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ERGODIC CONTROL OF A CLASS OF JUMP DIFFUSIONS

WITH FINITE LÉVY MEASURES AND ROUGH KERNELS

ARI ARAPOSTATHIS∗, LUIS CAFFARELLI† , GUODONG PANG‡ , AND YI ZHENG‡

Abstract. We study the ergodic control problem for a class of jump diffusions in Rd, which
are controlled through the drift with bounded controls. The Lévy measure is finite, but has no
particular structure—it can be anisotropic and singular. Moreover, there is no blanket ergodicity
assumption for the controlled process. Unstable behavior is ‘discouraged’ by the running cost which
satisfies a mild coercive hypothesis (i.e., is near-monotone). We first study the problem in its weak
formulation as an optimization problem on the space of infinitesimal ergodic occupation measures,
and derive the Hamilton–Jacobi–Bellman equation under minimal assumptions on the parameters,
including verification of optimality results, using only analytical arguments. We also examine the
regularity of invariant measures. Then, we address the jump diffusion model, and obtain a complete
characterization of optimality.

Key words. controlled jump diffusions; compound Poisson process; Lévy process; ergodic
control; Hamilton–Jacobi–Bellman equation

AMS subject classifications. 93E20, 60J75, 35Q93; Secondary, 60J60, 35F21, 93E15

1. Introduction. Optimal control of jump diffusions has recently attracted
much attention from the control community, primarily due to its applicability to
queueing networks, mathematical finance [17], image processing [23], etc. Many re-
sults for the discounted problem are available in [8], including the game theoretic
setting, and different applications are discussed. However, studies of the ergodic con-
trol problem are rather scarce. Ergodic control of reflected jump diffusions over a
bounded domain can be found in [33]. The ergodic control problem in R

d is stud-
ied in [34], albeit under very strong blanket stability assumptions. We should also
mention here the treatment of the impulse control problem in [7, 18, 31].

Our work in this paper is motivated from ergodic control problems for multiclass
stochastic networks in the Halfin–Whitt regime, under service interruptions. For this
model, the pure jump process driving the limiting queueing process is compound Pois-
son (see Theorem 3.2 in [4]), with a Lévy measure that is anisotropic, and in general,
singular with respect to the Lebesgue measure. In fact, the jumps are biased towards a
given direction, and thus the Lévy measure has no symmetry whatsoever. We assume
that the running cost is coercive, also known as near-monotone (see (2.2)), and do not
impose any blanket stability hypotheses on the controlled jump diffusion. We treat a
general class of jump diffusions which is abstracted from diffusion approximations of
stochastic networks, and whose controlled infinitesimal generator has the form

Au(x, z) :=
∑

i,j

aij(x)
∂2u

∂xi∂xj
(x) +

∑

i

bi(x, z)
∂u

∂xi
(x)(1.1)

+

∫

Rd

(
u(x+ y)− u(x)− 1{|y|≤1}〈y,∇u(x)〉

)
νx(dy) .
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Here, z is a control parameter that lives in a compact metric space Z, and νx(dy)
is a finite Borel measure on R

d for each x, while x 7→ νx(A) is a Borel measurable
function for each Borel set A. Throughout the paper, we assume that d ≥ 2. The
coefficients of A are assumed to satisfy the following.

Assumption 1.1. (a) The matrix a = [aij ] is symmetric, positive definite, and
locally Lipschitz continuous. The drift b : Rd ×Z → R

d is continuous.
(b) The map x 7→ ν(x) := νx(R

d) is locally bounded.
(c) the map x 7→ νx(K−x) is bounded on R

d for any fixed compact set K ⊂ R
d.

The generator A in (1.1) covers a variety of models of jump diffusions which
appear in the literature [5, 13, 20, 21, 40]. Note also that the ‘jump rate’ ν(x) is
allowed to be state dependent as in [32]. The hypotheses in Assumption 1.1 are quite
general, and do not imply the existence of a controlled process with generator A.
Our main goal in this paper is to establish general results for ergodic control of jump
diffusions governed for this class of operators. To accomplish this, we first state the
ergodic control problem for the operator A as a convex optimization problem over
the set of infinitesimal ergodic occupation measures. We then proceed to study the
ergodic Hamilton–Jacobi–Bellman (HJB) equation via analytical methods, without
assuming that the martingale problem for A is well posed. This of course precludes
arguments that utilize stochastic representations of solutions of elliptic equations.
Later, in section 4, we specialize these results to a fairly general model of controlled
jump diffusions with finite Lévy measure.

It is well known that the standard method of deriving the ergodic HJB on R
d is

based on the vanishing discount approach, and relies crucially on structural proper-
ties that permit uniform estimates for the gradient (e.g., viscous equations in R

d), or
the Harnack property. Recent work on nonlocal equations has resulted in important
regularity results [6, 10, 15, 16] that should prove very valuable in studying control
problems. However, most of this work concerns Lévy jump processes whose kernel has
a ‘nice’ density resembling that of a fractional Laplacian. For the problem at hand,
even though the Lévy measure νx is finite, and there is a non-degenerate Wiener
process component, the Lévy measure is anisotropic, and could be singular [4, Sec-
tion 3.2]. As a result, there is no hope for the Harnack property for positive solutions
to hold as the following example shows.

Example 1.2. Consider an operatorA in R
2, with a the identity matrix, b = (3, 0),

and ν = νx a Dirac mass at x̃ = (3, 0). Let fǫ ∈ C2(R2), with ǫ ∈ (0, 1), be defined in
polar coordinates by

fǫ(r, θ) := − log(r)1{r≥ǫ} +
(

3
4 − r2

ǫ2 + r4

4ǫ4 − log(ǫ)
)
1{r<ǫ} .

This function is used in [36, p. 111] to exhibit a family of positive superharmonic
functions for the Laplacian that violates the Harnack property. Let uǫ be a function
which agrees with fǫ on the unit ball B1 centered at 0, and takes the values uǫ(r̃, θ̃) =(

4
ǫ2 − 4r̃2

ǫ4 + fǫ(r̃, θ̃)
)
1{r̃<ǫ} on the unit ball B1(x̃) centered at x̃, when expressed in

polar coordinates (r̃, θ̃) which are centered at x̃. Let uǫ take any nonnegative value
elsewhere in R

2. Then uǫ is nonnegative on R
2 and satisfies Auǫ = 0 in B. However,

uǫ(0,θ)
uǫ(e−1,θ) = − log(ǫ), and thus the family violates the Harnack property for A.

Under the general hypotheses of Assumption 1.1, even if the operator A is the
generator of a Markov process, the process might not be regular, or, in case it is pos-
itive recurrent, the mean hitting times to an open ball might not be locally bounded.
In the latter case, it is futile to search for solutions to the ergodic HJB equation, even



ERGODIC CONTROL OF A CLASS OF JUMP DIFFUSIONS 3

in a viscosity sense. In section 3, we add two hypotheses to address these pathologies.
The first (see (H1)), is the Feller–Has′minskĭı criterion for a diffusion process with
generator A to be regular (or conservative, or non-explosive), which requires that
the equation Au − u = 0 has no bounded positive solutions on R

d. This property
is equivalent to regularity, and it is clear from the proof of this equivalence in [26,
Theorem 4.1] that the equation can be replaced by Au− αu = 0 for α > 0. The sec-
ond hypothesis, (H2), states that under some stationary Markov control there exists
a nonnegative solution V to the Lyapunov equation AV ≤ C1B − R, where R is the
running cost, B is a ball, and C is a constant. Hypothesis (H2) can be relaxed under
certain assumpions on νx (see Theorem 3.8).

The paper is organized as follows. In subsection 1.1 we summarize the notation
we use. Section 2 states the ergodic control problem, in a weak sense, as a convex
optimization problem over the set of infinitesimal ergodic occupation measures for the
operator A, and shows that optimality is attained. Regularity properties of infinites-
imal invariant measures are in subsection 2.3. Section 3 is devoted to the study of
the HJB equation under (H1)–(H2) mentioned above. In Section 4 we study a class
of jump diffusions, which is abstracted from the limiting diffusions encountered in
stochastic networks under service interruptions.

1.1. Notation. The standard Euclidean norm in R
d is denoted by | · |, and 〈 · , · 〉

denotes the inner product. Given two real numbers a and b, the minimum (maximum)
is denoted by a∧ b (a∨ b), respectively. The closure, boundary, complement, and the
indicator function of a set A ⊂ R

d are denoted by Ā, ∂A, Ac, and 1A, respectively.
We denote by τ(A) the first exit time of the process X from a set A ⊂ R

d, defined
by τ(A) := inf {t > 0 : Xt 6∈ A}. The open ball of radius R in R

d, centered at the
origin, is denoted by BR, and we let τR := τ(BR), and τ̆R := τ(Bc

R). The Borel
σ-field of a topological space E is denoted by B(E), and P(E) denotes the set of
probability measures on B(E).

For a domain Q ⊂ R
d, the space Ck(Q) (C∞(Q)), k ≥ 0, refers to the class of all

real-valued functions on Q whose partial derivatives up to order k (of any order) exist
and are continuous, while Ck

c (Q) (Ck
b (Q)) denote the subsets of Ck(Q), consisting of

functions that have compact support (whose partial derivatives are bounded in Q).
The space Lp(Q), p ∈ [1,∞), stands for the Banach space of (equivalence classes of)
measurable functions f satisfying

∫
Q
|f(x)|p dx <∞, and L∞(Q) is the Banach space

of functions that are essentially bounded in Q. We denote the usual norm on this
space by ‖f‖Lp(Q), p ∈ [1,∞]. The standard Sobolev space of functions on Q whose
generalized derivatives up to order k are in Lp(Q), equipped with its natural norm, is
denoted by Wk,p(Q), k ≥ 0, p ≥ 1. In general, if X is a space of real-valued functions
on Q, Xloc consists of all functions f such that fϕ ∈ X for every ϕ ∈ C∞

c (Q). In this
manner we obtain, for example, the space W

2,p
loc(Q).

We adopt the notation ∂i :=
∂
∂xi

and ∂ij := ∂2

∂xi∂xj
for i, j ∈ {1, . . . , d}, and we

often use the standard summation rule that repeated subscripts and superscripts are
summed from 1 through d.

2. The convex analytic formulation. Define L : C2(Rd) → C(Rd ×Z) by

Lu(x, z) := aij(x)∂iju(x) + b̂i(x, z)∂iu(x) ,

with b̂(x, z) := b(x, z) +
∫
Rd z 1{|z|≤1}νx(dz), and let

Iu(x) :=

∫

Rd

(
u(x+ y)− u(x)

)
νx(dy) ,
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provided that the integral is finite. Thus Au(x, z) = Lu(x, z) + Iu(x). With z ∈ Z
treated as a parameter, we define Lzu(x) := Lu(x, z), and Azu(x) := Au(x, z).

Let B(Rd,Z) denote the set of Borel measurable maps v : Rd → Z. Such a map
v is called a stationary Markov control, and we use the symbol Vsm to denote this
class of controls. For v ∈ Vsm, we use the simplified notation bv(x) := b

(
x, v(x)

)
, and

define Av, Rv and ̺v analogously.
We augment the class Vsm by adopting the well-known relaxed control framework

[2, Section 2.3]. According to this relaxation, controls take values in P(Z), the latter
denoting the set of probability measures on Z under the Prokhorov topology. Thus,
a control v ∈ Vsm may be viewed as a kernel on P(Z) × R

d, which we write as
v(dz | x). We extend the definition of b and R, without changing the notation, i.e.,
we let bv(x) :=

∫
Z b(x, z) v(dz |x), and analogously for Rv. We endow Vsm with the

topology that renders it a compact metric space, referred to as the topology of Markov
controls [2, Section 2.4]. A control is said to be precise if it is a measurable map from
R

d to Z, i.e., if it agrees with the definition in the preceding paragraph. It is easy to
see that this relaxation preserves Assumption 1.1.

2.1. The ergodic control problem for the operator A . We fix a count-
able dense subset C of C2

0(R
d) consisting of functions with compact supports. Here,

C2
0(R

d) denotes the Banach space of functions f : Rd → R that are twice continuously
differentiable and their derivatives up to second order vanish at infinity.

Definition 2.1. A probability measure µv ∈ P(Rd), v ∈ Vsm, is called infinites-
imally invariant under Av if

(2.1)

∫

Rd

Avf(x)µv(dx) = 0 ∀ f ∈ C .

If such a µv exists, then we say that v is a stable control, and define the (infinitesi-
mal) ergodic occupation measure πv ∈ P(Rd × Z) by πv(dx, dz) := µv(dx) v(dz |x).
We denote by Vssm, M, and G, the sets of stable controls, infinitesimal invariant
probability measures, and ergodic occupation measures, respectively.

Remark 2.2. In Definition 2.1 we select C as the function space, deviating from
common practice, where this is selected as C∞

0 (Rd), the space of smooth functions
vanishing at infinity. In general, there is no uniqueness of solutions to (2.1) [39].
For the relation between infinitesimally invariant measures and invariant probability
measures for diffusions we refer the reader to [14]. Note also, that as shown in [19],
in order to assert that µv is an invariant probability measure for a Markov process
with generator Av, it suffices to verify (2.1) for a dense subclass of the domain of Av

consisting of functions such that the martingale problem is well posed.

It follows from Definition 2.1 that π ∈ P(Rd×Z) is an ergodic occupation measure
if and only if

∫
Rd×Z Azf(x)π(dx, dz) = 0 for all f ∈ C. It is also easy to show that

the set of ergodic occupation measures G is a closed and convex subset of P(Rd ×Z)
(see [2, Lemma 3.2.3]).

Let R : Rd ×Z 7→ R+ be a continuous function, which we refer to as the running
cost function. The ergodic control problem for A seeks to minimize π(R) =

∫
R dπ

over π ∈ G. Thus, the optimization problem is an infinite dimensional linear program.
We define ̺∗ := infπ∈G π(R), and assume, of course, that this is finite. Also for
v ∈ Vssm, we let ̺v := πv(R), and we say that v is optimal if ̺v = ̺∗. We seek to
obtain a full characterization of optimal controls via the study of the dual problem,
and this leads to the HJB equation. For more details on this linear programming
formulation see Section 4 in [9].
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2.2. Well posedness of the control problem. We impose a structural as-
sumption on the running cost which renders the optimization problem well posed.
We say that a function h : Rd × Z → R+ is coercive relative to a constant c ∈ R, if
there exists a constant ǫ > 0, such that the set {x ∈ R

d : infz∈Z h(x, z) ≤ c + ǫ} is
bounded (or empty).

Throughout the paper, we assume that the running cost is coercive relative to ̺∗,
and we fix a ball B◦ and a constant ǫ◦ such that R(x, z) > ̺∗ +2ǫ◦ on Bc

◦. Naturally,
this property depends on ̺∗, but note that, since ̺∗ <∞, it is always satisfied if the
running cost is inf-compact on R

d×Z. Coerciveness of R relative to ̺∗ is also known
as near-monotonicity in the literature, and it is often written as

(2.2) lim inf
|y|→∞

inf
z∈Z

R(y, z) > ̺∗ .

We state the following theorem, which follows easily by mimicking the proofs of
Lemma 3.2.11 and Theorem 3.4.5 in [2].

Theorem 2.3. The map π 7→ π(R) attains its minimum in G.
2.3. Regularity properties of infinitesimal invariant measures. In this

section we establish regularity properties of the densities of infinitesimal invariant
probability measures. Recall the notation ν(x) = νx(R

d) introduced in Assump-
tion 1.1. We need the following definition.

Definition 2.4. We decompose Az = L̃z + Ĩ, with

L̃zu(x) := Lzu(x)− ν(x)u(x) , and Ĩu(x) :=

∫

Rd

u(x+ y) νx(dy) .

Theorem 2.5. Every µ ∈ M has a density φ = φ[µ] which belongs to Lp
loc

(Rd)
for any p ∈

[
1, d

d−2

)
, and is strictly positive. In addition, if νx is translation invariant

and has compact support, then, for any β ∈ (0, 1), there exists a constant C̄ = C̄(β,R),
such that

(2.3) |φ(x) − φ(y)| ≤ C̄ |x− y|β ∀x, y ∈ BR .

Proof. As shown in [11, Theorem 2.1], if in some domain Q ⊂ R
d, a probability

measure µ satisfies

(2.4)

∫

Q

aij∂ijf dµ ≤ C sup
Q

(
|f |+ |∇f |

)
∀f ∈ C∞

c (Q)

for some constant C, then µ has a density which belongs to Lp
loc(Q) for every p ∈ [1, d′),

where d′ = d
d−1 . It is straightforward to verify, using Assumption 1.1, that a bound

of the form (2.4) holds for any µ ∈ M on any bounded domain Q. It follows that the
density φ of µ is in Lp

loc(R
d) for any p ∈ [1, d′), and that it is a generalized solution

to the equation

∑

i,j

∫

Rd

(
aij(x)∂jφ(x) +

(
∂ja

ij(x) − b̂iv(x)
)
φ(x)

)
∂if(x) dx(2.5)

−
∫

Rd

ν(x)φ(x)f(x) dx = −
∫

Rd

∫

Rd

f(x+ y)νx(dy)φ(x) dx ,

for f ∈ C∞
c (Rd). By (2.5), φ is a supersolution to

(2.6) L̃∗
vφ(x) := ∂i

(
aij(x)∂jφ(x) +

(
∂ja

ij(x)− b̂iv(x)
)
φ(x)

)
− ν(x)φ(x) = 0 .
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Therefore, by the estimate for supersolutions in [22, Theorem 8.18], we deduce that
φ ∈ L

p
loc(R

d) for any p ∈
[
1, d

d−2

)
, and that it is strictly positive. Note that this

theorem assumes that the supersolution is in W
1,2
loc(R

d), but this is unnecessary. The

theorem is valid for functions in W
1,p
loc(R

d) for any p > 1, as seen from the results in
Section 5.5 of [35], or one can use the mollifying technique in [2, Theorem 5.3.4] to
show this.

Now suppose that νx is translation invariant and has compact support. Let
Îφ(x) :=

∫
Rd φ(x − y) ν(dy). Then (2.5) takes the form L̃∗

vφ(x) = −Îφ(x). The

operator L̃∗
v satisfies the hypotheses of Theorem 5.5.5′ in [35], which asserts that φ

satisfies

(2.7) ‖φ‖W1,q(BR) ≤ κ(p,R)
(
‖Îφ‖Lp(B2R) + ‖φ‖L1(B2R)

)
∀ p > 1 ,

with q = q(p) := dp
d−p , and a constant κ(p,R) that depends also on d, ν, and the

bounds in Assumption 1.1. Without loss of generality, suppose that ν is supported
on a ball BR◦

. By Minkowski’s integral inequality we have

(2.8) ‖Îφ‖Lp(B2R) ≤ ν ‖φ‖Lp(B2R+R◦
) .

On the other hand, by the Sobolev embedding theorem, W1,q(BR) →֒ Lr(BR) is a
continuous embedding for q ≤ r ≤ qd

d−q and q < d, and W1,q(BR) →֒ C0,r(BR) is

compact for r < 1 − d
q and q > d. Therefore, starting say from p = d

d−1 , we deduce

by repeated applications of (2.7)–(2.8), and Sobolev embedding, that φ ∈ W
1,q
loc(R

d)
for any q > 1, which implies (2.3).

Remark 2.6. The assumption that νx is translation invariant in Theorem 2.5 is
sharp. Consider a jump diffusion with σ =

√
2, b(x) = x, g(x, ξ) = −x, and ν = 1.

ThenA = ∆−1+δ0, where δ0 denotes the Dirac mass at 0. It can be easily verified that
the diffusion is geometrically ergodic by employing the Lyapunov function V(x) = |x|2.
The density of the invariant measure φ satisfies

∫ ∑
ij(∂iφ)(∂jf) +

∫
φf = f(0) for

all f ∈ C∞
c (Rd), and thus it is a solution of −∆φ + φ = δ0 (viewed in the sense of

distributions D′(Rd)). However, as shown in [38], every positive solution φ of this
equation, which vanishes at infinity, satisfies φ(x) ∼ Γ(x) as x→ 0, where Γ denotes
the fundamental solution of −∆ in R

d. Thus the density of the invariant measure in
the vicinity of x = 0 is not any better than what is claimed in the first step in the
proof, which shows that it belongs to Lp

loc(R
d) for p < d

d−2 . One can select the jumps
to induce multiple such singularities, and generate very pathological examples. Thus,
in general, the hypothesis that νx is translation invariant cannot be relaxed, unless
we assume that νx has a suitable density as shown in Corollary 2.8 below.

Definition 2.7. We say that νx has locally compact support if there exists an
increasing map γ : (0,∞) → (0,∞) such that νx(x + Bc

γ(R)) = 0 for all x ∈ BR. Let

γ̂(R) := R + γ(R). It follows from this definition that Bγ̂(R) contains the support of
νx for all x ∈ BR.

Corollary 2.8. Assume that νx has locally compact support, and that it has a
density ψx ∈ L

p1

loc
(Rd) for some p1 > d

2 , satisfying the following: for some p2 ∈(
1, d

d−2

)
, it holds that

∫

Bγ(R)

(∫

Bγ̂(R)

|ψx(y)|pi dy

) 1
pi−1

dx < ∞ , i = 1, 2 , ∀R > 0 .
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Then (2.3) holds.

Proof. Note that

∫

Rd

(∫

Rd

f(x+ y)ψx(y) dy

)
φ(x) dx =

∫

Rd

f(z)

(∫

Rd

ψz−y(y)φ(z − y) dy

)
dz

=

∫

Rd

f(z)

(∫

Rd

ψz(z − a)φ(a) da

)
dz .

Therefore, Îφ(x) =
∫
Rd ψa(x− a)φ(a) da. By the Minkowski integral inequality and

the Hölder inequality, we obtain

∥∥Îh(z)
∥∥
Lp(BR)

=

(∫

BR

(∫

Bγ(R)

ψa(z − a) |h(a)| da
)p

dz

)1/p

≤
∫

Bγ(R)

|h(a)|
(∫

BR

|ψa(z − a)|p dz
)1/p

da

≤ ‖h‖Lp(Bγ(R))

(∫

Bγ(R)

(∫

BR

|ψa(z − a)|p dz
)1/(p−1)

da

)(p−1)/p

≤ ‖h‖Lp(Bγ(R))

(∫

Bγ(R)

∥∥ψa

∥∥p/(p−1)

Lp(Bγ̂(R))
da

)(p−1)/p

.

Therefore, the map Îh is a linear mapping from Lp1(Bγ(R)) ∪ Lp2(Bγ(R)) into
Lp1(BR) ∪ Lp2(BR) and satisfies

∣∣{x ∈ BR : |Îh(x)| > t
}∣∣ ≤ C

‖h‖Lpi(Bγ(R))

t pi

for some constant C, for all h ∈ Lpi(BR), i = 1, 2. Here, |A| denotes the Lebesgue
measure of a set A. Thus, by the Marcinkiewicz interpolation theorem, it extends to
a bounded linear map from Lp(Bγ(R)) into Lp(BR) for any p ∈ (p1, p2). The result
then follows as in the proof of Theorem 2.5.

Remark 2.9. It is evident from Corollary 2.8 that if νx has locally compact sup-
port and a density ψx ∈ Lp(Rd) for some p > d

2 , such that x 7→ ‖ψx‖Lp(Rd) is locally
bounded, then the density of an infinitesimal invariant measure is Hölder continuous.

3. The HJB equations. We first discuss the relationship between infinitesimal
invariant probability measures and Foster–Lyapunov equations. Next, we derive the
α-discounted HJB equation, and proceed to study the ergodic HJB equation using
the vanishing discount approach. The treatment is analytical, and we refrain from
using any stochastic representations of solutions. We state hypothesis (H1) which was
discussed in section 1.

(H1) For any v ∈ Vsm, and α > 0, the equation Avu − αu = 0 has no bounded

positive solution u ∈ W
2,d
loc(R

d).

3.1. On the Foster–Lyapunov equation. Consider the hypothesis:

(H2) There exist v̂ ∈ Vsm, a nonnegative V ∈ C2(Rd), an open ball B̂, and a
positive constant κ0 such that

(3.1) Av̂V(x) ≤ κ01B̂
(x)− Rv̂(x) ∀x ∈ R

d .
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On the other hand, ̺∗ is finite if and only if

(H3) There exist v̂ ∈ Vssm, and a probability measure µv̂ which solves (2.1), and
µv̂(Rv̂) =

∫
Rv̂ dµv̂ <∞.

For continuous diffusions, equivalence of (H2) and (H3) is a celebrated result of
Has′minskĭı [27]. It is pretty straightforward to show, using probabilistic arguments,
that (H2)⇒ (H3), and this is in fact true for a large class of Markov processes. An
analytical argument for continuous diffusions can be found in the work of Bogachev
and Röckner [12], under the hypothesis that Rv̂ is inf-compact. The argument offered
by Has′minskĭı in the proof that (H3)⇒ (H2) relies crucially on the Harnack property,
and therefore is not applicable for the jump diffusions considered here. In the context
of general Markov processes, existence of a solution to (3.1) is related to the f -
regularity of the process. For recent work on this, see [28].

In some sense, (H2) is a very mild assumption, since in any application one
would first need to establish that ̺∗ is finite, and the natural venue for this is via
the Foster–Lyapunov equation in (3.1). A typical example is when νx is translation
invariant, a has sublinear growth, and for some θ ∈ [1, 2],

∫
Rd |y|θν(dy) < ∞, Rv̂

grows at most as |x|2(θ−1), and there exist a positive definite symmetric matrix S,
and positive constants c0 and c1 such that 〈bv̂(x), Sx〉 ≤ c0− c1|x|θ. Then (3.1) holds
with V(x) = 〈x, Sx〉θ/2. For other examples, see [4, Corollary 5.1].

Consider the class of νx that are either translation invariant and have compact
support, or satisfy the hypotheses of Corollary 2.8, and denote it by N0 for conve-
nience. For νx ∈ N0, we bridge the gap between (H2) and (H3) in Theorem 3.7 by
establishing the existence of a solution to the Poisson equation, and thus showing
that (H3)⇒ (H2), albeit for a function V ∈ W

2,p
loc(R

d). This however is enough to
relax (H2) in asserting the existence of a solution to the ergodic HJB for νx ∈ N0

(Theorem 3.8). Moroever, the proof of Theorem 3.8 contains an analytical argument
which shows that (H2)⇒ (H3), provided that νx ∈ N0, and Rv̂ is inf-compact.

We need the following simple assertion.

Lemma 3.1. Let µv be an infinitesimal invariant measure under v ∈ Vssm. Then
(2.1) holds for all ϕ ∈ W

2,p
loc

(Rd) ∩ Cc(Rd), p > d. In addition, if ϕ ∈ W
2,p
loc

, p > d,
is inf-compact, and such that Avϕ is nonpositive a.e. on the complement of some ball
B ⊂ R

d, then µv

(
|Avϕ|

)
<∞.

Proof. In the interest of simplicity, we drop the explicit dependence on v in the
notation. Suppose ϕ ∈ W

2,p
loc(R

d) ∩ Cc(Rd), p > d. Let ρ be a symmetric non-
negative mollifier supported on the unit ball centered at the origin, and for ǫ > 0, let
ρǫ(x) := r−dρ(xǫ ), and ϕǫ := ρǫ ∗ϕ, where ‘∗’ denotes convolution. Then, µ(Aϕǫ) = 0
by (2.1). Since ∂ijϕǫ converges to ∂ijϕ as ǫց 0 in Lp(BR) for any p > 1 and R > 0,
and since µ has a density in L

p
loc(R

d) for p < d
d−2 by Theorem 2.5, it follows by

Hölder’s inequality that
∫
Rd |aij ||∂ijϕ−∂ijϕǫ| dµ→ 0 as ǫց 0. Also, since ∂iϕ−∂iϕǫ

converges uniformly to 0, and in view of Assumption 1.1 (b) and (c), we obtain

µ(b̂i∂iϕǫ) → µ(b̂i∂iϕ), and µ(Iϕǫ) → µ(Iϕ) as ǫց 0. This shows that µ(Aϕ) = 0.
We now turn to the second statement of the lemma. Let χ be a concave C2(Rd)

function such that χ(x) = x for x ≤ 0, and χ(x) = 1 for x ≥ 1. Then χ′ and −χ′′

are nonnegative on (0, 1). Define χR(x) := R+ χ(x−R) for R > 0, and observe that
χR(ϕ) −R− 1 is compactly supported by construction. We have

(3.2) AχR(ϕ) = χ′
R(ϕ)Aϕ + χ′′

R(ϕ) 〈∇ϕ, a∇ϕ〉 −
(
χ′
R(ϕ)Iϕ − IχR(ϕ)

)
.

Note that the second and third terms on the right hand side of (3.2) are nonpositive.
Thus, selecting R sufficiently large so that Aϕ is nonpositive on the complement of
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BR, and integrating with respect to µ, we first obtain µ
(
(Aϕ)+

)
<∞, and using this

together with (3.2) the result follows.

3.2. The α-discounted HJB equation. We have the following theorem.

Theorem 3.2. Assume (H1)–(H2). For any α ∈ (0, 1), there exists a minimal
nonnegative solution Vα ∈ W

2,p
loc

(Rd), p > 1, to the HJB equation

(3.3) min
z∈Z

[
Az Vα(x) + R(x, z)

]
= αVα(x) .

Moreover, infRd αVα ≤ ̺∗, and this infimum is attained in the set

Γ◦ :=
{
x ∈ R

d : sup
z∈Z

R(x, z) ≤ ̺∗

}
.

Proof. Establishing the existence of a solution is quite standard. One starts by
exhibiting a solution ψα,R ∈ W2,p(BR) ∩ C(Rd) to the Dirichlet problem

(3.4)

{
minz∈Z

[
Azψα,R(x) + R(x, z)

]
= αψα,R(x) x ∈ BR ,

ψα,R(x) = 0 x ∈ Bc
R ,

for any α ∈ (0, 1) and R > 0.

We use Definition 2.4 to write A = L̃ + Ĩ. Applying the well-known interior
estimate in [22, Theorem 9.11], for any fixed r > 0, we obtain

∥∥ψα,R

∥∥
W2,p(Br)

≤ C
(∥∥ψα,R

∥∥
Lp(B2r)

+
∥∥Rvα + Ĩ ψα,R

∥∥
Lp(B2r)

)

for some constant C = C(r, p). Here, vα is a measurable selector from the minimizer
of the α-discounted HJB in (3.3). Using the comparison principle and (H2), it is
straightforward to show that ψα,R ≤ κ◦

α + V on R
d. Thus {ψα,R} is bounded in

W2,p(Br), uniformly in R. We then take limits as R → ∞ to obtain a function
Vα ∈ W

2,p
loc(R

d) which solves (3.3).
Let mα := infRd Vα. We claim that αmα ≤ ̺∗. Suppose on the contrary that

αmα > ̺∗. Let v ∈ Vssm. Recall the function χ in the proof of Lemma 3.1, and let
χ̃(x) := −χ(̺∗

2 +1−x). Note that χ̃′′ ≥ 0, and χ̃′(ψα,R)Iψα,R−Iχ̃(ψα,R) ≤ 0. Thus,
using (3.4) and repeating the calculation in (3.2) we obtain

Avχ̃(ψα,R) ≥ χ̃′(ψα,R)Avψα,R ≥ χ̃′(ψα,R)
(
αψα,R − Rv

)
.

It is clear that χ̃(ψα,R) ∈ W
2,p
loc(R

d) ∩ Cc(Rd), for any p > 1. Hence, integrating with
respect to µv, applying Lemma 3.1, and taking limits as R → ∞, using monotone
convergence, we obtain αmα ≤ µv(αVα) ≤ µv(Rv). Taking the infimum over v ∈ Vssm

contradicts the hypothesis that αmα > ̺∗, and thus proves the claim.
Recall the definition ǫ◦ in subsection 2.2. Let ṽ ∈ Vsm be a measurable selector

from the minimizer of (3.4) and consider the Dirichlet problem

(3.5)

{
Aṽψ̃α,R(x) + Rṽ(x) = αψ̃α,R(x) x ∈ BR ,

ψ̃α,R(x) = α−1(̺∗ + ǫ◦) x ∈ Bc
R ,

for α ∈ (0, 1) and R > 0. Arguing as in the derivation of (3.4), it follows that ψ̃α,R

converges, as R → ∞, to some Ṽα ∈ W
2,p
loc(R

d) which solves AṽṼα+Rṽ(x) = αṼα on
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R
d. It is clear that u = Ṽα −Vα is nonnegative and bounded. Since Aṽu−αu = 0 on

R
d, it follows by (H1) that u cannot be strictly positive, and, in turn, by the strong

maximum principle it has to be identically zero. Thus, given ǫ < ǫ◦ there exists Rǫ

such that minBR
αψ̃α,R < ̺∗ + ǫ for all R > Rǫ. It follows by (3.5) that ψ̃α,R attains

its minimum in the set Γǫ := {x ∈ R
d : Rṽ(x) ≤ ̺∗+ ǫ} for all R > Rǫ, and therefore,

the same applies to Ṽα. Since ǫ > 0 is arbitrary, we conclude that Ṽα attains its
infimum in the set {x ∈ R

d : Rṽ(x) ≤ ̺∗} ⊂ Γ◦, and this completes the proof.

3.3. The ergodic HJB equation. We start with the main convergence result of
the paper which establishes solutions to the ergodic HJB via the vanishing discount
method. To guide the reader, the technique of the proof consists of writing the
operator in the form L̃ + Ĩ, and obtaining estimates for supersolutions of the local
operator L̃ using the results in [3, Corollary 2.2].

Theorem 3.3. Grant the hypotheses of Theorem 3.2, and let Vα, α ∈ (0, 1), be
the family of solutions in that theorem. Then, as α ց 0, Vα − Vα(0) converges in
C1,r(BR) for any r ∈ (0, 1) and R > 0, to a function V ∈ W

2,p
loc

(Rd) for any p > 1,
which is bounded from below in R

d and solves

(3.6) min
z∈Z

[
Az V (x) + R(x, z)

]
= ̺ ,

with ̺ = ̺∗. Also αVα(x) → ̺∗ uniformly on compact sets. In addition, the solution

of (3.6) with ̺ = ̺∗ is unique in the class of functions V ∈ W
2,d
loc

(Rd), satisfying
V (0) = 0, which are bounded from below in R

d. For ̺ < ̺∗, there is no such solution.

Proof. Recall the definitions of B◦ and ǫ◦ in subsection 2.2. Fix an arbitrary ball
B ⊂ R

d such that B◦ ⊂ B. Since V and Vα are a supersolution and subsolution of
Av̂u− αu = −Rv̂ on Bc by (3.1), respectively, it follows that the solution Vα of (3.3)
satisfies

(3.7) Vα(x) ≤ sup
B

Vα + V(x) ∀x ∈ R
d .

By Theorem 3.2 we have infRd Vα = minB◦
Vα for all α ∈ (0, 1). For each α ∈ (0, 1),

we fix some point x̂α ∈ ArgminVα ⊂ B◦. Consider the function ϕα := Vα − Vα(x̂α).
Then (3.7) implies that

(3.8) ϕα(x) ≤ ‖ϕα‖L∞(B◦) + V(x) ∀x ∈ R
d .

We have

min
z∈Z

[
Azϕα(x)− αϕα(x) + R(x, z)

]
= αVα(x̂α) ≤ ̺∗ ,

where the last inequality follows by Theorem 3.2. We claim that for each R > 0 there
exists a constant κR such that

(3.9) ‖ϕα‖L∞(BR) ≤ κR ∀α ∈ (0, 1) .

To prove the claim, let B ≡ BR, and D1, D2 be balls satisfying B ⋐ D1 ⋐ D2. Recall

Definition 2.4. For p > 0, let ‖u‖p;Q :=
(∫

Q u(x) dx
)1/p

. Of course, this is not a norm

unless p ≥ 1, so there is a slight abuse of notation involved in this definition. Since
V ∈ C2(Rd), hypothesis (H2) implies that ĨV ∈ L∞

loc(R
d), and the same of course
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holds for ϕα by (3.8). By the local maximum principle [22, Theorem 9.20], for any
p > 0, there exists a constant C̃1(p) > 0 such that

‖ϕα‖L∞(B) ≤ C̃1(p)
(
‖ϕα‖p;D1 + ‖Ĩ ϕα‖Ld(D1) + ‖Rvα‖Ld(D1)

)
,

and by the supersolution estimate [22, Theorem 9.22], and since ϕα is nonnegative,
there exist some p > 0 and C̃2 > 0 such that ‖ϕα‖p;D1 ≤ C̃2 ̺∗ |D2|1/d. Combining
these inequalities, we obtain

(3.10) ‖ϕα‖L∞(B) ≤ C̃1(p)
(
C̃2 ̺∗ |D2|1/d + ‖Rvα‖Ld(D1)

)
+ C̃1(p)‖Ĩ ϕα‖Ld(D1) .

Denote the first term on the right hand of (3.10) by κ1. By (3.8) and (3.10) we have

‖ϕα‖L∞(D2) ≤ ‖V‖L∞(D2) + ‖ϕα‖L∞(B)

≤ κ1 + ‖V‖L∞(D2) + C̃1(p) ‖Ĩ ϕα‖Ld(D1) .

This implies that, either ‖ϕα‖L∞(D2) ≤ 2
(
κ1 + ‖V‖L∞(D2)

)
, in which case (3.9) holds

with this bound, or

(3.11) ‖ϕα‖L∞(D2) ≤ 2C̃1(p) ‖Ĩ ϕα‖Ld(D1) .

If (3.11) holds, then we write Ĩ ϕα = Ĩ(1D2ϕα) + Ĩ(1Dc
2
ϕα), and use the estimate

Ĩ(1Dc
2
ϕα)(x) ≤ ‖ϕα‖L∞(B)

(
sup
x∈D1

νx(D
c
2)

)
+ Ĩ(1Dc

2
V) ∀x ∈ D1 ,

which holds by (3.8), together with (3.10) and (3.11), to obtain

‖Ĩ ϕα‖L∞(D1) ≤ 2C̃1(p) ‖ν‖L∞(D1) ‖Ĩ ϕα‖Ld(D1)(3.12)

+ κ1‖ν‖L∞(D1) + ‖Ĩ(1Dc
2
V)‖L∞(D1) .

We distinguish two cases from (3.12):
Case 1. Suppose that

(3.13) ‖Ĩ ϕα‖L∞(D1) ≤ 4C̃1(p) ‖ν‖L∞(D1) ‖Ĩ ϕα‖Ld(D1) .

Let ψα be the solution of the Dirichlet problem

L̃vαψα − αψα = −Ĩ ϕα in D1 , and ψα = ϕα on ∂D1 .

Then ψα is nonnegative in D1 by the strong maximum principle, and thus (3.13)
together with [3, Corollary 2.2], implies that for some constant CH we have

(3.14) ψα(x) ≤ CH ψα(x̂α) ∀x ∈ B , ∀α ∈ (0, 1) .

On the other hand, ϕα − ψα satisfies

(3.15) L̃vα(ϕα − ψα)− α(ϕα − ψα) = αVα(x̂α)− Rvα in D1 ,

and ϕα − ψα = 0 on ∂D1. Thus, by the ABP weak maximum principle [22, Theo-
rem 9.1], and since αVα(x̂α) ≤ ̺∗, we obtain from (3.15) that

(3.16) ‖ϕα − ψα‖L∞(D1) ≤ C◦ ∀α ∈ (0, 1) ,
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for some constant C◦. Equation (3.16) implies that ψα(x̂α) ≤ C◦. Combining (3.14)
and (3.16) in the standard manner, we obtain

ϕα(x) ≤ ‖ϕα − ψα‖L∞(D1) + ψα(x)(3.17)

≤ C◦ + CH ψα(x̂α) ≤ C◦(1 + CH) ∀x ∈ B , ∀α ∈ (0, 1) .

Case 2. Suppose that

‖Ĩ ϕα‖L∞(D1) ≤ 2κ1‖ν‖L∞(D1) + 2 ‖Ĩ(1Dc
2
V)‖L∞(D1) .

In this case, we consider the solution ψ̃α of the Dirichlet problem

L̃vα ψ̃α − αψ̃α = 0 in D1 , and ψ̃α = ϕα on ∂D1 .

We have ψ̃α(x) ≤ C̃H ψ̃α(x̂α) for all x ∈ B and α ∈ (0, 1), for some constant C̃H. Also,

(3.18) L̃vα(ϕα − ψ̃α)− α(ϕα − ψα) = −Ĩ ϕα + αVα(x̂α)− Rvα in D1 ,

and ϕα − ψ̃α = 0 on ∂D1. By the ABP weak maximum principle, we obtain from
(3.18) that ‖ϕα − ψ̃α‖L∞(D1) ≤ C̃◦ for all α ∈ (0, 1) and for some constant C̃◦. Thus

again we obtain (3.17) with constants C̃◦ and C̃H. This establishes (3.9).
It follows by (3.9) that V α := Vα − Vα(0) = ϕα(x) − ϕα(0) is locally bounded,

uniformly in α ∈ (0, 1). The same applies to Ĩ V α by (3.8) and (H2). Note that

L̃vαV α − αV α = αVα(0)− Rvα − Ĩ V α on R
d .

Thus, by the interior estimate in [22, Theorem 9.11], there exists a constant C =
C(R, p) such that

∥∥V α

∥∥
W2,p(BR)

≤ C
(∥∥V α

∥∥
Lp(B2R)

+
∥∥αVα(0)− Rvα − Ĩ V α

∥∥
Lp(B2R)

)
.

Hence {V α} is bounded in W2,p(BR) for any R > 0. A standard argument then shows
that given any sequence αn ց 0, {V αn

} contains a subsequence which converges in
C1,r(BR) for any r < 1− d

p (see, e.g., Lemma 3.5.4 in [2]). Taking limits in

(3.19) min
z∈Z

[
AzV α(x)− αV α(x) + R(x, z)

]
= αVα(0)

along this subsequence we obtain (3.6), as claimed in the statement of the theorem,
for some ̺ ∈ R. Since lim supαց0 αVα(x̂α) ≤ ̺∗, we have ̺ ≤ ̺∗. On the other hand,
from the theory of infinite dimensional linear programming [1] it is well known that
the value of the dual problem cannot be smaller than the value of the primal, hence
̺ ≥ ̺∗, and we have equality (see also Section 4 in [9]).

Suppose now that Ṽ ∈ W
2,d
loc(R

d) is bounded from below in R
d, and satisfies

(3.20) min
z∈Z

[
Az Ṽ (x) + R(x, z)

]
= ̺∗ .

Let ṽ ∈ Vsm be an a.e. measurable selector from the minimizer of (3.20). Define

Ṽ ǫ := (1 + ǫ)Ṽ , ǫ > 0. Arguing as in the derivation of (3.8), it is clear that this

equation holds with V replaced by Ṽ ǫ. Translate Ṽ ǫ by an additive constant until it
touches ϕα at some point from above. Since

Aṽ(Ṽ
ǫ − ϕα)− α(Ṽ ǫ − ϕα) ≤ (1 + ǫ)̺∗ − αϕα(x̂α)− Rṽ ,
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taking first limits as α ց 0, and then as ǫ ց 0, we obtain Aṽ(Ṽ − V ) ≤ 0, and

conclude that Ṽ = V by the strong maximum principle.
It is evident from the uniqueness of the solution, that the limit of (3.19) is in-

dependent of the subsequence αn ց 0 chosen. It is also clear that αVα(x) → ̺∗ as
αց 0, uniformly on compact sets. This completes the proof.

Remark 3.4. If νx is translation invariant and has compact support, and R and
b are locally Hölder continuous in x, then ĨV is locally Hölder continuous, and thus
the solution V in Theorem 3.3 is in C2,r(Rd) for some r ∈ (0, 1) by elliptic regularity
[22, Theorem 9.19].

3.3.1. Verification of optimality. We start with the following theorem.

Theorem 3.5. Assume the hypotheses of Theorem 3.3. If v ∈ Vssm is optimal,
then it satisfies

(3.21) biv(x) ∂iV (x) + Rv(x) = inf
z∈Z

[
bi(x, z)∂iV (x) + R(x, z)

]
a.e. x ∈ R

d .

In addition, provided V is inf-compact, any stable v ∈ Vssm which satisfies (3.21) is
necessarily optimal.

Proof. Suppose not. Then there exists some ball B such that

(3.22) h(x) :=
(
biv(x) ∂iV (x) + Rv(x) − inf

z∈Z

[
bi(x, z)∂iV (x) + R(x, z)

])
1B(x)

is a nontrivial nonnegative function. Since ∂iVα converges uniformly to ∂iV as αց 0
on compact sets by Theorem 3.3, it follows that if we define hα as the right hand side
of (3.22), but with V replaced by Vα, then h− hα converges to 0 a.e. in B, and also
µv(|h − hα|) → 0 as α ց 0, since µv has a density in Lp

loc(R
d) for some p > 1. We

have AvVα ≥ αVα+hα−Rv a.e. on R
d by the definition of hα. With ψα,R the solution

in (3.4), and mα = infRd Vα, and define ψ̆α,R := ψα,R − mα. Repeating the above

argument, there exists h̆α,R supported on B such that µv(|h̆α,R−hα|) → 0 as R → ∞,

and Avψ̆α,R ≥ αψα,R+h̆α,R−Rv. We apply the function χ̆(x) := −χ(̺∗

2 +1−x), with
χ as defined in the proof of Lemma 3.1, and repeat the argument in Theorem 3.2, also
letting R → ∞, to obtain µv(Rv) ≥ µv(αVα)+µv(hα). By the proof of Theorem 3.3
infRd αVα → ̺∗ as α ց 0. Thus, taking limits as α ց 0, we obtain µv(h) ≤ 0, and
since µv has everywhere positive density, this implies h = 0 a.e.

The second assertion of the theorem is easily established by the argument in the
proof of Lemma 3.1, using the function χR.

Remark 3.6. If we impose the additional assumption that the coefficients a and
b have at most affine growth, and that νx(BR − x) vanishes as |x| → ∞, for any ball
BR, then it is standard to show that the solution V in Theorem 3.3 is inf-compact,
so that the second assertion of Theorem 3.5 applies. However, this leaves open the
question whether a v ∈ Vsm that satisfies (3.21) is necessarily stable. We provide a
partial answer to this in Theorem 3.8 below.

Recall Definition 2.7. We impose additional assumptions on νx to establish exis-
tence of solutions to the Poisson equation.

Theorem 3.7. We assume (H1) and one of the following:
(a) ν = νx is translation invariant and has compact support.
(b) νx has locally compact support and satisfies the hypotheses of Corollary 2.8.
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Let v̂ ∈ Vssm be such that Rv̂ is coercive relative to ̺v̂. Then, up to an additive
constant, there exists a unique V̂ ∈ W

2,d
loc

(Rd) which is bounded from below in R
d, and

satisfies

(3.23) Av̂ V̂ (x) + Rv̂(x) = β ∀x ∈ R
d ,

for some β = ̺v̂. For β < ̺v̂, there is no such solution.

Proof. For n ∈ N, let Rn = n ∧ R denote the n-truncation of the running cost.
It is clear that Rn is coercive relative to ̺v̂ for all n > ̺v̂. Consider the α-discounted
problem in Theorem 3.2. The Dirichlet problem in (3.4) is now a linear problem, and

we let ψ̂n
α,R denote the corresponding solution. It is clear that ‖ψ̂n

α,R‖L∞(Rd) ≤ n
α ,

and this is inherited by the function V̂ n
α at the limit R → ∞. Thus, by the proof

of Theorem 3.2, V̂ n
α is in W

2,p
loc(R

d) for any p ≥ 1, and satisfies Av̂ V̂
n
α + Rn

v̂ = αV̂ n
α .

Repeating the argument in the proof of Theorem 3.3, the infimum of V̂ n
α over Rd is

attained in a ball B◦ as defined in subsection 2.2 (relative to ̺v̂), and if x̂nα ∈ B◦

denotes a point where the infimum is attained, then αV̂ n
α (x̂nα) ≤ ̺v̂. With ϕn

α :=

V̂ n
α − V̂ n

α (x̂nα), we write the equation as

L̃v̂ϕ
n
α(x)− αϕn

α(x) = αV̂ n
α (x̂nα)− R

n
v̂ (x)− Ĩϕn

α(x)(3.24)

≤ ̺v̂ − R
n(x) − Ĩϕn

α(x) a.e. x ∈ R
d .

We express (3.24) in divergence form as

∂j
(
aij∂iϕ

n
α

)
+
(
b̂i − ∂ia

ij
)
∂iϕ

n
α − νϕn

α ≤ ̺v̂ − Rv̂ − Ĩϕn
α ,

and apply [22, Theorem 8.18] to obtain
∥∥ϕn

α

∥∥
Lp(B2R(x0))

≤ ̺v̂ κp,R for some constant

κp,R, for any p ∈
(
1, d

d−2

)
. Therefore, infB2R(x0)\BR(x0) ϕ

n
α is bounded over α ∈ (0, 1)

and n ≥ ̺v̂. Thus, we can select some x′0 ∈ B2R(x0)\BR(x0) satisfying supn ϕ
n
α(x

′
0) <

∞, and repeat the procedure to show by induction that ϕn
α is locally bounded in Lp

for any p ∈
(
1, d

d−2

)
, uniformly over α ∈ (0, 1) and n ≥ ̺v̂.

Next, we apply successively the Calderón–Zygmund estimate [22, Theorem 9.11]
to the non-divergence form of the equation in (3.24) which states that

∥∥ϕn
α

∥∥
W2,p(BR)

≤ C
(∥∥ϕn

α

∥∥
Lp(B2R)

+
∥∥αVα(x̂nα)− R

n
v̂ − Ĩ ϕn

α

∥∥
Lp(B2R)

)
.

We start with the Lp estimate, say with p = d
d−r for r ∈ (1, 2). If (a) holds, then

‖Ĩϕn
α‖Lp(BR(x)) ≤ ν ‖ϕn

α‖Lp(BR+R◦
(x)) by the Minkowski integral inequality, where

R◦ is such that the support of ν is contained in BR◦
, while in case (b) we use the

technique in the proof of Corollary 2.8. Using the compactness of the embedding
W2,p(BR) →֒ Lq(BR) for p ≤ q < pd

d−2p , we choose q = pd
d−rp to improve the estimate

to a new p = d
d−2r . Continuing in this manner, in at most d− 1 steps we obtain

sup
n≥̺v̂

sup
α∈(0,1)

‖ϕn
α‖W2,p(BR) < ∞

for any p > d and R > 0. Letting first n→ ∞, and then αց 0, along an appropriate
subsequence, we obtain a solution to (3.23) as claimed. The rest follow as in the proof
of Theorem 3.3.
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Theorem 3.8. Grant the hypotheses of Theorem 3.7. Then the conclusions of
Theorem 3.3 hold. Moreover, provided V is inf-compact, a control v ∈ Vsm is optimal
if and only if it satisfies (3.21).

Proof. Note that the only place we use the assumption V ∈ C2(Rd) in the proof of

Theorem 3.3 is to assert that ĨV ∈ L∞
loc(R

d). Thus, under (a), or (b) of Theorem 3.7,
if we select v̂ ∈ Vssm such that ̺v̂ ≤ ̺∗ + ǫ◦, then the Poisson equation in (3.23)
can be used in lieu (H2), and the conclusions of Theorem 3.3 follow. We next show
that any v ∈ Vsm which satisfies (3.21) is stable. We adapt the technique which is
used in [12, Theorem 1.2] for a local operator, to construct an infinitesimal invariant

measure µv. Let L̃∗
v be the operator in (2.6), and set Îu(x) :=

∫
Rd u(x − y)ν(dy) if

νx is translation invariant; otherwise, under hypothesis (b) of Theorem 3.7, we define

Îu(x) :=
∫
Rd ψx−y(y)u(x − y) dy. Consider the solution φk of the Dirichlet problem

L̃∗
vφk + Îφk = 0 on Bk, with φk equal to a positive constant ck on Bc

k.
Concerning the solvability of the Dirichlet problem, note that for f ∈ L2(Bk),

the problem L̃∗
vu = −Îf on Bk, with f = u = ck on Bc

k, has a unique solution

u ∈ W
2,2(Bk), which obeys the estimate ‖u‖W2,2(Bk) ≤ κ(1+‖u‖L2(Bk)+‖Îf‖L2(Bk))

for some constant κ. Thus we can combine Corollary 2.8, the compactness of the
embedding W2,2(BR) →֒ Lq(BR) for q = 2d

d−1 , and the Leray–Schauder fixed point

theorem to assert the existence of a solution φk ∈ W2,2(Bk) as claimed in the pre-
ceding paragraph. The solutions φk are nonnegative by the weak maximum principle
[22, Theorem 8.1]. We choose the constant ck so that

∫
Bk

φk(x) dx = 1.
We improve the regularity of φk by following the proofs of Theorem 2.5 and Corol-

lary 2.8, and show that for any n > 0, there exists N(n) ∈ N such that the sequence
{φk : k > N(n)} is Hölder equicontinuous on the ball Bn. Let R = R(n) > 0
be such that V (x) > R + 1 on Bc

n. It is always possible to select such R(n) in
a manner that R(n) → ∞ as n → ∞ by the assumption that V is inf-compact.
Employing the function χR(V ) as in the proof of Lemma 3.1 and using (3.6), it fol-
lows that

∫
BR(n)

Rv(x)φk(x) dx ≤ ̺∗ for all k > N(n) and n ∈ N. This implies

that
∫
B◦

φk(x) dx ≥ 2ǫ◦
̺∗+2ǫ◦

for all large enough k. By the Arzelà–Ascoli theorem
combined with Fatou’s lemma, φk converges along a subsequence to some positive,
locally Hölder continuous φ ∈ L1(Rd) uniformly on compact sets, which is a gener-
alized solution of (2.5), and thus satisfies

∫
Rd f(x)φ(x) dx = 0 for all f ∈ C. Thus,

after normalization, φ is the density of an infinitesimal invariant measure. Therefore,
v ∈ Vssm, and the rest follows by Theorem 3.5.

4. A jump diffusion model. In this section, we consider a jump diffusion
process X = {Xt : t ≥ 0} in R

d, d ≥ 2, defined by the Itô equation

(4.1) dXt = b(Xt, Zt) dt+ σ(Xt) dWt + dLt , X0 = x ∈ R
d .

Here,W = {Wt, t ≥ 0} is a d-dimensional standard Wiener process, and L = {Lt, t ≥
0} is a Lévy process such that dLt =

∫
Rm

∗

g(Xt−, ξ) Ñ (dt, dξ), where Ñ is a martingale

measure in R
m
∗ = R

m \ {0}, m ≥ 1, corresponding to a standard Poisson random

measure N . In other words, Ñ (t, A) = N (t, A)− tΠ(A) with E[N (t, A)] = tΠ(A) for
any A ∈ B(Rm), with Π a σ-finite measure on R

m
∗ , and g a measurable function.

The processes W and N are defined on a complete probability space (Ω,F,P).
Assume that the initial condition X0, W0, and N (0, ·) are mutually independent. The
control process Z = {Zt, t ≥ 0} takes values in a compact, metrizable space Z, is Ft-
adapted, and non-anticipative: for s < t,

(
Wt −Ws, N (t, ·)−N (s, ·)

)
is independent
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of

Fs := the completion of σ{X0, Zr,Wr,N (r, ·) : r ≤ s} relative to (F,P) .

Such a process Z is called an admissible control and we denote the set of admissible
controls by Z.

4.1. The ergodic control problem for the jump diffusion. Let R : Rd ×
Z 7→ R+ denote the running cost function, which is assumed to satisfy (2.2).

For an admissible control process Z ∈ Z, we consider the ergodic cost defined by

˜̺Z(x) := lim sup
T→∞

1

T
E
Z
x

[∫ T

0

R(Xt, Zt) dt

]
.

Here EZ
x denotes the expectation operator corresponding to the process controlled un-

der Z, with initial condition X0 = x ∈ R
d. The ergodic control problem seeks to min-

imize the ergodic cost over all admissible controls. We define ˜̺∗(x) := infZ∈Z ˜̺Z(x).
As we show in Theorem 4.3, this infimum is realized with a stationary Markov control,
and ˜̺∗(x) = ̺∗, with ̺∗ as defined in subsection 2.1, so it does not depend on x.

4.2. Assumptions on the parameters and the running cost. We impose
the following set of assumptions on the data which guarantee the existence of a solu-
tion to the Itô equation (4.1) (see, e.g., [2, 21]). These augment and replace Assump-
tion 1.1, and are assumed throughout this section by default. In these hypotheses,
CR is a positive constant, depending on R ∈ (0,∞). Also a := 1

2σσ
′, Rm

∗ := R
m \{0},

and ‖M‖ :=
(
trace MM ′

)1/2
denotes the Hilbert–Schmidt norm of a d× k matrix M

for d, k ∈ N.

|b(x, z)− b(y, z)|2 + ‖σ(x)− σ(y)‖2 +
∫

Rm
∗

|g(x, ξ)− g(y, ξ)|2Π(dξ)

+ |R(x, z)− R(y, z)|2 ≤ CR|x− y|2 ∀x, y ∈ BR , ∀ z ∈ Z ,

〈
x, b(x, z)

〉+
+ ‖σ(x)‖2 +

∫

Rm
∗

|g(x, ξ)|2Π(dξ) ≤ C1(1 + |x|2) ∀ (x, z) ∈ R
d ×Z ,

∑

i,j

aij(x)ζiζj ≥ (CR)
−1|ζ|2 ∀ζ ∈ R

d , ∀x ∈ BR .

The measure νx in (1.1) then takes the form νx(A) = Π
(
{ξ ∈ R

m
∗ : g(x, ξ) ∈ A}

)
,

and it clearly satisfies
∫
Rd |y|2 νx(dy) < CR|x|2. Note that for this model ν = νx(R

d)
is constant. It is evident that if g(x, ξ) does not depend on x, then νx is translation
invariant.

4.3. Existence of solutions. For any admissible control Zt, the Itô equation
in (4.1) has a unique strong solution [21], is right-continuous w.p.1, and is a strong
Feller process. On the other hand, if Zt is a Markov control, i.e., if it takes the form
Zt = v(t,Xt) for some Borel measurable function v : R+ × R

d, then it follows from
the results in [24] that, under the assumptions in subsection 4.2, the diffusion

(4.2) dX̃t = b(X̃t, v(t, X̃t)) dt+ σ(X̃t) dWt , X0 = x ∈ R
d

has a unique strong solution. As shown in [40], since the the Lévy measure is finite,
the solution of (4.1) can be constructed in a piecewise fashion using the solution of
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(4.2) (see also [30]). It thus follows that, under a Markov control, (4.2) has a unique
strong solution. In addition, its transition probability has positive mass.

Of fundamental importance in the study of functionals of X is Itô’s formula. For
f ∈ C2(Rd) and Zs an admissible control, it holds that

(4.3) f(Xt) = f(X0) +

∫ t

0

Af(Xs, Zs) ds+Mt a.s.,

with A as in (1.1), and

Mt :=

∫ t

0

〈
∇f(Xs),σ(Xs) dWs

〉
(4.4)

+

∫ t

0

∫

Rm
∗

(
f
(
Xs− + g(Xs−, ξ)

)
− f(Xs−)

)
Ñ (ds, dξ)

is a local martingale. Krylov’s extension of Itô’s formula [29, p. 122] shows that (4.3)
is valid for functions f in the local Sobolev space W

2,p
loc(R

d), p ≥ d.
Recall that, in the context of diffusions, a control v ∈ Vsm is called stable if the

process X under v is positive Harris recurrent. This is of course equivalent to the
existence of an invariant probability measure for X , and it follows by the Theorem
in [19] that µv is an invariant probability measure for the diffusion if and only if it is
infinitesimally invariant for the operator A in the sense of (2.1). Thus the two notions
of stable controls agree.

4.4. Existence of an optimal stationary Markov control.

Definition 4.1. For Z ∈ Z and x ∈ R
d, we define the mean empirical measures

{ζ̄Zx,t : t > 0}, and (random) empirical measures {ζZt : t > 0}, by

(4.5) ζ̄Zx,t(f) =

∫

Rd×Z

f(x, z) ζ̄Zx,t(dx, dz) :=
1

t

∫ t

0

E
Z
x

[∫

Z

f(Xs, z)Zs(dz)

]
ds ,

and ζZx,t as in (4.5) but without the expectation E
Z
x , respectively, for all f ∈ Cb(Rd×Z).

We let R
d
denote the one-point compactification of Rd, and we view R

d ⊂ R
d
via

the natural imbedding. As a result, P(Rd × Z) is viewed as a subset of P(R
d × Z).

Let Ḡ denote the closure of G in P(R
d ×Z).

Lemma 4.2. Almost surely, every limit ζ̂ ∈ P(R
d × Z) of ζZt as t → ∞ takes

the form ζ̂ = δζ′ + (1 − δ)ζ′′ for some δ ∈ [0, 1], with ζ′ ∈ G and ζ′′({∞} × Z) = 1.
The same claim holds for the mean empirical measures, without the qualifier ‘almost
surely’.

Proof. Write ζ̂ = δζ′ +(1− δ)ζ′′ for some ζ′ ∈ P(Rd×Z), and ζ′′({∞}×Z) = 1.
For f ∈ C, applying Itô’s formula, we obtain

f(Xt)− f(X0)

t
=

1

t

∫ t

0

AZs
f(Xs) ds+

1

t
Mt ,

where Mt is given in (4.4). As shown in the proof of [2, Lemma 3.4.6], we have
1
t

∫ t

0

〈
∇f(Xs),σ(Xs) dWs

〉
→ 0 a.s. as t→ ∞.

Define

(4.6) M1,t :=

∫ t

0

∫

Rm
∗

(
f
(
Xs− + g(Xs−, ξ)

)
− f(Xs−)

)
N (ds, dξ) ,
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and M2,t analogously by replacing N (ds, dξ) by Π(dξ) ds in (4.6). Note that the
second integral in (4.4), denoted asMt, is a square integrable martingale, and takes the
formMt =M1,t−M2,t. Since f is bounded on R

d and Π is a finite measure, we have
〈M1〉t ≤ C1 N (t,Rm

∗ ), and 〈M2〉t ≤ C2t for some positive constants C1 and C2. Since

〈M〉t ≤ 〈M1〉t+〈M2〉t, then by Proposition 7.1 in [37] we obtain lim supt→∞
〈M〉t

t <∞
a.s. For the discrete parameter square-integrable martingale {Mn : n ∈ N}, it is well-
known that limn→∞

Mn

〈M〉n
= 0 a.s. on the event {〈M〉∞ = ∞}. Thus, we obtain

(4.7) lim
n→∞

Mn

n
= 0 a.s.

on the event {〈M〉∞ = ∞}. Since f is bounded, then for some constant C > 0, we
have

(4.8) sup
t∈[n,n+1]

|Mt −Mn|
n

≤ C

n

(
N (n+ 1,Rm

∗ )−N (n,Rm
∗ ) + 1

)
−−−−→
n→∞

0 ,

and (4.7)–(4.8) imply that limt→∞
1
t Mt → 0 a.s. on the event {〈M〉∞ = ∞}.

Next, we examine convergence on the event {〈M〉∞ <∞}. It is well-known that
a square-integrable martingale {Mn : n ∈ N} with quadratic variation 〈M〉 satisfies
{〈M〉∞ <∞} ⊂ {Mn → } a.s., where we write {Mn → } for the event on which (Mn)
converges to a real-valued limit [25, Theorem 2.15]. Thus (4.7) holds on the event
{〈M〉∞ <∞}, and it then follows by (4.8) that limt→∞

1
t Mt → 0 a.s.

Thus we have shown that limt→∞
1
t Mt → 0 a.s., and the claims of the lemma

then follow as in the proof of [2, Theorem 3.4.7].

Theorem 4.3. There exists an optimal control v ∈ Vssm for the ergodic problem.
In addition, every stationary Markov optimal control v∗ is in Vssm, and is pathwise
optimal in somewhat stronger sense, i.e., it satisfies

(4.9) lim inf
T→∞

1

T

[∫ T

0

R(Xt, Zt) dt

]
≥ lim sup

T→∞

1

T

[∫ T

0

R
(
Xt, v∗(Xt)

)
dt

]
= ̺∗

a.s. for any admissible control Zt.

Proof. Define ˆ̺∗ := infπ∈G π(R). Following the proof of [2, Theorem 3.4.5], we
have ˆ̺∗ = πv∗(R) for some v∗ ∈ Vssm. Also, (4.9) holds by Lemma 4.2 and the proof
in [2, Theorem 3.4.7].

4.5. The ergodic HJB equation. We summarize the results in the following
theorem.

Theorem 4.4. We assume (H2) for some v̂ ∈ Vsm. Then we have the following:
(a) There exists a unique function V ∈ W

2,p
loc

(Rd), p > d, with V (0) = 0, which is
bounded from below in R

d and solves minz∈Z

[
Az V (x) + R(x, z)

]
= ̺, with

̺ = ̺∗. For ̺ < ̺∗, there is no such solution. Moreover, if νx has locally
compact support (see Definition 2.7), then V ∈ C2(Rd).

(b) A control v ∈ Vsm is optimal if and only if it satisfies

(4.10) biv(x) ∂iV (x)+Rv(x) = inf
z∈Z

[
bi(x, z)∂iV (x)+R(x, z)

]
a.e. x ∈ R

d .

(c) The solution V has the stochastic representation

V (x) = lim
rց0

inf
v∈Vssm

E
v
x

[∫
τ̆r

0

(Rv(Xt)− ̺∗
)
dt

]
.
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Proof. Under the assumptions in subsection 4.2, it is straighforward to establish
Theorem 3.2. Thus, part (a) follows from Theorem 3.3 and Remark 3.4. Using the Itô
formula, one can readily show that any v which satisfies (4.10) is stable and optimal.
The necessity part of (b) follows by Theorem 3.5. Part (c) can be established by
following the proof of Lemma 3.6.9 in [2].

5. Concluding remarks. The results in this paper extend naturally to models
under uniform stability, in which case, of course, we do not need to assume that R is
coercive. Suppose that there exist nonnegative functions Ψ ∈ C2(Rd), and h : Rd×Z,
with h ≥ 1 and locally bounded, satisfying

(5.1) AzΨ(x) ≤ κ1B(c)− h(x, z) ∀ (x, z) ∈ R
d ×Z ,

for some constant κ and a ball B ⊂ R
d. In addition, suppose that either R is bounded,

or that |R| grows slower than h. Under (5.1), the jump diffusion is positive recurrent
under any stationary Markov control, and the collection of ergodic occupation mea-
sures is tight. Using Ψ as a barrier, all the results in section 4 can be readily obtained,
and moreover, for any v ∈ Vsm, the Poisson equation AvΦ = Rv − ̺v has a solution
in W

2,p
loc(R

d), for any p > 1, which is unique, up to an additive constant, in the class
of functions Φ which satisfy |Φ| ≤ C(1 + hv) for some constant C.

We have not considered allowing the jumps to be control dependent, primarily be-
cause this is not manifested in the queueing network model motivating this work, but
also because this would require us to introduce various assumptions on the regularity
of the jumps and the Lévy measure (see, e.g., [34]). This, however, is an interesting
problem for future work.

In conclusion, what we aimed for in this work, was to study the ergodic control
problem for jump diffusions controlled through the drift via analytical methods, and
under minimal assumptions on the (finite) Lévy measure and the parameters.
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