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THE EXIT TIME FINITE STATE PROJECTION SCHEME:
BOUNDING EXIT DISTRIBUTIONS AND OCCUPATION
MEASURES OF CONTINUOUS-TIME MARKOV CHAINS*

JUAN KUNTZ', PHILIPP THOMAS?, GUY-BART STANS, AND MAURICIO BARAHONAY

Abstract. We introduce the exit time finite state projection (ETFSP) scheme, a truncation-
based method that yields approximations to the exit distribution and occupation measure associated
with the time of exit from a domain (i.e., the time of first passage to the complement of the domain) of
time-homogeneous continuous-time Markov chains. We prove that: (i) the computed approximations
bound the measures from below; (ii) the total variation distances between the approximations and
the measures decrease monotonically as states are added to the truncation; and (iii) the scheme
converges, in the sense that, as the truncation tends to the entire state space, the total variation
distances tend to zero. Furthermore, we give a computable bound on the total variation distance
between the exit distribution and its approximation, and we delineate the cases in which the bound
is sharp. We also revisit the related finite state projection scheme and give a comprehensive account
of its theoretical properties. We demonstrate the use of the ETFSP scheme by applying it to two
biological examples: the computation of the first passage time associated with the expression of a
gene, and the fixation times of competing species subject to demographic noise.
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1. Introduction. The time of exit of a continuous-time Markov chain from a
domain (or exit time for short) is the time at which the chain leaves the domain for
the first time. The exit time is also known as the first passage time or, alternatively,
the hitting time of the complement of the domain. Two measures are associated
with an exit event: the exit distribution, which describes when and where the chain
exits the domain, and the occupation measure, which describes which states the chain
visits before exiting and at what times they are visited. These two measures can
be expressed in terms of the time-varying law (i.e, the state space distribution of the
chain as a function of time) of an auziliary chain that is identical to the original chain
except that every state outside of the domain is turned into an absorbing state [54, 35].

There exists a rich literature on exit times, especially in physics and biomath-
ematics [31, 41, 49]. Recently, there has been renewed interest in exit times of
continuous-time Markov chains with discrete state space [2, 23, 55, 51], such as those
we study in this paper. While the exit problem from a small finite domain is tractable
[25, 26], the exit problem from an infinite or large domain can only be solved in special
cases [17, 23, 47]. Various approximation schemes have been developed to address this
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issue [3, 12, 29, 51]. However, most of them do not provide bounds or error estimates
on their accuracy.

The popular finite state projection (FSP) scheme [45] yields lower bounds on the
time-varying law of the continuous-time chain of interest. The scheme chooses a finite
truncation of the state space and solves an associated system of linear ordinary differ-
ential equations (ODEs) indexed by the states contained in the truncation. Inbuilt in
the procedure is a computable upper bound on the total variation distance between
the lower bounds obtained and the time-varying law. However, the FSP does not
provide information about the exit from a domain.

To fill this gap, we introduce the exit time finite state projection (ETFSP) scheme
(Sec. 1.1), that involves applying an FSP-like scheme to the auxiliary chain with
an absorbing complement mentioned above. We show that the scheme yields lower
bounds on the exit distribution and the occupation measure associated with an exit
time. For the exit distribution, we explain how to compute a bound on the error of its
approximation. Theorem 1.1 delineates the theoretical properties of ETFSP showing
that: (i) the error bound is sharp if and only if the exit event occurs with probability
one, and (ii) the scheme converges in total variation to the exit distribution and
occupation measure as the truncation approaches the entire state space.

A secondary contribution is Theorem 2.5, which gathers the theoretical properties
of the FSP scheme. In particular, we show that the error bound of the FSP scheme
is sharp if and only if the chain is non-explosive, in which case the error bound can
indeed be made arbitrarily small by including enough states in the truncation. In the
explosive case, the error bound remains non-zero, as observed in [37], and is limited
by the probability of explosion.

The final contribution of this paper is a new proof of an old theorem: Theorem 2.6
expresses the exit distribution in terms of the time-varying law of the aforementioned
auxiliary chain. Versions of this theorem pepper the literature (e.g., [21, 56, 48, 38,
49, 54]). Our variant relaxes the non-explosive and deterministic initial condition
assumptions in [54], and adds the analogous result for the occupation measure.

Related literature. To the best of our knowledge, the ideas underpinning the FSP
and ETFSP schemes were first delineated in the 1980’s queuing literature (see [27, 38,
39] and references therein) centred around randomisation techniques for continuous-
time chains with bounded rate matrices. Recently, schemes based on the FSP have
been used to bound the cumulative density function of the exit time of stochastic
reaction networks, a subclass of the continuous-time chains that we consider here [5, 6,
12]. Given that the ETFSP scheme bounds not only the cumulative density functions
but also the corresponding densities, our results imply the convergence of those other
schemes as a special case.

1.1. The ETFSP scheme: statement of the problem and main result.
We briefly define our problem setting, introduce the ETFSP scheme, and state our
main result (Theorem 1.1) detailing the theoretical properties of the scheme.

Problem definition. Let X = {X; : 0 < ¢t < Ty} be a minimal time-
homogeneous continuous-time Markov chain on a probability triplet (2, F,P) with
countable state space S, stable and conservative rate matrix Q := (q(z,¥))s,yes,
explosion time T, and initial distribution v(z) := P ({Xo = z}), Vz € S.

We single out a subset D of the state space S and refer to it as the domain. The
exit time 7 from the domain is the time when the chain first leaves D:

(1.1) T(w) :=1inf{t € [0, T (w)) : Xy(w) € D}, Yw € Q,
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with the convention that the infimum of the empty set is infinity: inf{(} = oco.
The exit distribution g and occupation measure v associated with the exit time
are defined as:

1.2)  u(ab),z) :=P{r € [a,b), X, = z}) V0<a<b<oo VzeS,

(1.3) v([a,b),z) :=E

AT AT 5
/ 1. (Xy)dt VO<a<b<oo,VresS,

ATAT o

where ¢ A d = min(e,d), ¢,d € R, and 1, denotes the indicator function of state x:
1.(y) = 1 if y = x and 0 otherwise.

For each state z, the measures p(dt,x) and v(dt,x) have densities u(t,z) and
v(t,z) with respect to the Lebesgue measure. (We distinguish a measure from its
density by writing dt or ¢ in its argument.) For small A > 0, the distribution ¢
u(t,x) is a function such that pu(t,z)h is the probability that the chain first exits
the domain via state z during the time interval [¢,¢ + h]. Similarly (and assuming
non-explosivity for the chain), v(¢,z) is the average fraction of the interval [t,t + h]
that the chain spends in state x before exiting the domain. Formally, the relationship
between the exit distribution and occupation measure and their densities is:

b
(14)  p([a,b),z) = 1pe(z) y(z) 1o(a) +/ u(t,x)dt Y0<a<b<oo Vres,

a

b
(1.5)  v([a,b),x) = / v(t,x)dt V0<a<b<oo Vzes,

where D¢ denotes the complement of the domain and the term 1lpe(x)~vy(x) 1o(a)
captures the event that the chain is started outside of the domain.

In this paper, we introduce the ezit time finite state projection scheme to approx-
imate the exit distribution and occupation measure in a systematic manner. ETFSP
yields approximations of the densities u(t,z) and v(¢,x), and, consequently, of their
marginals, including the distribution of the exit time, 7, and of the exit location, X.

The exit time finite state projection (ETFSP) scheme. The numerical
scheme consists of the following steps:
1. Choose a finite subset, or truncation, S, of the state space S and a final
computation time, t’; € [0,00).
2. Solve the set of |S,| linear ODEs:

(1.6) vt )= D vty gy, x),

yeD,
v'(0,2) =v(z), V€D,

(1.7) At a) =) v(ty) (Z Q(Z/aZ)Q(va)> ;

yeD, 2€D,.

p0,2) =Y 1y aly,x), YreS ND,
yED;,

over the time interval [0, %], where D,. denotes the truncated domain DN S;.
3. Pad v" and p” with zeros:

vi(t,z):=0 if z¢D, or t>t},

(1.8) prtx)=0 if 2¢S5 ND° or t>1t}.
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The approximations of the measures p(dt,z) and v(dt,x) are defined as:

b
(1.9) u"([a,b),x) := 1pens, (z)y(x)1lp(a) +/ p(t,x)dt Y0 <a<b<oo,VxesS,

a

b
(1.10) v"([a,b),x) == / v (t, x)dt VO<a<b<oo Vres.

Theoretical characterisation of the ETFSP scheme. Our main result is
Theorem 1.1, which summarises the theoretical properties of the scheme. (For its
proof, see Sec. 3.) We show that u” and v" do not just approximate the exit distri-
bution g and occupation measure v, but bound them from below. We give simple
expressions for the mass of the approximations and their errors in terms of the exit
time 7, the final computation time t%;, and exit time from the truncation S,.,

(1.11) Tr=nf{0 <t <To: X &S} Vr e N.

To quantify the approzimation errors ||u — p”|| and ||v — v"||, we use the total vari-
ation norm

(1.12) ol := sup{|p(A)| - A € G}

on the measures. We give easy-to-compute bounds for the approximation errors, and
we show that the bounds are sharp if the chain exits the domain almost surely (a
property that can be verified using Foster-Lyapunov criteria [40, 35]). Lastly, we
prove that the approximation errors and their bounds decrease monotonically as we
increase the truncation S,, and that the errors tend to zero as S, tends to S.

THEOREM 1.1 (The exit time finite state projection scheme). Consider a min-
imal time-homogeneous continuous-time Markov chain with countable state space S,
stable and conservative rate matriz Q = (¢(x,Y))z yecs, explosion time T, initial
distribution 7y := (y(x))zes. Suppose that the initial distribution satisfies

(1.13) > (@) lg(x,z)| < o0
z€D

for a given domain D C S and let p and v denote, respectively, the exit distribution
and occupation measure associated with the exit time 7 from D. Let {S;}ren be
an increasing sequence of finite sets contained in S, {t;}TeN an increasing sequence
of non-negative final computation times, and {u"}ren and {V"},.en the sequences of
ETFSP approzimations of the exit distribution and occupation measure, respectively,
defined by (1.6)—(1.8). Then the following properties hold:

(i) (Increasing sequence of lower bounds)

/’Lo(twr) < /j/1<t7$) < < ,LL(t,.’L') Va € S? te [O7OO>7
Lt x) <vit,z) < - < vt ) VeeS, tel0,00).

(i) (Mass of the approximations) The mass of u” is the probability that the chain
exits the domain no later than exiting the truncation or the final time, i.e.,

1" ([0,00),8) =P ({r <t} Ar}), Vr e N.
The mass of V" is:

V' ([0,00),8) =E[(r Atf)lr<ry],  VreN.
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(iii) (Computable error bounds) For anyr € N,

(110 [l = | <P ({7 < ool =P ({r <t Am)

gl—((D‘mS > / tmdt)-sr,
zeDNS,
(1.15) lv = v || =E[r ATos] = E [(T At})Lir<ry)
ty
Z / tx
z€D,

Equality holds for (1.14) if and only if P ({7 < 00}) =1, i.e., when the chain
exits the domain with probability one.

(iv) (Monotonicity of the error and of the error bound) The approximation errors
and their upper bounds are decreasing in r:

(1.16) = w2 lp = p™| and e >erpr, VreN
(1.17) llv=v"|| > |lv—v""Y| and ¥ >e¥,,, VreN.

(v) (Convergence of bounds) If U;S, = S and t}; — oo as 1 — oo, the approwi-
mation pu” converges in total variation to the exit distribution p:

Jim [ = p"|| = 0.
Consequently, it follows from (iii) that:

lime, =0 <= P({r<o0})=1.
r—00
IfE[r ANTw] < 00, the approzimation V" converges in total variation to the
occupation measure v:
lim ||y —v"|| =0.
r—00
We refer to the upper bound ¢, defined in (1.14) as the error bound of the scheme
because it bounds the approximation error of u”. Note that the error bound is easily
calculated from p”, hence assessing the quality of the approximation requires no extra
effort. The bound € for the occupation measure v" is harder to evaluate because the
mean exit time, E [7], is unknown in general. However, an upper bound on E [r] can
be obtained through additional computations beyond the scope of this paper (Sec. 5).
Condition (1.13) is a mild technical assumption (e.g., it is satisfied if the chain
is initialised deterministically) made to simplify the exposition by ensuring that the
density of the exit distribution is finite at time zero: p(0,z) < oo for all z € S.

Paper structure. The remainder of the paper is structured as follows. In Sec. 2,
we formally define the chain and give several preliminary lemmas required in the sub-
sequent proofs. Specifically, we review the forward equations and we provide proofs
for theoretical properties of the original FSP (Sec. 2.1), and we give the analytical
characterisation of the exit distribution and occupation measure and the marginals
of these measures (Sec. 2.1). To ease the reading of the paper, we have relegated the
technical proofs relevant to Sec. 2 to the Supplementary Material. Sec. 3 contains
the proof of Theorem 1.1. In Sec. 4, we apply the ETFSP scheme to two biologi-
cally motivated examples. We conclude by discussing possible implementations and
extensions of the ETFSP scheme in Sec. 5
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2. Preliminaries. The starting point in our definition of a continuous-time
chain is a stable and conservative rate matrix @ := (¢(z,y))s,yes, that is, a ma-
trix of real numbers indexed by the countable state space S satisfying

21)  qlz,y) >0 Yoty  qlza)=-) qlx,y)>—oc0, VzeS.
y#z

Whenever we write “a rate matrix ()7 in this paper, we mean “a stable and conser-
vative rate matrix Q7. We construct our Markov chain X recursively by running the
Gillespie Algorithm [20, 33, 24] (see Appendix A in the Supplementary Material). In
particular, the algorithm returns the jump times {T}, }nen at which transitions occur
and the sequence Y := {Y,, }en of states visited by the chain; both of these are de-
fined on the same probability space (2, F,P). The sequence Y is itself a discrete-time
Markov chain known as the jump chain (or embedded chain) and its one-step matrix
is

(2.2) m(z,y) = { (1z(y) = 1) q(z,y)/q(x, ) if g(z,z) # 0

1.(y) otherwise ’ Yoy €S,

The sample paths ¢ — X;(w) of the continuous-time chain X are defined by
(2.3) Xi(w) := Y, (w) Yt € [Th(w), Th+1(w)), w e Q.
These paths are defined only up until the explosion time

Too(w) := nh_}rgo T, (w) Yw € Q.

The limit exists because {7}, (w)}nen is an increasing sequence for each w € Q. In
other words, X;(w) is defined only for pairs (¢,w) such that ¢ < Teo(w). The reason
behind the name “explosion time” given to T, is that, by this moment in time, the
chain has left every finite subset of the state space. In particular, let S C S; C ... be
an increasing sequence of finite subsets (or truncations) of S such that U,.S,, = S and
7, be the time (1.11) that the chain X first exits S,. That our truncations form an
increasing sequence implies that {7, } ey is an increasing sequence of random variables
and the limit lim,_,  7,-(w) exists for each w € Q.

LEMMA 2.1 (Lem. 2.18 of [35]). If {S,}ren is an increasing sequence of finite
sets such that U, S, = S, then 7, tends to Ts, almost surely.

The limiting random variable lim, .., 7,- is the point in time by which the chain
has left each of the truncations in the sequence {S,},en. The above tells us that
lim, oo 7 is (almost surely) equal to T, regardless of the particular sequence of
finite truncations {S,},cn in its definition. For this reason, we interpret T, as the
point in time that the chain leaves the state space, or, in other words, explodes.

We now give two technical lemmas we will use throughout the paper. The first
delineates the simple relationship between the exit time

(2.4) o:=inf{n e N:Y, ¢ D}

of the jump chain Y and the exit time 7 of X (defined in (1.1)).
LEMMA 2.2 (Lem. 2.27 of [35]). If 7T and o are as in (1.1) and (2.4), then

r(w) = { Lo (@) ZZEZ; S wwen
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The other lemma allows us to build auziliary chains that will be key in the proofs
in this paper.

LEMMA 2.3. Suppose that a second rate matriz Q coincides with Q on D:
a(z,y) = q(z,y), VzeD, yeS.

There exists a chain X := {X;}y>0 also defined on (Q, F,P) with rate matriz Q, jump
times {T, }nen, jump chain' Y = {Y, }nen, explosion time Ts,, and exit times

=inf{n e N:Y, ¢ D}, 7= inf{t € [0,Tw) : X; € D},
such that X and X exit the domain at the same time:
(2.5)  ow)=0cw), TW)=7T(w), TW)ATe(w)=7Tw)ATxWw), YweQ;
and that X and X are identical up to (and including) this instant:
(2.6) Xi(w) = Xy (w), V(t,w) € [0,00) x Q:t < 7(w) A Too(w).

In particular, until the moment of exit, the jump chain and jump times of both chains
are identical:

(2.7) Y, (w) = Y, (w), To(w) = Tp(w), V(n,w) e Nx Q:n <o(w).

Proof. See Appendix A in the Supplementary Material. ]

2.1. The time-varying law of the chain and the FSP scheme. The time-
varying law of the chain

(2.8) pi(z) =P({X; =2t <Ts}) VazeS,

satisfies | S| linear ordinary differential equations known as Kolmogorov’s forward equa-
tions (or the chemical master equation or, simply, the forward equations).

THEOREM 2.4 (Kolmogorov’s forward equations, Cor. 2.21 of [35]). Suppose that
the diagonal of the rate matriz is y-integrable:

(2.9) E [|¢(Xo, X0)|] Z’y ) g(z, 2)| < .
€S

For each x € S, t — pi(x) is a continuously differentiable function on [0,00). Fur-
thermore, the time-varying law py := {pi(z)}res s the minimal non-negative solution
of the equations

(210)  pe(@) =D p@Wayx),  polx) =vx), VzeS, tel0,00).
yeS

In the above, by “minimal non-negative solution” we mean that if k; is any
other non-negative (k:(x) > 0 for each z € S and t € [0,00)) differentiable function
satisfying (2.10), then k;(z) > p(z) for each x € S and t > 0 (if the chain is explosive,
then the equations can have multiple solutions, see [9, 22, 50]). Except for a few
special cases, no analytical expressions for this minimal solution are known. If S is
infinite, or finite but large, direct numerical computation of this solution is not possible
either. Instead, we can use the popular finite state projection (FSP) algorithm [45]:
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a numerical scheme that yields a set of lower bounds p} := {p}(x)}ses on the chain’s
time-varying law p; := {p¢(2)}recs. We identify these bounds with the measure on
(S,2%) defined by p;(A) = >, 4 pi(z) for all A C S, where 2° denotes the power
set of §. The FSP scheme consists of: choosing a (finite) truncation S, of the state
space S; solving numerically the set of |S,| linear ODEs

(2.11) pr(z) =Y piWaly.x),  pilx) =v(z), VzeS,
YES,

over the time interval [0,t]; and padding p] with zeros: pj(x) := 0 for all x € S,.

We collect various useful properties of the FSP scheme in Theorem 2.5 below.
Most of these properties can be found elsewhere: (i) and (v) are shown in Prop. 2.14
of [1] (however, there is a small mistake therein, see [8]); (iv) and the bound in (i)
are proven in [45]. Although (i7) is mentioned in [16, 46], we have not encountered a
proof elsewhere. Similarly, the explicit expression of the error (i.e., the total variation
distance between p; and its approximation) in (ii7) and the necessary and sufficient
condition for the bound to be sharp appear to be new.

THEOREM 2.5 (The finite state projection scheme). Let {S, },en be an increasing
sequence of finite sets contained in S, 7, the exit time from the truncation S,, and
{p} }ren the sequence of FSP approximations defined by (2.11). Then the following
properties hold:

(i) (Increasing sequence of lower bounds)

pl(x) < pi(x) < -+ < pi(a), VeeS t>0.

(i) (Mass of the approzimation) The mass of the approzimation is the probability
that the chain has not yet exited the truncation:

pi(8) =pi(S) =P{t<m}), Vt=0.
(iii) (Computable error bound) For any r € N,
e —pill =P({t <Too}) —P({t <7}) <1 —=p;(Sr),  VE=0,

and equality holds if and only if P ({Ts = 00}) = 1, i.e., when the chain is
non-explosive.

(iv) (Monotonicity of the error and of the error bound) The approximation error
llp: — pYl| and its upper bound 1 — p}(S,) are decreasing in r:

(212) |lpe = pill < llpe = pEll, 1= pE(Sr) <1 —pi(Ss), Vs<r, Vt=>0
and increasing in t:
(2.13) lpe = i1l = llpu —Poll,  1=pi(Sr) 2 1=py(Sr), Vu<t VreN.

Consequently, the FSP scheme returns not only the approximation p; of pe,
but also an approzimation p, of ps for each s <t with an error that is bounded
uniformly in s:

sup ||ps — pill = [lpe — il < 1 =i (S,), vt > 0.
s€[0,t]

(v) (Convergence of bounds). If UpenS, = S, then the scheme converges:

lim ||p —pi|| =0, vt > 0.
T—00
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Proof. See Appendix B in the Supplementary Material.

The ideas behind Theorem 2.5 emerge from the following construction. Consider
a second chain X" which is identical to X except that every state outside of the
truncation S, is turned into an absorbing state. In particular, let X" be the chain of
Lemma 2.3 with S, replacing D, and Q" := (¢"(2,9))syes replacing Q, where

- | qlz,y) fzeS,
(214) ¢y { g0 S

Lemma 2.3 states that the chains X and X" coincide until (and including) the time
7 at which they simultaneously leave the truncation S, for the first time, at which
point X" becomes trapped in a state outside of the truncation and never returns to
S,. In contrast, X may return to the truncation, hence the probability p;(x) that
X is at any given state x inside the truncation at time ¢ is greater or equal than
the probability that X" is in the same state at the same time. Since the law of X
(restricted to S) is the solution of (2.11) (Theorem 2.4), we arrive at Theorem 2.5(z).

The probability p}(S,) that X7 is inside the truncation at time ¢ is the same as
the probability P ({t < 7,.}) that it has not yet left. Theorem 2.5(ii)—(i7i) follows from
this fact. If X" has not left the truncation by time ¢, then it has not left the larger
truncation S,41 by t. Similarly, if the chain has not left S, by time t, it has not left
by any earlier time s < ¢. For these reasons, Theorem 2.5(iv) holds.

Due to (iii), proving the convergence of the scheme consists of showing that
P ({t < 7,-}) converges to P ({t < Two}) as r tends to infinity. Recall that P ({t < T })
is the probability that the chain has not left the state space by time ¢ while P ({t < 7,.})
is the probability that the chain has not left the truncation S, by time ¢. Because the
truncations S, approach the complete state space as r tends to infinity, it must be
the case that P ({¢t < 7,.}) approaches P ({t < T }) or, equivalently, that the scheme
converges as stated in Theorem 2.5(v).

The FSP algorithm as proposed in [45] consists of repeatedly computing p} while
increasing the size of the truncation until the error bound 1 — pf(S,) is smaller than
some prescribed tolerance. As noted in [37], the algorithm may not terminate, even if
the truncations tend to the state space as r tends to infinity. Theorem 2.5(v) clarifies
this issue. Although the scheme converges (i.e., p] tends to p; in total variation
as r tends to infinity or, equivalently, pj(S,) tends to P ({t < T })), this does not
imply that the error bound 1 — p}(S,) converges to zero. This is only the case if the
chain is non-explosive (i.e., P ({Too < 00}) = 0). Otherwise, P ({t < Too}) > 0 for all
t > 0 (see the proof of Theorem 2.5(ii7)) and the algorithm will not terminate if the
tolerance is set to be smaller than 1 — P ({# < T }). In practice, non-explosivity can
be established using a Foster-Lyapunov criterion [7, 42].

We close this section by pointing out that the FSP scheme can also be used
to compute converging approximations of the occupation measure associated with a
deterministic time ¢, which tells us how long the chain has spent in state x by time ¢
(see [35, Cor. 3.2] for details).

2.2. The exit time and its associated exit distribution and occupation
measure. Let p, v, u”, and v” be defined as in (1.2)—(1.3) and (1.9)—(1.10). Our
convention of inf ) = co and the exit time’s definition in (1.1) implies that it is finite
if and only if it is strictly less than the explosion time: 7(w) < 0o <= 7(w) <
Too(w) for any w € Q. Therefore, X, is defined on {7 < oo} and p is well-defined.
Technically, u, v, p", and v are unsigned measures on ([0, 00) X S, X) where X is the
product sigma algebra of 25 and the Borel sigma B([0,00)) on [0,00). When using
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(1.2)—~(1.3) and (1.9)—(1.10) to define these four measures, we exploit the fact that
{[a,b) x{z} :0<a <b< oo,z €S} is a m-system that generates X.

From the definition (1.2) of the exit distribution , it follows that its mass is the
probability that the chain eventually leaves the domain:

(2.15) ([0,00),8) = P ({r < 00, X, € §}) = P({r < o0}),
Similarly, it follows from (1.3) that the mass of the occupation measure is

/OTATOO (Z lw(Xt)> dt

€S

(2.16) v([0,00),8) = E =E[r ATs].

If the chain is non-explosive (i.e., P ({Too = c0}) = 1), the mass is the mean exit time.
For explosive chains (i.e., P({Ts = c0}) < 1), the same holds as long as the chain
cannot explode without first exiting the domain (i.e., P ({7 < T }) = 1).

In (1.2)—(1.3), we defined the exit distribution p and occupation measure v prob-
abilistically in terms of the chain X. These measures are characterised analytically
in terms of the solutions of the ODEs (2.18) in the following theorem.

THEOREM 2.6 (Analytical characterisation of p and v).  Suppose that (1.13)
holds. The exit distribution p and occupation measure v decompose as in (1.4)—(1.5)
and their densities v(t,z) and u(t,z) are non-negative and continuous functions on
[0,00), for each x € S. Moreover,

(2.17)  p(t,2) = 1pe(z)pe(z), v(t,z) = 1p(x)pe(x), Ve eS, te]|0,00),

where Py is the minimal non-negative solution (as in Theorem 2.4) of

(218)  pu(x) =D pwaly.x),  polx) =(x), VreS, tel0,00).
yeD

Proof. See Appendix C in the Supplementary Material. 0

The ideas behind the above theorem are similar to those behind Theorem 2.5.
In particular, we consider a second chain X identical to X except that every state
outside of the domain D is turned into an absorbing state. That is, let X be the chain
of Lemma 2.3 after replacing Q with Q := (§(z, Y))zyes, Where

(2.19) d(x,y) == { 8("”"”) i; ;g

The chains X and X are identical up until (and including) the time at which they
both simultaneously exit the domain via the same state. Therefore the probability
1([0,t),2) that X has exited the domain by time ¢ via state z € D¢ is also the
probability that X exited via z by time t. Because X is trapped in the first state it
enters once leaving the truncation, it follows that u([0,t), z) is the probability that X
is in state z by time ¢. The characterisation of the exit distribution then follows from
Theorem 2.4. The characterisation of the occupation measure follows similarly. The
key observation is that once X leaves the domain it cannot return, hence the amount
of time that X spends in a state € D until the moment it exits the domain is the
total time it will spend in that state.
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The marginals. In applications, we are often interested in the distribution of
the exit time itself, that is, the time marginal of the exit distribution

(2.20) pr(B) = u(B,S) =P({r € B,X, € S}) =P({r € B}), VB e B([0,)).

Technically, the above is the distribution of 7 restricted to [0, o). However, we recover
the complete distribution from pp asP ({7 = o0o}) = 1-P ({7 < 00}) = 1—pur ([0, 00)).
Equations (2.17)—(2.18) imply that (¢, ) is non-negative and so combining (1.4) and
Tonelli’s theorem shows that the time-marginal pur(dt) of the exit distribution also
has a density pr(t) with respect to the Lebesgue measure and that this density is

given by pp(t) = 32 cs p(t, z):
(221)  pr(B) = (D)o(B) + /B pr(tdt VB e B(0,)), z €S,

where §y denotes the Dirac measure at zero (6o(B) =1 if 0 € B and 0 otherwise).

In other cases, we are interested in where on the boundary the exit occurs or
where in the domain the chain spends time up until exiting. The space marginals of
the exit distribution and the occupation measure provide this information:

(2.22) ps(z) == p([0,00),z) =P({X; = 2,7 < o0}), Vz €S,

0

TAT oo
(2.23) vs(z) :=v([0,00),2) =E [/ lx(Xt)dt] , Vo € S.

Clearly, one can obtain explicit expressions for pr, g, and vg in terms of p.

3. Theoretical characterisation of the ETFSP scheme: Proof of Theo-
rem 1.1 and bounding the marginal distributions. We now prove Theorem 1.1,
which delineates the theoretical properties of the ETFSP scheme. Before delving into
the proof, we discuss briefly some the intuitive ideas underlying the proof for the exit
distribution (the occupation measure is analogous).

Consider the auxiliary chain X" introduced above, which is identical to the origi-
nal chain except that each state outside of the truncation S, is turned into an absorb-
ing state. Once X" exits the truncation, it becomes trapped in whichever state it just
entered. For this reason, if X" has not exited the domain by the time it exits S,., then
it will never exit. Theorem 2.6 tells us that p"(dt, z) is the exit distribution p"(dt, )
of X" restricted to [0,2}] X S,.. Thus, Theorem 1.1(i7) follows from the fact that X and
X7 are identical up until, and including, the moment that they simultaneously exit
the truncation (Lemma 2.3). In contrast with X", the original chain X may still exit
the domain after it leaves the truncation because it does not necessarily get trapped
in an absorbing state. During a small interval of time [¢t,¢ + k], the probability of
exiting the domain D via state x is u(t,z)h for X and p"(¢,x)h for X". Given that,
for any interval size h, this probability cannot be greater for X" than for X, the lower
bound property in Theorem 1.1(¢) follows from the continuity of u(-,x) and p"(-, )
(Theorem 2.6). The remainder of the theorem then follows (¢)—(ii) and the fact that
7, is an increasing sequence with limit 7o, (Lemma 2.1).

Proof of Theorem 1.1. Let Y" := {Y," }.en, {T} }nen, and T/ be the jump chain,
jump times, and explosion time of X".

(i) Theorem 2.6 tells us that v(¢,x) = 1p(z)p:(z), where p; is the minimal non-
negative solution of (2.18). Theorem 2.4 tells us that p; is the time-varying law of the
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auxiliary chain X with rate matrix Q defined in (2.19). Applying the FSP scheme to
X instead of X entails solving

(B1) k(@)=Y kKWiw.») = > KWiy.2), k@) =7, Vres,

YES, yED,
and setting k7 (z) = 0 for all € S,. Comparing (1.6) and (3.1) we can see that
(3.2) v (t,x) = ki (), Vz €Dy, t<1}.

Given (1.8) and the fact that the final times ¢ are increasing, the second set of
inequalities then follows directly from (2.17) and Theorem 2.5(7). Similarly, (3.2),
(1.7), and the finiteness of D,. imply that

p Tt x) — T (tx) = Z (k; T (2) — kI (2))q(z,2) > 0 Ve e S, NDC,
z€D,

where the inequality follows from Theorem 2.5(i) and the fact that = # z in the above
sum so that ¢(z,x) > 0. Replacing p"*! by x and k"*! by p in the above argument
and applying (1.8) and (2.17) gives us the other set of inequalities.

(7i) Aside from having to use the fact the explosion time of the chain X7 is a.s.
infinite (see (B.3) in the Supplementary Material), the proof of the expression for the
mass of v" is analogous to that for " and so we skip. Applying Theorem 2.6 to X"
instead of X shows that u", restricted to [0, t’JL] X S, coincides with the corresponding
restriction of the density of the exit distribution associated with the first time that
X7 exits the domain:

Tp =1inf{0 <t < T : X] & D}.

Thus, (1.8) and the definition of the exit distribution (1.2) imply that the mass of u”
is the probability that X" exits the domain no later than the final time t’; and via a
state inside the truncation:

1" ([0,00),8) = ,LLT([O,t;-)7S) =P\({mp < tr'vX‘:B €S ).

As we now show, this probability is the same as that of the original chain exited
the domain no later than the truncation and the final time. The key observation is
that whenever X" leaves the truncation, it becomes trapped in whichever state it just
entered. This implies that if X" has not left the domain by the time it exits the
truncation, then it never will. Formally, it follows from Lemma 2.2 and (B.2) in the
Supplementary Material that

{rr <7mp <17} ={X, = X] 7 <7p < 1}},

(recall that Lemma 2.3 implies that X" and X exit the truncation at the same time
7). However, the latter set must be the empty set since X7 ) (w) (resp. Xz (w)(w))
lies inside (resp. outside) of the domain in order for X" to exit the truncation before

it exits the domain (7, (w) < 75(w)). Thus,
{rp < th, X7r € Sy ={mp <th, 7 < T, X7r € S} ={mp <ty AT}

Since (2.7) implies {75 <t} A7} = {7 <t} A 7.}, the result follows.
(7i7) As (i) shows that p — p” and v — v" are unsigned measures, (1.14)—(1.15)
follow from the fact that the total variation norm of a unsigned measure is its mass,
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(77), the definitions (1.6)—(1.8) of u" and v", and the expression for the masses of y
and v in (2.15)—(2.16).

(iv) This follows directly from (i) and (1.14)—(1.15).

(v) Because Lemmas 2.1 and 2.2 imply that

Tlgglo l{TSt’f“/\n} = l{rcoo}s TILIEOT AN AT =T N, almost surely,

the convergence follows from the monotone convergence theorem and (1.14)—(1.15).0

Bounding the marginals. Using the ETFSP scheme we also obtain converging
approximations of the marginals ur, s, and vg of the exit distribution and occupa-
tion measure (see (2.20)—(2.23)). In particular, marginalising (1.9)—(1.10), we obtain
approximations of ur, pg, and vg:

33) (B = (B,8) = (D" 1S)0u(B) + [ ittt B € B(0.),
(34) us(z):=p"(0,00),z), vg(z) :=v"([0,00), ), Vo € S,

where p(t) = >, cs p(t,x). The fact that u"(dt,x) and v"(dt, z) bound from
below the exit distribution and occupation measure (Theorem 1.1 (¢)) implies that
the marginals of the approximations p/.(dt), p%(z), and vg(x) bound pr(dt), ps(z),
and vg(x) from below. For this reason, the fact that the total variation norm of an
unsigned measure is its mass implies that

(3.5) pr = prll = llps — wsll = llp—wll, llvs —vsll = [lv =],
In other words, the errors of the marginal approximations are the same as those of
the complete approximations. In full, we have the following corollary of Theorem 1.1:

COROLLARY 3.1. Suppose that the premise of Theorem 1.1 is satisfied. Consider
the approximations of the marginals pl., p's and vg defined in (3.3)~(3.4).
(i) (Increasing sequence of lower bounds) The approzimations form an increasing
sequence of lower bounds:

(t) < pp(t) < - < (), Vit € [0, 00)
(0) S pb(@) < < psle), W) SUh@) < <ws(e), Ve eS.

IN

L
"

no No

(i) (Computable error bounds and monotonicity properties) The equalities and
inequalities in (1.14)—~(1.17) hold identically if we replace p, u" with pr, 1h
(or ps, 1s) and v,v" with vg, vg.

(iii) (Convergence of bounds) Suppose that U,S, = S and that t’; — oo asr — o0.
The approximations of the marginals of the exit distribution converge:

i |y — ppl| = lim [|us — psll = 0.

Furthermore, if E [T A Too| < 00, then the approzimation of the space marginal
of the occupation measure converges:

o
Tim [Jvs — w5l = 0.

Proof. Given (3.5), the corollary follows immediately from Theorem 1.1. 0
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Fig. 4.1: Threshold statistics for stochastic gene expression. (a) Three representa-
tive sample paths (light grey, grey, and black lines) of the gene expression model (4.1) exiting
at p. = 100 protein molecules. The red dashed lines indicate the boundaries of the trun-
cations S, with increasing r. (b) The error bound &, decreases with increasing truncation
parameter r and final computation time t%. (c) Lower bounds on the exit distribution for
the truncations r = 3,5,8,16 (yellow indicates maximum probability panel-wise). (d) The
lower bounds on the mRNA-marginal exit distribution are monotonically increasing with r
and become visually indistinguishable for » > 12. (e) Corresponding bounds on the exit
time density. (f) Bounds on the conditional exit time distributions pr(t|m) with r = 20;
inset shows error bounds (43) Parameters: k1 =5 ko = 1, ks = 10, k4 = 0.1 and initial
condition y(z) = 1o(m)1o(p) for all panels.

4. Applications. In this section, we apply the ETFSP scheme to two biological
examples from the literature. To simplify the exposition, we assume without loss of
generality that the chain starts inside the domain: P ({X, € D}) =~(D) = 1.

4.1. Threshold model for stochastic gene expression. Proteins perform es-
sential functions inside living cells. These molecules are expressed from genes through
a series of biochemical reactions, and their absolute levels (and the timings in which
these are reached) are critical to cell decisions, such as differentiation [12] or lysis in
the bacteriophage A [53]. Let us consider a simple model of gene expression involving
the transcription and degradation of mRNA molecules (with rates ky and ks, respec-
tively), the synthesis of a protein from each mRNA molecule (with rate k3), and the
degradation of proteins (with rate ky4):

(41) o B mRNA F2 , mRNA *% mRNA + Protein, Protein 2% &1,

The state of the system is « = (m, p), where m is the number of mRNAs and p is the
number of proteins; hence the state space is S = N2. The reactions obey mass-action
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kinetics and the rate matrix is given by

—k1 — komy — kamy — kapy i (ma,p2) = (M1, p1)
ki if (m2,p2) = (m1 + 1,p1)
) ke if (m2,p2) = (m1 — 1,p1)
q ((m1,p1), (M2, p2)) = ksmy if (mg,p2) = (m1,p1 +1)
kap if (m2,p2) = (ma,p1 — 1)
0 otherwise

We are interested in characterising the time taken for the protein number p to
attain a critical level p.. To this end, we consider the domain

D :={(m,p) € N*: p < p.},

so that the exit time 7 from the domain D correspond to the first instant at which p,
proteins accumulate. We compute the lower bounds p”(t, (m,p.)) of the exit distri-
bution u(t, (m, p.)), the joint distribution of the exit time and the number of mRNAs
present at exit. For ease of notation, in the rest of this section, we omit the protein
number argument (as it is p. at time 7), and we write (m,p.) as m.

We use the truncations

S, ={(m,p) eN*:p<p.,m<r} VreN,

shown in Fig. 4.1(a). Fig. 4.1(b) shows how the error bound ¢, decreases to zero with
r and t%, whereas Fig. 4.1(c) shows the lower bounds p"(t,m) for various values of
the truncation parameter r and % = 30 (with &, < 107% for r = 16).

The exit time correlates negatively with the level of mRNA: the more mRNA
molecules are present, the higher the expression, and the quicker the protein number
rises. Figs. 4.1(d) and (e) show the corresponding lower bounds p%(m) and u%(t) on
the space and time marginals pg(m) and ur(t), respectively.

To gain a quantitative understanding of the anti-correlation between the exit time
and mRNA numbers, we also compute the density of the exit time conditioned on the
number of mRNA present:

o plm) ()

(42) wlthm) = ps(m) = pg(m) +ep

=: u"(t|m).

The bound on the right-hand side follows from the fact that pg(m) is no greater than
ws(m) + e, due to the definition of the total variation norm. Integrating both sides
of (4.2), we obtain the following bound on the total variation distance between the
conditional density and its approximation:

Er

(4.3) leClm) = Cm)ll < ey 22

Fig. 4.1(f) shows this density computed using r = 20 for various values of m. As
expected, the mode of the distribution decreases with increasing mRNA number but,
interestingly, the density also narrows with increasing m. In the inset of Fig. 4.1(f)
we verify that the approximation error is small for each m.

4.2. Fixation statistics in population dynamics. The ETFSP framework
can be used to provide insights into the fixation (or extinction) statistics of competing
populations with small numbers. Common models in ecology and evolution are of the
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Fig. 4.2: Dynamics of the deterministic fixation model. Phase portraits of the ODE
model of two competing species (4.5) for different values of the growth rate difference AX.
(a,b) If AX # 0, the system has a single stable fixed point corresponding to the fixation of
the species with the highest growth rate. Filled dots denote stable fixed points; open circles
denote unstable fixed points. (c) For equal growth rates (AX = 0), the dynamics approaches
a line of fixed points, representing coexistence of the two species (neutral case).

Lotka-Volterra type [10]. Let us consider the population dynamics of two competing
species S7 and Ss:

I 98, 8 M g S+ S,

2
(44) S ol 5y, Vi e {12,
with state space S := N2. The first and second reactions describe the birth and death
of individuals with rates b; > 0 and d; > 0, respectively. The third reaction describes
intra- and inter-species competition of strength c;; > 0. The parameter K > 0 is the
effective carrying capacity. Let us denote the numbers of individuals by « = (z1, z2).
The rate matrix is given by

37 (wf (@) + wi (@) Fwin (@) +wi) iy =z

q(z,y) = w;' (x) ify=x+e Vie{l,2}
’ w; () + wir(x) + wio ify=oz—e Vie{l,2} ’
0 otherwise

where e; := (1,0), ez := (0,1) and

Z; Z; T35

wj'(a:) = bz-?, w; (z) == di?, wij(z) == cijﬁ, Vi, j € {1,2}.

For simplicity, we fix ¢11 = ¢12 = 21 = co2 = 1 and K = 30.
Deterministic dynamics. The deterministic dynamics of the populations is mod-
elled with the set of ODEs:

(4.5) i = wi (z) — w] (x) — wir (x) — wia(z) Vi=1,2.
The equilibrium (z1,22) = (0,0) representing the extinction of both populations is
unstable. Fixation of S; occurs when Sy goes extinct and vice versa, i.e., when the

dynamics approaches one of the two axes. Which of the two species becomes extinct
depends on the growth rate difference:

(46) AN = )\1 - Ag where >\z = bl - dl', VZ,] S {1, 2}
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Fig. 4.3: Computation of fixation probabilities and times. (a) The lower bounds on
the fixation probabilities converge (red S1, blue S2) with increasing truncation parameter r,
and the error bound (yellow) approaches zero. (b) The lower bounds on the exit location
distributions converge with increasing r (from light to dark). (¢) The lower bounds on the
density of fixation times also converge. Parameters: by =2, bo =5, d1 =1, d2 =4, AN =0.

For AX > 0 (Fig. 4.2(a)), there is an unstable fixed point on the z; = 0 axis and a
stable one on the x5 = 0 axis; hence the trajectories approach the stable fixed point
leading to fixation of S7. For AX < 0, the situation is reversed resulting in the fixation
of Sy (Fig. 4.2(b)). For equal growth rates (AX\ = 0), the dynamics approaches an
invariant manifold (a line of fixed points) on which the two species coexist with ratios
depending on their initial populations (Fig. 4.2(c)).

Computation of fization probabilities and times. In the stochastic setting, both
species S1 and S; have non-zero probability of becoming fixed regardless of the value
of AX. To study this phenomenon, we consider the exit time from the domain

D= {(!)31,%2) € N2 |{L‘1 > 0,29 > 0},
with complement D¢ that can be decomposed into the disjoint subsets
Df :={(x1,0) e N*: 2y >0}, D5 ={(0,22) € N*: 25 > 0},

representing, respectively, the fixation of S; and of Ss, and a third subset {(0,0)}
representing the extinction of both species.

We compute lower bounds x5 (D) and ps(D$) on the fixation probabilities using
the ETFSP scheme and the truncations

ST = {(mlazQ) € N2 1 x + X9 S 1"}7

with final computation time t% = 3000, and initial condition v = 1(19,10)-

In Fig. 4.3(a), the results for the neutral case A\ = 0 with different death rates
d; < do show that the error bound ¢, decreases with r» and can be made arbitrarily
small. However, in contrast with the deterministic case, S fixes with higher proba-
bility and the fixation dynamics does not depend only on the growth rate difference
A but also on the difference in death rates Ad := d; — ds. This demographic noise
drives the species with the higher death rate (S2) to extinction more frequently [11].

To study this effect, we consider the distribution of S; or S5 upon fixation
(Fig. 4.3(b)). The probabilities of exiting either through the states 1 in D or the
states x2 in DS are bounded by

MS(Il,O) > ,LLg(IEl,O), [LS(O,IQ) > MTS(OaIQ)
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Fig. 4.4: Fixation in the presence of demographic noise. (a,b) Fixation probabilities
as a function of the growth difference A\ for various Ad values with: d; =1 in (a); do =1
in (b)). Red lines, Si; blue lines, S2. (c) The density of S fixation times for different AX
values with di = 1,d> = 10. Inset shows the corresponding densities of S;. (d) Distribution
of Si individuals at fixation with di = 1,d2 = 10 and varying AM. Inset shows di = d2 =1
case (no demographic noise). All computations carried out with r = 200 (20301 states)
ensuring that ez00 < 107%. Birth rates: by = 14+ AX+d; and by = 1+ ds.

As shown in Corollary 3.1, the bounds p%(z1,0) and p%(0, z2) increase monotonically
in 7 and converge—in our numerics, the approximations are visually indistinguishable
for 7 > 60. Note that the exit location distributions are wide and not clearly peaked
around the intersections of D and D§ with the deterministic manifold. Indeed, the
S1-exit location distribution peaks at smaller values than deterministically plausible
due to higher demographic noise along the direction of S disturbing the dynamics
away from the deterministic stable manifold.

To characterise the time at which either fixation occurs, we compute bounds
on the fixation time densities. The fixation time of S (resp. S2) is the exit time
conditioned on S; (resp. S) fixing and its density is given by

pt, D7) o (¢, Df)
ps(D§) — ps(D5) + e

Fig. 4.3(c) shows that the bounds on the conditional densities are monotonically
increasing, whereas the inset shows that the bound of the approximation error

|z (D7) = pr (D) <

(A7) (D) = = G(Df)  Vi=1,2,

Er
us(D5) + e

decreases with r.

The effects of demographic noise. Using ETFSP with a large truncation, we in-
vestigate how the behaviour of the model depends on the growth rate difference A\
and the death rate difference Ad, a measure of demographic noise. In the absence
of demographic noise (Ad = 0), as in the deterministic case, the fixation of S; is
favoured if A\ > 0, and the converse is true if AN < 0 (Fig. 4.4(a)). However, an
increase in the demographic noise of Sz (Ad < 0) leads to a higher fixation probability
of S7. If the demographic noise is large enough, the fixation of S; becomes favoured
even if A\ < 0. Conversely, Fig. 4.4(b) shows that increasing the demographic noise
of S; (Ad > 0) favours fixation of Sy over S even if A\ > 0.

Next, we focus on the case A\ > 0, Ad < 0 where the most likely outcome is
consistent with the deterministic case (i.e., Sy is more likely to fix). Fig. 4.4(c) shows
the density of fixation times computed using (4.7) for S; and Sy as a function of A\.
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The density of fixation times becomes narrower with increasing A\ (inset) indicating
that large growth rate differences attenuate the stochasticity. Despite the fixation of
Ss being less likely than that of S7, the time required for this event decreases with
AMX: the mode of the conditional distribution pr(¢|D5) shifts to smaller times.

Fig. 4.4(d) shows that the distribution of S; individuals at fixation is bimodal for
moderate values of AX and remains broad for larger values. This is the result of strong
demographic fluctuations in the direction of S5 such that fixation of S; can occur at
small population size. If no demographic noise is present (Ad = 0), the distributions
are unimodal (inset) and considerably narrower regardless of the value of AX. In
summary, demographic noise significantly alters the dynamics of small populations
and can even reverse the direction of fixation predicted by deterministic models.

5. Discussion. In this paper, we have introduced and characterised the ETFSP
scheme, which yields converging approximations of the exit distribution and occu-
pation measure associated with the exit from a domain of continuous-time Markov
chains. The ETFSP scheme consists of solving the system of coupled linear ODEs
(1.6)—(1.7) and yields approximations of the desired measures. The total variation
distance between the exit distribution and its approximation is bounded by one mi-
nus the mass of the approximation. Hence the quality of the approximation can be
evaluated with no extra effort than that required for its computation.

We have considered minimal chains, i.e., those that do not explode or those that
are killed off after exploding. A distinction arises for non-minimal chains, which are
re-initialised after exploding [9, 22, 50]. In this case, the FSP and ETFSP still yield
monotonically increasing lower bounds on the relevant measures and the computable
error bounds hold identically. However, they do not converge to the measures associ-
ated with non-minimal chains but to those associated with minimal chains (Theorems
1.1 and 2.5). The details pertinent to non-minimal chains are left as future work.
Although we have not discussed time-inhomogeneous chains relevant in some applica-
tions [57, 13], we anticipate that both the ETFSP and FSP schemes apply identically
when the rate matrix @ is replaced with its time-inhomogeneous analogue.

There are several issues worth considering for the application of the ETFSP
scheme. Chief among them is the fact that the number of states often grows quickly
with the desired accuracy resulting in large systems of ODEs. Resource-efficient im-
plementations of the FSP scheme have been developed to tackle this issue and can
be adapted to the ETFSP setting (see [16] and references therein). To do so, notice
that (1.6) is the set of ODEs obtained by applying the FSP scheme to (2.10) with
D replacing S. In other words, v"(¢,-) is vp, exp(t@Qp, ), where vp, and Qp, are re-
strictions to the truncated domain D,.. The corresponding approximation of the exit
distribution is then obtained by rewriting (1.7) as

(5.1) ptr)= > v(tyqly,z), VreS NDC

yE€D,

The rapid growth in the number of states can also be mitigated by guiding the trun-
cation choice using simulation-based criteria [46, 52], moment bounds and Markov’s
inequality to obtain a priori error bounds [35, 36], or other state space exploration
techniques (see [15, 16] and references therein). For cases where there are too many
important states for ETFSP to handle, Galerkin methods [19, 18, 32] could be adapted
to the exit time setting using Theorem 2.6.

Solving (1.6)—(1.7) numerically introduces an additional source of error [44]. A
simple way to control this error is to apply randomisation techniques [27, 16] on (1.7)
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to obtain lower bounds v", and using (5.1) to compute lower bounds on u". The error
bounds in Theorem 1.1(7i7) hold if u" and v" are replaced with their lower bounds.

Numerically solving the ODEs (1.6) to obtain v" and performing the matrix-
vector multiplication in (5.1) often leads to an accumulation of errors in p”. We
circumvented this issue using an adaptive ODE solver [30] to solve the joint system
(1.6)—(1.7), hence ensuring that the errors of both " and u" are taken into account
by the solver. A promising alternative here is to apply Krylov methods of the type in
[4] to this joint system of ODEs.

Lastly, we did not address how to bound the approximation error of the occupa-
tion measure in practice. As shown in Theorem 1.1, the approximation error (1.15)
depends on E [7 A T, ], which is bounded from above by the mean exit time E [r]. For
a broad class of chains (those with ‘rational rate matrices’), the mean exit time can
itself be bounded using linear or semidefinite programming approaches [28, 35]. For
more general chains, one can employ Foster-Lyapunov criteria [40, 35].

In summary, the ETFSP computes converging approximations of the exit distri-
bution and occupation measure with controlled errors. As demonstrated in Section 4,
such highly accurate approximations can provide valuable insights into the dynamics
of biochemical networks and interacting populations. Although our examples were
biological, computing these measures is important to other fields, for instance, to
quantify customer waiting times [38, 39], modelling computer-communication and
transaction processing systems [34], computing reliability measures of complex sys-
tems [14], or in model checking [43].
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Supplementary Material

Appendix A. The Gillespie Algorithm and the proof of Lemma 2.3.
Given an initial condition Z, we construct our Markov chain X recursively by running
Algorithm A.1 below commonly known as the Gillespie Algorithm or the stochastic
stmulation algorithm. The name of the algorithm itself stems from [24] and its origins
trace back to [20, 33]. In particular, the algorithm constructs the jump times {T}, } nen
at which transitions occur and the jump chain Y := {Y}, },en.

In this paper, we fix an underlying measurable space (2, F) on which Z, &, &,
..., Uy, Us, ... appearing in Algorithm A.1 are defined and a probability measure P
on (€, F) such that, under P, the initial condition Z has law 7, the random variable
Uy, is uniformly distributed on (0,1) for each n € Z,, the random variable &, is
exponentially distributed with unit mean for each n € Z,, and the random variables
Z, &, &, ..., Uy, Uy, ... are independent. Formally, such a construction can be
carried out using Theorems 12.2 and 26.1 in [50].

Proof of Lemma 2.5. Let II denote the one-step matrix obtained by replacing
Q with @Q in (2.2). To construct X we run Algorithm A.1 employing the same Z,
{€,32%, and {U,}2; as for X but with Q and II replacing Q and II to obtain the
chain’s jump times {7}, }nen and jump chain Y := {Y,,},en and then we apply (2.3)
with {T},},en and Y replacing {7}, }nen and Y. Because the rate matrices coincide
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Algorithm A.1 The Gillespie Algorithm on & = {1, 22, 25...}
1: Yy = Z7 To:=0
2: forn=1,2,... do

3:  sample U,, ~uni((0, 1)) independently of {Z,&1,...,&—1,U1,...,Up—1}
4:  sample &, ~ exp(1l) independently of {Z,&,...,&-1,U1,...,Upn}

5. if ¢(Y,—1,Yn—1) # 0 then

6: Ty =T, 1— €n/Q(Yn717Yn71)

7. else

8: Ty =Ty 1+&

9: end if

10:  i:=0 ‘

11:  while U,, > Z;:Oﬂ(Yn,hxj) do

12: ti=1+1

13:  end while
14: Y, = x;
15: end for

on D, (2.2) implies that the jump matrices also coincide on D:
m(x,y) = 7(z,y) Ve eD, yeS.
Algorithm A.1 and the above imply that
(A1) Yoi1(w) = Yoi1(w) for all w € Q such that Y, (w) = Y, (w) € D.

Due to the definition of the exit times of the jump chains, we have that
oo

o=00"l{yvyep,viep,..} + Z kl{y,ep....Yi_1€D,YigD}>
k=1
o0

0 =00 Lyepvien,.} T Z klvyep,.. v 1eD v,gD}-
k=1

Because Yy = Z = Y, combining the above expression with (A.1) tells us that
o(w) = 7(w) for each w € Q. Since o(w) > k only if

1/0((")) € D? Yk(w) € D7 EERE) Yk—l(w) € Da

the first equation in (2.7) also follows from (A.1). Using once again the fact that the
rate matrices coincide on D and the definition of the jump times in Algorithm A.1,
the second equation in (2.7) follows from the first. Lemma 2.2 then implies the second
and third equations in (2.5). Putting (2.5), (2.7), and the definition of the chains in
(2.3) together we obtain (2.6). |

Appendix B. The proof of the theoretical properties of the FSP scheme.

In the following proof, let X" be the auxiliary chain introduced immediately after

Theorem 2.5 and Y" := {Y, }nen, {T} }nen, and T2 be its jump chain, jump times,
and explosion time.

Proof of Theorem 2.5. Substituting @ with Q" in (2.10) and comparing with
(2.11), it follows that

(B.1) pi(x) =PH{X; =x,t <T}), Vz € S,.
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(1) Because @ and Q" coincide on S,, Lemma 2.3 tells us that both X and X"
leave for the first time S, at the same moment (namely, 7,.). Similarly, the time of exit
from S, for the jump chains Y and Y coincides and we denote it by o,.. Replacing
Q by Q" in (2.2), we see that the one-step matrix II" := (7" (2, y))s,yes is such that
7" (x,-) = 1,(:) for each x ¢ S,. For this reason, Algorithm A.1 implies that for any
w e

Yyw) =2¢S =Y, (w)=2 YmeN

Due to the definition of o,, we have that Y;T(w)(w) does not belong to S, if o, (w) is
finite and so

(B.2) Y, (w) =Y )W) €S; Vn > op(w), if op(w) < oo,

formalising the notion that X" gets stuck in the first state in enters once it leaves the
truncation. The above implies that {Y;) = 2} = {Y,) = z,n < 0.} for every = € S,.
Using the above,

Yy, =2, T, <t<T, }={Y, =T, <t<T, ,n<o.}

={Vit =2, )M <t<Tifin<o} C{Y, " =2, T <t <TIH},
for all x € S,, where the second equality follows from (2.7) in Lemma 2.3 after
noting that the definition of Q" in (2.14) remains unchanged if we replace ¢(z,y) with
q" T (z,y). Taking the union over n € N, we obtain

(X] =2t <TI0} =Yy =2, T <t <Tj,.,}
n=0

oo
c Uty = e, i <t < Ty = (X =t < T,
n=0

for all z € S,.. Taking expectations and applying Theorem 2.4 yields p}(z) < pTH( )

for each = € S,.. Replacing X"*! with X in this argument, shows that p}(z) < -
pi(x) for each z € S,.
(7i) Theorem 2.6 and (1.4) tell us that

I /\

P({n<th=3" [~@)+ / S P W) | ds

¢S, 0 \wes,
Theorem 2.4 and (B.1) then imply that
P ({1 < t}) = PUX] ¢ St < To}) = B({t < TL}) ~ P((X] € Syt < Tuc)).

Because S, is finite, (2.14) implies that = — ¢’ is a bounded function. Using the
definition of T, and the law of large numbers we have that X" is non-explosive:

= Ligr(vy,vp)#0}
B.3 TT:§:1T,—Q7 .
( ) ~ n=0 ( {qY:{_O} (quLﬂerf) 5 i

> (1 A min ) Z &nt1 =00, almost surely.

z€S, —q(z,x)
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For this reason, using (B.1) we have that
Pi(S) =pi(8) =P({X} €St <Too}) =1 =P({r <t}) =P({t <7}).

(7i7) The equality and inequality follow from (7)—(ii) and the fact that the total
variation norm of an unsigned measure is its mass. The function ¢ — p¢(S) is non-
increasing because p;(S) = P ({t < Too}). Theorem 5 of Chapter II.18 in [9] implies
that p(S) < 1 for a given ¢ > 0 if and only if p;(S) < 1 for all ¢ > 0. These facts
and the monotone convergence theorem imply that p;(S) < 1 for any given ¢t > 0 if
and only if P ({Tw = o0}) < 1. For this reason, the inequality is sharp if and only if
P({Te = o0}) = 1.

(iv) This is an immediate consequence of (ii)—(iii) and the fact that {7, }ren is
an increasing sequence.

(v) The monotone convergence theorem and (ii7) imply that

Tim [lp: — pfllpy = P ({t < Toc}) — lim P({t < 7,}).
The claim then follows from Lemma 2.1. O

Appendix C. The proof of the analytical characterisation of the exit
distribution and occupation measure. The proof of Theorem 2.6 relies on the
auxiliary chain X defined immediately after the theorem’s statement. In what follows,
let ¥ := {Yn}neN, {Tn}neN, and T to denote the jump chain, jump times, and
explosion time of X. The theorem’s proof builds on the following simple lemma.

LeEMMA C.1. The chain X does not explode before first leaving the domain if and
only if X does not explode:

lircr oy = 1{Tm:w} P-almost surely.

Proof. By its definition (1.1), the exit time is no greater than the explosion time
if and only if the chain exits the domain before any explosion occurs or the chain
neither exits the domain nor explodes:

{T< T} ={T < T} U{T =Toc =0} = {7 < 0} U {7 = Too, = 0}.
Because these events are disjoint, it is enough to argue that
(C.1) 1{T<oo} = 1{T<oo,Too:oo}7 1{T:Tm:oo} = 1{T:Tm:oo}7 P-almost surely.
Because the jump times of both chains agree as long as no exit occurs, see (2.7), we

have that
Too(w) = lim Ti(w) = lim Ti(w) = Too(w) Yw e Q:o(w) = o0

k—o0 k—o0
where o denotes the time-step (2.4) that ¥ and ¥ simultaneously (Lemma 2.3) leave
the domain. The second equation in (C.1) then follows from Lemma 2.2. To prove
the first equation, notice that an analogous argument as that behind (B.2) shows that

(C.2) Vi(w) = Yo (w) Yk >o(w), if o(w) < oo

Combining the above with the law of large numbers, we have that

LoeyToo = Liomty O (Thr = Tk) > Liomy > (Thsr — Ti)
k=0 k=l

2> lo—py ng“‘l = lfo—1) - 00 P-almost surely,
k=L
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for any [ € N. Summing the above over [ € N, we find that
1{U<OO}TOO > 1{sco0) * 00 P-almost surely.
The first equation in (C.1) then follows from Lemma 2.2. 0
We are now in a position prove our characterisation of y and v.

Proof of Theorem 2.5. We begin with the occupation measure. Lemma 2.3 im-
plies that

IATAT oo IATAT 5 .
(C.3) / 1.(Xs)ds :/ 1,(Xs)ds
0 0
tAT

7'/\7:Oo R
= 1{T§t} / 1I(Xs)ds + 1{T>t}/ 1m(Xs)d8.
0 0

If we can argue that

tAToo R
(C4) 1{T§t} / 11(X5)d8 =0 Vr €D,

then adding the left-hand side of (C.4) to the right-hand side of (C.3), taking expec-
tations, using Tonelli’s theorem, and applying Theorem 2.4 to X yields the charac-
terisation of the occupation measure. The above follows from the fact that X hits
an absorbing state as soon as it leaves the domain. Formally, Lemmas 2.2-2.3 imply
that

{T S 57Tk S s < Tk-i—l} - {Tmax{a,k:} S s < Tk-i—l} = {O’ S kaTk S s < Tk)-‘rl}
for all £ € N. The above and (C.2) tell us that

Xs(w):Zl{fk§s<fk+l}(w)yk(w): > Ly <oty (@)Vi(w)
k=0 k=o(w)

(05) = 1{SZTU}(W)Y0(0J) = Ya(w)(w) = XT(W)(OJ)’ V(S,UJ) : T(OJ) <s< TOO (w)’
where the last equality follows from Lemmas 2.2-2.3. By definition, the paths of X
are cadlag (with respect to the discrete topology on §) implying that X lies outside
of the domain and (C.4) follows from (C.5).
For the characterisation of the exit distribution, fix any x € D and note that
w([0,t],2) =P{X, =2,7 <t}) =P{X, =2,7 < t,7 < T })
= P({XT =T,T S t’TOO = OO}) = P({XT =, T S t < TOO)TOO - OO})
=P{X; = 2,7 <t <Tno,Too = 00}) =P({X;, = 2,7 < t < Tho})
=P({X; = 2,t < Tno}) = ().
The first equality follows from the definition of p, the second that of 7, the third
from Lemma C.1, the fourth from Lemma 2.3, the fifth from (C.5), the sixth from
Lemma C.1, the seventh from the fact that X; lies outside of the domain only if its
exit time is no greater than ¢ and (2.5), and the eighth from Theorem 2.4. Exploiting

the continuity of ¢ — py(z) (Theorem 2.4) and applying the monotone convergence
theorem to (-, x) implies that

:u([07t)7m> = nh_)ngo M([Ovt(l - 1/”)}775) = nh_ggoﬁt(l—l/n) (:L‘) = ﬁt(x)v Vo g D,

thus completing the proof of the first equation in (2.17). d
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