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Abstract

We present a new primal-dual algorithm for computing the value
of the Lagrangian dual of a stochastic mixed-integer program (SMIP)
formed by relaxing its nonanticipativity constraints. This dual is
widely used in decomposition methods for the solution of SMIPs.
The algorithm relies on the well-known progressive hedging method,
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but unlike previous progressive hedging approaches for SMIP, our al-
gorithm can be shown to converge to the optimal Lagrangian dual
value. The key improvement in the new algorithm is an inner loop
of optimized linearization steps, similar to those taken in the clas-
sical Frank-Wolfe method. Numerical results demonstrate that our
new algorithm empirically outperforms the standard implementation
of progressive hedging for obtaining bounds in SMIP.

Keywords: mixed-integer stochastic programming, Lagrangian
duality, progressive hedging, Frank-Wolfe method

1 Introduction

Stochastic programming with recourse provides a framework for modeling
problems where decisions are made in stages. Between stages, some uncer-
tainty in the problem parameters is unveiled, and decisions in subsequent
stages may depend on the outcome of this uncertainty. When some decisions
are modeled using discrete variables, the problem is known as a Stochastic
Mixed-Integer Programming (SMIP) problem. The ability to simultaneously
model uncertainty and discrete decisions make SMIP a powerful modeling
paradigm for applications. Important applications employing SMIP models
include unit commitment and hydro-thermal generation scheduling [25, 34],
military operations [32], vaccination planning [28, 35], air traffic flow man-
agement [4], forestry management and forest fire response [5, 26], and supply
chain and logistics planning [19, 21]. However, the combination of uncertainty
and discreteness makes this class of problems extremely challenging from a
computational perspective. In this paper, we present a new and effective al-
gorithm for computing lower bounds that arise from a Lagrangian-relaxation
approach.

The mathematical statement of a two-stage SMIP is

ζSMIP := min
x

{
c>x+Q(x) : x ∈ X

}
, (1)

where the vector c ∈ Rnx is known, and X is a mixed-integer linear set
consisting of linear constraints and integer restrictions on some components
of x. The function Q : Rnx 7→ R is the expected recourse value

Q(x) := Eξ
[
min
y

{
q(ξ)>y : W (ξ)y = h(ξ)− T (ξ)x, y ∈ Y (ξ)

}]
.
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We assume that the random variable ξ is taken from a discrete distribution
indexed by the finite set S, consisting of the realizations, ξ1, . . . , ξ|S|, with
strictly positive corresponding probabilities of realization, p1, . . . , p|S|. When
ξ is not discrete, a finite scenario approximation can be obtained via Monte
Carlo sampling [18, 23] or other methods [10, 9]. Each realization ξs of ξ, is
called a scenario and encodes the realizations observed for each of the random
elements (q(ξs), h(ξs),W (ξs), T (ξs), Y (ξs)). For notational brevity, we refer
to this collection of random elements respectively as (qs, hs,Ws, Ts, Ys). For
each s ∈ S, the set Ys ⊂ Rny is a mixed-integer set containing both linear
constraints and integrality constraints on a subset of the variables, ys.

The problem (1) may be reformulated as its deterministic equivalent

ζSMIP = min
x,y

{
c>x+

∑
s∈S

psq
>
s ys : (x, ys) ∈ Ks,∀s ∈ S

}
, (2)

where Ks := {(x, ys) : Wsys = hs − Tsx, x ∈ X, ys ∈ Ys}. Problem (2) has
a special structure that can be algorithmically exploited by decomposition
methods. To induce a decomposable structure, scenario-dependent copies
xs for each s ∈ S of the first-stage variable x are introduced to create the
following reformulation of (2):

ζSMIP = min
x,y,z

{∑
s∈S

ps(c
>xs + q>s ys) : (xs, ys) ∈ Ks, xs = z, ∀s ∈ S, z ∈ Rnx

}
.

(3)
The constraints xs = z, s ∈ S, enforce nonanticipativity for first-stage de-
cisions; the first-stage decisions xs must be the same (z) for each scenario
s ∈ S. Applying Lagrangian relaxation to the nonanticipativity constraints
in problem (3) yields the nonanticipative Lagrangian dual function

φ(µ) := min
x,y,z

{ ∑
s∈S
[
ps(c

>xs + q>s ys) + µ>s (xs − z)
]

:
(xs, ys) ∈ Ks, ∀s ∈ S, z ∈ Rnx

}
, (4)

where µ = (µ1, . . . , µ|S|) ∈
∏

s∈S Rnx is the vector of multipliers associated
with the relaxed constraints xs = z, s ∈ S. By setting ωs := 1

ps
µs, (4) may

be rewritten as

φ(ω) := min
x,y,z

{∑
s∈S

psLs(xs, ys, z, ωs) : (xs, ys) ∈ Ks, ∀s ∈ S, z ∈ Rnx

}
,

(5)
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where
Ls(xs, ys, z, ωs) := c>xs + q>s ys + ω>s (xs − z).

Since z is unconstrained in the optimization problem in the definition (5), in
order for the Lagrangian function φ(ω) to be bounded from below, we require
as a condition of dual feasibility that

∑
s∈S psωs = 0. Under this assumption,

the z term vanishes, and the Lagrangian dual function (5) decomposes into
separable functions,

φ(ω) =
∑
s∈S

psφs(ωs), (6)

where for each s ∈ S,

φs(ωs) := min
x,y

{
(c+ ωs)

>x+ q>s y : (x, y) ∈ Ks

}
. (7)

The reformulation (6) is the basis for parallelizable approaches for computing
dual bounds that are used, for example, in the dual decomposition methods
developed in [8, 22].

For any choice of ω =
(
ω1, . . . , ω|S|

)
, it is well-known that the value

of the Lagrangian provides a lower bound on the optimal solution to (1):
φ(ω) ≤ ζSMIP . The problem of finding the best such lower bound is the
Lagrangian dual problem:

ζLD := sup
ω

{
φ(ω) :

∑
s∈S

psωs = 0

}
. (8)

The primary contribution of this work is a new and effective method for
solving (8), thus enabling a practical and efficient computation of high-quality
lower bounds for ζSMIP .

The function φ(ω) is a piecewise-affine concave function, and many meth-
ods are known for maximizing such functions. These methods include the
subgradient method [33], the augmented Lagrangian (AL) method [15, 29],
and the alternating direction method of multipliers (ADMM) [13, 11, 7]. The
subgradient method has mainly theoretical significance, since it is difficult to
develop reliable and efficient step-size rules for the dual variables ω (see, e.g.,
Section 7.1.1 of [31]). As iterative primal-dual approaches, methods based
on the AL method or ADMM are more effective in practice. However, in
the context of SMIP, both methods require convexification of the constraints
Ks, s ∈ S to have a meaningful theoretical support for convergence to the

4



best lower bound value ζLD. Furthermore, both methods require the solution
of additional mixed-integer linear programming (MILP) subproblems in or-
der to recover the Lagrangian lower bounds associated with the dual values,
ω [14]. ADMM has a more straightforward potential for decomposability
and parallelization than the AL method, and so in this work, we develop a
theoretically-supported modification of a method based on ADMM.

When specialized to the deterministic equivalent problem (2) in the con-
text of stochastic programming, ADMM is referred to as Progressive Hedging
(PH) [30, 37]. When the sets Ks, s ∈ S, are convex, the limit points of the
sequence of solution-multiplier pairs

{
((xk, yk, zk), ωk)

}∞
k=1

generated by PH
are saddle points of the deterministic equivalent problem (2), whenever such
saddle points exist. When the constraints (xs, ys) ∈ Ks, s ∈ S, enforce non-
trivial mixed-integer restrictions, the set Ks is not convex and PH becomes
a heuristic approach with no guarantees of convergence [20]. Nevertheless,
some measure of success, in practice, has been observed in [37] while apply-
ing PH to problems of the form (3). More recently, [14] showed that valid
Lagrangian lower bounds can be calculated from the iterates of the PH algo-
rithm when the sets Ks are not convex. However, their implementation of the
algorithm does not offer any guarantee that the lower bounds will converge to
the optimal value ζLD. Moreover, additional computational effort, in solving
additional MILP subproblems, must be expended, in order to compute the
lower bound. Our contribution is to extend the PH-based approach in [14],
creating an algorithm whose lower bound values converge to ζLD, in theory,
and for which lower bound calculations do not require additional computa-
tional effort. Computational results in Section 4 demonstrate that the new
method outperforms the existing PH-based method, in terms of both quality
of bound and efficiency of computation.

To motivate our approach, we first consider the application of PH to the
following well-known primal characterization of ζLD:

ζLD = min
x,y,z

{∑
s∈S

ps(c
>xs + q>s ys) : (xs, ys) ∈ conv(Ks), xs = z, ∀s ∈ S

}
,

(9)
where conv(Ks) denotes the convex hull of Ks for each s ∈ S. (See, for
example, Theorem 6.2 of [24].) The sequence of Lagrangian bounds

{
φ(ωk)

}
generated by the application of PH to (9) is known to be convergent. Thus,
the value of the Lagrangian dual, ζLD, may, in theory, be computed by
applying PH to (9). However, in practice, an explicit polyhedral description
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of conv(Ks), s ∈ S is, generally, not available, thus raising the issue of
implementability.

The absence of such an explicit description motivates an application of a
solution approach to the PH primal update step that iteratively constructs
an improved inner approximation of each conv(Ks), s ∈ S. For this purpose,
we apply a solution approach to the PH primal update problem that is based
on the Frank-Wolfe (FW) method [12]. Our approach has the additional
benefit of providing Lagrangian bounds at no additional computational cost.

One simple, theoretically-supported integration of a FW-like method and
PH is realized by having the PH primal updates computed using a method
called the Simplicial Decomposition Method (SDM) [16, 36]. SDM is an ex-
tension of the FW method that makes use of progressively-improving inner
approximations to each set conv(Ks), s ∈ S. The finite optimal conver-
gence of each application of SDM follows directly from the polyhedral struc-
ture conv(Ks), and the (practically reasonable) assumption that conv(Ks) is
bounded for each s ∈ S.

For computing improvements in the Lagrangian bound efficiently, conver-
gence of SDM to the optimal solution of the subproblem is too costly and
not necessary. We thus develop a modified integration whose theoretically-
supported convergence analysis is based not on the optimal convergence of
SDM, but rather on its ability to adequately extend the inner approximations
of each conv(Ks), s ∈ S.

The main contribution of this paper is the development, convergence anal-
ysis, and application of a new algorithm, called FW-PH, which is used to
compute high-quality Lagrangian bounds for SMIPs efficiently and with a
high potential for parallelization. FW-PH is efficient in that, under mild
assumptions, each dual update and Lagrangian bound computation may be
obtained by solving, for each s ∈ S, just one MILP problem and one continu-
ous convex quadratic problem. In contrast, each dual update of PH requires
the solution of a mixed-integer quadratic programming (MIQP) subproblem
for each s ∈ S, and each PH Lagrangian bound computation requires the so-
lution of one MILP subproblem for each s ∈ S. In our convergence analysis,
conditions are provided under which the sequence of Lagrangian bounds gen-
erated by FW-PH converges to the optimal Lagrangian bound ζLD. To the
best of our knowledge, the combination of PH and FW in a manner that is
theoretically supported, computationally efficient, and parallelizable is new,
in spite of the convergence analyses of both PH and FW being well-developed.

This paper is organized as follows. In Section 2, we present the theo-
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retical background of PH and a brief technical lemma regarding the inner
approximations generated by SDM; this background is foundational for the
proposed FW-PH method. In Section 3, we present the FW-PH method
and a convergence analysis. The results of numerical experiments comparing
the Lagrangian bounds computed with PH and those with FW-PH are pre-
sented in Section 4. We conclude in Section 5 with a discussion of the results
obtained and with suggested directions for further research.

2 Progressive Hedging and Frank-Wolfe-Based

Methods

The
Augmented Lagrangian (AL) function based on the relaxation of the nonan-
ticipativity constraints xs = z, s ∈ S, is

Lρ(x, y, z, ω) :=
∑
s∈S

psL
ρ
s(xs, ys, z, ωs),

where

Lρs(xs, ys, z, ωs) := c>xs + q>s ys + ω>s (xs − z) +
ρ

2
‖xs − z‖22

and ρ > 0 is a penalty parameter. By changing the feasible region, denoted
here by Ds, s ∈ S, the Augmented Lagrangian can be used in a Progressive
Hedging approach to solve either problem (3) or problem (9). Pseudocode
for the PH algorithm is given in Algorithm 1.

In Algorithm 1, kmax > 0 is the maximum number of iterations, and
ε > 0 parameterized the convergence tolerance. The initialization of Lines 3–
8 provides an initial target primal value z0 and dual values ω1

s , s ∈ S, for
the main iterations k ≥ 1. Also, an initial Lagrangian bound φ0 can be
computed from this initialization. For ε > 0, the Algorithm 1 termination

criterion
√∑

s∈S ps ‖xks − zk−1‖
2
2 < ε is motivated by the addition of the

squared norms of the primal and dual residuals associated with problem (3).
(See Section 3.3 of [7].) In summing the squared norm primal residuals

ps
∥∥xks − zk∥∥22, s ∈ S, and the squared norm dual residual

∥∥zk − zk−1∥∥2
2
, we

have ∑
s∈S

ps

[∥∥xks − zk∥∥22 +
∥∥zk − zk−1∥∥2

2

]
=
∑
s∈S

ps
∥∥xks − zk−1∥∥22 (10)
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Algorithm 1 PH applied to problem (3) (Ds = Ks) or (9) (Ds = conv(Ks)).

1: Precondition:
∑

s∈S psω
0
s = 0

2: function PH(ω0, ρ, kmax, ε)
3: for s ∈ S do
4: (x0s, y

0
s) ∈ argminx,y

{
(c+ ω0

s)
>x+ q>s y : (x, y) ∈ Ds

}
5: end for
6: φ0 ←

∑
s∈S ps

[
(c+ ω0

s)
>x0s + q>s y

0
s

]
7: z0 ←

∑
s∈S psx

0
s

8: ω1
s ← ω0

s + ρ(x0s − z0) for all s ∈ S
9: for k = 1, . . . , kmax do

10: for s ∈ S do
11: φks ← minx,y

{
(c+ ωks )>x+ q>s y : (x, y) ∈ Ds

}
12: (xks , y

k
s ) ∈ argminx,y

{
Lρs(x, y, z

k−1, ωks ) : (x, y) ∈ Ds

}
13: end for
14: φk ←

∑
s∈S psφ

k
s

15: zk ←
∑

s∈S psx
k
s

16: if
√∑

s∈S ps ‖xks − zk−1‖
2
2 < ε then

17: return (xk, yk, zk, ωk, φk)
18: end if
19: ωk+1

s ← ωks + ρ(xks − zk) for all s ∈ S
20: end for
21: return (xkmax , ykmax , zkmax , ωkmax , φkmax)
22: end function
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The equality in (10) follows since, for each s ∈ S, the cross term resulting

from the expansion of the squared norm
∥∥(xks − zk) + (zk − zk−1)

∥∥2
2

vanishes;

this is seen in the equality
∑

s∈S ps(x
k
s − zk) = 0 due to the construction of

zk.
The Line 11 subproblem of Algorithm 1 is an addition to the original PH

algorithm. Its purpose is to compute Lagrangian bounds (Line 14) from the
current dual solution ωk [14]. Thus, the bulk of computational effort in Algo-
rithm 1 applied to problem (3) (the case with Ds = Ks) resides in computing
solutions to the MILP (Line 11) and MIQP (Line 12) subproblems. Note
that Line 11 may be omitted if the corresponding Lagrangian bound for ωk

is not desired.

2.1 Convergence of PH

The following proposition addresses the convergence of PH applied to prob-
lem (9).

Proposition 1. Assume that problem (9) is feasible with conv(Ks) bounded
for each s ∈ S, and let Algorithm 1 be applied to problem (9) (so that Ds =
conv(Ks) for each s ∈ S) with tolerance ε = 0 for each k ≥ 1. Then, the
limit limk→∞ ω

k = ω∗ exists, and furthermore,

1. limk→∞
∑

s∈S ps(c
>xks + q>s y

k
s ) = ζLD,

2. limk→∞ φ(ωk) = ζLD,

3. limk→∞(xks − zk) = 0 for each s ∈ S,

and each limit point (((x∗s, y
∗
s)s∈S , z

∗) is an optimal solution for (9).

Proof. Since the constraint sets Ds = conv(Ks), s ∈ S, are bounded, and
problem (9) is feasible, problem (9) has an optimal solution ((x∗s, y

∗
s)s∈S , z

∗)
with optimal value ζLD. The feasibility of problem (9), the linearity of its
objective function, and the bounded polyhedral structure of its constraint
set Ds = conv(Ks), s ∈ S, imply that the hypotheses for PH convergence
to the optimal solution are met (See Theorem 5.1 of [30]). Therefore,

{
ωk
}

converges to some ω∗, limk→∞
∑

s∈S ps(c
>xks + q>s ys) = ζLD, limk→∞ φ(ωk) =

ζLD, and limk→∞(xks − zk) = 0 for each s ∈ S all hold. The boundedness of
each Ds = conv(Ks), s ∈ S, furthermore implies the existence of limit points
((x∗s, y

∗
s)s∈S , z

∗) of
{

((xks , y
k
s )s∈S , z

k)
}

, which are optimal solutions for (9).
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Note that the convergence in Proposition 1 applies to the continuous
problem (9) but not to the mixed-integer problem (3). In problem (3), the
constraint sets Ks, s ∈ S, are not convex, so there is no guarantee that
Algorithm 1 will converge when applied to (3). However, the application of
PH to problem (9) requires, in Line 12, the optimization of the Augmented
Lagrangian over the sets conv(Ks), s ∈ S, for which an explicit linear de-
scription is unlikely to be known. In the next section, we demonstrate how to
circumvent this difficulty by constructing inner approximations of the poly-
hedral sets conv(Ks), s ∈ S.

2.2 A Frank-Wolfe approach based on Simplicial De-
composition

To use Algorithm 1 to solve (9) requires a method for solving the subproblem

(xks , y
k
s ) ∈ argmin

x,y

{
Lρs(x, y, z

k−1, ωks ) : (x, y) ∈ conv(Ks)
}

(11)

appearing in Line 12 of the algorithm. Although an explicit description
of conv(Ks) is not readily available, if we have a linear objective function,
then we can replace conv(Ks) with Ks. This motivates the application of
a FW algorithm for solving (11), since the FW algorithm solves a sequence
of problems in which the nonlinear objective is linearized using a first-order
approximation.

The Simplicial Decomposition Method (SDM) is an extension of the FW
method, where the line searches of FW are replaced by searches over polyhe-
dral inner approximations. SDM can be applied to solve a feasible, bounded
problem of the general form

ζFW := min
x
{f(x) : x ∈ D} , (12)

with nonempty compact convex set D and continuously differentiable convex
function f . Generically, given a current solution xt−1 and inner approxima-
tion Dt−1 ⊆ D, iteration t of the SDM consists of solving

x̂ ∈ argmin
x

{
∇xf(xt−1)>x : x ∈ D

}
updating the inner approximation as Dt ← conv(Dt−1 ∪ {x̂}), and finally
choosing

xt ∈ argmin
x

{
f(x) : x ∈ Dt

}
.
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The algorithm terminates when the bound gap is small, specifically, when

Γt := −∇xf(xt−1)>(x̂− xt−1) < τ,

where τ ≥ 0 is a given tolerance.
The application of SDM to solve problem (11), i.e., to minimize Lρs(x, y, z, ωs)

over (x, y) ∈ conv(Ks), for a given s ∈ S, is presented in Algorithm 2. Here,
tmax is the maximum number of iterations and τ > 0 is a convergence toler-
ance. Γt is the bound gap used to measure closeness to optimality, and φs is
used to compute a Lagrangian bound as described in the next section. The
inner approximation to conv(Ks) at iteration t ≥ 1 takes the form conv(V t

s ),
where V t

s is a finite set of points, with V t
s ⊂ conv(Ks). The points added by

Algorithm 2 to the initial set, V 0
s , to form V t

s , are all in Ks: here V(conv(Ks))
is the set of extreme points of conv(Ks) and, of course, V(conv(Ks)) ⊆ Ks.

Algorithm 2 SDM applied to problem (11).

1: Precondition: V 0
s ⊂ conv(Ks) and z =

∑
s∈S psx

0
s

2: function SDM(V 0
s , x0s, ωs, z, tmax, τ)

3: for t = 1, . . . , tmax do
4: ω̂ts ← ωs + ρ(xt−1s − z)
5: (x̂s, ŷs) ∈ argminx,y

{
(c+ ω̂ts)

>x+ q>s y : (x, y) ∈ V(conv(Ks))
}

6: if t = 1 then
7: φs ← (c+ ω̂ts)

>x̂s + q>s ŷs
8: end if
9: Γt ← −[(c+ ω̂ts)

>(x̂s − xt−1s ) + q>s (ŷs − yt−1s )]
10: V t

s ← V t−1
s ∪ {(x̂, ŷ)}

11: (xts, y
t
s) ∈ argminx,y {Lρs(x, y, z, ωs) : (x, y) ∈ conv(V t

s )}
12: if Γt ≤ τ then
13: return (xts, y

t
s, V

t
s , φs)

14: end if
15: end for
16: return (xtmax

s , ytmax
s , V tmax

s , φs)
17: end function

Observe that

∇(x,y)L
ρ
s(x, y, z, ωs)|(x,y)=(xt−1

s ,yt−1
s ) =

[
c+ ωs + ρ(xt−1s − z)

qs

]
=

[
c+ ω̂s
qs

]
,
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and so the optimization at Line 5 is minimizing the gradient approximation to
Lρs(x, y, z, ωs) at the point (xt−1s , yt−1s ). Since this is a linear objective func-
tion, optimization over V(conv(Ks)) can be accomplished by optimization
over Ks (see, e.g., [24], Section I.4, Theorem 6.3). Hence Line 5 requires a
solution of a single-scenario MILP.

The optimization at Line 11 can be accomplished by expressing (x, y)
as a convex combination of the finite set of points, V t

s , where the weights
a ∈ R|V t

s | in the convex combination are now also decision variables. That
is, the Line 11 problem is solved with a solution to the following convex
continuous quadratic subproblem

(xts, y
t
s, a) ∈ argmin

x,y,a

{
Lρs(x, y, z, ωs) : (x, y) =

∑
(x̂i,ŷi)∈V t

s
ai(x̂

i, ŷi),∑
i=1,...,|V t

s |
ai = 1, and ai ≥ 0 for i = 1, . . . , |V t

s |

}
.

(13)
For implementational purposes, the x and y variables may be substituted
out of the objective of problem (13), leaving a as the only decision variable,
with the only constraints being nonnegativity of the a components and the
requirement that they sum to 1.

The Simplicial Decomposition Method is known to terminate finitely with
an optimal solution when D is polyhedral [16], so the primal update step
Line 12, Algorithm 1 with Ds = conv(Ks) could be accomplished with the
SDM, resulting in an algorithm that converges to a solution giving the La-
grangian dual bound ζLD. However, since each inner iteration of Line 5,
Algorithm 2 requires the solution of a MILP, using tmax large enough to en-
sure SDM terminates optimally is not efficient for our purpose of computing
Lagrangian bounds. In the next section, we give an adapation of the algo-
rithm that requires the solution of only one MILP subproblem per scenario
at each major iteration of the PH algorithm.

3 The FW-PH method

In order to make the SDM efficient when used with PH to solve the problem
(9), the minimization of the Augmented Lagrangian can be done approxi-
mately. This insight can greatly reduce the number of MILP subproblems
solved at each inner iteration and forms the basis of our algorithm FW-PH.
Convergence of FW-PH relies on the following lemma, which states an im-
portant expansion property of the inner approximations employed by the
SDM.
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Lemma 1. For any scenario s ∈ S and iteration k ≥ 1, let Algorithm 2 be
applied to the minimization problem (11) for any tmax ≥ 2. For 1 ≤ t < tmax,
if

(xts, y
t
s) 6∈ argmin

x,y

{
Lρs(x, y, z

k−1, ωks ) : (x, y) ∈ conv(Ks)
}

(14)

holds, then conv(V t+1
s ) ⊃ conv(V t

s ).

Proof. For s ∈ S and k ≥ 1 fixed, we know that by construction

(xts, y
t
s) ∈ argmin

x,y

{
Lsρ(x, y, z

k−1, ωks ) : (x, y) ∈ conv(V t
s )
}

for t ≥ 1. Given the convexity of (x, y) 7→ Lsρ(x, y, z
k−1, ωks ) and the convexity

of conv(V t
s ), the necessary and sufficient condition for optimality

∇(x,y)L
s
ρ(x

t
s, y

t
s, z

k−1, ωks )

[
x− xts
y − yts

]
≥ 0 for all (x, y) ∈ conv(V t

s ) (15)

is satisfied. By assumption, condition (14) is satisfied, conv(Ks) is likewise
convex, and so the resulting non-satisfaction of the necessary and sufficient
condition of optimality for the problem in (14) takes the form

min
x,y

{
∇(x,y)L

s
ρ(x

t
s, y

t
s, z

k−1, ωks )

[
x− xts
y − yts

]
: (x, y) ∈ conv(Ks)

}
< 0. (16)

In fact, during SDM iteration t+1, an optimal solution (x̂s, ŷs) to the problem
in condition (16) is computed in Line 5 of Algorithm 2. Therefore, by the
satisfaction of condition (15) and the optimality of (x̂s, ŷs) for the problem
of condition (16), which is also satisfied, we have (x̂s, ŷs) 6∈ conv(V t

s ). By
construction, V t+1

s ← V t
s ∪ {(x̂s, ŷs)}, so that conv(V t+1

s ) ⊃ conv(V t
s ) must

hold.

The FW-PH algorithm is stated in pseudocode-form in Algorithm 3. Sim-
ilar to Algorithm 1, the parameter ε is a convergence tolerance, and kmax is
the maximum number of (outer) iterations. The parameter tmax is the max-
imum number of (inner) SDM iterations in Algorithm 2.

The parameter α ∈ R affects the initial linearization point x̃s of the
SDM method. Any value α ∈ R may be used, but the use of x̃s = (1 −
α)zk−1 +αxk−1s in Line 6 is a crucial component in the efficiency of the FW-
PH algorithm, as it enables the computation of a valid dual bound, φk, at
each iteration of FW-PH without the need for additional MILP subproblem
solutions. Specifically, we have the following result.
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Proposition 2. Assume that the precondition
∑

s∈S psω
0
s = 0 holds for Al-

gorithm 3. At each iteration k ≥ 1 of Algorithm 3, the value, φk, calculated
at Line 9, is the value of the Lagrangian relaxation φ(·) evaluated at a La-
grangian dual feasible point, and hence provides a finite lower bound on ζLD.

Proof. Since
∑

s∈S psω
0
s = 0 holds and, by construction, 0 =

∑
s∈S ps(x

0
s −

z0), we have
∑

s∈S psω
1
s = 0 also. We proceed by induction on k ≥ 1.

At iteration k, the problem solved for each s ∈ S at Line 5 in the first
iteration (t = 1) of Algorithm 2 may be solved with the same optimal value
by exchanging V(conv(Ks)) for Ks; this follows from the linearity of the
objective function. Thus, an optimal solution computed at Line 5 may be
used in the computation of φs(ω̃

k
s ) carried out in Line 7, where

ω̃ks := ω̂1
s = ωks + ρ(x̃s − zk−1) = ωks + ρ((1− α)zk−1 + αxk−1s − zk−1)

= ωks + αρ(xk−1s − zk−1).

By construction, we have at each iteration k ≥ 1 in Algorithm 3 that∑
s∈S

ps(x
k−1
s − zk−1) = 0 and

∑
s∈S

psω
k
s = 0,

which establishes that
∑

s∈S psω̃
k
s = 0. Thus, ω̃k is feasible for the Lagrangian

dual problem, so that φ(ω̃k) =
∑

s∈S psφ
k
s , and, since each φks is the optimal

value of a bounded and feasible mixed-integer linear program, we have −∞ <
φ(ω̃k) <∞.

We establish convergence of Algorithm 3 for any α ∈ R and tmax ≥ 1. For
the special case where we perform only one iteration of SDM for each outer
iteration (tmax = 1), we require the additional assumption that the initial
scenario vertex sets share a common point. More precisely, we require the
assumption ⋂

s∈S

Projx(conv(V 0
s )) 6= ∅ (17)

which can, in practice, be effectively handled through appropriate initial-
ization, under the standard assumption of relatively complete recourse. We
describe one initialization procedure in Section 4.

Proposition 3. Let the convexified separable deterministic equivalent SMIP (9)
have an optimal solution, and let Algorithm 3 be applied to (9) with kmax =
∞, ε = 0, α ∈ R, and tmax ≥ 1. If either tmax ≥ 2 or (17) holds, then
limk→∞ φ

k = ζLD.
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Algorithm 3 FW-PH applied to problem (9).

1: function FW-PH((V 0
s )s∈S , (x0s, y

0
s)s∈S , ω0, ρ, α, ε, kmax, tmax)

2: z0 ←
∑

s∈S psx
0
s

3: ω1
s ← ω0

s + ρ(x0s − z0), for s ∈ S
4: for k = 1, . . . , kmax do
5: for s ∈ S do
6: x̃s ← (1− α)zk−1 + αxk−1s

7: [xks , y
k
s , V

k
s , φ

k
s ]← SDM(V k−1

s , x̃s, ω
k
s , z

k−1, tmax, 0)
8: end for
9: φk ←

∑
s∈S psφ

k
s

10: zk ←
∑

s∈S psx
k
s

11: if
√∑

s∈S ps ‖xks − zk−1‖
2
2 < ε then

12: return ((xks , y
k
s )s∈S , z

k, ωk, φk)
13: end if
14: ωk+1

s ← ωks + ρ(xks − zk), for s ∈ S
15: end for
16: return

(
(xkmax

s , ykmax
s )s∈S , z

kmax), ωkmax , φkmax
)

17: end function

Proof. First note that for any tmax ≥ 1, the sequence of inner approximations
conv(V k

s ), s ∈ S, will stabilize, in that, for some threshold 0 ≤ k̄s, we have
for all k ≥ k̄s

conv(V k
s ) =: Ds ⊆ conv(Ks). (18)

This follows due to the assumption that each expansion of the inner approx-
imations conv(V k

s ) take the form V k
s ← V k−1

s ∪ {(x̂s, ŷs)}, where (x̂s, ŷs) is a
vertex of conv(Ks). Since each polyhedron conv(Ks), s ∈ S has only a finite
number of such vertices, the stabilization (18) must occur at some k̄s <∞.

For tmax ≥ 2, the stabilizations (18), s ∈ S, are reached at some iteration
k̄ := maxs∈S

{
k̄s
}

. Noting that Ds = conv(V k
s ) for k > k we must have

(xks , y
k
s ) ∈ argmin

x,y

{
Lρs(x, y, z

k−1, ωks ) : (x, y) ∈ conv(Ks)
}
. (19)

Otherwise, due to Lemma 1, the call to SDM on Line 7 must return V k
s ⊃

V k−1
s , contradicting the finite stabilization (18). Therefore, the k ≥ k̄ itera-

tions of Algorithm 3 are identical to Algorithm 1 iterations, and so Propo-
sition 1 implies that limk→∞ x

k
s − zk = 0, s ∈ S, and limk→∞ φ(ωk) = ζLD.
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By the continuity of ω 7→ φs(ω) for each s ∈ S, we have limk→∞ φ
k =

limk→∞
∑

s∈S psφs(ω
k
s+α(xk−1s −zk−1)) = limk→∞

∑
s∈S psφs(ω

k
s ) = limk→∞ φ(ωk) =

ζLD for all α ∈ R.
In the case tmax = 1, we have at each iteration k ≥ 1 the optimality

(xks , y
k
s ) ∈ argmin

x,y

{
Lρs(xs, ys, z

k−1, ωks ) : (xs, ys) ∈ conv(V k
s )
}
.

By the stabilization (18), the iterations k ≥ k̄ of Algorithm 3 are identical
to PH iterations applied to the restricted problem

min
x,y,z

{∑
s∈S

ps(c
>xs + q>s ys) : (xs, ys) ∈ Ds, ∀s ∈ S, xs = z, ∀s ∈ S

}
. (20)

We have initialized the sets (V 0
s )s∈S such that ∩s∈SProjxconv(V 0

s ) 6= ∅, so
since the inner approximations to conv(Ks) only expand in the algorithm,
∩s∈SProjx(Ds) 6= ∅. Therefore, problem (20) is a feasible and bounded linear
program, and so the PH convergence described in Proposition 1 with Ds =
Ds, s ∈ S, holds for its application to problem (20). That is, for each s ∈ S,
we have 1) limk→∞ ω

k
s = ω∗s and limk→∞(xks − zk) = 0; and 2) for all limit

points ((x∗s, y
∗
s)s∈S , z

∗), we have the feasibility and optimality of the limit
points, which implies x∗s = z∗ and

min
x,y

{
(c+ ω∗s)

>(x− x∗) + q>s (y − y∗) : (x, y) ∈ Ds

}
= 0 (21)

Next, for each s ∈ S the compactness of conv(Ks) ⊇ Ds, the continuity of
the minimum value function

ω 7→ min
x,y

{
(c+ ω)>x+ q>s y : (x, y) ∈ Ds

}
,

and the limit limk→∞ ω̃
k+1
s = limk→∞ ω

k+1
s +αρ(xks−zk) = ω∗s , together imply

that

lim
k→∞

min
x,y

{
(c+ ω̃k+1

s )>(x− xk) + q>s (y − yk) : (x, y) ∈ Ds

}
= 0. (22)

Recall that ω̃ks = ωks + ρα(xk−1s − zk−1) is the t = 1 value of ω̂ts defined
in Line 4 of Algorithm 2. Thus, for k + 1 > k̄, we have due to the stabiliza-
tion (18) that

min
x,y

{
(c+ ω̃k+1

s )>(x− xk) + q>s (y − yk) : (x, y) ∈ Ds

}
=

min
x,y

{
(c+ ω̃k+1

s )>(x− xk) + q>s (y − yk) : (x, y) ∈ conv(Ks)
}

(23)
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If equality (23) does not hold, then the inner approximation expansion
Ds ⊂ conv(V k+1

s ) must occur, since a point (x̂s, ŷs) ∈ conv(Ks) that can
be strictly separated from Ds would have been discovered during the it-
eration k + 1 execution of Algorithm 2, Line 5, t = 1. The expansion
Ds ⊂ conv(V k+1

s ) contradicts the finite stabilization (18), and so (23) holds.
Therefore, the equalities (22) and (23) imply that

lim
k→∞

min
x,y

{
(c+ ω̃k+1

s )>(x− xk) + q>s (y − yk) : (x, y) ∈ conv(Ks)
}

= 0.

(24)
Our argument has shown that for all limit points (x∗s, y

∗
s), s ∈ S, the

following stationarity condition is satsfied:

(c+ ω∗s)
>(x− x∗s) + q>s (y − y∗s) ≥ 0 ∀(x, y) ∈ conv(Ks), (25)

which together with the feasibility x∗s = z∗, s ∈ S implies that each limit
point ((x∗s, y

∗
s)s∈S , z

∗) is optimal for problem (9) and ω∗ is optimal for the
dual problem (8).

Thus, for all tmax ≥ 1, we have shown limk→∞(xks − zk) = 0, s ∈ S, and
limk→∞ φ(ωk) = ζLD. By similar reasoning used in the tmax ≥ 2 case, it is
straightforward that for all α ∈ R, we also have limk→∞ φ

k = ζLD.

While using a large value of tmax more closely matches Algorithm 3 to
the original PH algorithm as described in Algorithm 1, we are motivated
to use a small value of tmax since the work per iteration is proportional to
tmax. Specifically, each iteration requires solving tmax|S| MILP subproblems,
and tmax|S| continuous convex quadratic subproblems. (For reference, Algo-
rithm 1 applied to problem (3) requires the solution of |S|MIQP subproblems
for each ω update and |S| MILP subproblems for each Lagrangian bound φ
computation.)

4 Numerical Experiments

We performed computations using a C++ implementation of Algorithm 1
(Ds = Ks, s ∈ S) and Algorithm 3 using CPLEX 12.5 [17] as the solver for
all subproblems. For reading SMPS files into scenario-specific subproblems
and for their interface with CPLEX, we used modified versions of the COIN-
OR [3] Smi and Osi libraries. The computing environment is the Raijin
cluster maintained by Australia’s National Computing Infrastructure (NCI)
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and supported by the Australian Government [1]. The Raijin cluster is a high
performance computing (HPC) environment which has 3592 nodes (system
units), 57472 cores of Intel Xeon E5-2670 processors with up to 8 GB PC1600
memory per core (128 GB per node). All experiments were performed in a
serial setting using a single node and one thread per CPLEX solve.

In the experiments with Algorithms 1 and 3, we set the convergence toler-
ance at ε = 10−3. For Algorithm 3, we set tmax = 1. Also, for all experiments
performed, we set ω0 = 0. In this case, convergence of our algorithm requires
that (17) holds, which can be guaranteed during the initialization of the inner
approximations (V 0

s )s∈S . Under the standard assumption of relatively com-
plete resource, i.e., the assumption that for all x ∈ X and s ∈ S there exists
ys such that (x, ys) ∈ Ks, a straightforward mechanism for ensuring this as-
sumption is to solve the recourse problems for any fixed x̂ ∈ X. Specifically,
for each s ∈ S, let

ŷs ∈ arg min
y
{q>s y : (x̂, y) ∈ Ks},

and initialize V 0
s for each s ∈ S so that {(x̂, ŷs)} ∈ V 0

s . Observe also that this
initialization corresponds to a technique for computing a feasible solution to
the original problem (2), which is independently useful for obtaining an upper
bound on ζSMIP .

For the computational experiments, we run the following initialization to
obtain (V 0

s )s∈S and (x0s, y
0
s)s∈S that are input into Algorithm 3:

Algorithm 4 Initialization step for FW-PH

1: Precondition: Problem (2) has relatively complete recourse
2: function FW-PH-Initialization(ω0)
3: for s ∈ S do
4: (x0s, y

0
s)← argminx,y

{
(c+ ω0

s)
>x+ q>s y : (x, y) ∈ Ks

}
5: V 0

s ← {(x0s, y0s)}
6: if s 6= 1 then
7: ys ← argminy

{
q>s y : (x01, y) ∈ Ks

}
8: V 0

s ← V 0
s ∪ {(x01, ys)}

9: end if
10: end for
11: return (V 0

s , (x
0
s, y

0
s))s∈S

12: end function
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If problem (2) does not have relatively complete recourse, then any means
to compute a feasible solution to (2) may be employed to initialize each V 0

s ,
s ∈ S, in a way to satisfy (17).

Two sets of Algorithm 3 experiments correspond to variants considering
α = 0 and α = 1. Computations were performed on four problems: the
CAP instance 101 with the first 250 scenarios (CAP-101-250) [6], the DCAP
instance DCAP233 500 with 500 scenarios, the SSLP instances SSLP5.25.50
with 50 scenarios (SSLP-5-25-50) and SSLP10.50.100 with 100 scenarios
(SSLP-10-50-100). The latter three problems are described in detail in [27, 2]
and accessible at [2]. For each problem, computations were performed for
different penalty values ρ > 0. The penalty values used in the experiments
for the SSLP-5-25-50 instance were chosen to include those penalties that are
tested in a computational experiment with PH whose results are depicted in
Figure 2 of [14]. For the other problem instances, the set of penalty values ρ
tested is chosen to capture a reasonably wide range of performance potential
for both PH and FW-PH. All computational experiments were allowed to
run for a maximum of two hours in wall clock time.

Percentage gap # Iterations Termination

Penalty PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

20 0.08% 0.10% 0.11% 466 439 430 T T T
100 0.01% 0.00% 0.00% 178 406 437 C T T
500 0.07% 0.00% 0.00% 468 92 93 T C C

1000 0.15% 0.00% 0.00% 516 127 130 T C C
2500 0.34% 0.00% 0.00% 469 259 274 T C C
5000 0.66% 0.00% 0.00% 33 431 464 C T T
7500 0.99% 0.00% 0.00% 28 18 19 C C C

15000 1.59% 0.00% 0.00% 567 28 33 T C C

Table 1: Result summary for CAP-101-250, with the absolute percentage
gap based on the known optimal value 733827.3

Tables 1–4 provide a summary indicating the quality of the Lagrangian
bounds φ computed at the end of each experiment for the four problems
with varying penalty parameter ρ. In each of these tables, the first column
lists the values of the penalty parameter ρ, while the following are presented
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Percentage gap # Iterations Termination

Penalty PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

2 0.13% 0.12% 0.12% 1717 574 600 T T T
5 0.22% 0.09% 0.09% 2074 589 574 T T T

10 0.23% 0.07% 0.07% 2598 592 587 T T T
20 0.35% 0.07% 0.07% 1942 590 599 T T T
50 1.25% 0.06% 0.06% 2718 597 533 T T T

100 1.29% 0.06% 0.06% 2772 428 438 T C C
200 2.58% 0.06% 0.06% 2695 256 262 T C C
500 2.58% 0.07% 0.07% 2871 244 246 T C C

Table 2: Result summary for DCAP-233-500, with the absolute percentage
gap based on the best known lower bound 1737.7.

for PH and FW-PH (for both α = 0 and α = 1) computations in the re-

maining columns: 1) the absolute percentage gap
∣∣∣ ζ∗−φζ∗

∣∣∣ ∗ 100% between the

computed Lagrangian bound φ and some reference value ζ∗ that is either a
known optimal value for the problem, or a known best upper bound thereof
(column “Percentage Gap”); 2) the total number of dual updates (“# It-
erations”); and 3) the indication of whether the algorithm terminated due
to the time limit, indicated by letter “T”, or the satisfaction of the conver-

gence criterion
√∑

s∈S ps ‖xks − zk−1‖
2
2 < ε, indicated by letter “C” (column

“Termination”).
The following observations can be made from the results presented in

Tables 1–4. First, for small values of the penalty ρ, there is no clear preference
between the bounds φ generated by PH and FW-PH. However, for higher
penalties, the bounds φ obtained by FW-PH are consistently of better quality
(i.e., higher) than those obtained by PH, regardless of the variant used (i.e.
α = 0 or α = 1). This tendency is typically illustrated, for example, in
Table 2, where the absolute percentage gap of the Lagrangian lower bound
with the known optimal value was 0.06% with ρ = 200 for FW-PH (α = 0),
while it was 2.58% for the same value of ρ for PH. This improvement is
consistently observed for the other problems and the other values of ρ that
are not too close to zero. Also, FW-PH did not terminate with suboptimal
convergence or display cycling behavior for any of the penalty values ρ in
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Percentage gap # Iterations Termination

Penalty PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

1 0.30% 0.00% 0.00% 105 115 116 C C C
2 0.73% 0.00% 0.00% 51 56 56 C C C
5 0.91% 0.00% 0.00% 25 26 27 C C C

15 3.15% 0.00% 0.00% 12 16 17 C C C
30 6.45% 0.00% 0.00% 12 18 18 C C C
50 9.48% 0.00% 0.00% 18 25 26 C C C

100 9.48% 0.00% 0.00% 8 45 45 C C C

Table 3: Result summary for SSLP-5-25-50, with the absolute percentage
gap based on the known optimal value -121.6

any of the problems considered. For example, all experiments considered in
Table 3 terminated due to convergence. The percentage gaps suggest that
the convergence for PH was suboptimal, while it was optimal for FW-PH.
Moreover, it is possible to see from these tables that the quality of the bounds
φ obtained using FW-PH were not as sensitive to the value of the penalty
parameter ρ as obtained using PH.

The FW-PH with α = 0 versus PH convergence profiles for the experi-
ments performed are given in Figures 1–4, in which we provide plots of wall
time versus Lagrangian bound values based on profiling of varying penalty.
The times scales for the plots have been set such that trends are meaning-
fully depicted (1000s for CAP-101-250 and DCAP-233-500, 100 seconds for
SSLP-5-25-50, and 3000s for SSLP-10-50-100). The trend of the Lagrangian
bounds is depicted with solid lines for FW-PH with α = 0 and with dashed
lines for PH. Plots providing the same comparison for FW-PH with α = 1
are provided in Appendix A.

As seen in the plots of Figures 1–4, the Lagrangian bounds φ generated
with PH tend to converge suboptimally, often displaying cycling, for large
penalty values. In terms of the quality of the bounds obtained, while there
is no clear winner when low penalty ρ values are used, for large penalties,
the quality of the bounds φ generated with FW-PH is consistently better
than for the bounds generated with PH, regardless of the α value. This last
observation is significant because the effective use of large penalty values ρ
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Percentage gap # Iterations Termination

Penalty PH
FW-PH

PH
FW-PH

PH
FW-PH

α = 0 α = 1 α = 0 α = 1 α = 0 α = 1

1 0.57% 0.22% 0.23% 126 234 233 T T T
2 0.63% 0.03% 0.03% 127 226 228 T T T
5 1.00% 0.00% 0.00% 104 219 220 C T T

15 2.92% 0.00% 0.00% 33 45 118 C C C
30 4.63% 0.00% 0.00% 18 21 22 C C C
50 4.63% 0.00% 0.00% 11 26 27 C C C

100 4.63% 0.00% 0.00% 9 43 45 C C C

Table 4: Result summary for SSLP-10-50-100, with the absolute percentage
gap based on the known optimal value -354.2

in methods based on augmented Lagrangian relaxation tends to yield the
most rapid early iteration improvement in the Lagrangian bound; this point
is most clearly illustrated in the plot of Figure 3.

5 Conclusions and future work

In this paper, we have presented an alternative approach to compute nonan-
ticipativity Lagrangian bounds associated with SMIPs that combines ideas
from the Progressive Hedging (PH) and the Frank-Wolfe (FW) based meth-
ods. We first note that while Lagrangian bounds can be recovered with PH,
this requires—for each iteration and each scenario—the solution of an addi-
tional MILP subproblem in addition to the MIQP subproblem. Furthermore,
when using the PH method directly, the Lagrangian bounds may converge
suboptimally, cycle (for large penalties), or converge very slowly (for small
penalties).

To overcome the lack of theoretical support for the above use of PH, we
first described a straightforward integration of PH and a FW-like approach
such as the Simplicial Decomposition Method (SDM), where SDM is used to
compute the primal updates in PH. Its convergence only requires noting that
SDM applied to a convex problem with a bounded polyhedral constraint set
terminates finitely with optimal convergence. However, for the stated goal of
computing high-quality Lagrangian bounds efficiently, the benefits of relying
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Figure 1: Convergence profile for CAP-101-250 (PH and FW-PH with α = 0)
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DCAP-233-500

Best Known Objective Value
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=10-PH
=10-FW-PH (  = 0)
=20-PH
=20-FW-PH (  = 0)
=50-PH
=50-FW-PH (  = 0)

Figure 2: Convergence profile for DCAP-233-500 (PH and FW-PH with α =
0)
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Figure 3: Convergence profile for SSLP-5-25-50 (PH and FW-PH with α = 0)
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Figure 4: Convergence profile for SSLP-10-50-100 (PH and FW-PH with
α = 0)
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on the optimal convergence of SDM is far outweighed by the computational
costs incurred.

As an alternative, we propose the contributed algorithm, FW-PH, that
is analyzed under general assumptions on how the Lagrangian bounds are
computed and on the number of SDM iterations used for each dual update.
Furthermore, under mild assumptions on the initialization of the algorithm,
FW-PH only requires the solution of a MILP subproblem and a continuous
convex quadratic subproblem for each iteration and each scenario. FW-PH is
versatile enough to handle a wide range of SMIPs with integrality restrictions
in any stage, while providing rapid improvement in the Lagrangian bound in
the early iterations that is consistent across a wide range of penalty param-
eter values. Although we have opted to focus on two-stage problems with
recourse, the generalization of the proposed approach to the multi-stage case
is also possible.

Numerical results are encouraging as they suggest that the proposed FW-
PH method applied to SMIP problems usually outperforms the traditional
PH method with respect to how quickly the quality of the generated La-
grangian bounds improves. This is especially true with the use of larger
penalty values. For all problems considered and for all but the smallest
penalties considered, the FW-PH method displayed better performance over
PH in terms of the quality of the final Lagrangian bounds at the end of the
allotted wall clock time.

The improved performance of FW-PH over PH for large penalties is sig-
nificant because it is the effective use of large penalties enabled by FW-
PH that yields the most rapid initial dual improvement. This last feature
of FW-PH would be most helpful in its use within a branch-and-bound or
branch-and-cut framework for providing strong lower bounds (in the case of
minimization). In addition to being another means to compute Lagrangian
bounds, PH would still have a role in such frameworks as a heuristic for com-
puting a primal feasible solution to the SMIP, thus providing (in the case of
minimization) an upper bound on the optimal value.

Future research on this subject includes the following. First, FW-PH in-
herits the potential for parallelization from PH. Experiments for exploring
the benefit of parallelization are therefore warranted. Second, the theoretical
support of FW-PH can be strengthened with a better understanding of the
behavior of PH (and its generalization ADMM) applied to infeasible prob-
lems. Finally, FW-PH can benefit from a better understanding of how the
proximal term penalty coefficient can be varied to improve performance.
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A Additional plots for PH vs. FW-PH for

α = 1
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Figure 5: Convergence profile for CAP-101-250 (PH and FW-PH with α = 1)
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Figure 6: Convergence profile for DCAP-233-500 (PH and FW-PH with α =
1)
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Figure 7: Convergence profile for SSLP-5-25-50 (PH and FW-PH with α = 1)
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Figure 8: Convergence profile for SSLP-10-50-100 (PH and FW-PH with
α = 1)
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