 + ν5
2
∣∇∣2 + ν1∂

2
1(∂2

2 + ∂2
3)

∣∇∣2 ]
1

2

, [ν4 + ν5
2
∣∇∣2 + ν1∂

2
1(∂2

2 + ∂2
3)

∣∇∣2 ]
1

2

,(ν4
2
∣∇∣2 − ν5∂

2
1

2
)

1

2}.
Then we define the energy functional

E0(t) = ∑
∣n∣∈{0,N(0)}

(1
2
∥∂nv∥2L2 + ∫

t

0
∥∂nL1/2v∥2L2ds +

1

2
∥∂nΦ∥2L2).

Recall the system (1.10), we have

(4.1)

d

dt
E0(t) = ∑

∣n∣∈{0,N(0)}
∫
R3

∂nv ⋅ ∂n
UP(−u ⋅ ∇u − ∂j(∇φ∂jφ + φ∇u) +Err11 +Err12)dx

− ∑
∣n∣∈{0,N(0)}

∫
R3

∂n∂tφ ⋅ ∂n(∂tu ⋅ ∇φ + 2u ⋅ ∇∂tφ + u ⋅ ∇(u ⋅ ∇φ) +Err2)dx.

Next, we begin to estimate the right-hand side of (4.1) and finish the proof of the proposition.

Step 1: We prove the bound

(4.2) I1 ∶= ∫
t

0
∫
R3

∂nv ⋅ ∂n
UP(u ⋅ ∇u +∇(∇φ∇φ + φ∇u) +Err11 +Err12)dxds ≲ ǫ31.

Using integration by parts, Sobolev embedding, (2.11) and (3.2), it follows that

I1 =∫
t

0
∫
R3

∂nv ⋅ ∂n
UP(u ⋅ ∇u) − ∂j∂nv ⋅ ∂n

UP(∇φ∂jφ + φ∇u + ∂−1j (Err11 +Err12))dxds
≲∫

t

0
∥v∥Hn∥∇u∥2Hn + ∥∇v∥Hn∥Φ∥Hn(∥Φ∥L∞ + ∥∇u∥Hn)ds

≲ǫ1∥∇u∥2L2([0,t]∶Hn) + ǫ1∫
t

0
∥∇u∥Hnǫ1⟨s⟩−1+2δds ≲ ǫ31.

Step 2: We prove the bound

(4.3) I2 ∶= ∫
t

0
∫
R3

∂n∂sφ ⋅ ∂n(∂su ⋅ ∇φ + 2u ⋅ ∇∂sφ)dxds ≲ ǫ31.
Integration by parts in time gives

I2 = ∫
R3

∂n∂sφ ⋅ ∂n(u ⋅ ∇φ)dx∣t
0
+∫

t

0
∫
R3

∂n∂sφ ⋅ ∂n(u ⋅ ∇∂sφ)dxds − ∫
t

0
∫
R3

∂n∂2
sφ ⋅ ∂n(u ⋅ ∇φ)dxds.
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By (3.2), (3.17) and divu = 0, the first two terms can be estimated by

∫
R3

∂n∂sφ ⋅ ∂n(u ⋅ ∇φ)dx∣t
0
+ ∫

t

0
∫
R3

∂n∂sφ ⋅ ∂n(u ⋅ ∇∂sφ)dxds
≲∥Φ∥2Hn∥u∥Hn + ∫

t

0
∫
R3

∂n∂sφ ⋅ ∑
n1+n2=n,n2<n

(∂n1u ⋅ ∇∂n2∂sφ)dxds

≲ǫ31 + ∫
t

0
∥Φ∥Hn(∥⟨∇⟩∣n∣/2∇u∥L∞∥Φ∥Hn + ∥∇u∥Hn∥⟨∇⟩∣n∣/2Φ∥L∞)ds

≲ǫ31 + ǫ1∫
t

0
(ǫ21⟨s⟩−5/4+4δ + ∥∇u∥Hn⟨s⟩−1+2δ)ds

≲ǫ31.

For the third term, it follows from (1.10) that

∫
t

0
∫
R3

∂n∂2
sφ ⋅ ∂n(u ⋅ ∇φ)dxds

=∫
t

0
∫
R3

∂n∆φ ⋅ ∂n(u ⋅ ∇φ)dxds − ∫
t

0
∫
R3

∂n∂s(u ⋅ ∇φ) ⋅ ∂n(u ⋅ ∇φ)dxds
− ∫

t

0
∫
R3

∂n(u ⋅ ∇∂sφ) ⋅ ∂n(u ⋅ ∇φ)dxds − ∫
t

0
∫
R3

∂n(u ⋅ ∇(u ⋅ ∇φ)) ⋅ ∂n(u ⋅ ∇φ)dxds
+ ∫

t

0
∫
R3

∂nErr2 ⋅ ∂n(u ⋅ ∇φ)dxds
=I21 + I22 + I23 + I24 + I25.

By integration by parts in x, (2.11), (3.17) and (3.2), we have

I21 =∫
t

0
∫
R3

−∂n∂iφ ⋅ ∂n(u ⋅ ∇∂iφ + ∂iu ⋅ ∇φ)dxds
=∫

t

0
∫
R3

− ∑
n1+n2=n,n2<n

∂n∂iφ ⋅ (∂n1u ⋅ ∇∂n2∂iφ) − ∂n∂iφ ⋅ ∂n(∂iu ⋅ ∇φ)dxds

≲∫
t

0
∥∂n∂iφ∥L2(∥⟨∇⟩∣n∣/2∇u∥L∞∥Φ∥Hn + ∥∇u∥Hn∥⟨∇⟩∣n∣/2Φ∥L∞)ds

≲ǫ31.

Similarly, using divu = 0, (2.11), (3.17) and (3.2) it’s also easy to obtain

I22 + I24 = −
1

2
∥∂n(u ⋅ ∇φ)∥2L2 ∣

t

0
− ∫

t

0
∫
R3
∑
n2<n

∂n1u ⋅ ∇∂n2(u ⋅ ∇φ) ⋅ ∂n(u ⋅ ∇φ)dxds

≲ sup
s∈[0,t]
∥u(s)∥2Hn∥Φ(s)∥2Hn + ∫

t

0
∥u∥Hn∥∇u∥2Hn∥Φ∥2Hnds ≲ ǫ41.

and

I25 ≲ ∫
t

0
∥Φ∥3Hn(1 + ∥u∥2Hn)(∥⟨∇⟩∣n∣/2∇u∥L∞∥Φ∥Hn + ∥∇u∥Hn∥⟨∇⟩∣n∣/2Φ∥L∞)ds ≲ ǫ51.
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Finally, by integration by parts, (2.11) and (3.28) we have

I23 = − ∫
t

0
∫
R3

∂n(u ⋅ ∇∂sφ) ⋅ (u ⋅ ∇∂nφ) + ∑
n2<n

∂n(u ⋅ ∇∂sφ) ⋅ (∂n1u ⋅ ∇∂n2φ)dxds

= − ∫
t

0
∫
R3

1

2
∂s(u ⋅ ∇∂nφ)2 − (∂su ⋅ ∇∂nφ) ⋅ (u ⋅ ∇∂nφ) + ∑

n1+n2=n,n2<n

(∂n1u ⋅ ∇∂n2∂sφ) ⋅ (u ⋅ ∇∂nφ)
− ∑

n1+n2=n,n2<n

∂n−1(u ⋅ ∇∂sφ) ⋅ ∂(∂n1u ⋅ ∇∂n2φ)dxds

≲ sup
s∈[0,t]
∥u(s)∥2

H ∣n∣
∥Φ(s)∥2

H ∣n∣
+ ∫

t

0
(∥∂su∥L∞∥∇u∥H ∣n∣∥Φ∥2H ∣n∣ + ∥∇u∥2H ∣n∣∥Φ∥2H ∣n∣)ds

≲ǫ41.
Hence, the desired bound (4.3) follows.

Step 3: We prove the bound

(4.4) I4 ∶= ∫
t

0
∫
R3

∂n∂sφ ⋅ ∂n(u ⋅ ∇(u ⋅ ∇φ))dxds ≲ ǫ41.
By integration by parts, we have

I4 =∫
t

0
∫
R3

∂n∂sφ ⋅ (u ⋅ ∇(u ⋅ ∇∂nφ)) + ∑
n1+n2+n3=n,n3<n

∂n∂sφ ⋅ (∂n1u ⋅ ∇(∂n2u ⋅ ∇∂n3φ))dxds
=∶I41 + I42.

The term I42 can be estimated directly using (2.11). From divu = 0, I41 can be further rewritten as

I41 = − ∫
t

0
∫
R3

(u ⋅ ∇∂n∂sφ) ⋅ (u ⋅ ∇∂nφ)dxds
= − ∫

t

0
∫
R3

1

2
∂s(u ⋅ ∇∂nφ)2 − (∂su ⋅ ∇∂nφ) ⋅ (u ⋅ ∇∂nφ)dxds.

From this and (3.28) we obtain

I41 ≲ sup
s∈[0,t]
∥u(s)∥2

H ∣n∣
∥Φ(s)∥2

H ∣n∣
+ ∫

t

0
∥∂su∥L∞∥∇u∥H ∣n∣∥Φ∥2H ∣n∣ds ≲ ǫ41.

The bound (4.4) is obtained.

Step 4: We prove the bound

(4.5) I5 ∶= ∫
t

0
∫
R3

∂n∂sφ ⋅ ∂nErr2(s)dxds ≲ ǫ41.
In fact, this is a consequence of

∥∂nErr2(s)∥L2 ≲ ∥Φ∥H ∣n∣∥Φ∥L∞∥∣∇∣−1Φ∥L∞ ≲ ǫ31⟨s⟩−5/4,
which is given by (3.3).

From (4.2)-(4.5) and the assumption (1.11), we have

E0(t) = E0(0) +∫
t

0
∂sE

0(s)ds ≲ ǫ20 + ǫ31 ≲ ǫ20,
which completes the proof of the Proposition.

�
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4.2. The bound on v(a) and Φ(a).

4.2.1. The bound on v(a).

Proposition 4.2. With the notations and hypothesis in Proposition 2.8, for any t ∈ [0, T ], 1 ≤ ∣a∣ ≤ N1,

(4.6) ∥v(a)∥2
HN(a) +∫

t

0
∥∇v(a)∥2

HN(a)ds ≲ ǫ20.

Proof. We prove the bound (4.6) by induction. From Proposition 4.1, we assume that

(4.7) ∥v(c)∥2
HN(∣c∣) + ∫

t

0
∥∇v(c)∥2

HN(∣c∣)ds ≲ ǫ20, for ∣c∣ < ∣a∣.
Define the energy functional

Ea
v (t) ∶= ∑

∣n∣∈{0,N(a)}
(1
2
∥∂nv(a)∥2

L2 +∫
t

0
∥∂nL1/2v(a)∥2

L2ds).
It follows from (2.9) that

d

dt
Ea

v(t) = − ∑
∣n∣∈{0,N(a)}

∫
R3

∂nv(a) ⋅ ∂n
UPL1(u)dx

− ∑
∣n∣∈{0,N(a)}

∑
b+c=a

Cb
a∫

R3

∂nv(a) ⋅ ∂n
UP(u(b) ⋅ ∇u(c))dx

+ ∑
∣n∣∈{0,N(a)}

∫
R3

∂nv(a) ⋅ ∂n
UP(S + 1)a1Γa′(∇(φ∇u) −Err11)dx

− ∑
∣n∣∈{0,N(a)}

∑
b+c=a

Cb
a∫

R3

∂nv(a) ⋅ ∂n
UP∂j(∇(S − 1)b1Γb′φ ⋅ ∂j(S − 1)c1Γc′φ)dx

+ ∑
∣n∣∈{0,N(a)}

∫
R3

∂nv(a) ⋅ ∂n
UP(S + 1)a1Γa′Err12dx

=Ia1 + Ia2 + Ia3 + Ia4 + Ia5 .
For Ia1 , by integration by parts, Hölder and (4.7), we have

∫
t

0
Ia1 (s)ds = ∑

∣n∣∈{0,N(a)}
∫

t

0
∫
R3

∂n+1v(a) ⋅ ∂n−1
UPL1(u)dxds

≤ ∑
∣n∣∈{0,N(a)}

1

2
∫

t

0
(∥∂n∇v(a)∥2L2 +C

∣a∣−1
∑
l=0

∥∂n∇u(l)∥2L2)ds

≤
1

2
∑

∣n∣∈{0,N(a)}
∫

t

0
∥∂n∇v(a)∥2L2ds +Cǫ20.

For Ia2 , from (2.11) and Hölder inequality we have

∫
t

0
Ia2 (s)ds ≲ ∫

t

0
∥v(a)∥HN(a)∥∇u(b)∥HN(a)∥∇u(c)∥HN(a)ds ≲ ǫ31.

In order to estimate Ia3 , it suffices to prove that

(4.8) ∑
∣n∣∈{0,N(a)}

∫
t

0
∫
R3

∂nv(a) ⋅ ∂n∇UP(φ(b)∇u(c))dxds ≲ ǫ31, for b + c = a.
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If ∣a∣ ≤ N1 − 2, by (2.6), (3.3) and (3.17) we have

∥φ(b)∇u(c)∥HN(a) ≲∥φ(b)∥L∞∥∇u(c)∥HN(a) + ∥φ(b)∥ḢN(a)∥∇u(c)∥L∞
≲ǫ1⟨s⟩−1/2+3δ∥∇u(c)∥HN(a) + ǫ21⟨s⟩−5/4+(5+∣c∣)δ;

If N1 − 1 ≤ ∣a∣ ≤ N1, ∣b∣ ≤ ∣c∣, by (2.5) and (3.3) we have

∥φ(b)∇u(c)∥HN(a) ≲ (∥φ(b)∥L∞ +∑
k

2N(a)k∥Pkφ
(b)∥L∞)∥∇u(c)∥HN(a) ≲ ǫ1⟨s⟩−1/2+3δ∥∇u(c)∥HN(a);

And if N1 − 1 ≤ ∣a∣ ≤ N1, ∣b∣ > ∣c∣, by (3.17) and (2.11) we have

∥φ(b)∇u(c)∥HN(a) ≲∥φ(b)∥ḢN(a)∥∇u(c)∥L∞ + ∥φ(b)∥L7∥∇u(c)∥WN(a)+1,14/5

≲∥Φ(b)∥HN(a)∥∇u(c)∥WN(a)+1,14/5

≲ǫ1⟨s⟩2δ∥∇u(c)∥5/7HN(a)+2∥∇u(c)∥2/7WN(a)+2,3/2δ

≲ǫ9/71 ∥∇u(c)∥5/7HN(a)+2⟨s⟩−5/14+4δ.
Then using integration by parts, the above three bounds, Hölder and (2.11), we obtain the bound (4.8), and

hence conclude the estimate of Ia3 .

Finally, in order for Ia4 and Ia5 it suffices to prove that

(4.9) ∑
∣n∣∈{0,N(a)}

∫
t

0
∫
R3

∂nv(a) ⋅ ∂n∇UP(∇φ(b)∇φ(c))dxds ≲ ǫ31, for ∣b∣ + ∣c∣ ≤ ∣a∣,

which is obtained by integration by parts, (3.4), Hölder and (2.11). Hence, this concludes the estimates of

Ia4 and Ia5 .

As a consequence of the above estimates of Ia1 ,⋯, Ia5 and (1.11), we have

Ea
v (t) = Ea

v (0) + ∫
t

0
∂sE

a
v (s)ds ≤ 1

2
∑

∣n∣∈{0,N(a)}
∫

t

0
∥∂n∇v(a)∥2L2ds +Cǫ20,

which implies

∑
∣n∣∈{0,N(a)}

(∥∂nv(a)∥2
L2 +∫

t

0
∥∂n∇v(a)∥2

L2ds) ≲ ǫ20.

This completes the proof of the Proposition. �

4.2.2. The bound on Φ(a).

Proposition 4.3. With the notation and hypothesis in Proposition 2.8, for any t ∈ [0, T ], 1 ≤ ∣a∣ ≤ N1,

(4.10) ∥Φ(a)(t)∥HN(a) ≲ ǫ0⟨t⟩κ(a)δ.
Proof. Define the energy functional

Ea
φ(t) ∶= 12 ∑

∣n∣∈{0,N(a)}
(∥∂n∂tφ

(a)∥2
L2 + ∥∂n∇φ(a)∥2

L2).
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Using the φ(a)-equation in (2.9) we calculate

d

dt
Ea

φ(t) = − 2 ∑
b+c=a

Cb
a ∑
∣n∣∈{0,N(a)}

∫
R3

∂n∂tφ
(a) ⋅ ∂n(u(b) ⋅ ∇∂tφ(c))dx

− ∑
b+c=a

Cb
a ∑
∣n∣∈{0,N(a)}

∫
R3

∂n∂tφ
(a) ⋅ ∂n(∂tu(b) ⋅ ∇φ(c))dx

− ∑
b+c+e=a

Cb,c
a ∑
∣n∣∈{0,N(a)}

∫
R3

∂n∂tφ
(a) ⋅ ∂n(u(b) ⋅ ∇(u(c) ⋅ ∇φ(e)))dx

+ ∑
∣n∣∈{0,N(a)}

∫
R3

∂n∂tφ
(a) ⋅ ∂n(S + 1)a1Γa′Err2 dx

=∶ − 2IIa1 − IIa2 − IIa3 + IIa4 .
Step 1: We prove the bound

(4.11) ∫
t

0
IIa1 (s)ds ≲ ǫ31⟨t⟩2κ(a)δ.

By divu = 0 and integration by parts, IIa1 can be rewritten as

IIa1 (s) = ∑
n1+n2=n,∣n2∣<∣n∣=N(a)

∫
R3

∂n∂sφ
(a) ⋅ (∂n1u ⋅ ∇∂n2∂sφ

(a))dx

+ ∑
b+c=a,∣b∣≥1

Cb
a ∑
∣n∣∈{0,N(a)}

∫
R3

∂n∂sφ
(a) ⋅ ∂n(u(b) ⋅ ∇∂sφ(c))dx

=∶IIa11 + IIa12.
First, we estimate IIa11. When ∣a∣ ≥ 2, from (3.17) and Sobolev embedding we have

∫
t

0
IIa11(s)ds ≲∫

t

0
∥∂sφ(a)∥2HN(a)∥⟨∇⟩N(a)−1∇u∥L3/2δds

≲∫
t

0
ǫ21⟨s⟩2κ(a)δ∥∇v∥WN(a)−1,3/2δds ≲ ∫

t

0
ǫ31⟨s⟩−5/4+(2κ(a)+4)δds ≲ ǫ31.

When ∣a∣ = 1, by (3.17) and (3.2) we have

∫
t

0
IIa11(s)ds ≲∫

t

0
∥∂sφ(a)∥HN(a)(∥⟨∇⟩N(a)/2∇u∥L∞∥∂sφ(a)∥HN(a) + ∥∇u∥HN(a)∥⟨∇⟩N(a)/2∂sφ(a)∥L∞)ds

≲∫
t

0
ǫ1⟨s⟩δ(ǫ21⟨s⟩−5/4+4δ + ǫ1⟨s⟩−1+2δ∥∇u∥HN(a))ds

≲ǫ31.
Second, we estimate IIa12 when ∣b∣ ≥ N1 − 1. (3.2) and (2.11) imply that

∫
t

0
IIa12(s)ds ≲∫

t

0
∥∂sφ(a)∥HN(a)∥u(b)∥HN(a)∑

k

2N(a)k
++k+∥∂sPkφ

(c)∥L∞ds

≲∫
t

0
ǫ31⟨s⟩−1+4δds ≲ ǫ31⟨t⟩2κ(a)δ.

Finally it remains to prove that when 1 ≤ ∣b∣ ≤ N1 − 2, ∣n∣ ∈ {0,N(a)}
(4.12) ∫

t

0
∫
R3

∂n∂sφ
(a) ⋅ ∂n(u(b) ⋅ ∇∂sφ(c))dxds ≲ ǫ31⟨t⟩2κ(a)δ.
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We decompose dyadically in frequency and rewrite the functions ∂sφ(a), ∂sφ(c) in terms of the variables

Ψ(a), Ψ(c), it suffices to estimate

IIk,k1,k2;m ∶= ∫
t

1
∫
R6

e−is(∣ξ∣−∣η∣)m(ξ, η)P̂kΨ(a)(ξ)P̂k1u
(b)(ξ − η)P̂k2Ψ

(c)(η)dξdηds,(4.13)

for any t ∈ [1, T ], m(ξ, η) ∶= (1 + ξ2n)η, ∣n∣ = N(a), b + c = a. By divu(b) = 0 and [∇, Pk] = 0, we have

η ⋅ P̂k1u
(b)(ξ − η) = (η − ξ + ξ) ⋅ P̂k1u

(b)(ξ − η) = ξ ⋅ P̂k1u
(b)(ξ − η).(4.14)

Then denote

mhh ∶= (1 + ξ2n)ξ,
we obtain from (4.14)

m(ξ, η) ⋅ P̂k1u
(b)(ξ − η) =1k2≤k+5 ⋅m(ξ, η) ⋅ P̂k1u

(b)(ξ − η) + 1k2>k+5 ⋅m(ξ, η) ⋅ P̂k1u
(b)(ξ − η)

=1k2≤k+5 ⋅m(ξ, η) ⋅ P̂k1u
(b)(ξ − η) + 1k2>k+5 ⋅mhh(ξ, η) ⋅ P̂k1u

(b)(ξ − η)
=∶m∗(ξ, η) ⋅ P̂k1u

(b)(ξ − η).
Case 1: Low-high, i.e k2 ∈ [k − 5, k + 5].
Integrating by parts in η, we have

IIk,k1,k2;m =∫
t

1
∫
R6

s−1∂ηj( ηj∣η∣m(ξ, η))P̂kΦ(a)(ξ)P̂k1u
(b)(ξ − η)P̂k2Φ

(c)(η)dξdηds

+ ∫
t

1
∫
R6

s−1
ηj

∣η∣m(ξ, η)P̂kΦ(a)(ξ)∂ηj P̂k1u
(b)(ξ − η)P̂k2Φ

(c)(η)dξdηds

+ ∫
t

1
∫
R6

s−1
ηj

∣η∣m(ξ, η)P̂kΦ(a)(ξ)P̂k1u
(b)(ξ − η)eis∣η∣∂ηj P̂k2Ψ

(c)(η)dξdηds.
Then estimating u(b) in L∞ and the other two terms in L2, it follows from Lemma 2.4 that

∑
k,k1

∑
k2∈[k−5,k+5]

IIk,k1,k2;m

≲∫
t

1
s−1 ∑

∣k2−k∣<5
∑

k1<k+6

22N(a)k
+∥PkΦ

(a)∥L2(∥Pk1u
(b)∥L∞∥Pk2Φ

(c)∥L2

+ 2k∥F−1(∇ξP̂k1u
(b)(ξ))∥L∞∥Pk2Φ

(c)∥L2 + 2k∥Pk1u
(b)∥L∞∥∇ξP̂k2Ψ

(c)(ξ)∥L2)ds
≲∫

t

1
s−1∥Φ(a)∥HN(a)(∥∇u(b)∥H1∥Φ(c)∥HN(a) +∑

k1

∥⟨r⟩Pk1u
(b)∥L∞∥Φ(c)∥HN(a)+1

+ ∥∇u(b)∥H1∥F−1(ξ∣∂ξΨ̂(c))∥HN(a))ds.
Then by (2.11), (2.12) and (2.7) we get

∑
k,k1

∑
k2∈[k−5,k+5]

IIk,k1,k2;m ≲∫
t

1
ǫ1⟨s⟩−1+κ(a)δ(∥∇u(b)∥H1ǫ1⟨s⟩κ(∣c∣+1)δ + ǫ21⟨s⟩κ(c)δ)ds

≲ǫ31⟨t⟩2κ(a)δ.
Case 2: High-low and high-high, i.e k2 ∈ (−∞, k − 5) ∪ (k + 5,∞).
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Since the phase ∣ξ∣ − ∣η∣ in (4.13) doesn’t equal to zero, by integration by parts in times, it suffices to

prove that

(4.15) ∑
k,k1,k2

(II0k,k1,k2 − ∫
t

1
II1k,k1,k2 + II2k,k1,k2 + II3k,k1,k2ds) ≲ ǫ31⟨t⟩2κ(a)δ,

where

II0k,k1,k2 ∶= Q[m̃;PkΨ
(a), Pk1u

(b), Pk2Ψ
(c)]∣t

1
, II1k,k1,k2 ∶= Q[m̃;∂sPkΨ

(a), Pk1u
(b), Pk2Ψ

(c)],
II2k,k1,k2 ∶= Q[m̃;PkΨ

(a), ∂sPk1u
(b), Pk2Ψ

(c)], II3k,k1,k2 ∶= Q[m̃;PkΨ
(a), Pk1u

(b), ∂sPk2Ψ
(c)],

and

m̃(ξ, η) ∶=m∗(ξ, η)/(∣ξ∣ − ∣η∣),
Q[m̃;f, g, h] ∶= ∫

R6

ie−is(∣ξ∣−∣η∣)m̃(ξ, η)f̂(ξ)ĝ(ξ − η)ĥ(η)dξdη.
To prove the bound (4.15), we need the S∞ norm of symbol m̃(ξ, η). By Lemma 2.3, we have

(4.16) ∥m̃(ξ, η)∥S∞
k,k1,k2

≲ 22N(a)k++min(k−k2,k2−k).

Case 2.1: The contribution of II0k,k1,k2 .

We estimate the lowest frequency factor PkΨ
(a) or Pk2Ψ

(c) in L∞ and the other two factors in L2, using

(4.16), Hölder and (2.11) we have

∑
k,k1

∑
k2∈(−∞,k−5)∪(k+5,∞)

II0k,k1,k2 ≲ ∑
∣k−k1∣<4

∑
k2<k−5

22N(a)k
++k2−k∥PkΨ

(a)∥L2∥Pk1u
(b)∥L2∥Pk2Ψ

(c)∥L∞

+∑
k

∑
k2>k+5,∣k1−k2∣<4

22N(a)k
++k−k2∥PkΨ

(a)∥L∞∥Pk1u
(b)∥L2∥Pk2Ψ

(c)∥L2

≲ ∑
k,k1;∣k−k1∣<4

22N(a)k
+∥PkΨ

(a)∥L2∥Pk1u
(b)∥L2∑

k2

∥Pk2Ψ
(c)∥L∞

+∑
k

∥Pk2Ψ
(a)∥L∞ ∑

k1,k2;∣k1−k2∣<4
22N(a)k

+
2 ∥PkΨ

(a)∥L2∥Pk1u
(b)∥L2

≲∥Φ(a)∥HN(a)∥u(b)∥HN(a)∥Φ(c)∥HN(a) ≲ ǫ31⟨t⟩2κ(a)δ.
Case 2.2: The contribution of II1

k,k1,k2
and II3

k,k1,k2
.

When a = b, c = 0, k2 < k − 5, by (4.16), (3.31), (3.32) and (3.2), one obtain

∑
k,k1

∑
k2<k−5

II1k,k1,k2

≲ ∑
∣k−k1∣<4

∑
k2<k−5

22N(a)k
++k2−k∥∂sPkΨ

(a)∥L2∥Pk1u
(a)∥L2∥Pk2Φ∥L∞

≲∥∂sΨ(a)∥HN(a)−2∥∇u(a)∥HN(a)∑
k2

2k
+
2 ∥Pk2Φ∥L∞ + ∥∂sΨ(a)∥2∥u(a)∥2∑

k2

∥Pk2Φ∥L∞
≲ǫ21⟨s⟩−1+6δ∥∇u(a)∥HN(a) + ǫ41⟨s⟩−7/4+(∣a∣+3)δ .
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When a = b, c = 0, k2 > k + 5, from (4.16), (3.32) and (3.2) it follows that

∑
k,k1

∑
k2>k+5

II1k,k1,k2

≲∑
k

∑
k2>k+5,∣k1−k2∣<4

22N(a)k
++k−k2∥∂sPkΨ

(a)∥L2∥Pk1u
(a)∥L2∥Pk2Φ∥L∞

≲∑
k<0

∑
k2>k+5,∣k1−k2∣<4

2k−k2∥∂sPkΨ
(a)∥L2∥Pk1u

(a)∥L2∥Pk2Φ∥L∞
+∑

k≥0

∑
k2>k+5,∣k1−k2∣<4

2(N(a)−3)k+(N(a)+4)(k−k2)+(N(a)+3)k2∥∂sPkΨ
(a)∥L2∥Pk1u

(a)∥L2∥Pk2Φ∥L∞

≲∥∂sΨ(a)∥L2∥u(a)∥L2∥Φ∥L∞ + ∥∂sΨ(a)∥HN(a)−3∥u(a)∥HN(a) sup
k

23k∥PkΦ∥L∞
≲ǫ31⟨s⟩−7/4+(∣a∣+3)δ .

Then the other cases, i.e. ∣b∣ < ∣a∣ can be estimated, using (3.32) and (2.11),

∑
k,k1

∑
k2∈(−∞,k−5)∪(k+5,∞)

II1k,k1,k2 ≲ ∑
∣k−k1∣<4

∑
k2<k−5

22N(a)k
++k2−k∥∂sPkΨ

(a)∥L2∥Pk1u
(b)∥L2∥Pk2Φ

(c)∥L∞

+∑
k

∑
k2>k+5,∣k1−k2∣<4

22N(a)k
++k−k2∥∂sPkΨ

(a)∥L2∥Pk1u
(b)∥L2∥Pk2Φ

(c)∥L∞
≲∥∂sΨ(a)∥HN(a)−3∥∇u(b)∥HN(b)∥Φ(c)∥HN(a)

≲ǫ21⟨s⟩−3/4+(∣a∣+3)δ∥∇u(b)∥HN(b) .

Similarly, by (4.16), (3.32) and (2.11), we have

∑
k,k1

∑
k2∈(−∞,k−5)∪(k+5,∞)

II3k,k1,k2 ≲∥Ψ(a)∥HN(a)∥∇u(b)∥HN(a)∥∂sΨ(c)∥HN(c)−3

≲ǫ21⟨s⟩−3/4+(∣a∣+3)δ∥∇u(b)∥HN(a).

By Hölder, the bound (4.15) for II1k,k1,k2 and II3k,k1,k2 follows.

Case 2.3: The contribution of II2k,k1,k2 .

The contribution of the triplets (k, k1, k2) with k2 > k + 5, k1 ∈ [k2 − 3, k2 + 3] can be estimated using

(3.29), i.e

∑
k,k1

∑
k2>k+5

II2k,k1,k2 ≲∑
k

∑
k2>k+5,∣k1−k2∣<4

22N(a)k
++k−k2∥PkΦ

(a)∥L2∥∂sPk1u
(b)∥L∞∥Pk2Φ

(c)∥L2

≲∥Φ(a)∥HN(a)∥∂su(b)∥L∞∥Φ(c)∥HN(a) ≲ ǫ31⟨s⟩−5/4+(8+∣b∣)δ .
Then we consider II2k,k1,k2 when k2 < k − 5. If ∣c∣ ≥ N1 − 1, we obtain from (4.16), (3.29) and (2.11)

∑
k,k1

∑
k2<k−5

II2k,k1,k2 ≲ ∑
∣k−k1∣<4

∑
k2<k−5

22N(a)k
++k2−k∥PkΦ

(a)∥L2∥∂sPk1u
(b)∥L∞∥Pk2Φ

(c)∥L2

≲∥Φ(a)∥HN(a)∑
k1

2N(a)k
+
1 ∥Pk1∂su

(b)∥L∞∥Φ(c)∥H2 ≲ ǫ31⟨s⟩−5/4+(8+∣b∣)δ .
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If ∣c∣ ≤ N1 − 2, by (4.16), (2.11), (3.30) and (3.2), we have

∑
k,k1

∑
k2<k−5

II2k,k1,k2 ≲ ∑
∣k−k1∣<4

∑
k2<k−5

22N(a)k
++k2−k∥PkΦ

(a)∥L2∥∂sPk1u
(b)∥L2∥Pk2Φ

(c)∥L∞

≲∥Φ(a)∥HN(a)∥∂su(b)∥HN(a)−1∑
k2

2k
+
2 ∥Pk2Φ

(c)∥L∞
≲ǫ21⟨s⟩−1+7δ∑

l≤b

∥∇u(l)∥HN(b) + ǫ31⟨s⟩−2+10δ.
These imply the bound (4.15) for II2k,k1,k2 . Then the bound (4.15) is obtained, and hence we obtain the

bound (4.12).

Step 2: We prove the bound

(4.17) ∫
t

0
IIa2 (s)ds ≲ ǫ31⟨t⟩2κ(a)δ.

Notice that when ∣b∣ < ∣c∣, (3.29) implies

∥∂su(b) ⋅ ∇φ(c)∥L2 ≲ ∥∂su(b)∥L∞∥∇φ(c)∥L2 ≲ ǫ21⟨s⟩−5/4+(6+∣b∣)δ ,
and when ∣b∣ ≥ ∣c∣, (3.30) and (3.2) give

∥∂su(b) ⋅ ∇φ(c)∥L2 ≲ ∥∂su(b)∥L2∥∇φ(c)∥L∞ ≲ ∑
∣l∣≤∣b∣

ǫ1⟨s⟩−1+5δ∥∇v(l)∥HN(b) + ǫ31⟨s⟩−2+8δ.

Therefore,

∑
b+c=a

Cb
a∫

t

0
∫
R3

∂sφ
(a) ⋅ (∂su(b) ⋅ ∇φ(c))dxds ≲ ǫ31.

Now it suffices to prove that

∫
t

0
ĨI

a

2(s)ds ∶= ∑
b+c=a

∑
∣n∣=N(a)

∫
t

0
∫
R3

∂n∂sφ
(a) ⋅ ∂n(∂su(b) ⋅ ∇φ(c))dxds ≲ ǫ31⟨t⟩2δ.

ĨI
a

2 can be divided into three terms, i.e.

ĨI
a

2 = ∑
∣n∣=N(a)

∫
R3

∂n∂sφ
(a) ⋅ (∂n∂su

(a) ⋅ ∇φ)dx

+ ∑
∣n∣=N(a)

∫
R3

∂n∂sφ
(a) ⋅ ∑

n1+n2=n,n1<n

(∂n1∂su
(a) ⋅ ∇∂n2φ)dx

+ ∑
b+c=a,∣b∣<∣a∣

∑
∣n∣=N(a)

Cb
a∫

R3

∂n∂sφ
(a) ⋅ ∂n(∂su(b) ⋅ ∇φ(c))dx

=∶ĨIa21 + ĨI
a

22 + ĨI
a

23.

We estimate ĨI
a

21, ĨI
a

22, ĨI
a

23 respectively. Firstly, we consider the term ĨI
a

21. Integrating by parts, we

have

ĨI
a

21 = ∑
∣n∣=N(a)

[∂s ∫
R3

∂n∂sφ
(a) ⋅ (∂nu(a) ⋅ ∇φ)dx + ∫

R3

∂n−1∂2
sφ
(a) ⋅ ∂(∂nu(a) ⋅ ∇φ)dx

− ∫
R3

∂n∂sφ
(a) ⋅ (∂nu(a) ⋅ ∇∂sφ)dx].
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Using (3.2) and (3.31), it follows that

(4.18)

∫
t

0
ĨI

a

21(s)ds ≲ ∑
∣n∣=N(a)

[ sup
s∈[0,t]
∥∂n∂sφ

(a)∥L2∥∂nu(a)(s)∥L2∥∇φ(s)∥H2

+ ∫
t

0
∥∂n−1∂2

sφ
(a)∥L2∥∇u(a)∥HN(a)∥⟨∇⟩2φ∥L∞ds

+ ∫
t

0
∥∂n∂sφ

(a)∥L2∥∇u(a)∥HN(a)∥∇∂sφ∥L∞ds]
≲ǫ31⟨t⟩κ(a)δ + ∫

t

0
ǫ21⟨s⟩−1+6δ(1 + ∑

∣l∣≤∣a∣
∥∇u(l)∥HN(a))∥∇u(l)∥HN(a)ds

+ ∫
t

0
ǫ21⟨s⟩κ(a)δ−1+2δ∥∇u(a)∥HN(a)ds

≲ǫ31⟨t⟩κ(a)δ.
Second, we consider the term ĨI

a

22. If ∣a∣ ≥ N1 − 1, it follows from (3.2) and (3.30) that

∑
n1+n2=n,∣n1∣<∣n∣=N(a)

∥∂n1∂su
(a) ⋅ ∇∂n2φ∥L2 ≲ ∑

n1+n2=n,∣n1∣<∣n∣
∥∂n1∂su

(a)∥L2∥∇∂n2φ∥L∞

≲ǫ1⟨s⟩−1+4δ ∑
∣l∣≤∣a∣
∥∇u(l)∥HN(a) + ǫ31⟨s⟩−2+7δ.

If ∣a∣ ≤ N1 − 2, from (3.29) and (3.2) we have

∑
n1+n2=n,∣n1∣<∣n∣=N(a)

∥∂n1∂su
(a) ⋅ ∇∂n2φ∥L2

≲∥⟨∇⟩N(a)/2∂su(a)∥L∞∥∇φ∥HN(a) + ∥∂su(a)∥HN(a)−1∥⟨∇⟩N(a)/2∇φ∥L∞
≲ǫ21⟨s⟩−5/4+(4+∣a∣)δ + ǫ1⟨s⟩−1+4δ∑

l≤a

∥∇u(l)∥HN(a).

Using these it follows that

(4.19) ∫
t

0
ĨI

a

22(s)ds ≲ ∫
t

0
∥∂sφ(a)∥HN(a) ∑

n1+n2=n,∣n1∣<∣n∣=N(a)
∥∂n1∂su

(a) ⋅ ∇∂n2φ∥L2ds ≲ ǫ31.

Finally, we consider the term ĨI
a

23. When N1 − 1 ≤ ∣a∣ ≤ N1, ∣b∣ ≥ ∣c∣, using (3.30) and (3.2), it’s easy to

obtain

∑
b+c=a;∣b∣<∣a∣

∥∂n(∂su(b) ⋅ ∇φ(c))∥L2 ≲ ∑
b+c=a;∣b∣<∣a∣

∥∂su(b)∥HN(a)∑
k

2N(a)k
+∥Pk∇φ(c)∥L∞

≲ ∑
∣l∣≤∣b∣

ǫ1⟨s⟩−1+5δ∥∇u(l)∥HN(b) + ǫ31⟨s⟩−2+8δ.

When N1 − 1 ≤ ∣a∣ ≤ N1, ∣b∣ < ∣c∣, using (3.29), it follows that

∑
b+c=a;∣b∣<∣a∣

∥∂n(∂su(b) ⋅ ∇φ(c))∥L2 ≲ ∑
b+c=a;∣b∣<∣a∣

∑
k

2N(a)k
+∥Pk∂su

(b)∥L∞∥∇φ(c)∥HN(a) ≲ ǫ21⟨s⟩−6/5.
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If ∣a∣ ≤ N1 − 2, by (3.29), (3.30) and (3.2), we have

∑
b+c=a;∣b∣<∣a∣

∥∂n(∂su(b) ⋅ ∇φ(c))∥L2 ≲ ∑
b+c=a;∣b∣<∣a∣

(∥∂su(b)∥HN(a)∥∇φ(c)∥L∞ + ∥∂su(b)∥L∞∥∇φ(c)∥HN(a))
≲ǫ21⟨s⟩−6/5 + ∑

∣l∣≤∣b∣
ǫ1⟨s⟩−1+5δ∥∇u(l)∥HN(b) .

By the above bounds, we get

(4.20) ∫
t

0
ĨI

a

23(s)ds ≲ ∑
b+c=a,∣b∣<∣a∣

∑
∣n∣=N(a)

∫
t

0
∥∂sφ(a)∥HN(a)∥∂n(∂su(b) ⋅ ∇φ(c))∥L2ds ≲ ǫ31.

Hence, from (4.18)-(4.20), we have

∫
t

0
ĨI

a

2(s)ds ≲ ǫ31⟨t⟩κ(a)δ, for b + c = a.
This completes the proof of the bound (4.17).

Step 3. We prove the following two bounds

(4.21) ∫
t

0
∣IIa3 (s)∣ + ∣IIa4 (s)∣d ≲ ǫ41⟨t⟩2κ(a)δ.

By divu = 0, we rewrite IIa3 as

(4.22)

IIa3 = ∑
∣n∣=N(a)

∫
R3

∂n∂sφ
(a) ⋅ (u ⋅ ∇(u ⋅ ∇∂nφ(a)))dx

+ ∑
n1+n2+n3=n,∣n3∣<∣n∣=N(a)

∫
R3

∂n∂sφ
(a) ⋅ ∂n1u ⋅ ∇(∂n2u ⋅ ∇∂n3φ(a))dx

+ ∑
b+c+e=a,∣e∣<∣a∣

∑
∣n∣=N(a)

Cb,c
a ∫

R3

∂n∂sφ
(a) ⋅ ∂n(u(b) ⋅ ∇(u(c) ⋅ ∇φ(e)))dx

+ ∑
b+c+e=a

Cb,c
a ∫

R3

∂sφ
(a) ⋅ (u(b) ⋅ ∇(u(c) ⋅ ∇φ(e)))dx.

The first term in the right hand side of (4.22) can be estimated using divu = 0 and (3.30),

∫
t

0
∫
R3

∂n∂sφ
(a) ⋅ (u ⋅ ∇(u ⋅ ∇∂nφ(a)))dxds

=∫
t

0
∫
R3

−1
2
∂s(u ⋅ ∇∂N(a)φ(a)) + (∂su ⋅ ∇∂N(a)φ(a)) ⋅ (u ⋅ ∇∂N(a)φ(a))dxds

≲ sup
s∈[0,t]
∥u(s)∥2H2∥∇φ(a)(s)∥2HN(a) + ∫

t

0
∥∂su∥H2∥∇u∥H1∥∇φ(a)∥2

HN(a)ds

≲ǫ41⟨t⟩2κ(a)δ.
The other three terms in (4.22) can be estimated similarly by Hölder and (2.11). The bound (4.21) for IIa4
can be estimated directly, using (3.2) and (3.3). Hence, the desired bound (4.21) follows. This completes

the proof of the Proposition. �
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5. BOUNDS ON THE PROFILE: WEIGHTED L2 NORMS

In this section we prove (2.14), namely,

Proposition 5.1. With the hypothesis in Proposition 2.8, for any t ∈ [0, T ], 0 ≤ ∣a∣ ≤ N1 − 1, we have

(5.1) ∥F−1(∣ξ∣∇ξΨ̂(a))∥HN(∣a∣+1) ≲ ǫ0⟨t⟩κ(∣a∣+1)δ.
Proof. By (2.8), [eit∣∇∣, S] = [eit∣∇∣,Ω] = 0 and (2.13), we have

(5.2) ∥F−1(∣ξ∣∇ξΨ̂(a)(ξ))∥HN ≲ ǫ0⟨t⟩κ(∣a∣+1)δ + ∥t∂tΨ(a)∥HN ,

Then it suffices to estimate the last term in the right-hand side of (5.2). Using φ-equation in (2.9) and

(2.10), it suffices to prove

∥∂tu(b) ⋅ ∇φ(c)∥HN(∣a∣+1) ≲ ǫ21⟨t⟩−1,(5.3)

∥u(b) ⋅ ∇∂tφ(c)∥HN(∣a∣+1) ≲ ǫ21⟨t⟩−1+κ(∣a∣+1)δ,(5.4)

for b + c = a, k ∈ Z, and

∥u(b) ⋅ ∇(u(c) ⋅ ∇φ(e))∥HN(∣a∣+1) ≲ ǫ31⟨t⟩−1,(5.5)

∥Φ(b)∣∇∣ Φ
(c)Φ(e)∥HN(∣a∣+1) ≲ ǫ31⟨t⟩−1,(5.6)

for b + c + e = a, k ∈ Z.

Step 1: Proof of (5.3).

When ∣a∣ = N1 − 1, ∣b∣ ≥ ∣c∣, by (3.6) and (3.2), we have

∥∂tu(b) ⋅ ∇φ(c)∥HN(∣a∣+1) ≲ ∥∂tu(b)∥HN(∣a∣+1)∑
k

2N(∣a∣+1)k
+∥Pk∇φ(c)∥L∞ ≲ ǫ21⟨t⟩−3/2+(6+∣b∣)δ.

When ∣a∣ = N1 − 1, ∣b∣ < ∣c∣, using (3.29), it follows that

∥∂tu(b) ⋅ ∇φ(c)∥HN(∣a∣+1) ≲ (∑
k≥0

2N(∣a∣+1)k∥∂tu(b)∥L∞ + ∥∂tu(b)∥L∞)∥∇φ(c)∥HN(∣a∣+1) ≲ ǫ21⟨t⟩−5/4+(6+∣b∣)δ ,
When ∣a∣ ≤ N1 − 2, we obtain from (3.6), (3.2) and (3.29)

∥∂tu(b) ⋅ ∇φ(c)∥HN(∣a∣+1) ≲ ∥∂tu(b)∥HN(∣a∣+1)∥∇φ(c)∥L∞ + ∥∂tu(b)∥L∞∥∇φ(c)∥HN(∣a∣+1) ≲ ǫ21⟨t⟩−5/4+(6+∣b∣)δ,
Hence, the bound (5.3) follows.

Step 2: Proof of (5.4). If ∣a∣ = ∣b∣ = N1 − 1, c = 0. (3.2) implies

(5.7) ∥u(b) ⋅ ∇∂tφ∥HN(∣a∣+1) ≲ ∥u(∣b∣)∥HN(∣a∣+1)∑
k

2N(∣a∣+1)k
++k∥∂tφ∥L∞ ≲ ǫ21⟨t⟩−1+κ(∣a∣+1)δ.

Now it suffices to consider the case ∣b∣ ≤ N1 − 2, ∣c∣ ≥ 0.

Decomposing dyadically in frequency, we have

∥u(b) ⋅ ∇∂tφ(c)∥HN(∣a∣+1) ≲ (∑
k

22N(∣a∣+1)k
+

I2k)1/2,
where

Ik ∶= ∥∑
k1,k2

ϕk(ξ)∫
R3

eit∣η∣ηP̂k1u
(b)(ξ − η)P̂k2Ψ

(c)(η)dη∥L2 .

We further divided Ik into high-low, low-high, high-high case,

Ik ≲ Ihlk + I lhk + Ihhk ,
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where

Ihlk ∶= ∑
k2≤k−5

∥ϕk(ξ)∫
R3

eit∣η∣η ̂P[k−3,k+3]u(b)(ξ − η)P̂k2Ψ
(c)(η)dη∥L2 ,

I lhk ∶= ∥ϕk(ξ)∫
R3

eit∣η∣η ̂P<k+6u(b)(ξ − η) ̂P[k−5,k+5]Ψ(c)(η)dη∥L2 ,

Ihhk ∶= ∑
k1,k2;k2≥k+5

∥ϕk(ξ)∫
R3

eit∣η∣ξ ̂P[k2−3,k2+3]u
(b)(ξ − η)P̂k2Ψ

(c)(η)dη∥L2 .

Step 2.1. The contribution of Ihlk . Integration by parts in η yields

Ihlk ≲t−1 ∑
k2<k−5

[∥∫
R3

∂ηj( ηj∣η∣η)
̂P[k−3,k+3]u(b)(ξ − η)P̂k2Φ

(c)(η)dη∥L2

+ ∥∫
R3

ηj

∣η∣η∂ηj
̂P[k−3,k+3]u(b)(ξ − η)P̂k2Φ

(c)(η)dη∥L2

+ ∥∫
R3

ηj

∣η∣η
̂P[k−3,k+3]u(b)(ξ − η)eit∣η∣∂ηj P̂k2Ψ

(c)(η)dη∥L2].

When ∣a∣ = ∣b∣ ≤ N1 − 2, c = 0, by Lemma 2.4, (2.11), (2.12) and (3.7) we have

[∑
k

22N(∣a∣+1)k
+(Ihlk )2]1/2 ≲t−1[∥u(b)∥HN(∣a∣+1)∥Φ(c)∥H2 + ∥∣ξ∣∂ξû(b)(ξ)∥HN(∣a∣+1)∑

k2

∥Φ(c)∥L∞

+ ∥v(b)∥HN(∣a∣+1)∥∣ξ∣∂ξΨ̂(c)∥HN(∣a∣+1)]
≲t−1(ǫ21⟨t⟩κ(c)δ + ǫ21⟨t⟩−1/3 + ǫ21⟨t⟩κ(∣c∣+1)δ)
≲ǫ21⟨t⟩−1+κ(∣c∣+1)δ,

When ∣b∣ ≤ N1 − 2, ∣c∣ ≥ 1, it follows from (2.11), (2.12) and (2.7) that

[∑
k

22N(∣a∣+1)k
+(Ihlk )2]1/2 ≲t−1[∥u(b)∥HN(∣a∣+1)∥Φ(c)∥H2 + {2N(∣a∣+1)k+∥rP[k−3,k+3]u(b)∥L∞}l2∥Φ(c)∥H2

+ ∥u(b)∥HN(∣a∣+1)∥∣ξ∣∂ξΨ(c)∥HN(∣a∣+1)]
≲t−1(ǫ21⟨t⟩κ(c)δ + ∑

α1≤1,α2≤2

∥∂rΩ̃α1v(b)∥1/2
HN(∣a∣+1)∥Ω̃α2v(b)∥1/2

HN(∣a∣+1)ǫ1⟨t⟩κ(c)δ

+ ǫ21⟨t⟩κ(∣c∣+1)δ)
≲ǫ21⟨t⟩−1+κ(∣a∣+1)δ,

Therefore, we have

(5.8) [∑
k

22N(∣a∣+1)k
+(Ihlk )2]1/2 ≲ ǫ21⟨t⟩−1+κ(∣a∣+1)δ.
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Step 2.2: The contribution of I lhk and Ihhk . We only give the bound I lhk , Ihhk is estimated similarly.

Integration by parts in η, it follows that

I lhk ≲t−1[∥∫
R3

∂ηj( ηj∣η∣η)
̂P<k+6u(b)(ξ − η) ̂P[k−5,k+5]Φ(c)(η)dη∥L2

+ ∥∫
R3

ηj

∣η∣η∂ηj
̂P<k+6u(b)(ξ − η) ̂P[k−5,k+5]Φ(c)(η)dη∥L2

+ ∥∫
R3

ηj

∣η∣η
̂P<k+6u(b)(ξ − η)eit∣η∣∂ηj ̂P[k−5,k+5]Ψ(c)(η)dη∥L2]

Then by Lemma 2.4, (2.11), (2.12) and (2.7), we have

(5.9)

[∑
k

22N(∣a∣+1)k
+(I lhk )2]1/2 ≲t−1[∥u(b)∥HN(∣a∣+1)∥Φ(c)∥H2 + ∥ru(b)∥L∞∥Φ(c)∥HN(∣a∣+1)+1

+ ∥u(b)∥HN(∣a∣+1)∥∣ξ∣∂ξΨ̂(c)∥HN(∣a∣+1)]
≲t−1(ǫ21⟨t⟩κ(c)δ + ǫ21⟨t⟩κ(∣c∣+1)δ)
≲ǫ21⟨t⟩−1+κ(∣a∣+1)δ.

From (5.8) and (5.9), the bound (5.4) for ∣b∣ ≤ N1 − 2, ∣c∣ ≥ 0 is obtained immediately. This completes

the proof of (5.4).

Step 3: Proof of (5.5).

When ∣e∣ ≤ N1 − 2, using (3.13) and (3.2), we get

∥u(b) ⋅ ∇(u(c) ⋅ ∇φ(e))∥HN(∣a∣+1) ≲∥u(b)∥HN(∣a∣+1)(∥∇u(c)∥L∞∥∇φ(e)∥L∞ + ∥u(c)∥L∞∥∇2φ(e)∥L∞)
+ ∥u(b)∥L∞(∥u(c)∥HN(∣a∣+1)+1∥∇φ(e)∥L∞ + ∥u(c)∥L∞∥∇φ(e)∥HN(∣a∣+1)+1)
≲ǫ31⟨t⟩−5/4,

When ∣e∣ ≥ N1 − 1, by (3.13), we have

∥u ⋅ ∇(u ⋅ ∇φ(e))∥HN(∣a∣+1) ≲(∑
k≥0

2N(∣e∣+1)k+k∥Pku∥L∞ + ∥P<0u∥L∞)2∥∇φ(e)∥HN(∣e∣+1)+1 ≲ ǫ31⟨t⟩−5/4,
Hence, the bound (5.5) follows.

Finally, the bound (5.6) is an consequence of (3.2) and (3.3). This completes the proof of the proposi-

tion. �

APPENDIX A. DERIVING THE SYSTEM (1.10), (1.13) AND (2.9)

A.1. Deriving the systems (1.10) and (1.13) from (1.6).

Step 1: we derive the following system from (1.6)

(A.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu + L̃u = −u ⋅ ∇u −∇p − ∂j(∇φ ⋅ ∂jφ) +∇⊗ (φ⊗∇u) +Err11 +Err12),
divu = 0,

∂2
t φ −∆φ = −∂tu ⋅ ∇φ − 2u ⋅ ∇∂tφ − u ⋅ ∇(u ⋅ ∇φ) +Err2

where the two order linear operator H̃ is defined by

L̃u ∶= −ν4
2
∆u − (ν5

2
∆u1 + (ν1 + ν5)∂2

1u1,
ν5

2
(∂2

1u2 + ∂1∂2u1), ν5
2
(∂2

1u3 + ∂1∂3u1))⊺.
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Firstly, we proceed to derive the equations satisfied by φ. From the third component of d-equation in

(1.6) and (1.9), by directly computation we have

(A.2) φ̈2 −∆φ2 =
1

2
sin 2φ2(−φ̇2

1 + ∣∇φ1∣2).
After taking the first component of d-equation of the system (1.6), by (A.2) we obtain

(A.3) φ̈1 −∆φ1 = 2 tanφ2(φ̇1φ̇2 −∇φ1∇φ2).
Hence, the φ-equation in (A.1) follows.

Now we derive the u-equation in (A.1). By (1.9), the i-th, 1 ≤ i ≤ 3 component of div(∇d⊙∇d) in the

first equation of the system (1.6) can be rewritten as

∑
j

∂j(∂id ⋅ ∂jd) =∑
j

∂j(∂iφ∂jφ) −∑
j

∂j(sin2 φ2∂iφ1∂jφ1).

Since the orientation field d is near i⃗ = (1,0,0). By (1.9) and Taylor series expansion we have

(dkdpdidj)(φ1, φ2) =(dkdpdidj)(0,0) + (φ1∂1 + φ2∂2)(dkdpdidj)(0,0)
+ ∫

1

0
(φ1∂1 + φ2∂2)2(dkdpdidj)(sφ1, sφ2)(1 − s)ds,

and

(didk)(φ1, φ2) =(didk)(0,0) + (φ1∂1 + φ2∂2)(didk)(0,0)
+ ∫

1

0
(φ1∂1 + φ2∂2)2(didk)(sφ1, sφ2)(1 − s)ds.

Then for divσ, from the above two expression we obtain the linear term

ν1
⎛⎜⎝
∂1A11

0

0

⎞⎟⎠ + ν5
⎛⎜⎝
∂1A11 + ∂jAij

∂1A12

∂1A13

⎞⎟⎠ =
⎛⎜⎝

ν5
2
∆u1 + (ν1 + ν5)∂2

1u1
ν5
2
(∂2

1u2 + ∂1∂2u1)
ν5
2
(∂2

1u3 + ∂1∂3u1)
⎞⎟⎠ ,

the quadratic terms

∇⊗ (φ⊗∇u) ∶=ν1
⎛⎜⎝
∂2(A11φ1) + ∂3(A11φ2) + 2∂1(φ1A12 + φ2A13)

∂1(A11φ1)
∂1(A11φ2)

⎞⎟⎠

+ ν5
⎛⎜⎝

∂2(φ1A11) + ∂3(φ2A11) + ∂1(φ1A21 + φ2A31) + ∂j(φ1A2j + φ2A3j)
∂2(φ1A12) + ∂3(φ2A12) + ∂1(φ1A22 + φ2A32) + ∂j(φ1A1j)
∂2(φ1A13) + ∂3(φ2A13) + ∂1(φ1A23 + φ2A33) + ∂j(φ2A1j)

⎞⎟⎠ .

and the error terms

Err11 = (Err111,Err112,Err113)⊺,
where

Err11i =ν1∂j(Akp∫
1

0
(φ1∂1 + φ2∂2)2(dkdpdidj)(sφ1, sφ2)(1 − s)ds)

+ ν5∂j(Aki∫
1

0
(φ1∂1 + φ2∂2)2(djdk)(sφ1, sφ2)(1 − s)ds)

+ ν5∂j(Akj ∫
1

0
(φ1∂1 + φ2∂2)2(didk)(sφ1, sφ2)(1 − s)ds).
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Thus the u-equation in (A.1) follows, and hence we obtain the system (A.1).

Step 2: We derive the v-equation in (1.13) from u-equation in (A.1).

Applying the Leray projection P to u-equation in (A.1), we obtain

(A.4) ∂tu + PL̃u = P(−u ⋅ ∇u − ∂j(∇φ ⋅ ∂jφ) + µ∂j(φ⊗∇u) +Err11 +Err12),
where PL̃ is a two order operator, i.e

L̄u ∶= PL̃u = − ν4
2
∆u − ν1

∂2
1

∣∇∣2 ( − (∂
2
2 + ∂2

3)u1, ∂1∂2u1, ∂1∂3u1)⊺

− ν5(1
2
∆u1,

1

2
(∂2

1u2 − ∂1∂2u1), 1
2
(∂2

1u3 − ∂1∂3u1))⊺.
By divu = 0, we further have

L̄u =

⎛⎜⎜⎜⎝

−ν4+ν5
2

∆ + ν1 ∂
2

1
(∂2

2
+∂2

3
)

∣∇∣2 0 0

0 −ν4+ν5
2

∆ + ν5
2
∂2
3 + ν1

∂2

1
∂2

2

∣∇∣2 −(ν5
2
− ν1 ∂2

1

∣∇∣2 )∂2∂3
0 −(ν5

2
− ν1 ∂2

1

∣∇∣2 )∂2∂3 −ν4+ν5
2

∆ + ν5
2
∂2
2 + ν1

∂2

1
∂2

3

∣∇∣2

⎞⎟⎟⎟⎠

⎛⎜⎜⎝

u1

u2

u3

⎞⎟⎟⎠
.

In order to diagonalize u-equation (A.4), let

(A.5) v = Uu,

where the operator U is

(A.6) U ∶=
⎛⎜⎜⎜⎝

1 0 0

0 −i∂2√
−∂2

2
−∂2

3

−i∂3√
−∂2

2
−∂2

3

0 −i∂3√
−∂2

2
−∂2

3

i∂2√
−∂2

2
−∂2

3

⎞⎟⎟⎟⎠
.

From the definition of U, we can recover u by

u = Uv.

Then applying U to (A.4), we obtain

∂tv +UL̄Uv = UP(−u ⋅ ∇u − ∂j(∇φ ⋅ ∂jφ) +∇⊗ (φ⊗∇u) +Err11 +Err12).
Using Fourier transformation, the operator UL̄U can be rewritten as

F(UL̄Uv)(ξ) = U(ξ)L̄(ξ)U(ξ)v̂(ξ) = L̂v(ξ)
=((ν4 + ν5

2
∣ξ∣2 + ν1 ξ

2
1(ξ22 + ξ23)
∣ξ∣2 )v̂1(ξ), (ν4 + ν5

2
∣ξ∣2 + ν1 ξ

2
1(ξ22 + ξ23)
∣ξ∣2 )v̂2(ξ), (ν4

2
∣ξ∣2 + ν5

2
ξ21)v̂3(ξ)).

Thus the v-equation in (1.13) follows.
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A.2. Deriving the system (2.9). By the standard argument, from (A.1) we can derive that

(A.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu
(a) + L̃u(a) +L1(u) = − ∑

b+c=a

Cb
au
(b) ⋅ ∇u(c) −∇p(a)

− ∑
b+c=a

Cb
a∂j(∇(S − 1)b1Γb′φ ⋅ ∂j(S − 1)c1Γc′φ)

+ (S + 1)a1Γa′∇⊗ (φ⊗∇u) + (S + 1)a1Γa′(Err11 +Err12)),
divu(a) =0,

∂2
t φ
(a) −∆φ(a) = − ∑

b+c=a

Cb
a(∂tu(b) ⋅ ∇φ(c) + 2u(b) ⋅ ∇∂tφ(c))

− ∑
b+c+e=a

Cb,c
a u(b) ⋅ ∇(u(c) ⋅ ∇φ(e)) + (S + 2)(a1)Γ(a′)Err2,

then by divu(a) = 0, v(a) = Uu(a) and the same argument as Step 2 in Appendix A.1, applying UP to

u(a)-equation in (A.7), the system (2.9) is obtained.
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