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PARALLELIZABLE ALGORITHMS FOR OPTIMIZATION PROBLEMS WITH ORTHOGONALITY

CONSTRAINTS

BIN GAO∗, XIN LIU†, AND YA-XIANG YUAN‡

Abstract. To construct a parallel approach for solving optimization problems with orthogonality constraints is usually regarded as an extremely

difficult mission, due to the low scalability of the orthonormalization procedure. However, such demand is particularly huge in some application

areas such as materials computation. In this paper, we propose a proximal linearized augmented Lagrangian algorithm (PLAM) for solving opti-

mization problems with orthogonality constraints. Unlike the classical augmented Lagrangian methods, in our algorithm, the prime variables are

updated by minimizing a proximal linearized approximation of the augmented Lagrangian function, meanwhile the dual variables are updated by

a closed-form expression which holds at any first-order stationary point. The orthonormalization procedure is only invoked once at the last step of

the above mentioned algorithm if high-precision feasibility is needed. Consequently, the main parts of the proposed algorithm can be parallelized

naturally. We establish global subsequence convergence, worst-case complexity and local convergence rate for PLAM under some mild assump-

tions. To reduce the sensitivity of the penalty parameter, we put forward a modification of PLAM, which is called parallelizable column-wise block

minimization of PLAM (PCAL). Numerical experiments in serial illustrate that the novel updating rule for the Lagrangian multipliers significantly

accelerates the convergence of PLAM and makes it comparable with the existent feasible solvers for optimization problems with orthogonality

constraints, and the performance of PCAL does not highly rely on the choice of the penalty parameter. Numerical experiments under parallel

environment demonstrate that PCAL attains good performance and high scalability in solving discretized Kohn-Sham total energy minimization

problems.
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1. Introduction. In this paper, we consider the following matrix variable optimization problem with orthogonal-

ity constraints.

min
X∈Rn×p

f(X)

s. t. X⊤X = Ip,
(1.1)

where Ip is the p-by-p identity matrix with 2p ≤ n, and f : Rn×p 7−→ R is a continuously differentiable function.

The feasible set of the orthogonality constraints is also known as Stiefel manifold, Sn,p = {X ∈ R
n×p|X⊤X = Ip}.

Throughout this paper, we assume

ASSUMPTION 1.1. (Blanket Assumption) f is continuously differentiable.

The twice differentiability of f will be particularly mentioned once it is required in some theoretical analyses.

1.1. Literature Survey. Kohn-Sham density functional theory (KSDFT) is known to be an important topic in

materials science [16]. The last step of KSDFT is to minimize a discretized Kohn-Sham total energy function

E(X) :=
1

4
tr(X⊤LX) +

1

2
tr(X⊤VionX) +

1

4
ρ⊤L†ρ+

1

2
ρ⊤ǫxc(ρ),(1.2)

subject to orthogonality constraints. Here ρ(X) := diag(XX⊤) denotes the charge density, and L ∈ R
n×n is a

finite-dimensional representation of the Laplace operator in the planewave basis. The discretized local ionic potential
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can be represented by a diagonal matrix Vion. And the matrix L† which is the discrete form of the Hartree potential

corresponds to the pseudo-inverse of L. The exchange correlation function ǫxc is used to model the non-classical and

quantum interaction between electrons. The discretized energy minimization is exactly a special case of (1.1). The

variable scale of such problems is often very large, and hence the demand on efficient solvers for optimization with

orthogonality constraints is high.

In recent decades, lots of researchers have proposed quite a few efficient optimization approaches for discretized

Kohn-Sham total energy minimization [37, 38, 36, 35, 32, 39, 31, 8, 19]. For the general purpose of solving opti-

mization problems with orthogonality constrains, there are abundant algorithms. Retraction based approaches [10, 25,

1, 34, 15], splitting algorithm [17], multipliers correction framework [11], just to mention a few. Interested readers

are referred to the references in [11]. There are a few successful solvers. The most famous one is the toolbox for

optimization on manifolds, which is called Manopt1, in which lots of retraction based algorithms for Problem (1.1),

such as MOptQR, a QR projection algorithm, are included. Another quasi-geodesic based approach called OptM2 is

widely used in the area of discretized Kohn-Sham energy minimization.

However, the lack of concurrency becomes a major bottleneck of solving optimization problems with orthogo-

nality constraints, particularly, when the number of columns of the variable matrix is large. Unfortunately, parallel

computation does not attract much attention from optimization area until very recently. Refer to [30, 6, 28, 20, 27],

there is an urgent demand of parallelization in optimization area. Although high scalability algorithms are desired by

KSDFT area for decades, there is no successful attempt in this regard so far [8].

We find that parallelization is particular difficult for optimization problems with orthogonality constraints. The

main reason is that the scalability of orthonormalization calculations is low no matter which particular way how you

do it.

1.2. Contribution. In this paper, we propose an infeasible algorithm for optimization problems with orthogo-

nality constraints. It is based on the augmented Lagrangian method but employing totally different updating scheme

for both prime and dual variables. The main motivation of the so-called proximal linearized augmented Lagrangian

method (PLAM) is an observation that the dual variables enjoy a closed-form formula at each first-order stationary

point. Therefore, we consider to use the symmetrization of this formula as the updating rule for the dual variables,

to take the place of dual ascent step in the classical augmented Lagrangian method. For the prime variables, in-

stead of solving the augmented Lagrangian subproblem to some preset precision, we minimize a proximal linearized

approximation of the augmented Lagrangian function, which is equivalent to take one step gradient descent.

The orthonormalization procedures are waived in all iterations except the last one to guarantee high-precision

feasibility. The cost of waiving orthonormalization is to do more BLAS3 calculations (matrix-matrix multiplication)

which are known to have high scalability.

We show the global convergence, worst-case complexity and local Q-linear convergence rate for PLAM under

some mild assumptions. The global convergence of PLAM requires sufficiently large penalty parameter and corre-

spondingly small stepsize. Numerical tests also verify the sensitivity of the penalty parameter. Consequently, we put

forward a novel modification strategy that is to add redundant unit norm constraints to the proximal linearized aug-

mented Lagrangian subproblem for updating the prime variables. By using this strategy, we can restrict the iterates in

a compact set such that the penalty parameter is no longer required to be large. On the other hand, such modification

does not destroy the structure that the subproblem has a closed-form solution which can be calculated in parallel. We

call the consequent algorithm PCAL, namely, parallelizable column-wise block minimization for PLAM. The bound-

edness of PCAL iterates can be guaranteed automatically, and hence the penalty parameter is no longer required to be

1Available from http://www.manopt.org
2Available from http://optman.blogs.rice.edu
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sufficiently large.

The numerical experiments under serial computing demonstrate the way how to choose default settings for our

algorithms, and show that the infeasible algorithms are at least as efficient as the existent feasible algorithms in solving

a bunch of test problems. The numerical experiments under parallel computing illustrate the computational complexity

of PCAL and expose its high scalability.

1.3. Organization and Notations. The motivation of new approaches will be introduced in the next section. In

Section 3, we will present the algorithm frameworks. We investigated the theoretical behaviors of the new proposed

algorithms in Section 4. Numerical experiments will be demonstrated in Section 5. In the last section, we will draw a

brief conclusion and discuss possible future works.

Notations. S
p := {X ∈ R

p×p | X⊤ = X} refers to the p-by-p real symmetric matrices set. λmax(A) and

λmin(A) stand for the largest and smallest eigenvalues of given symmetric real matrix A, respectively. σmax(A) and

σmin(A) denote the largest and smallest singular values of given real matrix A, respectively. X† := (X⊤X)−1X⊤

refers to the pseudo inverse of X . Diag(v) ∈ S
n denotes a diagonal matrix with all entries of v ∈ R

n in its diagonal,

and diag(A) ∈ R
n extracts the diagonal entries of matrix A ∈ R

n×n. For convenience, Φ(M) := Diag(diag(M))

represents the diagonal matrix with the diagonal entries of square matrix M in its diagonal. Ψ(A) := 1
2 (A + A⊤)

stands for the average of a square matrix and its transpose.

2. Motivation. As mentioned in the previous section, almost all the existing practically useful methods require

feasible iterates all the time. To realize feasibility, either explicit or implicit orthonormalization requires to be invoked.

Such kind of calculation lacks of scalability and hence becomes the bottleneck computation in the corresponding

algorithms. For example, we consider the discretized Kohn-Sham total energy minimization (1.2). In each iteration,

the function value and first-order derivative evaluation cost O(n log n + np) or O(np) flops per iteration, depending

on whether plane wave or finite difference, respectively, is used in the discretization scheme. For the main iteration of

any algorithm for solving (1.2) developed in recent decade, the computational cost per iteration is O(np2) for BLAS3

calculation, plus O(p3) for orthonormalization which can hardly be parallelized.

To break through this bottleneck, we suggest to use infeasible methods to take the place of feasible methods.

There is no existent infeasible approach for general purpose reported to be efficient for optimization problems with

orthogonality constraints. Previous infeasible approaches designed for (1.1) either work specially for Rayleigh-Ritz

trace minimization [23, 33], or adopt ADMM framework after introducing auxiliary variables to split the objective and

orthogonality constraints [17]. The previous ones can hardly be extended to general objective, while the latter ones

does not have good performance in general.

In the following subsections, we introduce how we come up with a new idea on constructing an efficient infeasible

algorithm for problem (1.1).

2.1. The Optimality Condition. We start from the optimality condition of the optimization problem with or-

thogonality constraints (1.1). The first-order optimality condition of problem (1.1) can be written as

{

∇f(X) = XΛ;

X⊤X = Ip,
(2.1)

where Λ ∈ S
p consists of the Lagrangian multipliers of the orthogonality constraints. Condition (2.1) has the following

equivalent form where Λ is eliminated.

{

∇f(X)−X∇f(X)⊤X = 0;

X⊤X = Ip.
(2.2)

3



DEFINITION 2.1. We call X a first-order stationary point, if condition (2.2) holds. We call X a second-order

stationary point, if it is a first-order stationary point and satisfies

tr(Y ⊤∇2f(X)[Y ]− ΛY ⊤Y ) ≥ 0, ∀Y ∈ T (X),(2.3)

where T (X) := {Y | Y ⊤X +X⊤Y = 0} is the tangent space of the orthogonality constraints at X .

The following proposition can be easily verified and hence its proof is omitted here.

PROPOSITION 2.2. If X is a local minimizer of (1.1), it has to be a second-order stationary point. If X is a strict

local minimizer3, if and only if X is a first-order stationary point and satisfies

tr(Y ⊤∇2f(X)[Y ]− ΛY ⊤Y ) > 0, ∀ 0 6= Y ∈ T (X).(2.4)

2.2. Augmented Lagrangian Method. A straightforward idea to solve (1.1) without requiring feasibility in each

iteration is to employ the Augmented Lagrangian Method (ALM) [29, 26, 3], which is described in Algorithm 1.

Algorithm 1: Augmented Lagrangian Method (ALM)

1 Input: choose initial guess Λ0 for the dual variables, and set k := 0;

2 while certain stopping criterion is not reached do

3 Minimize the augmented Lagrangian function with respect to the prime variables X :

Xk+1 := min
X∈Rn×p

Lβ(X,Λk),

where the augmented Lagrangian function fo problem (1.1) is defined as

Lβ(X,Λ) = f(X)− 1

2
〈Λ, X⊤X − Ip〉+

β

4
||X⊤X − Ip||2F

= f(X) +
β

4

∥
∥
∥
∥
X⊤X −

(

Ip +
1

β
Λ

)∥
∥
∥
∥

2

F

− 1

4β
||Λ||2F.(2.5)

4 Update the Lagrangian multipliers

Λk+1 := Λk − β(Xk+1⊤Xk+1 − Ip).(2.6)

5 Update the penalty parameter β if necessary. Set k := k + 1.

6 Output: Xk.

It is well-known that the augmented Lagrangian function (2.5) is an exact penalty if the parameter β is sufficiently

large. Algorithm 1 works very well for problem with linear constraints. For optimization problems with nonlinear

constraints, it is not clear how to choose the parameter β in practice, which is very sensitive to the numerical perfor-

mance.

The purpose of this work is to find an infeasible algorithm for solving (1.1) at similar cost of the existent feasible

methods. Otherwise, we can hardly gain much from the parallelization. To this end, we carefully test Algorithm 1 and

try our best to tune the parameter β. Unfortunately, for solving optimization problems with orthogonality constraints

(1.1), the efficiency of classical ALM is far from being satisfactory.

3X is called a strict local minimizer, if X ∈ Sn,p and there exists δ > 0 such that f(X) < f(Y ) holds for any Y ∈ Uδ(X) := {Y ∈
Sn,p | ||X − Y || ∈ (0, δ)}.
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Therefore, we need to employ a new idea to remould the classical ALM. According to the conditions (2.1) and

(2.2), it is not difficult to verify that the Lagrangian multipliers Λ have the following closed-form expression at any

first-order stationary point,

Λ = ∇f(X)⊤X.(2.7)

A straightforward idea is to use the following symmetrized form of (2.7)

Λ = Ψ(∇f(X)⊤X)(2.8)

as a new multipliers updating rule. The symmetrization is necessary because the symmetry of the expression∇f(X)⊤X

can not be guaranteed in each iteration.

As we will demonstrate in the following lemma and the theoretical analyses in Section 4, an explicit lower bound

of the penalty parameter β can be estimated if updating rule (2.8) is applied. Hence, the update of the penalty parameter

β can be waived. Moreover, the numerical experiments verify the validation of this new updating rule.

LEMMA 2.3. Let X∗ be a second-order stationary point of

min
X∈Rn×p

Lβ(X,Λ∗)(2.9)

with Λ∗ = Ψ(∇f(X∗)⊤X∗). Suppose β > λmax(∇2f(X∗)). Then X∗ is a second-order stationary point of problem

(1.1). Namely, optimality conditions (2.1) and (2.2) hold at X∗.

Proof. For convenience, we abuse the notation slightly by deleting the superscript ∗ from X∗. First, we have

∇XLβ(X,Λ) = ∇f(X) + βX

(

X⊤X −
(

Ip +
1

β
Λ

))

;(2.10)

∇2
XXLβ(X,Λ)[S] = ∇2f(X)[S] + βS

(

X⊤X −
(

Ip +
1

β
Λ

))

+ βX(S⊤X +X⊤S).(2.11)

Since X is the second-order stationary point of (2.9) with Λ = ∇f(X)⊤X , we have

∇Lβ(X,Λ) = 0;(2.12)

〈S,∇2
XXLβ(X,Λ)[S]〉 ≥ 0, ∀S 6= 0.(2.13)

Substituting (2.10) into (2.12), we obtain

∇f(X)−XΛ− βX(Ip −X⊤X) = 0.(2.14)

Left multiplying X⊤ into both sides of (2.14), we have

X⊤∇f(X) = X⊤XΛ+ βX⊤X(Ip −X⊤X).(2.15)

Suppose X = UΣV ⊤ is the singular value decomposition of X in economy-size, which implies X⊤X =

V Σ2V ⊤. Then, we further have

X⊤∇f(X)− βV Σ2V ⊤ = V Σ2V ⊤Λ − βV Σ4V ⊤.

5



Left multiplying V ⊤ and right multiplying V to both sides of the above equality, we arrive at

V ⊤X⊤∇f(X)V − βΣ2 = Σ2(V ⊤ΛV − βΣ2).

Taking the Φ operator and using the fact that

diag(V ⊤X⊤∇f(X)V ) = diag(V ⊤∇f(X)⊤XV ) = diag(V ⊤ΛV ),(2.16)

we have

(Ip − Σ2)(Φ(V ⊤ΛV )− βΣ2) = 0,(2.17)

which implies that

D(Φ(V ⊤ΛV )− βΣ2) = 0,(2.18)

where p-by-p diagonal matrix D satisfies

Dii =

{

0, if (Ip − Σ2)ii = 0;

1, otherwise,
∀i = 1, ..., p.

On the other hand, since n ≥ 2p, there exists Ũ ∈ Sn,p satisfying Ũ⊤U = 0. let S = ŨDV ⊤. If S 6= 0, we

substitute S into (2.11) and obtain

〈S,∇2
XXLβ(X,Λ)[S]〉 = tr(S⊤∇2f(X)[S])− βtr(S⊤S)− tr(S⊤S(Λ− βX⊤X))

= tr
(
S⊤(∇2f(X)− βI)[S]

)
− tr(V ⊤S⊤SV V ⊤(Λ − βV Σ2V ⊤)V )

= tr
(
S⊤(∇2f(X)− βI)[S]

)
− tr(D2(V ⊤ΛV − βΣ2))

= tr
(
S⊤(∇2f(X)− βI)[S]

)
− tr(D2(Φ(V ⊤ΛV )− βΣ2)).

Here I stands for the identity mapping from R
n×p to R

n×p. Combining with the second-order optimality condition

(2.13), relationship (2.18) and the assumption on β, we have

0 ≤ 〈S,∇2
XXLβ(X,Λ)[S]〉 = tr

(
S⊤(∇2f(X)− βI)[S]

)
< 0,(2.19)

which leads to contradiction. Hence, S = 0, which immediately implies that Σ = Ip. Therefore, we have X ∈ Sn,p.

Together with (2.12) and (2.13), we can easily show that the optimality condition (2.1) and (2.2) hold. This completes

the proof.

Lemma 2.3 guarantees that the augmented Lagrangian function is still an exact penalty function with the La-

grangian multipliers updated by explicit formula (2.8). However, to achieve the convergence results for first-order

methods, we need a first-order version of Lemma 2.3. Moreover, to obtain the global convergence rate, the feasibility

should be controlled by the first-order optimality violation.

LEMMA 2.4. For any X∗ satisfying σmin(X
∗) > 0, suppose β > (||∇f(X∗)||2 · ||X∗||2 + δ) /σ2

min(X
∗) with

δ > 0. Then it holds

||X∗⊤X∗ − Ip||F ≤ ||X∗||2
δ

· ||∇XLβ(X
∗,Λ∗)||F,

6



with Λ∗ = Ψ(∇f(X∗)⊤X∗). In particular, if it happens that X∗ is a first-order stationary point of

min
X∈Rn×p

Lβ(X,Λ∗)

with Λ∗ = Ψ(∇f(X∗)⊤X∗), then X∗ is also a first-order stationary point of problem (1.1).

Proof. For brevity, we denote G = ∇XLβ(X,Λ). Left multiplying X⊤ into both sides of (2.10) and using the

singular value decomposition X = UΣV ⊤, we have

X⊤G = X⊤∇f(X)− βV Σ2V ⊤ − VΣ2V ⊤Λ + βV Σ4V ⊤.

Left multiplying V ⊤ and right multiplying V to both sides of the above equality, we obtain

V ⊤X⊤GV = V ⊤X⊤∇f(X)V − βΣ2 − Σ2
(
V ⊤Λ− βΣ2

)
.

Taking the Φ operator and using the fact (2.16), we arrive at

Φ(V ⊤X⊤GV ) = (Ip − Σ2)(Φ(V ⊤ΛV )− βΣ2).(2.20)

Since β > (||∇f(X∗)||F · ||X∗||2 + δ) /σ2
min(X

∗), we have

βσ2
min(X

∗) ≥ ||∇f(X∗)||2 · ||X∗||2 + δ,

which implies

σmin(βΣ
2) ≥ ||V ⊤ΛV ||2 + δ ≥ ||Φ(V ⊤ΛV )||2 + δ.

Hence, it holds that

σmin

(
βΣ2 − Φ(V ⊤ΛV )

)
≥ δ.(2.21)

Submitting (2.21) into (2.20), we arrive at

||X ||2||G||F ≥ ||Φ(V ⊤X⊤GV )||F = ||(Ip − Σ2)(Φ(V ⊤ΛV )− βΣ2)||F
≥ ||Ip − Σ2||F · σmin

(
βΣ2 − Φ(V ⊤ΛV )

)
≥ ||Ip −X⊤X ||F · δ

and complete the proof.

3. Parallelizable Algorithms. In this section, we introduce a parallelizable approach and one of its variant for

optimization problem with orthogonality constraints (1.1). Both of these two approaches are based on the augmented

Lagrangian function (2.5) and employ the new idea of updating the multipliers by explicit expression instead of dual

ascent step in Algorithm 1.

Another distinction between our algorithms and the classical ALM is that the minimization subproblem for the

prime variables is replaced by a proximal linearized approximation.

3.1. The Proximal Linearized Augmented Lagrangian Algorithm. We describe our main algorithm frame-

work in Algorithm 2.

The main calculation costs of Algorithm 2 concentrate at Step 3 and 4. Step 3 only involves BLAS3 calculation.

7



Algorithm 2: Proximal Linearized Augmented Lagrangian Algorithm (PLAM)

1 Input: choose initial guess X0, and set k := 0;

2 while certain stopping criterion is not reached do

3 Compute the Lagrangian multipliers

Λk := Ψ(∇f(Xk)⊤Xk).(3.1)

4 Minimize the following proximal linearized Lagrangian function

Xk+1 := argmin
X∈Rn×p

L̃β(X) = tr(∇XLβ(X
k,Λk)⊤(X −Xk)) +

ηk

2
||X −Xk||2F.(3.2)

5 Set k := k + 1.

6 Output: Xk.

The minimization subproblem (3.2) in Step 4 is nothing but a gradient step

Xk+1 = Xk − 1

ηk
∇XLβ(X

k,Λk)

= Xk − 1

ηk

(

∇f(Xk) + βXk

(

Xk⊤Xk − Ip −
1

β
Λk

))

= Xk − 1

ηk

(

∇f(Xk)−XkΨ(∇f(Xk)⊤Xk) + βXk(Xk⊤Xk − Ip)
)

,(3.3)

where the last step is due to the updating formula (3.1). Apparently, the arithmetic operations involved in (3.3) belong

to BLAS3 as well.

We notice that 1/ηk is nothing but the stepsize of gradient step. Hence, the proximal parameter ηk can be chosen

in the same manner as how we choose stepsize for gradient methods. This issue will be described in details in Section

5.

3.2. Parallelizable Column-wise Block Minimization. An obvious demerit of PLAM is the boundedness of the

iterate sequence can hardly be expected without any restriction on the penalty parameter β and the proximal parameter

ηk. Theoretically, to guarantee the global convergence, β should be sufficiently large. Accordingly, ηk should be large

as well which means sufficiently small stepsize is required and slow convergence can be expected. In fact, according

to the empirical observations, the performance of PLAM is very sensitive to parameters β and ηk. In other word, it is

not easy to tune these two parameters to guarantee good performance of Algorithm 2 in general.

Therefore, we put forward an upgraded version of PLAM. It is based on PLAM, but redundant column-wise unit

sphere constraints are imposed to Step 4. Therefore, the proximal gradient takes the place of the gradient step in the

Step 4 of Algorithm 2. With redundant constraints, the resulting iterate sequence will then be restricted to a compact

set and hence bounded. We describe the framework of this upgraded PLAM in Algorithm 3.

Subproblem (3.5) in Algorithm 3 can be solved in a column-wisely parallel fashion. In fact, it is of closed-form

solution

Xk+1
i =

Xk
i − 1

ηk∇Xi
Lβ(X

k,Λk)
∥
∥
∥Xk

i − 1
ηk∇Xi

Lβ(Xk,Λk)
∥
∥
∥
2

.

For PCAL, we can update the Lagrangian multipliers in the same manner as PLAM, i.e. by formula (3.1). To

8



Algorithm 3: Parallelizable Column-wise Block Minimization for PLAM (PCAL)

1 Input: choose initial guess X0, and set k := 0;

2 while certain stopping criterion is not reached do

3 Compute the Lagrangian multipliers by (3.1) or

Λk := Ψ(∇f(Xk)⊤Xk) + Φ
(

Xk⊤∇XLβ(X
k, Ψ(∇f(Xk)⊤Xk))

)

.(3.4)

4 for i = 1, ..., p do

5 Minimize the following proximal linearized Lagrangian function

Xk+1
i := argmin

x∈Rn

L̃(i)
β (x) = ∇XLβ(X

k,Λk)⊤i (x−Xk
i ) +

ηk

2 ||x−Xk
i ||22,

s. t. ||x||2 = 1.
(3.5)

6 Update Xk+1 = [Xk+1
1 , . . . , Xk+1

p ], and set k := k + 1.

7 Output: Xk.

obtain a better performance, we can also use the heuristic formula (3.4). The motivation of updating formula (3.4)

comes from the following observation. In the KKT condition (2.1), we impose an additional term for the redundant

sphere constraints. Namely,

{

∇f(X) = XΛ +XD;

X⊤X = Ip,
(3.6)

where D is a diagonal matrix. Furthermore, D is determined by the Lagrangian multiplier of Xi in the subproblem

(3.5).

3.3. Computational Cost. In this subsection, we compare the computational cost per iteration among MOp-

tQR, PLAM and PCAL. The computational cost of the basic linear algebra operations and the overall costs of the

aforementioned algorithms are listed in Table 3.1.

Here, those terms in red represent the corresponding operations that cannot be parallelized.

In practice, we calculate XΨ(∇f(X)⊤X) instead of X(∇f(X)⊤X) for KKT evaluation since they are very

close to each other around any first-order stationary point. Consequently, it saves 2np2 flops computational cost.

4. Convergence of PLAM. In this section, we focus on the theoretical analyses of our proposed PLAM. The

global convergence, worst-case complexity and Q-linear local convergence rate will be established under different

mild assumptions.

4.1. Global Convergence of PLAM. Besides blanket Assumption 1.1, to prove the convergence of Algorithm

2, we need to impose a mild condition on the initial guess, and restrictive conditions on β and ηk. To facilitate the

narrative, we first state all these conditions here.

ASSUMPTION 4.1. For a given X0, we say it is a qualified initial guess, if there exists σ ∈ (0, 1) so that

σmin(X
0) ≥ σ, 0 < ||X0⊤X0 − Ip||F ≤ 1− σ2.

Assumption 4.1 is not restrictive at all. Therefore two types of points satisfying this assumption and can be

9



evaluate function

f(X) := 1

2
tr(X⊤AX) + tr(G⊤X)

AX
A: dense A: sparse A: sparse

2n2p O(np)
O(np)∇f(X) = AX + G np

1

2
tr(X⊤AX) + tr(G⊤X) 4np

KKT: ∇f(X) − X∇f(X)⊤X

∇f(X)⊤X 2np2

4np2 + np
X(∇f(X)⊤X) 2np2

feasibility: X⊤X − I

X⊤X np2
np2 + np

solvers

PLAM
X(X⊤X − I) 2np2

4np2 + O(np)
XΨ(∇f(X)⊤X) 2np2

PCAL

X(X⊤X − I) 2np2

4np2 + O(np)XΨ(∇f(X)⊤X) 2np2

Φ
(

Xk⊤∇XLβ(X
k, Ψ(∇f(Xk)⊤Xk))

)

O(np)

XΛ = XΨ(·) + XΦ(·) O(np)

MOptQR (cholesky LL⊤)

V := X − τ(∇f(X) − X∇f(X)⊤X) 2np

3np2 + O(p3) + O(np)V ⊤V np2

chol(V ⊤V ) = LL⊤ p3/3

V L−⊤ 2np2 + O(p3)
MOptQR (Gram-Schmidt) 2np2

2np2 + O(np)
in total

PLAM 7np2 + O(np)

PCAL 7np2 + O(np)

MOptQR 7np2 + O(p3) + O(np) for cholesky, 4np2 + 2np2 + O(np) for Gram-Schmidt

TABLE 3.1

The comparison of computational cost

obtained easily:

(i) X0 = QΣ, where Q ∈ Sn,p, Σ = Diag(1, ..., 1
︸ ︷︷ ︸

p−1

,
√

1− σ2);

(ii) X0 /∈ Sn,p satisfying σ2
min(X

0) > 1− 1√
p and σ2

max(X
0) < 1 + 1√

p .

Now, we list all the special notations to be used in this section.

R = ||X0⊤X0 − Ip||F; C = {X | ||X⊤X − Ip||F ≤ R}; f = min
X∈C

f(X);

M = max
X∈C

||X ||2; N = max
X∈C

||∇f(X)||F; L = max
X∈C

||∇2f(X)||2.
(4.1)

We introduce the following merit function

h(X) = f(X)− 1

2

〈
Ψ(∇f(X)⊤X), X⊤X − Ip

〉
+

β

4
||X⊤X − Ip||2F.(4.2)

According to the twice continuous differentiability of f(X), ∇f(X) is Lipschitz continuous on the compact set C.

Namely, there exists constant Lh > 0, related to β, so that

||∇h(X)−∇h(y)||F ≤ Lh||X − Y ||F, ∀X,Y ∈ C.(4.3)

The algorithm parameters β and ηk, and the constants used in the proof can be selected by the following rules.

ASSUMPTION 4.2.

c1 ∈
(

0,
1

2

)

; β > max

{

MN

σ2
+

√

M2N2

σ4
+

(N + LM)2

4σ2(1− 2c1)
,
MN

σ
,
4MN

σ2

}

;(4.4)

c2 ∈
(

0,
R2(βσ2 − 4MN)

2N2
L

]

; ηk ∈
[
η, η̄

]
,(4.5)
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where η = max

{

Lh

2c1
,
2NLM +NL

√
4M2 + 2R

R
,
R+ 2M2

c2

}

,

NL = (1 +M2)N + βRM, η̄ ≥ η.

Now we give a sketch of our proof. Suppose {Xk} is the iterate sequence generated by Algorithm 2. The main

steps of the proof include:

(1) Any iterate Xk is in C, and σ is a unified lower bound of the smallest singular values of the iterates Xk;

(2) The merit function h(X) is bounded below;

(3) {h(Xk)} monotonically decreases, and hence {Xk} has at least one convergent subsequence;

(4) Any cluster point of {Xk}, say X∗, is a first-order stationary point of the augmented Lagrangian function

(2.9) with Λ∗ = Ψ(∇f(X∗)⊤X∗);

(5) Any cluster point of {Xk}, say X∗, is a first-order stationary point of the original optimization problem with

orthogonality constraints (1.1).

Next we provide five concrete lemmas or corollaries following the above-mentioned sketch.

LEMMA 4.3. Suppose {Xk} is the iterate sequence generated by Algorithm 2 initiated from X0 satisfying As-

sumption 4.1, and the problem parameters satisfy Assumption 4.2. Then it holds that

σmin(X
k) ≥ σ, Xk ∈ C.(4.6)

Proof. We use mathematical induction. The argument (4.6) directly holds for X0 resulting from Assumption 4.1.

Next we investigate whether (4.6) holds at Xk+1 provided that it holds for Xk.

Case I, ||Xk⊤Xk − Ip||F ≤ R
2 . We have

||Xk+1⊤Xk+1 − Ip||F

=

∥
∥
∥
∥
∥

(

Xk − 1

ηk
∇XLβ(X

k,Λk)

)⊤ (

Xk − 1

ηk
∇XLβ(X

k,Λk)

)

− Ip

∥
∥
∥
∥
∥
F

≤ ||Xk⊤Xk − Ip||F +
2

ηk
||Xk||2||∇XLβ(X

k,Λk)||F +
1

(ηk)2
||∇XLβ(X

k,Λk)||2F.

It is not difficult to verify that

||∇XLβ(X
k,Λk)||F =

∥
∥
∥∇f(Xk)−XkΨ(∇f(Xk)⊤Xk) + βXk(Xk⊤Xk − Ip)

∥
∥
∥
F
≤ (1 +M2)N + βRM = NL

holds for any Xk ∈ C. By using the facts Xk ∈ C, (4.1) and (4.5), we have

2

ηk
||Xk||2||∇XLβ(X

k,Λk)||F +
1

(ηk)2
||∇XLβ(X

k,Λk)||2F ≤ R

2
,

which implies ||Xk+1⊤Xk+1 − Ip||F ≤ R. This shows (4.6) is true for k + 1.

Case II, ||Xk⊤Xk − Ip||F > R
2 . For convenience, we denote c(X) = 1

2 ||X⊤X − Ip||2F,

d = ∇f(Xk)−XkΛk, C = Xk⊤Xk − Ip, δ = XkC.(4.7)

11



According to the facts σmin(X
k) ≥ σ and Xk ∈ C, we have

‖δ‖F >
Rσ

2
.(4.8)

By using the fact that tr(AB) = tr(AB⊤) if A is symmetric, we have

tr(CXk⊤∇f(Xk)) = tr(C∇f(Xk)⊤Xk) = tr(CΛk).

Hence, we have

〈d, δ〉 = tr(CXk⊤∇f(Xk)− CXk⊤XkΛk)

= tr(CXk⊤∇f(Xk)− C(C + Ip)Λ
k) = −tr(C2Λk).(4.9)

Notice that Lc = 2R+ 4M2 is the Lipschitz constant of ∇c(X) over C. Due to the fact (4.5), (4.8) and (4.9), we

have

tr
(
∇XLβ(X

k,Λk)⊤∇c(Xk)
)
− c2||∇XLβ(X

k,Λk)||2F
≥ 2〈d+ βδ, δ〉 − c2N

2
L = 2β ‖δ‖2F + 2〈d, δ〉 − c2N

2
L

>
βR2σ2

2
− 2 ‖C‖2F · tr(Λk)− c2N

2
L

≥ βR2σ2

2
− 2R2MN − c2N

2
L ≥ 0.

According to the Taylor expansion, we have

c(Xk+1) = c

(

Xk − 1

ηk
∇XLβ(X

k,Λk)

)

≤ c(Xk)− 1

ηk
〈
∇XLβ(X

k,Λk),∇c(Xk)
〉
+

Lc

2(ηk)2
||∇XLβ(X

k,Λk)||2F

< c(Xk)−
(
c2
η̄

− Lc

2η̄2

)

· ||∇XLβ(X
k,Λk)||2F ≤ c(Xk).

According to assumption, R ≤ 1− σ2, we can easily obtain that σmin(X
k+1) ≥ σ. This completes the proof.

LEMMA 4.4. h(X) defined by (4.2) is bounded below at C.

This lemma immediately holds by the continuous differentiability of h(X) and the compactness of C, and hence,

the proof is omitted.

LEMMA 4.5. Suppose {Xk} is the iterate sequence generated by Algorithm 2 initiated from X0 satisfying As-

sumption 4.1, the problem parameters satisfy Assumption 4.2, and h(X) is defined by (4.2). Then it holds that

h(Xk)− h(Xk+1) ≥ c3||∇XLβ(X
k,Λk)||2F,(4.10)

where c3 = c1
η̄ − Lh

2η̄2 > 0.

Proof. Firstly, we notice that

∇h(X) = ∇XLβ(X,Ψ(∇f(X)⊤X))− 1

2
(∇2f(X)[X ] +∇f(X))(X⊤X − Ip).

12



We keep using the notations (4.7) and investigate

||∇XLβ(X
k,Λk)||2F − 1

1− 2c1
||∇h(Xk)−∇XLβ(X

k,Λk)||2F

≥ ||d+ βδ||2F − (N + LM)2

4(1− 2c1)
||C||2F ≥ 2β〈d, δ〉+ β2||δ||2F − (N + LM)2

4(1− 2c1)
||C||2F

≥ −β ‖C‖2F · tr(Λk) +

(

β2σ2 − (N + LM)2

4(1− 2c1)

)

· ||C||2F

≥ −2βMN ||C||2F +

(

β2σ2 − (N + LM)2

4(1− 2c1)

)

· ||C||2F ≥ 0,

where the second last inequality is implied by relation (4.9). Hence, we arrive at

〈∇XLβ(X
k,Λk),∇h(Xk)〉 ≥ c1||∇XLβ(X

k,Λk)||2F.(4.11)

Substituting (4.5) and (4.11) into the Taylor expansion, we have

h(Xk+1) = h

(

Xk − 1

ηk
∇XLβ(X

k,Λk)

)

≤ h(Xk)− 1

ηk
〈
∇X∇h(Xk),Lβ(X

k,Λk)
〉
+

Lh

2(ηk)2
||∇XLβ(X

k,Λk)||2F

≤ h(Xk)−
(
c1
η̄

− Lh

2η̄2

)

· ||∇XLβ(X
k,Λk)||2F.

We complete the proof.

With the boundedness of h(X) at C, Lemma 4.5 immediately implies the convergent of {h(Xk)}. More precisely,

we have the following corollary.

COROLLARY 4.6. Suppose {Xk} is the iterate sequence generated by Algorithm 2 initiated from X0 satisfying

Assumption 4.1, and the problem parameters satisfy Assumption 4.2. Then the algorithm is finitely terminated at k-th

iteration with ∇XLβ(X
k,Λk) = 0, or

lim
k→+∞

∇XLβ(X
k,Λk) = 0.

Moreover, {Xk} has at least one convergent subsequence. Any cluster point of {Xk}, X∗, is a first-order stationary

point of minimizing the augmented Lagrangian function (2.9) with Λ∗ = Ψ(∇f(X∗)⊤X∗).

Proof. This is a direct corollary of Lemmas 4.3 and 4.5.

Finally, we give the global convergence rate of PLAM, namely, the worst case complexity.

THEOREM 4.7. Suppose {Xk} is the iterate sequence generated by Algorithm 2 initiated from X0 satisfying

Assumption 4.1, and the problem parameters satisfy Assumption 4.2. Then the sequence {Xk} has at least one cluster

point, and any which is a first-order stationary point of problem (1.1). More precisely, for any K > 1, it holds

min
k=0,...,K−1

||∇XLβ(X
k,Λk)||F <

√

f(X0)− f +MNR+ βR2/4

c3K
.(4.12)
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Proof. The first part directly holds from Corollaries 4.6 and Lemma 2.4. Recalling Lemma 4.5, we have

h(X0)−min
X∈C

h(X) ≥ h(X0)− h(XK) ≥
K−1∑

k=0

c3||∇XLβ(X
k,Λk)||2F(4.13)

≥ c3K · min
k=0,...,K−1

||∇XLβ(X
k,Λk)||2F.(4.14)

Moreover, we have

h(X0) ≤ f(X0) +
1

2
MNR+

β

4
R2, min

X∈C
h(X) ≥ f − 1

2
MNR.(4.15)

Combining (4.13)-(4.15), we arrive at the argument (4.12).

COROLLARY 4.8. Suppose all the assumptions of Theorem 4.7 hold. Besides, for a given positive parameter δ, it

holds that β > (MN + δ)/σ, then it holds that

min
k=0,...,K−1

max
{

||Ip −Xk⊤Xk||F, ||∇XLβ(X
k,Λk)||F

}

< max

{
M

δ
, 1

}
√

f(X0)− f +MNR+ βR2/4

c3K
.

Proof. This is a direct corollary of Lemma 2.4 and Theorem 4.7.

REMARK 4.9. The sublinear convergence rate of Corollary 4.8 actually tells us that Algorithm 2 terminates after

O(1/ǫ2) iterations, if the stopping criterion is set as max
{

||Ip −Xk⊤Xk||F, ||∇XLβ(X
k,Λk)||F

}

< ǫ.

4.2. Local Convergence Rate of PLAM and PCAL. In this subsection, we consider the local convergence of

PLAM once the optimization problem with orthogonality constraints (1.1) has an isolated local minimizer.

THEOREM 4.10. Suppose X∗ is an isolated minimizer of (1.1), and we denote

τ := inf
06=Y ∈T (X)

tr(Y ⊤∇2f(X)[Y ]− ΛY ⊤Y )

||Y ||2F
.

The algorithm parameters satisfy β ≥ L+MN+τ
2 and ηk ∈ [η, η̄], where η̄ ≥ η ≥ L +MN + 2β. Then, there exists

ε > 0 such that starting from any X0 satisfying ||X0 − X∗||F < ε, and the iterate sequence {Xk} generated by

Algorithm 2 converges to X∗ Q-linearly.

Proof. We study the iterate formula (3.2).

Xk+1 = Xk − 1

ηk
∇XLβ(X

k, Ψ(∇f(Xk)⊤Xk));

X∗ = X∗ − 1

ηk
∇XLβ(X

∗, Ψ(∇f(X∗)⊤X∗)).

Subtracting the second one from the first one and using the Taylor expansion, we have

δk+1 = δk − 1

ηk
∇2

XXLβ(X
∗, Ψ(∇f(X∗)⊤X∗))[δk] + o(||δk||),(4.16)

where δk = Xk −X∗. Recall the expression of Hessian (2.13), the fact that ∇f(X∗)⊤X∗ = Ψ(∇f(X∗)⊤X∗) and

the assumption on η, we have

∥
∥
∥
∥

1

ηk
∇2

XXLβ(X
∗,∇f(X∗)⊤X∗)[δk]

∥
∥
∥
∥
F

≤ ||δk||F.(4.17)
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On the other hand, δk can be decomposed as the summation of three terms:

δk = X∗S +X∗W +K,(4.18)

where S ∈ R
p×p is symmetric, W ∈ R

p×p is skew-symmetric, K ∈ R
n×p is perpendicular to X∗. Since X∗ is a

strict local minimizer, and T (X) is closed, we have τ > 0. Hence, it holds that

tr
(
(X∗W +K)⊤∇2

XXLβ(X
∗,∇f(X∗)⊤X∗)[X∗W +K]

)
≥ τ ||X∗W +K||2F,(4.19)

as X∗W +K ∈ T (X). Moreover, it follows from the assumption on β that

tr
(
(X∗S)⊤∇2

XXLβ(X
∗,∇f(X∗)⊤X∗)[X∗S]

)

= tr(SX∗∇2f(X∗)X∗S − S2∇f(X∗)⊤X∗ + 2βS2) ≥ τ ||X∗S||2F.(4.20)

Combining (4.19), (4.20), the symmetry of S, the skew symmetry of W , K⊤X∗ = 0 together with the assumption on

η, we arrive at

tr
(

δk
⊤∇2

XXLβ(X
∗,∇f(X∗)⊤X∗)[δk]

)

= tr
(
(X∗W +K)⊤∇2

XXLβ(X
∗,∇f(X∗)⊤X∗)[X∗W +K]

)

+tr
(
(X∗W +K)⊤∇2

XXLβ(X
∗,∇f(X∗)⊤X∗)[X∗S]

)

+tr
(
(X∗S)⊤∇2

XXLβ(X
∗,∇f(X∗)⊤X∗)[X∗W +K]

)

+tr
(
(X∗S)⊤∇2

XXLβ(X
∗,∇f(X∗)⊤X∗)[X∗S]

)

≥ τ ||X∗W +K||2F + τ ||X∗S||2F = τ ||δk||2F.(4.21)

Notice that (4.17) implies the positive semi-definiteness of the linear operator

I − 1

ηk
∇2

XXLβ(X
∗,∇f(X∗)⊤X∗).

Together with (4.21), we can conclude that

||δk+1||F ≤ (1− τ)||δk||F + o(||δk||),

which completes the proof.

REMARK 4.11. The global and local convergence of PCAL can be established in the same manner as PLAM, if

the multipliers are updated by the same formula, (3.1), as PLAM.

5. Numerical Experiments. In this section, we evaluate the numerical performance of our proposed algorithms

PLAM and PCAL. We first introduce the implementation details and the testing problems in Subsection 5.1 and 5.2,

respectively. Then, we report the numerical experiments which are mainly of three folds.

In the first part, we mainly determine the default settings of our proposed algorithms, which will be discussed in

Subsection 5.3. Then, in Subsection 5.4, we compare our PLAM and PCAL with a few existing solvers by testing a

bunch of instances, which are chosen from a MATLAB toolbox KSSOLV [36]. All the algorithms tested in the first

two parts are run in serial. The corresponding experiments are performed on a workstation with one Intel(R) Xeon(R)

Processor E5-2697 v2 (at 2.70GHz×12, 30M Cache) and 128GB of RAM running in MATLAB R2016b under Ubuntu
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12.04.

Finally, we investigate the parallel efficiency of PCAL by comparing with a parallelized version of MOptQR

in Subsection 5.5. All the experiments in this subsection are performed on a single node of LSSC-IV4, which is a

high-performance computing cluster (HPCC) maintained at the State Key Laboratory of Scientific and Engineering

Computing (LSEC), Chinese Academy of Sciences. The operating system of LSSC-IV is Red Hat Enterprise Linux

Server 7.3. This node called “b01” consists of two Intel(R) Xeon(R) Processor E7-8890 v4 (at 2.20GHz×24, 60M

Cache) with 4TB shared memory. The total number of processor cores in this node is 96.

5.1. Implementation Details. There are two parameters in our algorithms PLAM and PCAL. According to

Theorem 4.7, the penalty parameter β for PLAM should be sufficiently large. Although we can estimate a suitable β

to satisfy the assumption of the theorem, it would be too large in practice. In the numerical experiments, we set β as

an upper bound of s := ||∇2f(0)||2 for PLAM, and 1 for PCAL.

Another one is the proximal parameter η, whose reciprocal is the step size of the gradient step in Algorithm 2 and

3. Similar to β, we can not use the rigorous restriction in the theoretical analysis. In practice, we have the following

strategies to choose this parameter:

(i) ηkC := γ, where γ > 0 is a sufficiently large constant.

(ii) Differential approximation:

ηkD :=
||∇XLβ(X

k,Λk)−∇XLβ(X
k−1,Λk−1)||F

||Xk −Xk−1||F
.

(iii) Barzilai-Borwein(BB) strategy [2]:

ηkBB1 :=

∣
∣
〈
Sk−1, Y k−1

〉∣
∣

〈Sk−1, Sk−1〉 , or ηkBB2 :=

〈
Y k−1, Y k−1

〉

|〈Sk−1, Y k−1〉| ,

where

Sk = Xk −Xk−1, Y k = ∇XLβ(X
k,Λk)−∇XLβ(X

k−1,Λk−1).

(iv) Alternating BB strategy [9]:

ηkABB :=

{

ηkBB1, for odd k,

ηkBB2, for even k.

Unless specifically mentioned, the stopping criterion used for both serial and parallel experiments can be described

as follows,

∥
∥∇f(X)−X∇f(X)⊤X

∥
∥
F

‖∇f(X0)−X0∇f(X0)⊤X0‖F
< 10−8.

The maximum number of iteration for all those solvers is set to 3000.

5.2. Testing Problems. In this subsection, we introduce six types of problems which will be used in the numeri-

cal experiments.

4More information at http://lsec.cc.ac.cn/chinese/lsec/LSSC-IVintroduction.pdf
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Problem 1: A simplification of discretized Kohn-Sham total energy minimization.

min
X∈Rn×p

1
2 tr(X

⊤LX) + α
4 ρ(X)⊤L†ρ(X)

s. t. X⊤X = Ip,
(5.1)

where the matrix L ∈ S
n and ρ(X) := diag(XX⊤). In the numerical experiments, we set α = 1, and L is randomly

generated by Gauss distribution, i.e., L=randn(n) in MATLAB language, and set L := 1
2 (L+L⊤). In this instance,

s = ‖L‖2.

Problem 2: A class of quadratic minimization with orthogonality constraints.

min
X∈Rn×p

1
2 tr(X

⊤AX) + tr(G⊤X)

s.t. X⊤X = Ip,
(5.2)

where the matrices A ∈ S
n and G ∈ R

n×p. This problem is adequately discussed in [11]. In the numerical experi-

ments, the matrices A and G are randomly generated in the same manner as in [11]. Namely,

A := PΛP⊤,(5.3)

G := κ ·QD,(5.4)

where the matrices P=qr(rand(n,n))∈ R
n×n, Q̃=rand(n,p)∈ R

n×p, Q ∈ R
n×p and Qi = Q̃i/||Q̃i||2

(i = 1, 2, ..., p), and matrices Λ ∈ R
n×n and D ∈ R

p×p are diagonal matrices with

Λii :=

{

θ1−i, rand(1, 1) < ξ

−θ1−i, rand(1, 1) ≥ ξ
∀i = 1, 2, . . . , n,(5.5)

Djj := ζj−1, ∀j = 1, 2, . . . , p.(5.6)

Here, parameter θ ≥ 1 determines the decay of eigenvalues of A; parameter ζ ≥ 1 refers to the growth rate of column’s

norm of G. The parameter κ > 0 represents the scale difference between the quadratic term and the linear term. The

default setting of these parameters are κ = 1, θ = 1.01, ζ = 1.01, ξ = 1. In this instance, s = ‖A‖2.

Problem 3: Rayleigh-Ritz trace minimization, which is a special case of Problem 2.

min
X∈Rn×p

1
2 tr(X

⊤AX)

s.t. X⊤X = Ip,
(5.7)

where the matrices A ∈ S
n. In our experiments, the matrix A is generated in the same manner as in Problem 2. In this

instance, s = ‖A‖2.

Problem 4: Another class of quadratic minimization with orthogonality constraints.

min
X∈Rn×p

1
2 tr(A

⊤XBX⊤)

s.t. X⊤X = Ip.
(5.8)

where the matrices A ∈ S
n and B ∈ S

p. This problem is out of the scope of problems discussed in [11], but can be

solved by PLAM or PCAL. The matrices A and B are randomly generated by A =randn(n), A := 1
2 (A+A⊤) and

B =randn(p), B := 1
2 (B +B⊤), respectively. In this instance, s = ‖A‖2 · ‖B‖2
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Problem 5: Discretized Kohn-Sham total energy minimization instances from KSSOLV [36].

min
X∈Rn×p

E(X), s. t. X⊤X = Ip,(5.9)

where the discretized Kohn-Sham total energy function E(X) is defined by (1.2). All the data comes from MATLAB

toolbox KSSLOV.

Problem 6: A synthetic instance of discretized Kohn-Sham total energy minimization.

min
X∈Rn×p

1
2 tr(X

⊤LX) + 1
2ρ(X)⊤L†ρ(X)− 3

4γρ(X)⊤ρ(X)
1

3

s. t. X⊤X = Ip,
(5.10)

where the matrix L ∈ R
n×n and ρ(X) := diag(XX⊤). The parameter γ = 2( 3π )

1/3 and ρ(X)
1

3 denotes the

component-wise cubic root of the vector ρ(X). This problem adopts a special exchange functional − 3
4γρ(X)⊤ρ(X)

1

3

(the correlation term is ignored), which is introduced in [22]. The generation of L is in the same manner as in Problem

1.

5.3. Default Settings. In this subsection, we determine the default settings for the proposed algorithms PLAM

and PCAL.

In the first experiment, we test PLAM and PCAL with these four different choices of ηk on Problem 1-4. Here, we

only illustrate the results of ηBB1 for strategy (iii), since its performances overwhelms those with ηBB2. The penalty

parameter is fixed as β = s+ 0.1. FIG. 5.1 shows the results of PLAM and PCAL with different ηk. From subfigures

(a)-(d), we observe that PLAM with ηABB outperforms others. Under the same setting, a comparison among PCAL

with different ηk is reported in subfigures (e)-(h). We notice that PCAL with ηABB is superior to the other ηk choices.

Then we set ηABB as the default setting for PLAM and PCAL.
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FIG. 5.1. A comparison of KKT violation for PLAM (a)-(d) and PCAL (e)-(h) with different η (β = s+ 0.1)

We next compare the performance among PLAM and PCAL variations corresponding to different β. In the

comparison, we set β varying among 0, 0.01s, 0.1s, s+ 0.1, 10s+ 1. The proximal parameter is fixed as its default
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η = ηABB. We present all the numerical results in Figure 5.2. We notice from subfigures (a)-(d) that PLAM with

small β might be divergent in some cases, while large β causes slow convergence. Therefore, a suitable chosen β,

often unreachable in practice, is necessary for good performance of PLAM. On the other hand, the dependence on β

of PCAL can be learnt from subfigures (e)-(h). The smaller β for PCAL has the better performance in some instances,

and the behavior of PCAL is completely not sensitive to β in other instances. To take more distinctive look at the

difference between PLAM and PCAL, we present a comparison in Figure 5.3. Therefore, in practice, we suggest an

approximation of s to be the default β of PLAM and 1 for PCAL. Since it is easier to tune β for PCAL than PLAM,

we choose PCAL to be the default algorithm of ours in Subsection 5.5.
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FIG. 5.2. A comparison of KKT violation for PLAM (a)-(d) and PCAL (e)-(h) with different β (η = ηABB)

0 50 100 150 200 250 300 350
iteration

10-10

100

1010

K
K

T
 v

io
la

tio
n

n=1000, p=20

PCAL
PLAM

(a) β = 0.01s

0 100 200 300 400 500
iteration

10-10

10-5

100

105

1010

K
K

T
 v

io
la

tio
n

n=1000, p=20

PCAL
PLAM

(b) β = s+ 0.1

0 100 200 300 400 500
iteration

10-10

10-5

100

105

1010

K
K

T
 v

io
la

tio
n

n=1000, p=20

PCAL
PLAM

(c) β = 10s+ 1

FIG. 5.3. A comparison between PLAM and PCAL with different β on Problem 1

There are two distinctions between PLAM and ALM. Firstly, a gradient step takes the place of solving the sub-

problem to some given precision in the update of the prime variables. Secondly, a closed-form expression is used

to update the Lagrangian multipliers in stead of dual ascend. In order to show that the new update formula for mul-

tipliers is a crucial fact of the efficiency of PLAM and PCAL, we compare PLAM and PCAL with PLAM-DA and

PCAL-DA, respectively. Here PLAM-DA and PCAL-DA stand for Algorithm 2 and 3 with Step 3 using dual ascend to
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update the multipliers, respectively. We report the numerical results in Figure 5.4. It can be observed that the closed-

form expression for updating Lagrangian multipliers is superior to dual ascend in solving optimization problems with

orthogonality constraints.
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FIG. 5.4. A comparion bewteen PLAM and PCAL on multilplier

In the end of this subsection, we show how KKT and feasibility violations decay in the iterations, when PLAM

and PCAL are used to solve Problem 1. The numerical results are presented in Figure 5.5. We notice that the decay

of feasibility violations is nonmonotone and has a similar variation tendency as KKT violations, which coincides our

theoretical analysis Lemma 2.4. If we want a high accuracy for the feasibility but a mild one for KKT conditions, we

can set a mild tolerance for KKT violation and impose an orthonormalization step as a post process when we obtain

the last iterate by PLAM or PCAL. Table 5.1 illustrates that such post process does not affect the KKT violation, but

do improve the feasibility. Here, ”stop” and ”orth” represent the relative values at the last iterate and the one after

post process, respectively. Hereinafter, the orthonormalization post process, achieved by an internal function qr(·)
assembled in MATLAB, is the default last step of PLAM and PCAL.
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FIG. 5.5. The results of KKT and Feasibility violation for PLAM and PCAL on Problem 1

5.4. Kohn-Sham Total Energy Minimization. In this subsection, we compare PLAM and PCAL with the state-

of-the-art solvers in solving Kohn-Sham total energy minimization (5.9) in serial. In other word, we aim to investigate

the numerical performance of two proposed infeasible algorithms as general solvers for optimization problems with

orthogonality constraints without consideration of parallelization.

Our test is based on KSSOLV5 [36], which is a MATLAB toolbox for electronic structure calculation. It allows

5Available from http://crd-legacy.lbl.gov/∼chao/KSSOLV/
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Solver Function value KKT violation Feasibility violation

n = 1000, p = 20, α = 1

PLAM
stop -4.205530767124e+02 8.74e-06 2.56e-09

orth -4.205530767662e+02 8.74e-06 5.61e-15

PCAL
stop -4.205530767773e+02 6.01e-06 1.13e-08

orth -4.205530767665e+02 6.00e-06 2.00e-14

TABLE 5.1

The results of orthogonal step for PLAM and PCAL on Problem 1

researchers to investigate their own algorithms easily and friendly for different steps in electronic structure calcula-

tion. We choose two integrated solvers in KSSOLV. One is the self-consistent field (SCF) iteration, which minimize

a quadratic surrogate of the objective of (5.9) with orthogonality constraints in each iteration [21]. SCF and its vari-

ations are the most widely used in real KSDFT calculation. The other one is called trust-region direct constrained

minimization (TRDCM) [38], which combines the trust-region framework and SCF to solve the subproblem. Besides

SCF and TRDCM, which are particularly for KSDFT, we also pick up two state-of-the-art solvers in solving general

optimization problems with orthogonality constraints. One is OptM6, which is based on the algorithm proposed in

[34]. OptM adopts Cayley transform to preserve the feasibility on the Stiefel manifold in each iteration. Nonmono-

tone line search with BB stepsize is the default setting in OptM. Another existing solver for comparison, we intend

to choose MOptQR, which is based on a projection-like retraction method introduced in [1]. Its original version is

MOptQR-LS (manifold QR method with line search7). For fair comparison, we implement the same alternating BB

stepsize strategy as PLAM and PCAL to MOptQR-LS, and form the MOptQR used in this section.

We select 18 testing problems with respect to different molecules, which are assembled in KSSOLV. For all the

methods, the stopping criterion is set as
∥
∥(In −XX⊤)H(X)X

∥
∥
F
< 10−5. And we set the max iteration number

MaxIter = 200 for methods SCF and TRDCM, while MOptQR, OptM, PLAM and PCAL set their max iteration

number with MaxIter = 1000 to get a comparable solution with other methods. The penalty parameter βPLAM for

PLAM is tuned case by case to achieve a good performance. Meanwhile, βPCAL for PCAL is always set as 1. Other

parameters for all these methods take their default values. For all of the testing algorithms, we set the same initial

guess X0 by using the function “getX0”, which is provided by KSSOLV. The numerical results are illustrated in

Tables 5.2, 5.3 and 5.4.

Here, “Etot” represents the total energy function value, and “KKT violation”, “Iteration”, “Feasibility violation”

and “Time(s)” stand for
∥
∥(In −XX⊤)H(X)X

∥
∥
F

, the number of iteration,
∥
∥X⊤X − Ip

∥
∥
F

and the total running

wall-clock time in second, respectively. From the tables, we observe that PCAL has a better performance than other

algorithms, and in most cases, it obtains a comparable total energy function value and a lower KKT violation. In

particular, in the large size problem “graphene30”, PCAL achieves the same total energy function value and same

magnitude KKT violation in much less CPU time than others. In the problem “qdot”, we observe that only PLAM and

PCAL can output a point satisfying the KKT violation tolerance, while all the other algorithms terminate abnormally.

Therefore, we can conclude that PCAL and PLAM perform comparable with the existent feasible algorithms in solving

discretized Kohn-Sham total energy minimization.

5.5. Parallel Efficiency. In this subsection, we examine the parallel efficiency of our algorithms PLAM and

PCAL. To investigate the parallel scalability, we need to test large scale problems in a single core, which consumes

6Available from http://optman.blogs.rice.edu
7Available from http://www.manopt.org
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Solver Etot KKT violation Iteration Feasibility violation Time(s)

al, n = 16879, p = 12 (βPLAM = 10, βPCAL = 1)

SCF -1.5789379003e+01 4.88e-03 200 6.53e-15 539.51

TRDCM -1.5803791151e+01 6.36e-06 154 4.94e-15 336.79

MOptQR -1.5803814080e+01 1.88e-04 1000 1.33e-14 393.54

OptM -1.5803791098e+01 2.38e-05 1000 3.19e-14 378.80

PLAM -1.5803790675e+01 1.29e-05 1000 3.34e-07 399.80

PCAL -1.5803791055e+01 8.96e-06 596 5.95e-15 228.06

alanine, n = 12671, p = 18 (βPLAM = 13, βPCAL = 1)

SCF -6.1161921212e+01 3.80e-07 13 7.20e-15 21.46

TRDCM -6.1161921213e+01 6.02e-06 15 5.20e-15 16.97

MOptQR -6.1161921213e+01 7.52e-06 64 6.77e-15 14.89

OptM -6.1161921213e+01 2.27e-06 69 4.03e-14 16.44

PLAM -6.1161921212e+01 9.50e-06 76 7.90e-15 17.14

PCAL -6.1161921213e+01 4.14e-06 61 7.19e-15 15.89

benzene, n = 8407, p = 15 (βPLAM = 10, βPCAL = 1)

SCF -3.7225751349e+01 2.10e-07 10 7.82e-15 10.07

TRDCM -3.7225751363e+01 9.23e-06 15 7.12e-15 9.83

MOptQR -3.7225751362e+01 8.12e-06 146 7.24e-15 19.91

OptM -3.7225751363e+01 2.50e-06 70 1.54e-14 9.61

PLAM -3.7225751362e+01 9.37e-06 71 4.62e-15 9.55

PCAL -3.7225751362e+01 9.22e-06 50 5.15e-15 7.74

c2h6, n = 2103, p = 7 (βPLAM = 10, βPCAL = 1)

SCF -1.4420491315e+01 3.70e-09 10 3.66e-15 3.40

TRDCM -1.4420491322e+01 8.75e-06 13 2.76e-15 4.01

MOptQR -1.4420491321e+01 8.59e-06 47 2.58e-15 2.57

OptM -1.4420491322e+01 2.62e-06 55 1.18e-14 2.87

PLAM -1.4420491322e+01 7.91e-06 69 2.92e-15 3.41

PCAL -1.4420491322e+01 4.91e-06 45 2.33e-15 2.58

c12h26, n = 5709, p = 37 (βPLAM = 10, βPCAL = 1)

SCF -8.1536091894e+01 4.95e-08 14 1.40e-14 30.08

TRDCM -8.1536091937e+01 4.84e-06 16 1.17e-14 21.77

MOptQR -8.1536091936e+01 6.68e-06 147 1.43e-14 39.57

OptM -8.1536091937e+01 1.07e-06 83 7.10e-14 22.65

PLAM -8.1536091936e+01 5.88e-06 96 1.55e-14 25.11

PCAL -8.1536091936e+01 8.75e-06 70 1.45e-14 22.88

co2, n = 2103, p = 8 (βPLAM = 10, βPCAL = 1)

SCF -3.5124395789e+01 6.17e-08 10 2.53e-15 2.61

TRDCM -3.5124395801e+01 4.14e-06 14 4.11e-15 2.09

MOptQR -3.5124395800e+01 9.30e-06 88 2.35e-15 2.90

OptM -3.5124395801e+01 1.70e-06 48 3.55e-14 1.68

PLAM -3.5124395801e+01 7.92e-06 57 2.30e-15 1.84

PCAL -3.5124395801e+01 9.15e-06 43 2.11e-15 1.74

TABLE 5.2

The results in Kohn-Sham total energy minimization
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Solver Etot KKT violation Iteration Feasibility violation Time(s)

ctube661, n = 12599, p = 48 (βPLAM = 13, βPCAL = 1)

SCF -1.3463843175e+02 3.88e-07 11 1.43e-14 56.43

TRDCM -1.3463843176e+02 6.85e-06 23 1.09e-14 87.41

MOptQR -1.3463843176e+02 7.21e-06 152 1.78e-14 107.62

OptM -1.3463843176e+02 2.35e-06 82 2.15e-14 59.23

PLAM -1.3463843176e+02 4.34e-06 107 2.37e-14 72.18

PCAL -1.3463843176e+02 9.68e-06 65 1.95e-14 54.07

glutamine, n = 16517, p = 29 (βPLAM = 13, βPCAL = 1)

SCF -9.1839425202e+01 1.12e-07 15 1.07e-14 67.40

TRDCM -9.1839425244e+01 3.23e-06 16 7.00e-15 54.65

MOptQR -9.1839425243e+01 9.83e-06 78 9.07e-15 51.46

OptM -9.1839425244e+01 2.47e-06 87 9.73e-15 57.65

PLAM -9.1839425243e+01 8.72e-06 104 9.26e-15 66.31

PCAL -9.1839425243e+01 6.28e-06 74 9.33e-15 53.53

graphene16, n = 3071, p = 37 (βPLAM = 10, βPCAL = 1)

SCF -9.4023322108e+01 2.07e-03 200 1.32e-14 309.33

TRDCM -9.4046217545e+01 8.85e-06 45 1.08e-14 47.87

MOptQR -9.4046217225e+01 9.90e-06 422 1.15e-14 80.67

OptM -9.4046217545e+01 2.27e-06 245 1.03e-14 48.66

PLAM -9.4046217854e+01 9.52e-06 278 1.34e-14 51.57

PCAL -9.4046217542e+01 8.68e-06 176 1.17e-14 41.11

graphene30, n = 12279, p = 67 (βPLAM = 13, βPCAL = 1)

SCF -1.7358453985e+02 5.19e-03 200 1.93e-14 2815.79

TRDCM -1.7359510506e+02 4.80e-06 71 1.42e-14 765.92

MOptQR -1.7359510505e+02 9.92e-06 456 2.59e-14 800.08

OptM -1.7359510506e+02 2.47e-06 472 2.49e-14 904.44

PLAM -1.7359510505e+02 8.88e-06 330 2.75e-14 601.41

PCAL -1.7359510505e+02 8.52e-06 253 2.62e-14 548.70

h2o, n = 2103, p = 4 (βPLAM = 10, βPCAL = 1)

SCF -1.6440507245e+01 1.16e-08 8 1.15e-15 1.29

TRDCM -1.6440507246e+01 6.48e-06 11 1.11e-15 1.02

MOptQR -1.6440507246e+01 3.84e-06 49 9.30e-16 1.14

OptM -1.6440507246e+01 2.01e-06 61 6.40e-15 1.50

PLAM -1.6440507245e+01 6.43e-06 56 2.37e-15 1.29

PCAL -1.6440507246e+01 7.42e-06 42 1.86e-15 1.06

hnco, n = 2103, p = 8 (βPLAM = 10, βPCAL = 1)

SCF -2.8634664360e+01 9.44e-08 12 3.82e-15 4.32

TRDCM -2.8634664365e+01 9.54e-06 13 3.47e-15 4.47

MOptQR -2.8634664363e+01 9.74e-06 163 3.17e-15 12.26

OptM -2.8634664365e+01 5.30e-06 117 2.26e-15 8.30

PLAM -2.8634664364e+01 9.95e-06 105 3.18e-15 7.39

PCAL -2.8634664364e+01 9.03e-06 70 2.60e-15 5.36

TABLE 5.3

The results in Kohn-Sham total energy minimization
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Solver Etot KKT violation Iteration Feasibility violation Time(s)

nic, n = 251, p = 7 (βPLAM = 10, βPCAL = 1)

SCF -2.3543529950e+01 2.13e-10 11 2.99e-15 1.47

TRDCM -2.3543529955e+01 7.94e-06 15 4.49e-15 0.99

MOptQR -2.3543529955e+01 3.04e-06 111 2.73e-15 1.53

OptM -2.3543529955e+01 3.86e-07 63 8.80e-15 0.90

PLAM -2.3543529955e+01 4.02e-06 67 1.39e-15 0.89

PCAL -2.3543529955e+01 8.42e-06 52 1.88e-15 0.99

pentacene, n = 44791, p = 51 (βPLAM = 13, βPCAL = 1)

SCF -1.3189029494e+02 5.76e-07 13 1.58e-14 293.68

TRDCM -1.3189029495e+02 7.60e-06 22 1.08e-14 276.25

MOptQR -1.3189029495e+02 7.78e-06 112 3.21e-14 306.97

OptM -1.3189029495e+02 1.39e-06 97 3.39e-14 283.02

PLAM -1.3189029495e+02 8.66e-06 123 3.52e-14 321.04

PCAL -1.3189029495e+02 7.67e-06 89 3.08e-14 271.32

ptnio, n = 4069, p = 43 (βPLAM = 13, βPCAL = 1)

SCF -2.2678884268e+02 1.09e-05 53 1.46e-14 168.25

TRDCM -2.2678882693e+02 2.81e-04 200 1.07e-14 471.34

MOptQR -2.2678884271e+02 9.57e-06 786 1.06e-14 347.38

OptM -2.2678884273e+02 9.52e-06 508 1.14e-14 203.63

PLAM -2.2678884271e+02 9.00e-06 579 1.01e-14 213.60

PCAL -2.2678884271e+02 8.55e-06 386 1.19e-14 189.70

qdot, n = 2103, p = 8 (βPLAM = 10, βPCAL = 1)

SCF 2.7700280133e+01 6.70e-03 5 2.92e-15 1.09

TRDCM 2.7699537080e+01 1.43e-02 200 2.73e-15 27.01

MOptQR 1.0483319768e+02 3.45e+01 1000 1.77e-15 28.72

OptM 2.7699807230e+01 1.45e-04 1000 2.39e-15 29.89

PLAM 2.7699800860e+01 9.68e-06 678 1.98e-15 19.30

PCAL 2.7699800851e+01 5.41e-06 962 2.88e-15 35.01

si2h4, n = 2103, p = 6 (βPLAM = 10, βPCAL = 1)

SCF -6.3009750375e+00 5.25e-07 11 3.62e-15 2.97

TRDCM -6.3009750459e+00 8.24e-06 16 3.12e-15 4.30

MOptQR -6.3009750460e+00 3.70e-06 116 2.00e-15 5.96

OptM -6.3009750459e+00 9.60e-06 68 1.41e-14 4.15

PLAM -6.3009750455e+00 7.27e-06 89 1.58e-15 5.33

PCAL -6.3009750459e+00 4.33e-06 62 2.42e-15 3.90

sih4, n = 2103, p = 4 (βPLAM = 10, βPCAL = 1)

SCF -6.1769279820e+00 2.07e-08 8 1.75e-15 1.91

TRDCM -6.1769279850e+00 9.53e-06 10 1.14e-15 1.60

MOptQR -6.1769279851e+00 4.32e-06 34 1.58e-15 1.07

OptM -6.1769279851e+00 8.18e-06 46 8.52e-16 1.62

PLAM -6.1769279849e+00 7.37e-06 56 1.99e-15 1.79

PCAL -6.1769279847e+00 9.16e-06 47 1.55e-15 1.69

TABLE 5.4

The results in Kohn-Sham total energy minimization
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lots of CPU time. To avoid meaningless tests, we only compare the parallel performances of PCAL with MOptQR in

this subsection.

Both algorithms are implemented in the C++ language and parallelized by OpenMP. The linear algebra library

we used in comparison is Eigen8 (version 3.3.4), which is an open and popular C++ template library for matrix

computation. We define the speedup factor for running a code on m cores as

speedup-factor(m) =
wall-clock time for a single core run

wall-clock time for a m-core run
.

BLAS3 type arithmetic operations contribute a high proportion in computational cost in both PCAL and MOptQR.

Therefore, a good parallel strategy for BLAS3 calculation is unnegligible in saving CPU time. Given this, we first

determine the parallel strategy for matrix-matrix multiplication by a set of tests. We have two choices. The library

Eigen provides its own multi-threading computing9 that is the default parallel strategy for dense matrix-matrix products

and row-major-sparse∗dense vector/matrix products in OpenMP. Another strategy is to parallelize BLAS3 computation

in the manner of column-wise product. Namely, when we calculate AB, we multiply matrix A by each column of B in

parallel. To figure out which strategy is better, we test the parallel scalability of BLAS3 computation under these two

schemes. We generate A=Random(1000,10000) and B=Random(10000,1000), where “Random(·,·)” is an

internal generation function provided by Eigen. We run the code in parallel with 1, 2, 4, 8, 16, 32, 64 and 96 cores,

respectively. The result of matrix-matrix multiplication AB is illustrated in Figure 5.6. “Eigen” and “Column-wise”

represent the default parallel strategy and column-wise product strategy, respectively. We can observe that column-

wise parallelization obviously outperforms the default setting of Eigen in multi-threading computing. Hence, in the

following implementation, we choose column-wise parallelization strategy for BLAS3 in our experiments.
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FIG. 5.6. The results of dense-dense BLAS3: A1000×10000B10000×1000

Next, we investigate the parallel scalability of the new proposed PCAL and MOptQR. According to the existent

numerical report of Eigen10, we select the class “LLT” in Eigen to compute QR factorization. The calculation of

orthonormalization consists of a small size (p-by-p) Cholesky decomposition and solving a p-by-p linear system. The

maximum number of iterations for MOptQR and PCAL is set to 1000. All the parameters for MOptQR and PCAL

take their default values. The initial guess X0 is generated by X0 =random(n,p)” and X0 =qr(X0).

We first focus on the test Problems 1 and 2. For Problem 1, we set L as a block diagonal matrix, i.e., L =

Diag(L1, . . . , Ls), where Li ∈ R
5×5 is a tridiagonal matrix with 2 on its main diagonal and −1 on subdigonal, for

i = 1, . . . , s. The coefficient α is set to 1. For the generation of Problem 2, we set A as a tridiagonal matrix with 2

8Available from http://eigen.tuxfamily.org/index.php?title=Main Page
9More information at http://eigen.tuxfamily.org/dox/TopicMultiThreading.html

10More information at http://eigen.tuxfamily.org/dox/group TutorialLinearAlgebra.html
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on its main diagonal and −1 on subdigonal, and G=Random(n,p). The advantage of such generation is to make

function value and gradient calculations parallelizable. In the first group of tests, we aim to figure out how MOptQR

and PCAL perform with the increasing width of variables. We set n = 10000 and p varying from a set of increasing

values {500, 1000, 1500, 2000, 2500}. Both algorithms are run in parallel with 96 cores. The wall-clock time results

are shown in Figure 5.7. Here, “#cores” stands for the number of cores. From Figure 5.7, we notice that PCAL always

takes less amount of wall-clock time than MOptQR. As the width of the matrix variable increases, the running time of

MOptQR increases much more rapidly than PCAL.
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FIG. 5.7. The wall-clock time results on varying width of the matrix variable

In Figure 5.8, we show wall-clock time of four categories: three categories: “BLAS3” (dense-dense matrix multi-

plication), “Func” (function value and gradient evaluation) and “Orth” (orthonormalization including QR factorization

for MOptQR and the final correction step in PCAL). These are the major computational components of both PCAL

and MOptQR, albeit in different proportions. We have to clarify two issues: firstly, we categorize these categories of

calculation only at the highest solver level. As such, any matrix-matrix multiplication involved in function value and

gradient evaluation is not counted as in the “BLAS3” category. Secondly, although the correctness of such a classi-

fication scheme may be debatable, it does not alter the overall fact, as is clearly shown by our computational results,

that the category “BLAS3” is much more scalable than the category “Orth” on our test platform. The running time of

each category is measured in terms of the percentage of wall-clock time spent in that category over the total wall-clock

time. We can clearly see that for PCAL the run time of “BLAS3” dominates the entire computation in almost all cases.

The “BLAS3” time increases steadily as p increases from 500 to 2500, while the “Func” time decreases steadily. The

run time of “Orth” is negligible. However, for MOptQR, the “BLAS3” time takes around 60% of total run time and

decreases steadily with the increasing of p. Meanwhile, the “Orth” time takes around “40%” of total run time and

increasing steadily.

Now, we set n = 10000 and p = 1000, 2000, and run PCAL and MOptQR in parallel with 1, 2, 4, 8, 16, 32, 64

and 96 cores, respectively. Figure 5.9 and 5.10 illustrate the speedup factors associated with total running wall-clock

time, “BLAS3”, “Func” and “Orth”, respectively. From these two figures, we can observe that BLAS3 operation has

high parallel scalability, while the speedup factor of “Orth” increases slowly as the number of cores increases, which

directly leads to the higher overall scalability of PCAL than MOptQR. Moreover, as the width of the matrix variable

increasing, the advantage of PCAL in parallel scalability becomes more obvious.

In the end, we test Problem 6 under n = 10000, p = 1000. Figure 5.11 illustrate the results of speedup factors

associated with total running wall-clock time, “BLAS3”, “Func” and “Orth” of PCAL and MOptQR, respectively. We

can learn from this figure that the overall scalability of PCAL is again superior to that of MOptQR.
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FIG. 5.8. A comparison of timing profile on a single core for Problem 2
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(b) Problem 1: PCAL
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(c) Problem 2: MOptQR
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FIG. 5.9. A comparison of speedup factor among MOptQR and PCAL (p = 1000)

6. Conclusion. Optimization problems with orthogonality constraints have wide application in materials science,

machine learning, image processing and so on. Particularly, when we apply Kohn-Sham density functional theory

(KSDFT) to electronic structure calculation, the last step is to solve a Kohn-Sham total energy minimization with

orthogonality constraints. There are plenty of existing algorithms based on manifold optimization, which work quite

well when the number of columns of the matrix variable p is relatively few. With the increasing of p, a bottleneck

of existent algorithms emerges, that is, lack of concurrency. The main reason leads to this bottleneck is that the

orthonormalization process has low parallel scalability.

To solve this issue, we need to employ infeasible approaches. However, previous infeasible approaches including

augmented Lagrangian method (ALM) is far less efficient than retraction based feasible methods. Even though the

parallelization reduces the running time of ALM more significantly than that of manifold methods, ALM is still
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FIG. 5.10. A comparison of speedup factor among MOptQR and PCAL (p = 2000)
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FIG. 5.11. A comparison of speedup factor among MOptQR and PCAL on the simplified Kohn-Sham total energy minimization

less efficient than manifold methods in parallel computing. The main purpose of this paper is to provide practical

efficient infeasible algorithms for optimization problems with orthogonality constraints. Our main motivation is that

the Lagrangian multipliers have closed-form expression at any stationary points. Hence, we use such expression to

update multipliers instead of dual ascent step, at the same time, the subproblem for the prime variables only takes

one gradient step instead of being solved to a given tolerance. The resultant algorithm, called PLAM, does not

involve any orthonormalization. PLAM is comparable with the existent feasible algorithms under well chosen penalty

parameter β. To avoid such restriction, we propose a modified version, PCAL, of PLAM. The motivation of PCAL

is to use normalized gradient step instead of gradient step in updating prime variables. The numerical experiments

show that PCAL works efficient, robust and insensitive with penalty parameter β. Remarkably, it outperforms the

existent feasible algorithms in solving the KSDFT problems in MATLAB platform KSSOLV. We also run PCAL
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and MOptQR, an excellent representative of retraction based optimization approach, in parallel with up to 96 cores.

Numerical experiments illustrate PCAL has higher scalability than MOptQR, and its superiority becomes more and

more noticeable with the increasing of p.

The potential of PCAL has already emerged. In the future work, we will apply our PCAL to real KSDFT calcu-

lation.

Acknowledgements. The authors would like to thank Michael Overton, Tao Cui and Xingyu Gao for the insight-

ful discussions.

REFERENCES

[1] P.-A. ABSIL, R. MAHONY, AND R. SEPULCHRE, Optimization algorithms on matrix manifolds, Princeton University Press, 2009.

[2] J. BARZILAI AND J. M. BORWEIN, Two-point step size gradient methods, IMA journal of numerical analysis, 8 (1988), pp. 141–148.

[3] D. P. BERTSEKAS, Constrained optimization and Lagrange multiplier methods, Academic press, 2014.

[4] J. BOLTE, S. SABACH, AND M. TEBOULLE, Proximal alternating linearized minimization or nonconvex and nonsmooth problems, Mathe-

matical Programming, 146 (2014), pp. 459–494.

[5] N. BOUMAL, P.-A. ABSIL, AND C. CARTIS, Global rates of convergence for nonconvex optimization on manifolds, IMA Journal of

Numerical Analysis, (2016).

[6] S. BOYD, N. PARIKH, E. CHU, B. PELEATO, J. ECKSTEIN, ET AL., Distributed optimization and statistical learning via the alternating

direction method of multipliers, Foundations and Trends R© in Machine learning, 3 (2011), pp. 1–122.

[7] A. CASTRO, H. APPEL, M. OLIVEIRA, C. A. ROZZI, X. ANDRADE, F. LORENZEN, M. A. MARQUES, E. GROSS, AND A. RUBIO,

octopus: a tool for the application of time-dependent density functional theory, physica status solidi (b), 243 (2006), pp. 2465–2488.

[8] X. DAI, Z. LIU, L. ZHANG, AND A. ZHOU, A conjugate gradient method for electronic structure calculations, SIAM Journal on Scientific

Computing, 39 (2017), pp. A2702–A2740.

[9] Y.-H. DAI AND R. FLETCHER, Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming, Numerische

Mathematik, 100 (2005), pp. 21–47.

[10] A. EDELMAN, T. A. ARIAS, AND S. T. SMITH, The geometry of algorithms with orthogonality constraints, SIAM journal on Matrix

Analysis and Applications, 20 (1998), pp. 303–353.

[11] B. GAO, X. LIU, X. CHEN, AND Y.-X. YUAN, A new first-order algorithmic framework for optimization problems with orthogonality

constraints, SIAM Journal on Optimization, 28 (2018), pp. 302–332.

[12] W. GAO, C. YANG, AND J. C. MEZA, Solving a class of nonlinear eigenvalue problems by Newton’s method, Technical Reports, (2009).
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