LENS RIGIDITY IN SCATTERING BY UNIONS OF STRICTLY CONVEX BODIES IN \mathbb{R}^{2*}

LYLE NOAKES † AND LUCHEZAR STOYANOV ‡

Abstract. It was proved in [NS1] that obstacles K in \mathbb{R}^d that are finite disjoint unions of strictly convex domains with C^3 boundaries are uniquely determined by the travelling times of billiard trajectories in their exteriors and also by their so called scattering length spectra. However the case d=2 is not covered in [NS1]. In the present paper we give a separate different proof of this result in the case d=2.

Key words. scattering by obstacles, billiard flow, scattering ray, travelling times spectrum, trapped trajectory

AMS subject classifications. 37D20, 37D40, 53D25, 58J50

1. Introduction. In scattering by an obstacle in \mathbb{R}^d $(d \geq 2)$ the obstacle K is a compact subset of \mathbb{R}^d with a C^3 boundary ∂K such that $\Omega_K = \overline{\mathbb{R}^d \setminus K}$ is connected. A scattering ray in Ω_K is an unbounded in both directions generalized geodesic (in the sense of Melrose and Sjöstrand [MS1], [MS2]). Most of these scattering rays are billiard trajectories with finitely many reflection points at ∂K . In this paper we consider the case when K has the form

$$(1.1) K = K_1 \cup K_2 \cup \ldots \cup K_{k_0},$$

where K_i are strictly convex disjoint domains in \mathbb{R}^d with C^3 smooth boundaries ∂K_i . Then all scattering rays in Ω_K are billiard trajectories, and the so called generalized Hamiltonian (or bicharacteristic) flow

$$\mathcal{F}_t^{(K)}: \mathbb{S}^*(\Omega_K) \longrightarrow \mathbb{S}^*(\Omega_K)$$

coincides with the billiard flow (see [CFS]).

Given an obstacle K in \mathbb{R}^d , consider a large ball M containing K in its interior, and let $S_0 = \partial M$ be its boundary sphere. For any $q \in \partial K$ let $\nu_K(q)$ the outward unit normal to ∂K . For $q \in S_0$ we will denote by $\nu(q)$ the inward unit normal to S_0 at q. Set

$$\mathbb{S}_{+}^{*}(S_0) = \{x = (q, v) : q \in S_0, v \in \mathbb{S}^{d-1}, \langle v, \nu(q) \rangle \ge 0\}.$$

Given $x \in \mathbb{S}_+^*(S_0)$, define the travelling time $t_K(x) \geq 0$ as the maximal number (or ∞) such that $\operatorname{pr}_1(\mathcal{F}_t^{(K)}(x))$ is in the interior of $\Omega_K \cap M$ for all $0 < t < t_K(x)$, where $\operatorname{pr}_1(p,w) = p$ (see Figure 1). For $x = (q,v) \in \mathbb{S}_+^*(S_0)$ with $\langle \nu(q),v \rangle = 0$ set t(x) = 0. The set

$$\{(x; t_K(x)) : x \in \mathbb{S}^*_+(S_0)\}$$

will be called the travelling times spectrum of K.

It is natural to ask what information about the obstacle K can be derived from its travelling times spectrum. For example: what is the relationship between two obstacles K and L in \mathbb{R}^d if they have (almost) the same travelling times spectra? We

^{*}Submitted to the editors DATE.

[†]Department of Mathematics, University of Western Australia, Crawley WA 6009, Australia (lyle.noakes@uwa.edu.au.

[‡]Department of Mathematics, University of Western Australia, Crawley WA 6009, Australia (luchezar.stovanoy@uwa.edu.au).

say that K and L have almost the same travelling times if there exists a subset R of full Lebesgue measure in $\mathbb{S}_{+}^{*}(\mathbb{S}_{0})$ such that $t_{K}(x) = t_{L}(x)$ for all $x \in R$.

Similar questions can be asked about the so called scattering length spectrum (SLS) of an obstacle. Given a scattering ray γ in Ω_K , if $\omega \in \mathbb{S}^{d-1}$ is the incoming direction of γ and $\theta \in \mathbb{S}^{d-1}$ its outgoing direction, γ will be called an (ω, θ) -ray. For any vector $\xi \in \mathbb{S}^{d-1}$ denote by Z_{ξ} the hyperplane in \mathbb{R}^d orthogonal to ξ and tangent to S_0 such that S_0 is contained in the open half-space R_{ξ} determined by Z_{ξ} and having ξ as an inner normal. For an (ω, θ) -ray γ in Ω , the sojourn time T_{γ} of γ is defined by $T_{\gamma} = T'_{\gamma} - 2a$, where T'_{γ} is the length of the part of γ which is contained in $R_{\omega} \cap R_{-\theta}$ and a is the radius of S_0 . It is known that this definition does not depend on the choice of the sphere S_0 . The scattering length spectrum of K is defined to be the family of sets of real numbers

$$\mathcal{SL}_K = \{\mathcal{SL}_K(\omega, \theta)\}_{(\omega, \theta)}$$

where (ω, θ) runs over $\mathbb{S}^{d-1} \times \mathbb{S}^{d-1}$ and $\mathcal{SL}_K(\omega, \theta)$ is the set of sojourn times T_{γ} of all (ω, θ) -rays γ in Ω_K . It is known (cf. [PS]) that for $d \geq 3$, d odd, and C^{∞} boundary ∂K , we have

$$\mathcal{SL}_K(\omega, \theta) = \text{sing supp } s_K(t, \theta, \omega)$$

for almost all (ω, θ) . Here s_K is the *scattering kernel* related to the scattering operator for the wave equation in $\mathbb{R} \times \Omega_K$ with Dirichlet boundary condition on $\mathbb{R} \times \partial \Omega_K$ (cf. [LP], [M], [PS]). Following [St3], we will say that two obstacles K and L have *almost the same SLS* if there exists a subset \mathcal{R} of full Lebesgue measure in $\mathbb{S}^{d-1} \times \mathbb{S}^{d-1}$ such that $\mathcal{SL}_K(\omega, \theta) = \mathcal{SL}_L(\omega, \theta)$ for all $(\omega, \theta) \in \mathcal{R}$.

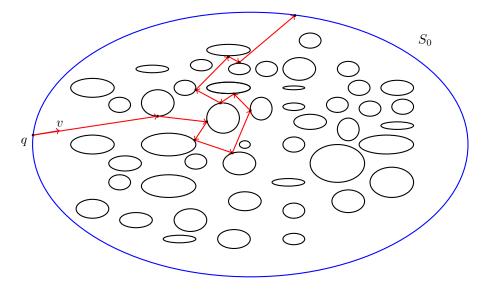


Figure 1

It is a natural and rather important problem in inverse scattering by obstacles to get information about the obstacle K from its SLS. It is known that various kinds of information about K can be recovered from its SLS, and for some classes of obstacles K is completely recoverable (see [St3] for more information) – for example star-shaped obstacles are in this class.

Similar inverse problems concerning metric rigidity have been studied for a very long time in Riemannian geometry – see [SU], [SUV] and the references there for more information. It appears that some of the methods used in this area, e.g. those in [Gu], [DGu], could be applied to obstacle scattering as well.

More recently various results have been established concerning inverse scattering by obstacles – see [St2], [St3], [NS1] - [NS3], [St5]. It turns out that some kind of obstacles are uniquely recoverable from their travelling times spectra and also from their scattering length spectra. For example, it was shown in [NS1] that if K and L are finite disjoint unions of strictly convex bodies in \mathbb{R}^d with C^3 boundaries and K and L have almost the same travelling times spectra (or almost the same SLS), then K = L. However the argument in [NS1] does not work in the case d = 2. We are grateful to Antoine Gansemer who pointed this to us. As he showed in [Gan], when d = 2 and $k_0 > 1$ the set $\mathbb{S}^*_+(S_0) \setminus \text{Trap}(\Omega_K)$ is disconnected, and then the argument in [NS1] does not work. Here $\text{Trap}(\Omega_K)$ is the set of all trapped points in $\mathbb{S}^*(\Omega_K)$, i.e. points $x = (q, v) \in \mathbb{S}^*(\Omega_K)$ such that either the forward billiard trajectory

$$\gamma_K^+(x) = \{ \operatorname{pr}_1(\mathcal{F}_t^{(K)}(x)) : t \ge 0 \}$$

or the backward trajectory $\gamma_K^-(q,v) = \gamma_K^+(q,-v)$ is infinitely long. That is, either the billiard trajectory in the exterior of K issued from q in the direction of v is bounded (contained entirely in M) or the one issued from q in the direction of -v is bounded. The obstacle K is called *non-trapping* if $\operatorname{Trap}(\Omega_K) = \emptyset$.

Here we prove the following.

THEOREM 1.1. Let K and L be obstacles in \mathbb{R}^2 such that each of them is a finite disjoint union of strictly convex compact domains with C^3 boundaries. If K and L have almost the same travelling times or almost the same scattering length spectra, then K = L.

The argument we use is completely different from that in [NS1]. A result similar to that in [NS1] concerning non-trapping obstacles satisfying certain non-degeneracy conditions was proved recently in [St5].

The set of trapped points plays a rather important role in various inverse problems in scattering by obstacles, and also in problems on metric rigidity in Riemannian geometry. It is known that $\operatorname{Trap}(\Omega_K) \cap \mathbb{S}_+^*(S_0)$ has Lebesgue measure zero in $\mathbb{S}_+^*(S_0)$ (see Sect. 4 for more information about this). However, as an example of M. Livshits shows (see Ch. 5 in [M] or Figure 1 in [NS1]), in general the set of points $x \in \mathbb{S}^*(\Omega_K)$ for which

$$\gamma_K(x) = \gamma_K^+(x) \cup \gamma_K^-(x)$$

is trapped in both directions may contain a non-trivial open set. In the latter case the obstacle cannot be recovered from travelling times (and also from the SLS). Similar examples in higher dimensions are given in [NS3].

DEFINITION 1.2. Let K, L be two obstacles in \mathbb{R}^d . We will say that Ω_K and Ω_L have conjugate flows if there exists a homeomorphism

$$\Phi: \mathbb{S}^*(\Omega_K) \setminus \operatorname{Trap}(\Omega_K) \longrightarrow \mathbb{S}^*(\Omega_L) \setminus \operatorname{Trap}(\Omega_L)$$

which is C^1 on an open dense subset of $\mathbb{S}^*(\Omega_K) \setminus \operatorname{Trap}(\Omega_K)$ and satisfies

$$\mathcal{F}_t^{(L)} \circ \Phi = \Phi \circ \mathcal{F}_t^{(K)} \quad , \quad t \in \mathbb{R},$$

and $\Phi = id$ on $\mathbb{S}^*(\mathbb{R}^d \setminus M) \setminus \operatorname{Trap}(\Omega_K) = \mathbb{S}^*(\mathbb{R}^d \setminus M) \setminus \operatorname{Trap}(\Omega_L)$.

For K, L in a generic class of obstacles in \mathbb{R}^d $(d \geq 2)$, which includes the type of obstacles considered here, it is known that if K and L have almost the same SLS or almost the same travelling times, then Ω_K and Ω_L have conjugate flows ([St3] and [NS2]). Thus, Theorem 1.1 is an immediate consequence of the following.

THEOREM 1.3. Let each of the obstacles K and L be a finite disjoint union of strictly convex compact domains in \mathbb{R}^2 with C^3 boundaries. If Ω_K and Ω_L have conjugate flows, then K = L.

We prove Theorem 1.3 in Sect. 3 below. In Sect. 2 we state some useful results from [St2] and [St3]. It turns out that billiard trajectories with tangent points to the boundary of the obstacle play an important role in the two-dimensional case considered here. In Sect. 4 we prove that the set of trapped points $\operatorname{Trap}(\Omega_K)$ has Lebesgue measure zero in $\mathbb{S}^*(\Omega_K)$.

2. Preliminaries. Next, we describe some propositions from [St2] and [St3] that are needed in the proof of Theorem 1.3. We state them in the general case $d \geq 2$, although later on we will use them in the special case d = 2.

Standing Assumption. K and L are finite disjoint unions of strictly convex domains in \mathbb{R}^d $(d \geq 2)$ with C^3 boundaries and with conjugate flows $\mathcal{F}_t^{(K)}$ and $\mathcal{F}_t^{(L)}$.

PROPOSITION 2.1. ([St2]) (a) There exists a countable family $\{M_i\} = \{M_i^{(K)}\}$ of codimension 1 submanifolds of $\mathbb{S}_+^*(S_0) \setminus \text{Trap}(\Omega_K)$ such that every

$$\sigma \in \mathbb{S}_+^*(S_0) \setminus (\operatorname{Trap}(\Omega_K) \cup_i M_i)$$

generates a simply reflecting ray in Ω_K . Moreover the family $\{M_i\}$ is locally finite, that is any compact subset of $\mathbb{S}_+^*(S_0) \setminus \operatorname{Trap}(\Omega_K)$ has common points with only finitely many of the submanifolds M_i .

- (b) There exists a countable family $\{R_i\}$ of codimension 2 smooth submanifolds of $\mathbb{S}_+^*(S_0)$ such that for any $\sigma \in \mathbb{S}_+^*(S_0) \setminus (\cup_i R_i)$ the trajectory $\gamma_K(\sigma)$ has at most one tangency to ∂K .
- (c) There exists a countable family $\{Q_i\}$ of codimension 2 smooth submanifolds of $\mathbb{S}^*_{\partial K}(\Omega_K)$ such that for any $\sigma \in \mathbb{S}^*_+(\partial K) \setminus (\cup_i Q_i)$ the trajectory $\gamma_K(\sigma)$ has at most one tangency to ∂K .

It follows from the conjugacy of flows and Proposition 4.3 in [St3] that the submanifolds M_i are the same for K and L, i.e. $M_i^{(K)} = M_i^{(L)}$ for all i.

The following is Lemma 5.2 in [St2]. In fact the lemma in [St2] assumes C^{∞} smoothness for the submanifold X, however its proof only requires C^3 smoothness.

PROPOSITION 2.2. Let X be a C^3 smooth submanifold of codimension 1 in \mathbb{R}^d , and let $x_0 \in X$ and $\xi_0 \in T_x X$, $\|\xi_0\| = 1$, be such that the normal curvature of X at x_0 in the direction ξ_0 is non-zero. Then for every $\epsilon > 0$ there exist an open neighbourhood V of x_0 in X, a smooth map

$$V \ni x \mapsto \xi(x) \in T_x X$$

and a smooth positive function $t(x) \in [\delta, \epsilon]$ on V for some $\delta > 0$ such that

$$Y = \{ y(x) = x + t(x)\xi(x) : x \in V \}$$

is a smooth strictly convex surface with an unit normal field $\nu_Y(y(x)) = \xi(x)$, $x \in V$. That is, the normal field of Y consists of vectors tangent to X at the corresponding points of V. (See Figure 2.)

As one would expect, the case d=2 of the above proposition is rather easy to prove.

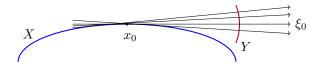


Figure 2

An important consequence of the above is the following proposition which can be proved using part of the argument in the proof of Proposition 5.5 in [St2]. For completeness we sketch the proof in the Appendix.

PROPOSITION 2.3. Let K be an obstacle in \mathbb{R}^2 which is a finite disjoint union of strictly convex compact domains with C^3 boundaries. Then

$$\dim(\mathbb{S}^*(\partial K) \cap \operatorname{Trap}(\Omega_K)) = 0.$$

In particular, $\mathbb{S}^*(\partial K) \cap \operatorname{Trap}(\Omega_K)$ does not contain non-trivial open subsets of $\mathbb{S}^*(\partial K)$.

Here we denote by $\dim(X)$ the topological dimension of a subset X of \mathbb{R}^2 .

It turns out that for the type of obstacles considered in this paper the set $\operatorname{Trap}(\Omega_K)$ of trapped points has Lebesgue measure zero in $\mathbb{S}^*(\Omega_K)$. While formally this fact is not necessary for the proof of Theorem 1.3, we mention it here since it is a rather important feature of the billiard flow in the case considered in this paper (and also in [NS1], [St3], etc.). This appears to be accepted as a 'known fact' although we could not find a formal proof anywhere in the literature. However a simple proof follows from known facts, e.g. using the ergodicity of the so called dispersive (Sinai) billiards (see [Si1], [Si1]).

PROPOSITION 2.4. Let K be an obstacle in \mathbb{R}^d of the form (1.1). Then the set $\operatorname{Trap}(\Omega_K)$ of all of trapped points of $\mathbb{S}^*(\Omega_K)$ has Lebesgue measure zero in $\mathbb{S}^*(\Omega_K)$.

We provide a proof of this proposition in Sect. 4 below.

3. Proof of Theorem 1.3. Assume that the obstacles K and L in \mathbb{R}^2 satisfy the assumptions of Theorem 1.3.

We claim that $K \subset L$. Assume this is not true and fix an arbitrary $x_0 \in \partial K$ such that $x_0 \notin L$. Let $\xi_0 \in \mathbb{S}^1$ be one of the unit vectors tangent to ∂K at x_0 .

It follows from Proposition 2.2 that there exists a small $\epsilon_0 > 0$, an open neighbourhood V_0 of x_0 in ∂K , a C^2 map $V_0 \ni x \mapsto \xi(x) \in \mathbb{S}^*_x(\partial K)$ and a C^2 positive function $t(x) \in [\delta, \epsilon_0]$ on V_0 for some $\delta \in (0, \epsilon_0)$ such that

$$\Sigma = \{ y(x) = x + t(x)\xi(x) : x \in V_0 \}$$

is a C^2 strictly convex curve with unit normal field $\nu_{\Sigma}(y(x)) = \xi(x)$, $x \in V_0$. So, for any $x \in V_0$ the straight line through y(x) with direction $\xi(x)$ is tangent to ∂K at x. Set $y_0 = x_0 + \epsilon_0 \xi_0 \in \Sigma$.

It follows from Proposition 2.3 that for the subset

$$\Sigma' = \{ y \in \Sigma : (y, \nu_{\Sigma}(y)) \notin \operatorname{Trap}(\Omega_K) \}$$

we have $\dim(\Sigma \setminus \Sigma') = 0$. Thus, $\dim(\Sigma') = 1$.

Next, Proposition 2.1 implies that for all but countably many $y \in \Sigma'$ the trajectories $\gamma_K(y,\nu_{\Sigma}(y))$ and $\gamma_L(y,\nu_{\Sigma}(y))$ have at most one tangency to ∂K and ∂L , respectively. For such y, since $\gamma_K(y,\nu_{\Sigma}(y))$ has a tangent point to ∂K , it must have exactly one tangent point to ∂K . Since the flows $\mathcal{F}_t^{(K)}$ and $\mathcal{F}_t^{(L)}$ are conjugate by assumption, $\gamma_L(y,\nu_{\Sigma}(y))$ also must have exactly one tangent point z(y) to ∂L . More precisely, if $(y,\nu_{\Sigma}(y)) = \mathcal{F}_t^{(K)}(\sigma)$ for some $\sigma \in \mathbb{S}_+^*(S_0)$ and some t > 0, then the travelling time function t_K has a singularity at σ . Since $t_K = t_L$ on $\mathbb{S}_+^*(S_0)$ near σ , the function t_L also has a singularity at σ , so $\gamma_L(y,\nu_{\Sigma}(y)) = \gamma_L(\sigma)$ must have a tangent point to ∂L .

Assume for a moment that for every $z \in \partial L$ there exists an open neighbourhood W_z of z in ∂L such that

$$W_z \cap \{z(y) : y \in \Sigma'\}$$

has topological dimension zero. Covering ∂L with a finite number of neighbourhoods W_z , it follows that Σ' has topological dimension zero – a contradiction. Thus, there exists $z_0 \in \partial L$ such that for every open neighbourhood W_0 of z_0 in ∂L the set

$$W_0 \cap \{z(y) : y \in \Sigma\}$$

has topological dimension one. Replacing y_0 (and therefore x_0 as well) by an appropriate nearby point on Σ' , we may assume that $z_0 = \operatorname{pr}_1(\mathcal{F}_{t_0}^{(L)}(y_0, \nu_{\Sigma}(y_0)))$ for some $t_0 \in \mathbb{R}, t_0 \neq 0$.

We will assume that $t_0 > 0$; otherwise we just have to replace ξ_0 by $-\xi_0$ and the curve Σ by $\{x - t(x)\xi(x) : x \in V_0\}$. Let

$$\mathcal{F}_{t_0}^{(L)}(y_0, \nu_{\Sigma}(y_0)) = (z_0, -\zeta_0).$$

Figure 3

Using again Proposition 2.2, assuming $\epsilon_0 > 0$ is sufficiently small and shrinking the open neighbourhood W_0 of z_0 in ∂L if necessary, there exist a C^2 map

$$W_0 \ni z \mapsto \zeta(z) \in \mathbb{S}_z^*(\partial L)$$

and a C^2 positive function $s(z) \in [\delta, \epsilon_0]$ on W_0 for some $\delta \in (0, \epsilon_0)$ such that $\zeta(z_0) = \zeta_0$ and

$$X = \{p(z) = z + s(z) \zeta(z) : z \in W_0\}$$

is a C^2 strictly convex curve with unit normal field $\nu_X(p(z)) = \zeta(z)$, $z \in W_0$. So, for any $z \in W_0$ the straight line through p(z) with direction $\zeta(z)$ is tangent to ∂L at z (see Figure 3). Set $p_0 = z_0 + \epsilon_0 \zeta_0 \in X$.

We will now use a basic property of dispersive (Sinai) billiard flows concerning propagation of convex fronts. Let

$$x_1 = \operatorname{pr}_1(\mathcal{F}_{t_1}^{(L)}(x_0, \xi_0)), \dots, x_k = \operatorname{pr}_1(\mathcal{F}_{t_k}^{(L)}(x_0, \xi_0))$$

be the common points of $\gamma_L(x_0, \xi_0)$ with ∂L (if any) with $0 < t_1 < \ldots < t_k < t_0$. Fix an arbitrary $T \in (t_k, t_0)$ close to t_k . It then follows from a well-known result of Sinai ([Si1]; see also [Si2]) that there exists an open neighbourhood Σ_0 of y_0 in Σ such that

$$Y = \{ \operatorname{pr}_1(\mathcal{F}_T^{(L)}(y, \nu_{\Sigma}(y))) : y \in \Sigma_0 \}$$

is a strictly convex curve in \mathbb{R}^2 with a unit normal field

$$\nu_Y(y, \nu_{\Sigma}(y)) = \operatorname{pr}_2(\mathcal{F}_T^{(L)}(y, \nu_{\Sigma}(y))).$$

Figure 4

Set

$$q_0 = \operatorname{pr}_1(\mathcal{F}_T^{(L)}(y_0, \nu_{\Sigma}(y_0))) \in Y \quad , \quad \eta_0 = \nu_Y(q_0)$$

(see Figure 4). It follows from the constructions of Σ , the point $z_0 \in \partial L$, the neighbourhood W_0 and the convex fronts X and Y that for $y \in \Sigma_0 \cap \Sigma'$ the point

$$q = \operatorname{pr}_1(\mathcal{F}_T^{(L)}(y, \nu_{\Sigma}(y))) \in Y$$

is such that the straightline ray issued from q in direction $\nu_Y(q)$ hits X perpendicularly. However, due to the strict convexity of X and Y, this is only possible when $y = y_0$; a contradiction.

This proves that we must have $K \subset L$.

Using a similar argument we derive that $L \subset K$, as well. Therefore K = L.

4. On the set of trapped points. Here we prove Proposition 2.4.

Assume again that K is an obstacle in \mathbb{R}^d $(d \geq 2)$ of the form (1.1) where K_i are strictly convex disjoint domains in \mathbb{R}^d with C^3 smooth boundaries ∂K_i . Let λ be the Lebesgue measure on $\mathbb{S}^*(\mathbb{R}^d)$. Let S_0 be a large sphere in \mathbb{R}^d as in Sect. 1, and let μ be the Liouville measure on $\mathbb{S}^*_+(S_0)$ defined by

$$d\mu = d\rho(q)d\omega_q |\langle \nu(q), v \rangle|,$$

where ρ is the measure on S_0 determined by the Riemannian metric on S_0 and ω_q is the Lebesgue measure on the (d-2)-dimensional sphere $\mathbb{S}_q(S_0)$ (see e.g. Sect. 6.1 in [CFS]).

We will need the following generalisation of Santalo's formula proved in [St4]. In fact, the latter deals with general billiard flows on Riemannian manifolds (under some natural assumptions), however here we will restrict ourselves to the case considered in Sect. 1.

Theorem 4.1. ([St4]) Let K be as above. Then for every λ -measurable function

$$f: \mathbb{S}^*(\Omega_K) \setminus \operatorname{Trap}(\Omega_K) \longrightarrow \mathbb{C}$$

such that |f| is integrable we have

$$\int_{\mathbb{S}^*(\Omega_K)\backslash \operatorname{Trap}(\Omega_K)} f(x) \ d\lambda(x) = \int_{\mathbb{S}^*_+(S_0)\backslash \operatorname{Trap}(\Omega_K)} \left(\int_0^{t_K(x)} f(\mathcal{F}_t^{(K)}(x)) \ dt \right) d\mu(x).$$

As we mentioned earlier $\operatorname{Trap}(\Omega_K) \cap \mathbb{S}_+^*(S_0)$ has Lebesgue measure zero in $\mathbb{S}_+^*(S_0)$ (see Theorem 1.6.2 in [LP]; see also Proposition 2.3 in [St2] for a more rigorous proof). Using this and the above theorem with f=1 gives the following.

Corollary 4.2. ([St4]) Let K be as above. Then

$$\lambda(\mathbb{S}^*(\Omega_K) \setminus \operatorname{Trap}(\Omega_K)) = \int_{\mathbb{S}_+^*(S_0) \setminus \operatorname{Trap}(\Omega_K)} t_K(x) \, d\mu(x).$$

That is,

$$\lambda(\operatorname{Trap}(\Omega_K)) = \lambda(\mathbb{S}^*(\Omega_K)) - \int_{\mathbb{S}^*_{\perp}(S_0)} t_K(x) \, d\mu(x).$$

Proof of Proposition 2.4. We can regard K as a subset of a domain Q in \mathbb{R}^d with a piecewise smooth boundary which is strictly convex inwards¹ (see Figure 5). Consider the billiard flow ϕ_t on $\mathbb{S}^*(Q)$. It is well-known (see [CFS]) that ϕ_t preserves the Lebesgue measure λ (restricted to $\mathbb{S}^*(Q)$). Moreover ϕ_t is ergodic with respect to λ ([Si1], [Si2]).

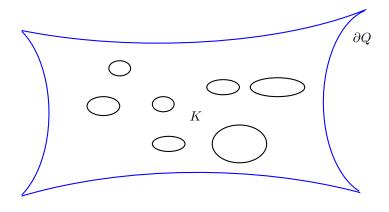


Figure 5

Let T be the set of points $x \in \mathbb{S}^*(\Omega_K)$ such that the billiard trajectory $\gamma_K(x)$ is trapped in both directions. Then Corollary 4.2 and the fact mentioned above that $\operatorname{Trap}(\Omega_K) \cap \mathbb{S}_+^*(S_0)$ has Lebesgue measure zero in $\mathbb{S}_+^*(S_0)$ imply that $\operatorname{Trap}(\Omega_K) \setminus T$ has Lebesgue measure zero in $\mathbb{S}^*(\Omega_K)$. So, it is enough to prove that $\lambda(T) = 0$.

 $^{^1\}mathrm{Or}$ as a domain on the flat d -dimensional torus $\mathbb{T}^d.$ Both embeddings will produce the required result.

The billiard flow ϕ_t coincides with the flow $\mathcal{F}_t^{(K)}$ on the set T, and T is an invariant set with respect to $\mathcal{F}_t^{(K)}$, and so with respect to ϕ_t . Clearly T is a proper subset of $S^*(Q)$ and $S^*(Q) \setminus T$ has positive measure. Now the ergodicity of ϕ_t implies that $\lambda(T) = 0$.

5. Appendix. Here we prove Proposition 2.3 using part of the argument in the proof of Proposition 5.5 in [St2].

It is enough to prove that every $x_0 \in \partial K$ has an open neighbourhood V_0 in ∂K such that $\dim(\mathbb{S}^*(V_0) \cap \operatorname{Trap}(\Omega_K)) = 0$.

Let $x_0 \in \partial K$. As in the proof of Theorem 1.3, it follows from Proposition 2.2 that there exists a small $\epsilon_0 > 0$, an open neighbourhood V_0 of x_0 in ∂K , a C^2 map $V_0 \ni x \mapsto \xi(x) \in \mathbb{S}_x^*(\partial K)$ and a C^2 positive function $t(x) \in [\delta, \epsilon_0]$ on V_0 for some $\delta \in (0, \epsilon_0)$ such that

$$\Sigma = \{ y(x) = x + t(x)\xi(x) : x \in V_0 \}$$

is a C^2 strictly convex curve with unit normal field $\nu_{\Sigma}(y(x)) = \xi(x), x \in V_0$. Set

$$\widetilde{\Sigma} = \{ (y, \nu_{\Sigma}(y)) : y \in \Sigma \}.$$

It follows from Proposition 2.1(c) that there exists a countable subset $X' = \{Q_i\}$ of $\mathbb{S}^*(\partial K)$ such that for any $\sigma \in S^*(\partial K) \setminus X'$, the trajectory $\gamma_K(\sigma)$ has at most one tangency to ∂K , and therefore it has exactly one tangency to ∂K .

Let X_0 the set of those $\sigma \in \widetilde{\Sigma} \cap \text{Trap}(\Omega_K)$ such that the trajectory $\gamma_K^+(\sigma)$ has no tangencies to ∂K . Set $F = \{1, 2, \dots, k_0\}$, and consider

$$\widetilde{F} = \prod_{r=1}^{\infty} F$$

with the product topology. It is well known that $\dim(\widetilde{F}) = 0$ and therefore every subspace of \widetilde{F} has topological dimension zero (cf. e.g. [HW] or [E]). Consider the map $f: X_0 \longrightarrow \widetilde{F}$, defined by

$$f(\sigma) = (i_1, i_2, \dots, i_n, \dots),$$

where the *n*th reflection point of $\gamma_K^+(\sigma)$ belongs to ∂K_{i_n} for all $n=1,2,\ldots$ Clearly, the map f is continuous and it follows from [St1] that f is injective, so it defines a homeomorphism $f: X_0 \longrightarrow f(X_0)$. Thus, X_0 is homeomorphic to a subspace of \widetilde{F} and therefore $\dim(X_0) = 0$.

Now the Sum Theorem for dim (cf. [HW] or [E]) shows that $\dim(X' \cup X_0) = 0$. Since $S^*(V_0) \cap \operatorname{Trap}(\Omega_K)$ is naturally homeomorphic to $X' \cup X_0$, it follows that

$$\dim(S^*(V_0) \cap \operatorname{Trap}(\Omega_K)) = 0.$$

This proves the proposition. \blacksquare

REFERENCES

- [CFS] I. P. CORNFELD, S. V. FOMIN AND YA. G. SINAI, Ergodic theory Springer, Berlin, 1982.
- [DGu] S. DYATLOV AND C. GUILARMOU, Pollicott-Ruelle resonances for open systems, Ann. Henri Poincaré 17 (2016), pp. 3089 - 3146.
- [E] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978.
- [Gan] A. Gansemer, Inverse scattering in the recovery of finite disjoint unions of strictly convex planar obstacles, Honours Thesis, Department of Mathematics and Statistics, Univ. of Western Australia. 2017.
- [Gu] C. Guillarmou, Lens rigidity for manifolds with hyperbolic trapped sets, J. Amer. Math. Soc. 30 (2017), pp. 561-599.
- [H] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators, vol. III. Berlin: Springer, 1985.
- [HW] W. Hurewicz, H. Wallman, Dimension Theory, Princeton University Press, 1948.
- [LP] P. LAX AND R. PHILLIPS, Scattering Theory, Amsterdam: Academic Press 1967.
- [M] R. Melrose, Geometric Scattering Theory, Cambridge University Press, Cambridge, 1995.
- [MS1] R. MELROSE AND J. SJÖSTRAND, Singularities in boundary value problems I, Comm. Pure Appl. Math. 31 (1978), pp. 593-617.
- [MS2] R. MELROSE AND J. SJÖSTRAND, Singularities in boundary value problems II, Comm. Pure Appl. Math. 35 (1982), pp. 129-168.
- [NS1] L. NOAKES AND L. STOYANOV, Rigidity of scattering lengths and traveling times for disjoint unions of convex bodies Proc. Amer. Math. Soc. 143 (2015), pp. 3879-3893.
- [NS2] L. NOAKES AND L. STOYANOV, Traveling times in scattering by obstacles, J. Math. Anal. Appl. 430 (2015), pp. 703-717.
- [NS3] L. NOAKES AND L. STOYANOV, Obstacles with non-trivial trapping sets in higher dimensions, Arch. Math. 107 (2016), pp. 73-80.
- [PS] V. Petkov and L. Stoyanov, Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems, John Wiley & Sons, 2nd Ed., Chichester, 2017.
- [Si1] YA. SINAI, Dynamical systems with elastic reflection, Russian Math. Surveys 25 (1970), pp. 137-190.
- [Si2] YA. SINAI, Development of Krylov's ideas. An addendum to: N.S.Krylov "Works on the foundations of statistical physics". Princeton Univ. Press, Princeton 1979, pp. 239-281.
- [SU] P. STEFANOV AND G. UHLMANN, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc. 18 (2005), pp. 975-1003.
- [SUV] P. STEFANOV, G. UHLMANN AND A. VASY, Boundary rigidity with partial data, J. Amer. Math. Soc. 29 (2016), pp. 299-332.
- [St1] L. Stoyanov, Exponential instability and entropy for a class of dispersing billiards, Ergod. Th. & Dynam. Sys. 19 (1999), pp. 201-226.
- [St2] L. Stoyanov, On the scattering length spectrum for real analytic obstacles, J. Funct. Anal. 177 (2000), pp. 459-488.
- [St3] L. Stoyanov, Rigidity of the scattering length spectrum, Math. Ann. 324 (2002), pp. 743-771.
- [St4] L. STOYANOV, Santalo's formula and stability of trapping sets of positive measure, J. Diff. Eq. 263 (2017), pp. 2991- 3008.
- [St5] L. STOYANOV, Lens rigidity in scattering by non-trapping obstacles, Arch. Math., 110 (2018), pp. 391-402.