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A BACKWARD STABLE ALGORITHM FOR COMPUTING THE CS

DECOMPOSITION VIA THE POLAR DECOMPOSITION

EVAN S. GAWLIK∗, YUJI NAKATSUKASA† , AND BRIAN D. SUTTON‡

Abstract. We introduce a backward stable algorithm for computing the CS decomposition of
a partitioned 2n × n matrix with orthonormal columns, or a rank-deficient partial isometry. The
algorithm computes two n×n polar decompositions (which can be carried out in parallel) followed by
an eigendecomposition of a judiciously crafted n×n Hermitian matrix. We prove that the algorithm
is backward stable whenever the aforementioned decompositions are computed in a backward stable
way. Since the polar decomposition and the symmetric eigendecomposition are highly amenable
to parallelization, the algorithm inherits this feature. We illustrate this fact by invoking recently
developed algorithms for the polar decomposition and symmetric eigendecomposition that leverage
Zolotarev’s best rational approximations of the sign function. Numerical examples demonstrate that
the resulting algorithm for computing the CS decomposition enjoys excellent numerical stability.

Key words. CS decomposition, polar decomposition, eigendecomposition, Zolotarev, general-
ized singular value decomposition, simultaneous diagonalization, backward stability
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1. Introduction. The CS decomposition [7, Section 2.5.4] allows any parti-
tioned 2n× n matrix

A =

(
A1

A2

)
, A1, A2 ∈ C

n×n

with orthonormal columns to be factorized as

A =

(
U1 0
0 U2

)(
C
S

)
V ∗
1 ,

where U1, U2, V1 ∈ Cn×n are unitary matrices and C, S ∈ Cn×n are diagonal matrices
with nonnegative entries satisfying C2 + S2 = I. In other words, A1 = U1CV ∗

1 and
A2 = U2SV

∗
1 have highly correlated singular value decompositions: they share the

same right singular vectors, and the singular values of A1 and A2 are the cosines and
sines, respectively, of angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn ≤ π

2 . An analogous factorization
holds for (m1 +m2)×n (m1,m2 ≥ n) matrices with orthonormal columns [7, Section
2.5.4].

By writing

(1.1) A1 = (U1V
∗
1 )(V1CV ∗

1 )

and

(1.2) A2 = (U2V
∗
1 )(V1SV

∗
1 ),

another perspective emerges. Since W1 := U1V
∗
1 and W2 := U2V

∗
1 are unitary and

H1 := V1CV ∗
1 and H2 := V1SV

∗
1 are Hermitian positive semidefinite, the polar de-

compositions Ai = WiHi, i = 1, 2, are highly correlated. Specifically, the matrices H1

and H2 are simultaneously diagonalizable with eigenvalues {cos θi}ni=1 and {sin θi}ni=1,
respectively.
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In this paper, we leverage the preceding observation to construct a backward
stable algorithm for the CS decomposition. The algorithm computes two polar de-
compositions A1 = W1H1 and A2 = W2H2 followed by an eigendecomposition of a
judiciously crafted Hermitian matrix B ∈ Cn×n. As it turns out, the stability of the
algorithm depends critically on the choice of B. Obvious candidates, such as H1,
H2, or even H1 + H2, lead to unstable algorithms. The choice B = H2 − H1, on
the other hand, leads to a backward stable algorithm, assuming that the two polar
decompositions and the eigendecomposition are computed in a backward stable way.
A central aim of this paper is to prove this assertion.

One of the hallmarks of this approach is its simplicity: it is built entirely from
a pair of standard matrix decompositions for which a wealth of highly optimized
algorithms are available. In particular, one can compute the CS decomposition in a
parallel, communication-efficient way by invoking off-the-shelf algorithms for the polar
decomposition and symmetric eigendecomposition. We illustrate this fact by invoking
recently developed algorithms that leverage Zolotarev’s best rational approximations
of the sign function [11].

With a small modification, our algorithm enables the computation of a general-
ization of the CS decomposition that is applicable to partial isometries. Recall that
A ∈ Cm×n is a partial isometry if AA∗A = A; equivalently, every singular value of
A is either 1 or 0. We introduce this generalized CS decomposition in Section 2 and
prove backward stability of the algorithm in this generalized setting.

Stably computing the CS decomposition of a matrix with orthonormal columns
is a notoriously delicate task. The difficulties stem from the fact that the columns of
V1 serve simultaneously as the right singular vectors of A1 and A2. In the presence of
roundoff errors, choosing the columns of V1 to satisfy both roles simultaneously is non-
trivial, particularly when {θi}ni=1 contains clusters of nearby angles. Early algorithms
for the CS decomposition include [16, 21]; both algorithms obtain V1 by computing
an SVD of either A1 or A2 and then modifying it. Recent algorithms have focused on
simultaneously diagonalizing A1 and A2, using either simultaneous QR iteration or
a divide-and-conquer strategy after A1 and A2 have been simultaneously reduced to
bidiagonal form [17, 18, 19]. There are also general-purpose algorithms for computing
the generalized singular value decomposition [2], of which the CS decomposition is a
special case.

Applications of the CS decomposition are widespread. It can be used to help
compute principal angles between subspaces [7, Section 12.4], the logarithm on the
Grassmannian manifold [6], the generalized singular value decomposition [7, Section
8.7.3], and decompositions of quantum circuits [20]. Good overviews of these and
other applications are given in [14, 1].

Organization. This paper is organized as follows. After introducing the general-
ized CS decomposition for partial isometries in Section 2, we detail in Section 3 our
proposed algorithm for computing it via two polar decompositions and a symmetric
eigendecomposition. We prove backward stability of the algorithm in Section 4 un-
der mild hypotheses on the eigensolver and the algorithm used to compute the polar
decomposition. In Section 5, we highlight a specific pair of algorithms – Zolo-pd and
Zolo-eig – for computing the polar decomposition and symmetric eigendecomposition.
The resulting algorithm for the CS decomposition – Zolo-csd – is tested in Section 6
on several numerical examples.

2. Preliminaries. In this section, we introduce a generalization of the CS de-
composition that is applicable to partial isometries. We then discuss a few issues
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concerning partial isometries in finite precision arithmetic.
To begin, recall that every matrix A ∈ Cm×n admits a unique canonical polar

decomposition A = UH , where U ∈ Cm×n is a partial isometry, H is Hermitian
positive semidefinite, and range(U∗) = range(H) [8, Theorem 8.3]. If A = PΣQ∗ is
the compact singular value decomposition of A, i.e. P ∈ C

m×r and Q ∈ C
n×r have

orthonormal columns and Σ ∈ Cr×r is diagonal with positive diagonal entries (where
r = rank(A)), then U = PQ∗ and H = QΣQ∗ = (A∗A)1/2.

Ifm ≥ n, then A ∈ Cm×n also admits a polar decomposition A = WH , whereW ∈
Cm×n has orthonormal columns and H is Hermitian positive semidefinite. In general,
the canonical polar decomposition A = UH differs from the polar decomposition
A = WH , which is only defined for m ≥ n. When m ≥ n, the two H ’s coincide, and
if A has rank n, then W is uniquely determined, W = U , and H is positive definite.

We make use of both decompositions in this paper; the latter is used in the
following theorem.

Theorem 2.1. Let A ∈ Cm×n (m ≥ 2n) be a partial isometry of rank r. For any
partition

A =

(
A1

A2

)
, A1 ∈ C

m1×n, A2 ∈ C
m2×n, m1,m2 ≥ n, m1 +m2 = m,

there exist U1 ∈ Cm1×n, U2 ∈ Cm2×n, and C, S, V1 ∈ Cn×n such that U1, U2, and V1

have orthonormal columns, C and S are diagonal with nonnegative entries, C2+S2 =(
Ir 0
0 0n−r

)
, and

(2.1) A =

(
U1 0
0 U2

)(
C
S

)
V ∗
1 .

Proof. For i = 1, 2, let Ai = WiHi be a polar decomposition of Ai. Observe that
since A1A

∗A = A1,

A1A
∗
2A2 = A1(A

∗A−A∗
1A1)

= A1 −A1A
∗
1A1.

Thus,

H2
1H

2
2 = (A∗

1A1)(A
∗
2A2)

= A∗
1(A1A

∗
2A2)

= A∗
1A1 − (A∗

1A1)
2

and

H2
2H

2
1 = (A∗

2A2)(A
∗
1A1)

= (A1A
∗
2A2)

∗A1

= A∗
1A1 − (A∗

1A1)
2.

This shows that H2
1 and H2

2 are commuting Hermitian positive semidefinite matrices,
so they are simultaneously diagonalizable [7, Section 8.7.2]: H2

1 = V Λ1V
∗ and H2

2 =
V Λ2V

∗ for some unitary V ∈ Cn×n and diagonal Λ1,Λ2 ∈ Cn×n with nonnegative
entries. Moreover,

V (Λ1 + Λ2)V
∗ = H2

1 +H2
2

= A∗
1A1 +A∗

2A2

= A∗A.
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The matrix Λ1 + Λ2, being similar to A∗A, has r eigenvalues equal to 1 and n − r
equal to 0. Since it is diagonal, we may order the columns of V so that

Λ1 + Λ2 =

(
Ir 0
0 0n−r

)
.

The theorem follows from taking U1 = W1V , U2 = W2V , C = Λ
1/2
1 , S = Λ

1/2
2 , and

V1 = V .

Note that (2.1) also proves the existence of an “economical” rank-deficient CS
decomposition

(2.2) A =

(
U1r 0
0 U2r

)(
Cr

Sr

)
V ∗
1r ,

where the subscript r indicates the submatrices consisting of the leading r columns
(and rows for Cr, Sr): U1r ∈ Cm1×r, U2r ∈ Cm2×r, Cr, Sr ∈ Cr×r, and V1r ∈ Cn×r.

2.1. Approximate partial isometries. In finite precision arithmetic, we will
be interested in computing the CS decomposition of matrices that are approximate
partial isometries, in the sense that ‖AA∗A − A‖ is small. The next pair of lemmas
show that if A is a matrix for which ‖AA∗A−A‖ is small, then A is close to a partial
isometry U whose rank coincides with the numerical rank of A.

We begin with a few definitions. For a given unitarily invariant norm ‖ · ‖ and a
given number ε > 0, we define the ε-rank of a matrix A ∈ C

m×n to be

(2.3) rankε(A) = min
B∈C

m×n

‖A−B‖≤ε

rank(B).

Note that if A =
∑min(m,n)

k=1 σkukv
∗
k is the singular value decomposition of A in sum-

mation form, then the minimizer of (2.3) is given by

(2.4) Ar =
r∑

k=1

σkukv
∗
k,

where r = rankε(A).
Let

(2.5) d(A) = min
U∈C

m×n

UU∗U=U

‖A− U‖.

It can be shown ([9]) in the spectral norm that

(2.6) d(A) = max
1≤i≤min(m,n)

min(σi(A), |1− σi(A)|),

and this minimum is achieved by the factor U in the canonical polar decomposition
Ar = UH , where Ar is given by (2.4) and r is the largest integer such that σr ≥ 1/2.

Throughout this paper, we make use of the fact that in any unitarily invariant
norm,

(2.7) ‖ABC‖ ≤ min{σ1(A)σ1(B)‖C‖, σ1(A)‖B‖σ1(C), ‖A‖σ1(B)σ1(C)}

for any matrices A, B, C whose product ABC is defined [8, Equation (B.7)].
The following lemma extends [8, Lemma 8.17] to approximate partial isometries

having exact rank r.
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Lemma 2.2. Let A ∈ Cm×n have canonical polar decomposition A = UH. If
rank(A) = r, then

(2.8)
‖AA∗A−A‖

σ1(A)(1 + σ1(A))
≤ ‖A− U‖ ≤ ‖AA∗A−A‖

σr(A)(1 + σr(A))

in any unitarily invariant norm.

Proof. Let A = PΣQ∗ be the compact singular value decomposition of A with
Σ ∈ Rr×r, so that U = PQ∗. Then

‖AA∗A−A‖ = ‖Σ3 − Σ‖
= ‖Σ(Σ− I)(Σ + I)‖
≤ σ1(A)‖Σ− I‖(σ1(A) + 1)

= σ1(A)‖A− U‖(σ1(A) + 1).

On the other hand,

‖A− U‖ = ‖Σ− I‖
= ‖Σ−1(Σ3 − Σ)(Σ + I)−1‖
≤ σ1(Σ

−1)‖Σ3 − Σ‖σ1((Σ + I)−1)

=
1

σr(A)
‖AA∗A−A‖ 1

σr(A) + 1
.

The next lemma handles the setting in which ‖AA∗A − A‖ is small and A has
ε-rank r rather than exact rank r.

Lemma 2.3. Let A ∈ Cm×n have ε-rank r with respect to a unitarily invariant
norm ‖ · ‖. Then there exists a partial isometry U ∈ Cm×n of rank r satisfying

(2.9) ‖A− U‖ ≤ ε+
‖AA∗A−A‖+ ε(1 + 3σ1(A)

2)

σr(A)(1 + σr(A))
.

Proof. Let Ar be as in (2.4), and let Ar = UH be the canonical polar decompo-
sition of Ar. By Lemma 2.2,

‖A− U‖ ≤ ‖A−Ar‖+
‖ArA

∗
rAr −Ar‖

σr(Ar)(1 + σr(Ar))
.

Now since σ1(Ar) = σ1(A), the inequality (2.7) implies

‖ArA
∗
rAr −Ar‖ ≤ ‖AA∗A−A‖+ ‖Ar −A‖ + ‖ArA

∗
rAr −AA∗A‖

≤ ‖AA∗A−A‖+ ‖Ar −A‖ + ‖(Ar −A)A∗
rAr‖+ ‖A(Ar −A)∗Ar‖

+ ‖AA∗(Ar −A)‖
≤ ‖AA∗A−A‖+ (1 + 3σ1(A)

2)‖Ar −A‖.

The result then follows from the relations σr(Ar) = σr(A) and ‖A−Ar‖ ≤ ε.

Note that Lemmas 2.2 and 2.3 can be used to estimate d(A) in (2.5).
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3. Algorithm. In this section, we detail a general algorithm for computing the
CS decomposition via two polar decompositions and a symmetric eigendecomposition.
We focus on the motivation behind the algorithm first, postponing an analysis of its
stability to Section 4.

The observations made in Section 1 immediately suggest the following general
strategy for computing the CS decomposition of a matrix A =

(
A1

A2

)
with A1, A2 ∈

Cn×n and A∗A = I. One can compute polar decompositions A1 = W1H1 and A2 =
W2H2, diagonalize H1 and/or H2 to obtain V1, C and S such that H1 = V1CV ∗

1 and
H2 = V1SV

∗
1 , and set U1 = W1V1, U2 = W2V1. For such an approach to be viable,

it is critical that V1 be computed in a stable way. The following MATLAB example
illustrates the pitfalls of a naive strategy: diagonalizing H1.

theta = [1e-8 2e-8 3e-8];

C = diag(cos(theta));

S = diag(sin(theta));

V1 = [2 -1 2; 2 2 -1; 1 -2 -2]/3;

H1 = V1*C*V1 ';

H2 = V1*S*V1 ';

[V1,C] = eig(H1);

S = V1 '*H2*V1;

max(max(abs(S-diag(diag(S)))))

ans = 2.8187e-09

Here, the computed V1 (which we will denote by V̂1) provides a poor approximation of

the eigenvectors of H2, as evidenced by the size of the off-diagonal entry of V̂ ∗
1 H2V̂1

with the largest absolute value. Ideally, in double-precision arithmetic, the latter
quantity should be a small multiple of the unit roundoff u = 2−53 ≈ 10−16.

One possible remedy is to perform simultaneous diagonalization [4] to obtain
V1 from H1 and H2. In this paper, we consider a different approach that exploits
the special structure of H1 and H2. The idea is to obtain V1 by computing the
eigendecomposition of H2 −H1, whose eigenvectors are the same as those of H1 and
H2. The advantages of this approach, though not obvious at first glance, are easily
illustrated. In the MATLAB example above, replacing eig(H1) with eig(H2-H1)

yields ans = 1.7806e-17.
To give more insight, we explain what goes wrong if we obtain V1 via an eigen-

decomposition of H1. Since cos θi ≈ 1 − 1
2θ

2
i for small θi, we have | cos θi − cos θj | ≈

1
2 (θi + θj)|θi − θj | ≪ |θi − θj | for small θi and θj , rendering the eigenvectors of H1

very sensitive to perturbation if two or more angles are close to zero. A standard
eigendecomposition algorithm for H1 still gives a backward stable decomposition:
‖V̂ ∗

1 H1V̂1−Λ̂1‖ ≤ ǫ‖H1‖, where Λ̂1 is diagonal and ǫ is a small multiple of u. However,

inaccuracies in the columns of V̂1 manifest themselves when we use the same V̂1 to com-
pute the eigendecomposition of H2: For a computed eigenpair (λ̂i, v̂i) with ‖v̂i‖2 = 1

obtained in a backward stable manner, we have H1v̂i = λ̂iv̂i + ǫ where ‖ǫ‖ = O(u),
where u is the unit roundoff. Expanding v̂i =

∑n
j=1 cjvj where vj are the exact eigen-

vectors of H1, we have |v∗j ǫ| = |cj ||λ̂i−λj |. Now, the same v̂i taken as an approximate

eigenvector of H2 gives H2v̂i = λ̂i,2v̂i + ǫ2, where the choice λ̂i,2 = v̂∗iH2v̂i minimizes

‖ǫ2‖. We then have |v∗j ǫ2| = |λ̂i,2 − λj,2||cj | for each j. Using the above relation

|cj | =
|v∗

j ǫ|
|λ̂i−λj |

, we see that |v∗j ǫ2| = |v∗j ǫ|
|λ̂i,2−λj,2|
|λ̂i−λj |

for each j. The crucial observation
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is that for each j, the vj -component of ǫ is magnified by the factor
|λ̂i,2−λj,2|
|λ̂i−λj |

, the ratio

in the eigenvalue gap. In the above setting, λi = cos θi and λi,2 = sin θi, and since

the eigenvalues have O(‖ǫ‖2) accuracy [15], no essence is lost in taking λ̂i = λi and

λ̂i,2 = λi,2. Thus, since | sin θi−sin θj | ≈ |θi−θj| and | cos θi−cos θj | ≈ 1
2 (θi+θj)|θi−θj |

for small θi and θj , the relative gap | sin θi−sin θj |/| cos θi−cos θj | ≈ 2/(θi+θj) can be

arbitrarily large, in which case V̂2 does not give a backward stable eigendecomposition
for H2: ‖V̂ ∗

1 H2V̂1 − Λ̂2‖ ≫ u‖H2‖.
A similar problem occurs if V1 is obtained via an eigendecomposition ofH2. If two

or more angles are close to π
2 , their sines are closely spaced, rendering the eigenvectors

ofH2 very sensitive to perturbation. In this scenario, numerical experiments show that
V̂ ∗
1 H1V̂1 can have off-diagonal entries with unacceptably large magnitude. The essence

of the problem is that for θi 6= θj near π
2 , the ratio | cos θi − cos θj |/| sin θi − sin θj | ≈

2/(π − θi − θj) can be arbitrarily large.
Obtaining V1 via an eigendecomposition of H2 − H1 sidesteps these difficulties

for the following reason. The function g(θ) = sin θ − cos θ has derivative g′(θ) ≥ 1
on [0, π2 ], from which it is easy to show that | cos θi − cos θj |/|g(θi) − g(θj)| ≤ 1 and
| sin θi − sin θj |/|g(θi) − g(θj)| ≤ 1 for every θi, θj ∈ [0, π

2 ] with θi 6= θj . In other
words, the eigenvalues of H1 and H2 are spaced no further apart than the eigenvalues
of H2 − H1. As a result, the arguments in the preceding paragraphs suggest that
the numerically computed eigenvectors of H2 −H1 likely provide a backward stable
approximation of the eigenvectors of both H1 and H2. As an aside, note that another
seemingly natural alternative – computing the eigendecomposition of H1 + H2 – is
not viable since the derivative of cos θ + sin θ vanishes at θ = π

4 .
Extension to partial isometries. With one caveat, all of the arguments in the

preceding paragraph carry over to the more general setting in which A =
(
A1

A2

)
is

a partial isometry with A1 ∈ Cm1×n, A2 ∈ Cm2×n, and m1,m2 ≥ n. The caveat
is that if A is rank-deficient and has principal angle(s) θi equal to π/4, then it may
be impossible to distinguish between two eigenspaces of H1 and H2: the eigenspace
V0 corresponding to the eigenvalue 0, and the eigenspace V1/

√
2 corresponding to the

eigenvalue cos(π/4) = sin(π/4) = 1/
√
2. Indeed, both of these eigenspaces correspond

to the zero eigenvalue of H2−H1. Even if θi 6= π/4 for every i, numerical instabilities
can still arise if any angle θi is close to π/4.

Fortunately, there is a simple remedy to this problem. When A is rank-deficient,
then instead of computing the eigendecomposition of H2 −H1, one can compute the
eigendecomposition of B = H2 −H1 + µ(I −A∗A), where µ > 1 is a scalar. This has
the effect of shifting the eigenvalue corresponding to V0 away from all of the other

eigenvalues of B. Indeed, if H1 = V1

(
Cr 0
0 0n−r

)
V ∗
1 and H2 = V1

(
Sr 0
0 0n−r

)
V ∗
1 , then

B = V1

(
Sr − Cr 0

0 µIn−r

)
V ∗
1 ,

and the diagonal entries of Sr − Cr lie in the interval [−1, 1] 6∋ µ.
Algorithm summary. The algorithm that results from these considerations is sum-

marized below. In what follows, we use diag to denote (as in MATLAB) the operator
that, if applied to a matrix X ∈ Cn×n, returns a vector x ∈ Cn with xi = Xii, and, if
applied to a vector x ∈ Cn, returns X ∈ Cn×n with Xii = xi and Xij = 0 for i 6= j.

Algorithm 3.1 CS decomposition of a partial isometry A =
(
A1

A2

)
, A1 ∈ Cm1×n,

A2 ∈ Cm2×n, m1,m2 ≥ n
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1: W1H1 = A1 (polar decomposition)
2: W2H2 = A2 (polar decomposition)
3: if rank(A) = n then µ = 0 else µ = 2 end if

4: B = H2 −H1 + µ(I −A∗A)
5: V1ΛV

∗
1 = B (symmetric eigendecomposition)

6: U1 = W1V1

7: U2 = W2V1

8: C = diag(diag(V ∗
1 H1V1))

9: S = diag(diag(V ∗
1 H2V1))

10: return U1, U2, C, S, V1

We conclude this section with a few remarks.
(3.i) The algorithm treats A1 and A2 in a symmetric way, in the sense that when

µ = 0, exchanging the roles of A1 and A2 merely negates B and Λ (thereby
sending θi = arctan(Sii/Cii) to π/4− θi for each i).

(3.ii) Lines 1-2 and lines 6-9 can each be carried out in parallel. Furthermore, if
A∗A is needed in Line 4, then it can be computed in parallel with lines 1-2.

(3.iii) As a post-processing step, one can compute θi = arctan(Sii/Cii), i = 1, 2, . . . , n,
and overwrite C and S with diag(cos θ) and diag(sin θ), respectively (with
the obvious modifications for rank-deficient A). It is not hard to verify that

this has the effect of reducing
∥∥∥C2 + S2 −

(
Ir 0
0 0n−r

)∥∥∥ without disrupting the

backward stability of the algorithm.
(3.iv) An alternative, cheaper way to compute C and S in lines 8-9 is to solve the

equation sin θi − cos θi = Λii for θi, i = 1, 2, . . . , n, and set C = diag(cos θ),
S = diag(sin θ) (with the obvious modifications for rank-deficient A). Our
numerical experiments suggest that this approach is generally less accurate
than lines 8-9, but it still renders the algorithm backward stable. Our analysis
will focus on the use of lines 8-9 to obtain C and S, but it can be easily
modified to treat the alternative approach.

(3.v) Let us examine the arithmetic cost in flop counts. The steps that require
O(n3) flops are two polar decompositions (lines 1–2) and a symmetric eigen-
decomposition (line 5), in addition to matrix-product operations whose flop
counts are clear: A∗A (line 4, costing (m1 +m2)n

2 flops exploiting symme-
try) and U1, U2 (lines 6–7, 2min

2 flops for each i = 1, 2), and the diagonal
elements of C and S (lines 8–9, 2n3 flops each). The costs of the polar
and eigenvalue decompositions depend on the algorithm used. When Zolo-
pd and Zolo-eig are used, they are 64min

2 + 8
3n

3 flops for each i = 1, 2
(8max{m1,m2}n2+ 1

3n
3 along the critical path) for Zolo-pd and about 55n3

flops (16n3) for Zolo-eig [11, Table 5.1,5.2]. Zolo-csd thus requires a total of
about 67(m1+m2)n

2+64n3 flops (10max{m1,m2}n2+16n3 along the critical
path). Clearly, the polar and eigenvalue decompositions form the majority of
the computation. When a classical algorithm is used for these decompositions
(via the SVD for polar, costing 8min

2+20n3 and 9n3 for the eigendecomposi-
tion), the overall cost is 11(m1+m2)n

2+53n3 flops (10max{m1,m2}n2+29n3

along the critical path). It is worth noting that these flop counts usually do
not accurately reflect the actual running time, particularly in a massively par-
allel computing environment; they are presented here for reference purposes.

(3.vi) In applications, we expect that users will know in advance whether A is full-
rank or not. In the rare situation in which it is not known until runtime, an
inexpensive approach is to compute ‖A‖F , noting that assuming d(A) ≪ 1, we



BACKWARD STABLE ALGORITHM FOR THE CS DECOMPOSITION 9

have ‖A‖F ≈
√
rank(A). Another alternative is to perform a rank-revealing

QR factorization (for instance) in line 3. Needless to say, one should measure
the ε-rank of A for a suitable tolerance ε > 0, not the exact rank of A.

(3.vii) In the rank-deficient case r < n, an economical CS decomposition (2.2) can
be obtained by a simple modification as follows: After line 5, we extract the
eigenvalues Λii ∈ [−1, 1] (there should be r of them) and their corresponding
eigenvectors V1r ∈ Cn×r (the remaining n − r columns of V1 are the null
vectors of A). We have H2 − H1 = V1rΛrV

∗
1r, where Λr ∈ Cr×r is diagonal

with the r eigenvalues of Λ lying in [−1, 1] on its diagonal (assuming A is
an exact partial isometry). Finally, we let Ui := WiV1r ∈ Cmi×r, and C =
diag(diag(V ∗

1rH1V1r)) ∈ Cr×r, S = diag(diag(V ∗
1rH2V1r)) ∈ Cr×r to obtain

the rank-deficient CS decomposition A1 = U1CV ∗
1r, A2 = U2SV

∗
1r (we output

V1 := V1r).
(3.viii) It is well-known that any unitary A =

(
A1 A3

A2 A4

)
∈ C2n×2n admits a complete

2× 2 CS decomposition

A =

(
U1 0
0 U2

)(
C −S
S C

)(
V1 0
0 V2

)∗
,

where U1, U2, V1, V2 ∈ Cn×n are unitary, C, S ∈ Cn×n are diagonal with
nonnegative entries, and C2 + S2 = I [7, Section 2.6.4]. Algorithm 3.1 ap-
plied to

(
A1

A2

)
computes all of these matrices except V2. If V2 is desired,

we advocate using the following strategy from [19, Section 4.11]: compute
X = −A∗

3U1S +A∗
4U2C and its QR decomposition X = QR, and set V2 = Q

(the QR decomposition may be unnecessary, because if A is exactly unitary,
then so is X). An argument similar to the proof of [19, Theorem 18] shows
that this algorithm for the 2 × 2 CS decomposition is backward stable if
Algorithm 3.1 is backward stable.

4. Backward stability. In this section, we prove that Algorithm 3.1 is backward
stable, provided that the polar decompositions in lines 1-2 and the eigendecomposition
in line 5 are computed in a backward stable way.

Throughout this section, we continue to use ‖ · ‖ to denote any unitarily invariant
norm. We denote by cn the absolute condition number of the map H sending a matrix
A ∈ Cm×n (m ≥ n) to the Hermitian positive semidefinite factor H = H(A) in the
polar decomposition A = WH ; that is,

(4.1) cn = max
A,∆A∈C

m×n

∆A 6=0

‖H(A+∆A)−H(A)‖
‖∆A‖ .

It is easy to check that this number depends on n and ‖ · ‖ but not m. In the
Frobenius norm, cn =

√
2 is constant [8, Theorem 8.9]. In the 2-norm, it is known

that bn ≤ cn ≤ 1+ 2bn where bn ∼ 2
π logn. [10, Corollary 4.3]. We will also make use

of the fact that

‖diag(diag(A))‖ ≤ ‖A‖

in any unitarily invariant norm [3, p. 152].

Theorem 4.1. Let A =
(
A1

A2

)
∈ Cm×n with A1 ∈ Cm1×n, A2 ∈ Cm2×n, m1,m2 ≥

n, and m = m1 +m2. Suppose that Algorithm 3.1 computes the following quantities
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with indicated errors:

Ŵ1Ĥ1 = A1 +∆A1,(4.2)

Ŵ2Ĥ2 = A2 +∆A2,(4.3)

B̂ = Ĥ2 − Ĥ1 + µ(I −A∗A) + ∆B1,(4.4)

V̂1Λ̂V̂
∗
1 = B̂ +∆B2,(4.5)

Ĉ = diag(diag(V̂ ∗
1 Ĥ1V̂1)) + ∆C,(4.6)

Ŝ = diag(diag(V̂ ∗
1 Ĥ2V̂1)) + ∆S,(4.7)

where Λ̂, Ĉ, and Ŝ are real and diagonal, Ĥ1 and Ĥ2 are Hermitian, and µ ≥ 0.
Assume that ‖Ŵ ∗

1 Ŵ1 − I‖, ‖Ŵ ∗
2 Ŵ2 − I‖, ‖V̂ ∗

1 V̂1 − I‖, minG=G∗≥0 ‖Ĥ1 − G‖, and

minG=G∗≥0 ‖Ĥ2−G‖ are each bounded above by a number δ. If (2.5) has no minimizer
of rank n, assume further that µ > 1. Then

‖Ŵ1V̂1ĈV̂ ∗
1 −A1‖ ≤ (4cn + 1)‖∆A1‖+ 2cn‖∆A2‖+ 2‖∆B1‖+ 2‖∆B2‖+ ‖∆C‖

+ (9cn + 10 + 2max{µ, 1})δ + (6cn + 4µ)d(A) + o(η),(4.8)

‖Ŵ2V̂1ŜV̂
∗
1 −A2‖ ≤ 2cn‖∆A1‖+ (4cn + 1)‖∆A2‖+ 2‖∆B1‖+ 2‖∆B2‖+ ‖∆S‖

+ (9cn + 10 + 2max{µ, 1})δ + (6cn + 4µ)d(A) + o(η),(4.9)

asymptotically as

(4.10) η := max{δ, d(A), ‖∆A1‖, ‖∆A2‖, ‖∆B1‖, ‖∆B2‖, ‖∆C‖, ‖∆S‖} → 0.

Before proving the theorem, we make a few remarks. First, the smallness of the
quantities ‖∆Ai‖, ‖Ŵ ∗

i Ŵi−I‖, and minG=G∗≥0 ‖Ĥi−G‖ is equivalent to the condition
that the polar decompositions Ai ≈ ŴiĤi, i = 1, 2, are computed in a backward stable
way [12]. Second, the smallness of ‖∆B2‖ and ‖V̂ ∗

1 V̂1−I‖ corresponds to the condition
that the eigendecomposition of B̂ is computed in a backward stable way. Smallness
of ‖∆B1‖, ‖∆C‖, and ‖∆S‖ is automatic in floating point arithmetic. We also note
that A is not assumed to be exactly a partial isometry; its deviation is measured by
d(A). Theorem 4.1 thus says that Algorithm 3.1 is backward stable whenever d(A) is
small and the polar decompositions in lines 1-2 and the symmetric eigendecomposition
in line 5 are computed in a backward stable way. We give examples of backward
stable algorithms for the polar decomposition and symmetric eigendecomposition in
Section 5.

The estimates (4.8-4.9) have been written in full detail to make clear the contri-
bution of each source of error. Coarser estimates of a more memorable form are easy
to write down. Consider, for example, the setting in which A has nearly orthonormal
columns, so that µ can be taken equal to zero. Then (4.8-4.9) imply that

‖Ŵ1V̂1ĈV̂ ∗
1 −A1‖2 /

(
39 +

84

π
logn

)
η + o(η),(4.11)

‖Ŵ2V̂1ŜV̂
∗
1 −A2‖2 /

(
39 +

84

π
logn

)
η + o(η),(4.12)

in the 2-norm, and

‖Ŵ1V̂1ĈV̂ ∗
1 −A1‖F ≤ (18 + 21

√
2)η + o(η),(4.13)

‖Ŵ2V̂1ŜV̂
∗
1 −A2‖F ≤ (18 + 21

√
2)η + o(η),(4.14)
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in the Frobenius norm, where η is given by (4.10). (Our numerical experiments suggest
that these are pessimistic estimates.)

Proof of Theorem 4.1. To prove the theorem, let Ã ∈ Cm×n be a partial isometry
of maximal rank such that ‖A − Ã‖ = d(A). Let r = rank(Ã), and let Ã1 ∈ Cm1×n

and Ã2 ∈ Cm2×n be such that Ã =
(

Ã1

Ã2

)
. Let

(
Ã1

Ã2

)
=

(
U1 0
0 U2

)(
C
S

)
V ∗
1

be a CS decomposition of Ã. Let 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θr ≤ π
2 be the corresponding

angles such that C =
(

Cr 0
0 0n−r

)
and S =

(
Sr 0
0 0n−r

)
with Cr = diag(cos θ) and

Sr = diag(sin θ). Define W1 = U1V
∗
1 , H1 = V1CV ∗

1 , W2 = U2V
∗
1 , and H2 = V1SV

∗
1 ,

so that WiHi is a polar decomposition of Ãi for each i.

Lemma 4.2. Let ∆Hi = Ĥi −Hi, i = 1, 2. Then, to leading order,

‖∆Hi‖ ≤ δ + cn

(
‖Ai − Ãi‖+ ‖∆Ai‖+ 3

2δ
)
,(4.15)

where cn is given by (4.1).

Proof. Let Xi = argminX∗X=I ‖Ŵi − X‖ and Gi = argminG=G∗≥0 ‖Ĥi − G‖.
Then

XiGi = ŴiĤi + (Xi − Ŵi)Ĥi +Xi(Gi − Ĥi)

= Ãi +∆Ãi,

where ∆Ãi = (Ai − Ãi)+∆Ai +(Xi − Ŵi)Ĥi+Xi(Gi − Ĥi). Since Xi is unitary and
Gi is Hermitian positive semidefinite, we have

‖Gi −Hi‖ = ‖H(Ãi +∆Ãi)−H(Ãi)‖
≤ cn(‖Ai − Ãi‖+ ‖∆Ai‖+ ‖Xi − Ŵi‖σ1(Ĥi) + ‖Gi − Ĥi‖).

By assumption, ‖Gi− Ĥi‖ ≤ δ and ‖Ŵ ∗
i Ŵi − I‖ ≤ δ, so ‖Xi− Ŵi‖ ∼ 1

2δ as δ → 0 [8,

Lemma 8.17]. Moreover, σ1(Ĥi) ∼ σ1(Ai +∆Ai) ≤ σ1(A+(∆A∗
1,∆A∗

2)
∗) ∼ 1. These

facts, together with the inequality

‖Ĥi −Hi‖ ≤ ‖Gi − Ĥi‖+ ‖Gi −Hi‖,

prove (4.15).

Now let

B = H2 −H1 + µ(I − Ã∗Ã).

Then

B̂ −B = ∆B1 +∆H2 −∆H1 + µ(Ã−A)∗A+ µÃ∗(Ã−A),

so the preceding lemma implies

‖B̂ −B‖ ≤ ‖∆B1‖+ cn(‖A1 − Ã1‖+ ‖A2 − Ã2‖+ ‖∆A1‖+ ‖∆A2‖)
+(3cn + 2)δ + µ(σ1(A) + 1)d(A).

(4.16)
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The forthcoming analysis will rely on a certain pair of functions f and g with the
property that f(B) = H1, g(B) = H2, f and g have bounded Fréchet derivative at B,
and f and g are analytic on a complex neighborhood of the spectrum of B. Consider
first the case in which r < n, so that µ > 1 (in our algorithm we always take µ = 2
when r < n). Let

ρ =

{
1+µ
2 if 1 < µ < 2

√
2− 1,√

2 otherwise,

and define

f(z) =

{
1
2 (−z +

√
2− z2), if |z| < ρ,

0, if |z| ≥ ρ,

and

g(z) =

{
1
2 (z +

√
2− z2), if |z| < ρ,

0, if |z| ≥ ρ.

The functions f and g satisfy f(µ) = g(µ) = 0, and f(sin θ − cos θ) = cos θ and
g(sin θ − cos θ) = sin θ for every θ ∈ [0, π

2 ]. Moreover, they are analytic on C \ {z :
|z| = ρ}. This is an open set containing the spectrum of B, since the equality

B = V1

(
Sr − Cr 0

0 µIn−r

)
V ∗
1

shows that B has spectrum contained in [−1, 1]∪{µ}. The functions f : Cn×n → Cn×n

and g : Cn×n → Cn×n are thus well-defined in a neighborhood of B, with

f(B) = V1

(
f(Sr − Cr) 0

0 f(µIn−r)

)
V ∗
1 = V1

(
Cr 0
0 0n−r

)
V ∗
1 = H1

and

g(B) = V1

(
g(Sr − Cr) 0

0 g(µIn−r)

)
V ∗
1 = V1

(
Sr 0
0 0n−r

)
V ∗
1 = H2.

Since B is Hermitian and supz∈[−1,1]∪{µ} |f ′(z)| = 1, it follows [8, Corollary 3.16] that

the Fréchet derivative Lf (B, ·) : Cn×n → Cn×n of f at B satisfies

(4.17) ‖Lf(B,E)‖ ≤ ‖E‖

for every E ∈ Cn×n. Similarly,

(4.18) ‖Lg(B,E)‖ ≤ ‖E‖

for every E ∈ Cn×n.
For the case in which r = n, we instead simply define f(z) = 1

2 (z +
√
2− z2)

and g(z) = 1
2 (−z +

√
2− z2). Arguments analogous to those above show that in

this setting (regardless of the value of µ), f(B) = H1, g(B) = H2, and Lf and Lg

satisfy (4.17-4.18).

We will now show that the backward error Ŵ1V̂1ĈV̂ ∗
1 − A1 is small. To begin,

denote D = diag(diag(V̂ ∗
1 Ĥ1V̂1)) and observe that

Ŵ1V̂1ĈV̂ ∗
1 = Ŵ1V̂1 (D +∆C) V̂ ∗

1

= Ŵ1V̂1V̂
∗
1 Ĥ1V̂1V̂

∗
1 + Ŵ1V̂1

(
D − V̂ ∗

1 Ĥ1V̂1 +∆C
)
V̂ ∗
1

= Ŵ1Ĥ1 + Ŵ1(V̂1V̂
∗
1 − I)Ĥ1V̂1V̂

∗
1 + Ŵ1Ĥ1(V̂1V̂

∗
1 − I)

+ Ŵ1V̂1

(
D − V̂ ∗

1 Ĥ1V̂1 +∆C
)
V̂ ∗
1 .
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Since Ŵ1Ĥ1 = A1 +∆A1, it follows that to leading order,

(4.19) ‖Ŵ1V̂1ĈV̂ ∗
1 −A1‖ ≤ ‖∆A1‖+ 2δσ1(Ĥ1) + ‖D − V̂ ∗

1 Ĥ1V̂1‖+ ‖∆C‖.

The next lemma estimates ‖D − V̂ ∗
1 Ĥ1V̂1‖.

Lemma 4.3. To leading order,

‖D − V̂ ∗
1 Ĥ1V̂1‖ ≤ 2

(
‖B − B̂‖+ ‖∆B2‖+ (1 +max{µ, 1})δ + ‖∆H1‖

)
.

Proof. Since f(B) = H1, we have

V̂ ∗
1 Ĥ1V̂1 = V̂ ∗

1 f(B)V̂1 + V̂ ∗
1 (Ĥ1 −H1)V̂1

= V̂ ∗
1 (f(B)− f(B + E)) V̂1 + V̂ ∗

1 f(B + E)V̂1 + V̂ ∗
1 ∆H1V̂1,(4.20)

for any E ∈ Cn×n. Choosing E = (B̂ +∆B2)V̂
−∗
1 V̂ −1

1 −B, so that V̂ −1
1 (B +E)V̂1 =

V̂ −1
1 (B̂ +∆B2)V̂

−∗
1 = Λ̂, we find that the second term in (4.20) is equal to

V̂ ∗
1 f(B + E)V̂1 = V̂ ∗

1 V̂1V̂
−1
1 f(B + E)V̂1

= V̂ ∗
1 V̂1f(V̂

−1
1 (B + E)V̂1)

= V̂ ∗
1 V̂1f(Λ̂).

It follows that

f(Λ̂)− V̂ ∗
1 Ĥ1V̂1 = V̂ ∗

1 (f(B + E)− f(B)) V̂1 + (I − V̂ ∗
1 V̂1)f(Λ̂)− V̂ ∗

1 ∆H1V̂1.

By (4.17), the first term above is bounded by

‖V̂ ∗
1 (f(B + E)− f(B)) V̂1‖ ≤ ‖E‖

= ‖(B̂ −B +∆B2)V̂
−∗
1 V̂ −1

1 +B(V̂ −∗
1 V̂ −1

1 − I)‖
≤ ‖B̂ −B‖+ ‖∆B2‖+ δσ1(B)

to leading order in δ and ‖E‖. Thus,

‖f(Λ̂)− V̂ ∗
1 Ĥ1V̂1‖ ≤ ‖B̂ −B‖+ ‖∆B2‖+ δσ1(B) + δσ1(f(Λ̂)) + ‖∆H1‖

≤ ‖B̂ −B‖+ ‖∆B2‖+ (1 +max{µ, 1})δ + ‖∆H1‖

where we have used the fact that σ1(B) ≤ max{µ, 1} and supz∈R\{ρ} |f(z)| = 1, so

σ1(f(Λ̂)) ≤ 1. The conclusion follows from the inequality above and the bound

‖D − V̂ ∗
1 Ĥ1V̂1‖ ≤ ‖D − f(Λ̂)‖+ ‖V̂ ∗

1 Ĥ1V̂1 − f(Λ̂)‖
= ‖diag(diag(V̂ ∗

1 Ĥ1V̂1 − f(Λ̂)))‖ + ‖V̂ ∗
1 Ĥ1V̂1 − f(Λ̂)‖

≤ 2‖V̂ ∗
1 Ĥ1V̂1 − f(Λ̂)‖.

The proof of (4.8) is completed by combining Lemma 4.3 with (4.15), (4.16)

and (4.19), invoking the asymptotic estimates σ1(A) ∼ 1, σ1(Ĥ1) ∼ 1, and invoking

the inequalities ‖A1 − Ã1‖ ≤ d(A), ‖A2 − Ã2‖ ≤ d(A). The proof of (4.9) is almost
identical.
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Remarks. Let us recall the discussion in Section 3, and reconsider an algorithm
based on the eigendecomposition of other choices of B, such as H1 or H1 +H2. An
attempt to follow the same argument as above to establish stability breaks down,
because the resulting functions f, g have unbounded derivatives.

For later use, we mention now a subtle generalization of Theorem 4.1. A careful
reading of the proof above shows that (4.8-4.9) continue to hold if, for each i, the

condition ‖Ŵ ∗
i Ŵi − I‖ ≤ δ is relaxed to the following pair of conditions:

σ1(Ŵi) = 1 + o(1),(4.21)

‖(Xi − Ŵi)Ĥi‖ ≤ 1
2δ + o(η),(4.22)

where Xi = argminX∗X=I ‖Ŵi −Xi‖. In other words, near orthonormality of Ŵi is
not strictly necessary if (4.21-4.22) can be verified. This observation will be used in
Section 5.2.

5. Algorithms for the polar decomposition and symmetric eigendecom-

position. A number of iterative algorithms are available for computing the polar
decomposition [8, §8]. Among them, the scaled Newton, QDWH and Zolo-pd1 algo-
rithms are known to be backward stable [12, 11].

In virtually all algorithms for computing the polar decomposition A = WH , the
iterates Xk have the same singular vectors as the original A, that is, Xk = Urk(Σ)V

∗

where A = UΣV ∗ is the SVD, where rk is a (odd and usually rational) function. The
goal is to find rk that maps all σi(A) to 1, as then we haveXk = UV ∗ = W , as required
(then H = W ∗A). Different methods employ different functions rk to achieve this.
Here we focus on the Zolo-pd algorithm, as it offers high parallelizability, building
upon basic matrix operations (multiplication, QR and Cholesky).

In Zolo-pd, rk(Σ) is taken to be the type ((2p + 1)k, (2p + 1)k − 1) best ratio-
nal approximation to the sign function on [−σmax(A),−σmin(A)]∪ [σmin(A), σmax(A)]
(the extremal singular values are estimated unless specified by the user). Such func-
tions are called Zolotarev’s functions, and they have the significant property that
rk can be obtained by appropriately composing two Zolotarev functions of types
((2p + 1)k−1, (2p + 1)k−1 − 1) and (2p + 1, 2p). Combining this fact with a partial
fraction representation of rational functions, Zolo-pd requires just two iterations for
convergence in double precision, each iteration involving p(≤ 8) QR or Cholesky fac-
torizations, which can be executed in parallel. For details, see [11]. QDWH is a
special case where p = 1, which minimizes the flop count but has the largest number
of iterations (and less parallelizability).

For the symmetric eigenvalue decomposition, a spectral divide-and-conquer algo-
rithm [13] can be developed also based on the polar decomposition. The idea is that
for a symmetric matrix B, the unitary polar factor W is equivalent to the matrix sign
decomposition, and has eigenvalues ±1 since the SVD and eigendecomposition for a
symmetric B are related by B = UΣV ∗ = (US)(SΣ)V ∗ = V ΛV ∗ for S = diag(±1),

so U = V S, and hence W = UV ∗ = V SV ∗ =: [V+ V−]
[ In+

−In−n+

]
[V+ V−]∗, where

n+ is the number of positive eigenvalues in B (we work with a shifted matrix B − sI
so that n+ ≈ n/2). Thus 1

2 (W + I) = V+V
∗
+ is a partial isometry onto the eigenspace

corresponding to the positive eigenvalues of B. From this we can obtain an orthogo-
nal transformation Ṽ := [V+ V−] that block diagonalizes B. We perform this process
recursively on the decoupled diagonal blocks to diagonalze the matrix, resulting in

1Zolo-pd is observed to be backward stable in experiments; proving it is an open problem.
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the full eigendecomposition. It transpires that the overal process is backward sta-
ble if each polar decomposition is computed in a backward stable way, analogous to
Theorem 4.1.

Of course, classical algorithms for symmetric eigendecomposition based on re-
duction to tridiagonal form [7, Ch. 8] are both effective and stable. An advantage
of algorithms based on the polar decomposition is that they can be implemented in
a communication-minimizing manner using only BLAS-3 operations such as matrix
multiplication, QR factorization, and Cholesky decomposition.

5.1. Dealing with ill-conditioned matrices. The matrices Ai can be ill-
conditioned, and this impacts the polar decompositions in lines 1-2 of Algorithm 3.1:
W1H1 = A1 is ill-conditioned when there exists θi ≈ π

2 , and W2H2 = A2 when θi ≈ 0.
When the conditioning is O(u−1) or larger, Zolo-pd becomes expensive and even un-
reliable, as Zolotarev’s function of type at most (172, 172 − 1) may not be enough
to map the O(u) singular values to 1. Below we assume the use of double precision
arithmetic; the value of p (here p = 8) will depend on the unit roundoff u (though
rather weakly, like

√
| log(u)|).

Here we discuss a remedy for such situations. When computing the polar decom-
positions, we apply the Zolo-pd algorithm, but working with the narrower interval
[−1,−ǫ] ∪ [ǫ, 1], rather than [−1,−σmin(A1)] ∪ [σmin(A1), 1]. We choose ǫ to be a
modest multiple of unit roundoff; here ǫ = 10−15. The resulting modified Zolo-pd
computes W̃i := Uir2(Σi)V

∗
1 , where r2 is the Zolotarev function of type (172, 172− 1)

on [−1,−ǫ] ∪ [ǫ, 1]. In particular, this gives r2(x) = 1 − O(u) for x ∈ [ǫ, 1], and

0 ≤ r2(x) ≤ 1 on [0, 1]. It follows that H̃i := W̃ ∗
i Ai = V1Σir2(Σi)V

∗
1 has eigenvalues

λj(H̃i) ∈ σj(Ai) + [−ǫ̃, 0], where ǫ̃ = O(u). We also have

(5.1) ‖H̃i −Hi‖ = ‖Σir2(Σi)− Σi‖,

where Σir2(Σi)− Σi is diagonal with (j, j) element aj := σj(Ai)r2(σj(Ai))− σj(Ai).
We claim that |aj | = O(u) for all j: indeed, for j such that σj(Ai) > ǫ, we have
r2(σj(Ai)) = 1−O(u), so |aj | = O(u). If σj(Ai) ≤ ǫ, then |aj | ≤ |σj(Ai)| ≤ ǫ = O(u).

Together with (5.1) we obtain ‖H̃i −Hi‖ = O(u). Moreover, we have ‖W̃iH̃i −A‖ =
‖r2(Σi)

2Σi − Σi‖, which is also O(u) by a similar argument. Summarizing, we have

(5.2) ‖H̃i −Hi‖ = O(u), ‖W̃iH̃i −A‖ = O(u),

even though W̃iH̃i is not a polar decomposition since W̃i is not orthogonal.
In view of the first equation in (5.2), we proceed to lines 3–5 in Algorithm 3.1,

which gives results that are backward stable. The only issue lies in lines 6–7, where
we would compute W̃iV1: since W̃i does not have orthonormal columns, neither does
W̃iV1.

To overcome this issue, we make the following observation: the R-factors in the
QR factorizations of Ai and Hi are identical, that is, Ai = QiRi and Hi = Qi,HRi

(we adopt the convention that the diagonal elements of R are nonnegative; this makes
the QR factorization unique [7, Section 5.2.1]). It follows that in the QR and polar
decompositions Ai = QiRi = WiHi, we have the relation Wi = QiQ

∗
i,H .

Recalling from (5.2) that H̃i = Hi+O(u), this suggests the following: before line

6 of Algorithm 3.1, compute the QR factorizations Ai = QiRi and H̃i = Q̃i,HR̃i, and

redefine Wi := QiQ̃
∗
i,H . We summarize the process in Algorithm 5.1.

Algorithm 5.1 Modification to Algorithm 3.1 when A1 and/or A2 is ill-conditioned
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1: In place of lines 1–2 of Algorithm 3.1, compute Ai ≈ W̃iH̃i, obtained by a modified
Zolo-pd mapping the interval [−1,−ǫ]∪ [ǫ, 1] to 1 (ǫ = 10−15 in double precision)

2: Compute QR factorizations Ai = QiRi and H̃i = Q̃i,HR̃i

3: Set Wi = QiQ̃
∗
i,H , Hi = H̃i

4: Proceed with lines 3 onwards of Algorithm 3.1

In practice, since it is usually unknown a priori if Ai is ill-conditioned, we execute
Zolo-pd as usual, in which one of the preprocessing step is to estimate σmin(Ai): if it is
larger than 10−15, we continue with standard Zolo-pd; otherwise Ai is ill conditioned,
and we run Algorithm 5.1 (this is necessary only for i for which Ai is ill conditioned).

An important question is whether this process is stable. Since ‖H̃i−Hi‖ = O(u)
by (5.2) and the resulting Wi is orthogonal to working precision by construction, the

main question is whether WiH̃i still gives a backward stable polar decomposition for
Ai, that is, whether ‖WiH̃i −A‖ = O(u) holds or not. To examine this, note that

‖WiH̃i −A‖ = ‖QiQ̃
∗
i,HH̃i −QiRi‖ = ‖QiR̃i −QiRi‖ = ‖R̃i −Ri‖.

The question therefore becomes whether ‖R̃i − Ri‖ = O(u) holds (note that this
is an inexpensive condition to check). In general, the triangular factor in the QR
factorization can be ill conditioned; however, it is known to be usually much better
conditioned than the original matrix [5]. Indeed in all our experiments with ill-

conditioned Ai, we observed that ‖R̃i − Ri‖ was a small multiple of unit roundoff,
indicating Algorithm 5.1 is an effective workaround for ill-conditioned problems.

In the rare event that ‖R̃i−Ri‖ is unacceptably large, a conceptually simple and
robust (but expensive) workaround is to compute the polar decompositions via the
SVD, which is unconditionally backward stable.

5.2. Dealing with rank deficiency. When A is a rank deficient partial isome-
try (r < n) rather than having orthonormal columns, a natural goal is to compute the
economical decomposition (2.2), as it saves memory requirement and allows efficient
operations such as multiplications.

Recall that the rank r of A can be computed via ‖A‖F ≈ √
r; here we assume

that r < n. When r < n, both A1 and A2 are singular. As described in [13],
QDWH and Zolo-pd are capable of computing the canonical polar decomposition,
and in exact arithmetic it computes Ai = WiHi where Wi are partial isometries. In
finite-precision arithmetic, however, roundoff error usually causes the zero singular
values of Ai to get mapped to nonzero values. These eventually converge to 1 in
QDWH (in six iterations), but Zolo-pd, which terminates in two iterations, faces the
same difficulty discussed above, usually producing a Wi that has n− r singular values
that are between 0 and 1. Then the computed Ŵi does not have singular values that
are all close to 0 or 1, and hence neither does the resulting Ui. Here we discuss a
modification of Zolo-pd to deal with such issues.

The first step identical to the previous subsection: we invoke the modified Zolo-
pd to map singular values in [ǫ, 1] to 1. Recall that the resulting Hi are correct to
working precision. We then compute B = H2 −H1 + µ(I −A∗A) with µ = 2, and its
eigendecomposition B = V1ΛV

∗
1 as usual, and proceed as described in the second-to-

last remark after Algorithm 3.1 to extract the relevant matrices. We summarize the
process in Algorithm 5.2.
Algorithm 5.2 Modification to Algorithm 3.1 when A is rank deficient

1: Compute Ai ≈ W̃iH̃i for i = 1, 2, obtained by a modified Zolo-pd mapping the
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interval [−1,−ǫ] ∪ [ǫ, 1] to 1

2: Wi = W̃i, Hi = H̃i

3: B = H2 −H1 + 2(I −A∗A)
4: V1ΛV

∗
1 = B (symmetric eigendecomposition)

5: Find V1r ∈ Cn×r, the eigenvectors corresponding to eigenvalues in [−1, 1]
6: U1 = W1V1r

7: U2 = W2V1r

8: C = diag(diag(V ∗
1rH1V1r))

9: S = diag(diag(V ∗
1rH2V1r))

10: return U1, U2, C, S, V1 := V1r

Note that the modified Zolo-pd is used in exactly the same way in Algorithms 5.1
and 5.2. This lets us easily treat the situation where both issues are present: A
is rank-deficient and C or S is ill conditioned. In this case, we replace line 2 of
Algorithm 5.2 by lines 2–3 of Algorithm 5.1. We also note that in spectral divide-
and-conquer algorithms such as Zolo-eig, it is straightforward to modify the algorithm
to compute only eigenpairs lying in the prescribed interval [−1, 1] (by splitting e.g.
at 1.1), thus saving some cost.

A nontrivial question here is: does each Ui have orthonormal columns? This is
not obvious because Wi is not orthonormal. To examine this, we momentarily abuse
notation by writing Ui as Ui,r to distinguish it from the Ui from earlier sections (Ui,r

consists of the first r columns of Ui). Now recall that Wi = Uir2(Σi)V
∗
1 , which we

rewrite as

Wi = [Ui,r, U
⊥
i,r]

(
r2(Σi,r)

r2(Σi,>r)

)
[V1r , V

⊥
1r ]

∗

where Σi,r are the r (nonzero) leading singular values of Ai. Assuming that they are
larger than ǫ (when this is violated we invoke Algorithm 5.1 as mentioned above),
we have r2(Σi,r) = Ir + O(u). Therefore WiV1r = Ui,r + O(u), which is orthonormal
to working precision, as required. Our experiments illustrate that Ui are indeed
orthonormal to working precision.

A second question that must be addressed is whether Algorithm 5.2 is still back-
ward stable, given that ‖W ∗

i Wi − I‖ may be much greater than u. To answer
this question, we recall the remark made at the end of Section 4: backward sta-
bility is still ensured if σ1(Wi) ≤ 1 + O(u) and ‖(Xi − Wi)Hi‖ = O(u), where
Xi = argminX∗X=I ‖X − Wi‖. The first of these conditions is clearly satisfied.
For the second, observe that Hi = W ∗

i A = V1r2(Σi)ΣiV
∗
1 and by [8, Theorem 8.4],

Xi = UiV
∗
1 . Thus,

(Xi −Wi)Hi = Ui(I − r2(Σi))r2(Σi)ΣiV
∗
1

= Ui

(
(Ir − r2(Σi,r))r2(Σi,r)Σi,r

(In−r − r2(Σi,>r))r2(Σi,>r)Σi,>r

)
V ∗
1 .

In the block diagonal matrix above, the upper left block is O(u) because ‖Ir −
r2(Σi,r)‖ = O(u) and ‖Σi,rr2(Σi,r)‖ ≤ 1 + O(u), whereas the lower right block is
O(u) because ‖Σi,>r‖ = O(u) and ‖(In−r − r2(Σi,>r))r2(Σi,>r)‖ ≤ 1 + O(u). We
conclude that ‖(Xi −Wi)Hi‖ = O(u), as desired.

We emphasize that all of the arguments above hinge upon the assumption that
r2(Ai) is computed in a backward stable manner in the Zolo-pd algorithm. This is
supported by extensive numerical evidence but not yet by a proof [11].
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6. Numerical examples. We tested Algorithm 3.1 on the following examples
adapted from [19]. Below, nint(x) denotes the nearest integer to a real number x, and
St(n,m) = {A ∈ Cm×n | A∗A = I} denotes the complex Stiefel manifold.

1. (Haar) A 2n×nmatrix sampled randomly from the Haar measure on St(n, 2n).

2. (Clustered) A 2n × n matrix A =
(

U1CV ∗

1

U2SV ∗

1

)
, where U1, U2, V2 ∈ Cn×n are

sampled randomly from the Haar measure on St(n, n), and C and S are
generated with the following MATLAB commands:

delta = 10^( -18*rand(n+1) ,1);

theta = pi/2*cumsum(delta (1:n))/sum(delta);

C = diag(cos(theta));

S = diag(sin(theta));

This code tends to produce principal angles θ1, θ2, . . . , θn that are highly
clustered.

3. (Rank-deficient, Haar) A 2n × n matrix of rank r = nint(3n/4) given by
A = XY ∗, where X ∈ C2n×r and Y ∈ Cn×r are sampled randomly from the
Haar measure on St(r, 2n) and St(r, n), respectively.

4. (Rank-deficient, clustered) A 2n×n matrix of rank r = nint(3n/4) generated
in the same way as in (2), but with Cii and Sii replaced by zero for n − r
random indices i ∈ {1, 2, . . . , n}.

1’-4’. (Noisy) Tests (1-4), each perturbed by 1e-10*(randn(2*n,n)+i*randn(2*n,
n)).

We ran these tests with n = nint(30 · 2j/2), j = 0, 1, . . . , 9. In all of the tests, we
performed the post-processing procedure suggested in Remark (3.iii).

Tables 6.1-6.2 report the scaled residuals ‖Â−A‖2

d(A) and scaled orthogonality mea-

sures
‖Û∗

1 Û1−I‖2

u ,
‖Û∗

2 Û2−I‖2

u ,
‖V̂ ∗

1 V̂1−I‖2

u for each test, where Â =
(

Û1ĈV̂ ∗

1

Û2ŜV̂ ∗

1

)
, d(A) is

given by (2.5), and u = 2−53 is the unit roundoff. For comparison, the results ob-
tained with LAPACK’s csd function are recorded in Table 6.1 as well. (Results from
LAPACK are not shown in Table 6.2, since LAPACK’s csd function applies only to
full-rank matrices.) Inspection of Table 6.1 reveals that in most of the tests involving
full-rank A, the residuals and orthogonality measures were closer to zero for Zolo-csd
than for LAPACK.
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Table 6.1: Residuals and orthogonality measures for Zolo-csd (Z) and LAPACK (L)
on the test matrices (1), (1’), (2), and (2’).

‖Â−A‖2

d(A)
‖Û∗

1 Û1−I‖2

u
‖Û∗

2 Û2−I‖2

u
‖V̂ ∗

1 V̂1−I‖2

u

Test n d(A) Z L Z L Z L Z L

1

30 4.4 · 10−16 3.34 20.63 14.91 26.45 14.73 40.06 4.89 23.23

1’

42 6.7 · 10−16 2.23 15.86 17.84 32.32 14.35 36.48 5.51 42.12

2

60 4.4 · 10−16 3.42 24.43 12.10 43.96 13.26 37.12 5.39 48.55

2’

85 5.6 · 10−16 3.68 14.65 19.82 51.03 20.54 43.64 5.97 52.56
120 4.4 · 10−16 4.79 26.80 17.64 52.09 22.86 62.29 7.62 57.64
170 1.8 · 10−15 1.41 7.70 29.31 64.29 28.63 72.25 8.55 72.11
240 2.2 · 10−15 1.20 6.92 24.01 83.93 23.94 72.90 10.20 102.09
339 3.8 · 10−15 0.75 4.26 30.54 83.15 33.81 99.92 9.78 92.59
480 4.2 · 10−15 0.70 4.68 24.53 97.90 26.10 128.97 11.28 113.41
679 3.3 · 10−15 0.95 12.15 22.78 157.24 29.36 118.41 11.45 148.04

30 1.0 · 10−9 1.12 1.65 13.68 27.99 12.59 29.93 4.64 26.63
42 1.2 · 10−9 1.12 1.64 16.47 34.00 12.92 29.40 5.13 32.33
60 1.5 · 10−9 1.12 1.61 17.34 36.49 19.18 44.51 5.70 42.80
85 1.8 · 10−9 1.12 1.66 15.08 48.39 13.93 46.39 6.14 48.70
120 2.1 · 10−9 1.13 1.66 18.39 56.58 20.43 67.83 7.42 57.91
170 2.5 · 10−9 1.13 1.64 19.00 62.15 18.10 73.14 8.74 76.03
240 3.1 · 10−9 1.12 1.61 25.99 72.08 23.78 89.14 9.90 77.96
339 3.6 · 10−9 1.13 1.66 19.58 88.79 22.96 97.81 9.85 102.62
480 4.3 · 10−9 1.13 1.66 25.08 96.85 29.18 114.03 11.62 115.54
679 5.2 · 10−9 1.13 1.63 25.00 117.16 22.59 129.55 11.48 130.97

30 5.6 · 10−16 4.01 15.11 19.31 28.52 22.95 21.81 4.68 21.44
42 5.6 · 10−16 5.67 16.85 9.71 28.92 16.05 23.76 4.84 27.75
60 4.4 · 10−16 9.52 17.15 22.90 37.85 6.41 42.61 5.53 37.05
85 4.4 · 10−16 10.51 54.97 17.92 44.89 7.06 42.79 6.02 39.91
120 4.4 · 10−16 11.80 60.01 18.24 51.92 8.86 48.47 7.78 46.76
170 1.3 · 10−15 4.01 18.56 31.75 72.35 22.20 63.85 9.15 72.10
240 2.2 · 10−15 3.64 10.39 24.84 74.19 11.48 74.36 9.95 68.58
339 2.7 · 10−15 2.81 14.91 27.60 114.44 20.81 195.52 9.74 101.61
480 3.2 · 10−15 3.09 10.16 12.47 108.85 12.38 118.05 11.30 137.93
679 3.3 · 10−15 3.05 9.41 33.61 126.26 12.63 149.26 11.52 139.84

30 9.8 · 10−10 1.28 1.69 22.99 27.13 11.25 20.80 5.23 21.23
42 1.2 · 10−9 1.30 1.68 18.05 30.55 11.99 30.92 5.00 30.14
60 1.5 · 10−9 1.25 1.69 16.63 40.00 12.80 37.03 5.47 38.47
85 1.8 · 10−9 1.14 1.61 14.87 53.31 13.57 50.00 6.52 48.85
120 2.1 · 10−9 1.26 1.66 20.44 49.26 16.41 67.56 7.58 48.72
170 2.6 · 10−9 1.16 1.66 25.63 63.21 19.44 65.30 8.62 65.34
240 3.0 · 10−9 1.18 1.66 23.27 82.38 22.94 85.60 9.94 86.37
339 3.6 · 10−9 1.16 1.65 26.45 109.93 21.10 101.70 9.89 85.35
480 4.3 · 10−9 1.17 1.66 25.76 116.44 27.44 120.71 11.27 104.99
679 5.2 · 10−9 1.14 1.64 23.76 140.07 29.24 130.63 11.67 156.60
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Table 6.2: Residuals and orthogonality measures for Zolo-csd on the test matri-
ces (3), (3’), (4), and (4’).

Test n d(A) ‖Â−A‖2

d(A)
‖Û∗

1 Û1−I‖2

u
‖Û∗

2 Û2−I‖2

u
‖V̂ ∗

1 V̂1−I‖2

u

3

30 6.7 · 10−16 7.28 4.03 4.53 4.28

3’

42 4.6 · 10−16 15.99 5.26 5.34 4.37

4

60 8.9 · 10−16 7.98 5.23 5.17 5.38

4’

85 6.1 · 10−16 21.78 5.73 5.99 5.42
120 7.1 · 10−16 52.89 6.76 6.70 6.66
170 8.0 · 10−16 62.66 8.25 8.32 7.80
240 8.9 · 10−16 34.87 9.70 9.44 8.53
339 1.1 · 10−15 30.22 9.21 9.43 8.31
480 1.9 · 10−15 27.90 10.61 10.71 9.65
679 2.6 · 10−15 84.96 11.06 11.12 10.06

30 1.2 · 10−9 2.31 23.53 22.59 4.22
42 1.3 · 10−9 2.51 24.88 25.77 4.43
60 1.7 · 10−9 2.43 25.75 23.80 4.89
85 2.0 · 10−9 2.47 26.57 26.13 5.80
120 2.4 · 10−9 2.45 26.68 27.33 6.97
170 2.9 · 10−9 2.41 28.57 28.36 7.36
240 3.4 · 10−9 2.47 30.63 30.44 8.74
339 4.2 · 10−9 2.45 29.87 29.68 8.46
480 5.0 · 10−9 2.40 31.80 31.51 9.35
679 5.9 · 10−9 2.47 31.56 31.71 10.18

30 4.4 · 10−16 10.24 4.23 4.64 4.78
42 6.7 · 10−16 11.62 4.23 4.61 4.39
60 6.1 · 10−16 22.43 5.13 5.30 5.12
85 6.7 · 10−16 22.75 6.12 5.64 5.76
120 7.2 · 10−16 23.36 6.49 7.11 6.18
170 8.1 · 10−16 18.64 8.31 8.44 7.45
240 9.6 · 10−16 31.04 9.51 9.27 8.91
339 1.1 · 10−15 41.15 9.29 9.43 8.56
480 1.8 · 10−15 27.76 10.63 10.39 9.92
679 1.6 · 10−15 33.13 10.90 10.98 10.19

30 1.1 · 10−9 2.19 21.78 27.26 3.98
42 1.3 · 10−9 3.21 22.12 17.88 4.89
60 1.6 · 10−9 2.67 27.89 20.36 5.31
85 2.0 · 10−9 2.24 19.58 27.85 5.50
120 2.4 · 10−9 2.41 29.12 26.10 6.34
170 2.9 · 10−9 2.60 31.46 26.97 7.86
240 3.4 · 10−9 2.36 29.08 31.94 8.87
339 4.1 · 10−9 2.43 27.06 27.09 8.50
480 4.9 · 10−9 2.50 31.65 31.68 9.75
679 5.9 · 10−9 2.55 33.87 31.08 10.08
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