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Abstract

This paper proposes a new deterministic sampling strategy for constructing polynomial chaos approximations
for expensive physics simulation models. The proposed approach, effectively subsampled quadratures involves
sparsely subsampling an existing tensor grid using QR column pivoting. For polynomial interpolation using
hyperbolic or total order sets, we then solve the following square least squares problem. For polynomial approx-
imation, we use a column pruning heuristic that removes columns based on the highest total orders and then
solves the tall least squares problem. While we provide bounds on the condition number of such tall submatrices,
it is difficult to ascertain how column pruning effects solution accuracy as this is problem specific. We conclude
with numerical experiments on an analytical function and a model piston problem that show the efficacy of our
approach compared with randomized subsampling. We also show an example where this method fails.

1 Introduction & motivation

Polynomial chaos is a powerful tool for uncertainty quantification that has seen widespread use in numerous disciplines
[35, 7, 33, 42]. It approximates a model’s response with respect to uncertainty in the input parameters using
orthogonal polynomials. One important challenge in computing these polynomial approximations lies in determining
their coefficients. Standard approaches to compute these coefficients include tensor grids as in Figure 1(a) and sparse
grids in (b). In this paper we present a deterministic strategy to construct stable polynomial approximations by
subsampling points from a tensor grid, as in Figure 1(c) .

The motivation for moving away from tensor product spaces is that the number of points grow exponentially
with dimension. While sparse grids [18, 8, 12] are one way forward, they still restrict users to very specific index
sets—even with their various growth rules. Least squares based methods on the other hand offer more flexibility.
The idea of employing least squares techniques in a polynomial approximation context is not a new idea, but recent
theoretical results [43] motivate the idea of randomized or subsampled quadratures. In a nutshell the idea is to
evaluate the simulation at only a small subset of points from a suitable tensorial grid, and to subsequently construct
an approximation using either compressed sensing [14, 22, 30, 38] or least squares. The goal is to subsample in a
way such that the subsample-constructed surrogate approximates the surrogate that would obtained by using the
all the points from the tensor grid, by minimizing the mean-square error in the coefficients. After subsampling, the
approximation scheme we focus on is a least-squares-type approach; subsampling approaches for least-squares have
received little attention [43] compared to compressive sampling.

Despite ease of implementation, discrete least-squares has known stability issues. For instance, when using
abscissae associated with Newton-Cotes quadrature (equidistant point sets), it is relatively unstable even for an
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Figure 1: Sample stencils for (a) Tensor grid; (b) Sparse grid and (c) Effectively subsampled quadratures, with a
maximum univariate degree of 4 using Gauss-Legendre quadrature points.

infinitely smooth noiseless function [31]. Recent theoretical work [28, 27, 43, 11, 29] has centered around determining
the stability conditions for least squares, when using independent and identically distributed (iid) or random sampling.
In Cohen et al. [11] the authors analyze univariate polynomials and observe for approximating an m-th order
polynomial approximately cm2 points are required when sampling randomly from a uniform distribution on the
inputs, or approximately cmlog(m) points when sampling from a Chebyshev distribution, for some constant c.
Theoretical extensions to multivariate polynomial spaces can be found in Chkifa et al. [10], and with applications
to multivariate orthogonal polynomial expansions in tensor-product and total-order index spaces in [43].

In this paper we introduce a new approach for deterministically subsampling quadratures in the context of least
squares approximations. Given a polynomial subspace and a tensor product quadrature grid, the central idea is to
select a number of subsamples from the grid equal to the dimension of the subspace using a QR factorization column
pivoting strategy. Further pruning of the polynomial subspace is performed via heuristics. We remark here that
good performance of our method depends on the pruning strategy adopted, and in general it is difficult to develop
rigorous bounds.

Details of the approach are in section 2 with a discussion in section 3. This is followed by numerical examples in
sections 4 and 5. All our results, and code to produce them, can be found at: www.effective-quadratures.org/papers.
These codes use routines from our effective-quadratures toolkit [34].

1.1 Preliminaries & notation

Let ζ = (ζ(1), . . . , ζ(d)) be a d-dimensional vector of mutually independent random variables with joint probability

density ρ and marginal densities ρi related by ρ(ζ) =
∏d

i=1 ρi
(
ζ(i)
)

defined on Rd.

1.2 On polynomials

Let
{
ψ
(i)
j

}∞
j=0

denote a family of polynomials L2-orthogonal on R when weighted by the density ρi:∫
R
ψ
(k)
i (s)ψ

(k)
j (s)ρk(s)ds = E

[
ψ
(k)
i

(
ζ(k)

)
ψ
(k)
j

(
ζ(k)

)]
= δi,j , (1)

where δi,j is the Kronecker delta. Existence of such a family is ensured under mild assumptions on ρi [17]; the ρi-
weighted L2-completeness of the polynomial family can be established under some additional technical assumptions
[26, 15].
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A multivariate polynomial ψj : Rd → R can be defined as a product of univariate polynomials,

ψj (ζ) =

d∏
k=1

ψ
(k)
jk

(
ζ(k)

)
, j = (j1, . . . , jd) ∈ Nd

0, (2)

where j is a multi-index that denotes the order (degree) of ψj and its composite univariate polynomials ψ
(k)
jk

. The

family {ψj}j∈Nd
0

defined in this way is mutually orthogonal in L2 weighted by ρ.

For computational purposes, we require a finite number of polynomials ψj . This finite set is chosen by restricting
the multi-index j to lie in a finite multi-index set J . There are four well-known multi-index sets J that have proven
fruitful for parametric approximation: tensor product index sets, total order index sets, hyperbolic cross spaces [40, 8]
and hyperbolic index sets [2]. Each of these index sets in d dimensions is well-defined given a fixed k ∈ N0, which
indicates the maximum polynomial degree associated to these sets.

Isotropic tensor product index sets consist of multi-indices satisfying maxk jk ≤ k, and have a cardinality (number

of elements) equal to (k+ 1)d. Total order index sets contain multi-indices satisfying
∑d

i=1 ji ≤ k. Loosely speaking,
total order indices disregard some higher order interactions between dimensions present in tensorized spaces, and a
total order index set J has cardinality

|J | =
(
k + d
k

)
. (3)

Hyperbolic cross sets contain indices governed by the rule
∏d

i=1 (ji + 1) ≤ k + 1, and prune even more tensorial
interaction terms than total order index spaces. The cardinality of this last index set is approximately (k + 1)(1 +
log(k + 1))d−1 [43]. Finally, a hyperbolic index set contain indices that satisfy(

d∑
i=1

jqi

)1/q

≤ k, (4)

where q is a user-defined constant that can be varied from 0.2 to 1.0. When q = 1 the hyperbolic index space is
equivalent to a total order index space, while for values less than unity higher-order interactions terms are eliminated
[2]. In the numerical examples in this paper we will form approximations from the hyperbolic index space (not the
hyperbolic cross set).

1.3 On quadrature rules

We assume existence of a quadrature rule
{(
ζi, ω

2
i

)}m
i=1

, with non-negative weights ω2
i , such that

m∑
i=1

ω2
iφj (ζi)φ` (ζi) =

∫
Rd

φj (ζ)φ` (ζ)ρ(ζ)dxζ = δ`,j , j, ` ∈ J . (5)

Thus the choice of quadrature rule is intimately tied to the choice of J . Ideally, the cardinality m of this quadrature
rule should be as small as possible. In one dimension, we can achieve equality in the above expression with m = |J |
for essentially any density ρ by using a Gaussian quadrature rule [16]. However, rules of this optimal (smallest)
cardinality are not known in the multivariate setting for general ρ and J . The construction of quasi-optimal
multivariate quadrature rules, even over canonical domains, is a challenging computational problem [39] and no
universal solutions are currently known.

On tensor-product domains (as is assumed in this paper) one quadrature rule satisfying (5) can be constructed
by tensorizing univariate rules. For example, (5) holds if the univariate rules are Gaussian quadrature rules with
sufficiently high accuracy. Since the cardinality of the resulting tensorial rule grows exponentially with dimension d,
evaluating the model over a full tensor-product quadrature rule quickly becomes infeasible. In this paper, we will
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use a tensorial Gauss quadrature rule with high enough accuracy to ensure (5), but in principle it is also reasonable
to apply our approach when the first equality in (5) is only approximate.

This motivates the goal of this paper: prune a full tensorized quadrature rule
{(
ζi, ω

2
i

)}m
i=1

via a subsampling
procedure so that the subsampled grid has an acceptable cardinality while hopefully maintaining the accuracy
properties associated to an approximation using the index set J .

1.4 On matrices

Matrices in this paper are denoted by upper case bold letters, while vectors are denoted by lower case bold letters.
For a matrix, D ∈ Rm×n with m ≥ n, singular values are defined by σi (D), with i = 1, . . . , n. Unless explicity
stated otherwise, the singular values are arranged in descending order, i.e, σ1 (D) ≥ . . . ≥ σn (D). The `2 condition
number of D is denoted κ (D) and is the ratio of the largest singular value to the smallest. The singular values of
D coincide with those of DT .

2 Effectively subsampled quadratures

In this section we describe polynomial least squares via effectively subsampled quadratures. To aid our discussion,
the overall strategy is captured in Figure 2; we describe the details below.

2.1 Setting up the A matrix

Let A ∈ Rm×n be a matrix formed by evaluating n multivariate orthonormal polynomials (constructed as described
in Section 1.2) at a tensor grid formed of m quadrature points (described in Section 1.3). Individual entries of A are
given by

A (i, j) = ωiψ (ζi) , j ∈ J , i = 1, . . . ,m. (6)

where in this paper we implicitly assume that the index set J is a hyperbolic1 or total order index set with the
condition that |J | = n � m. We assume the quadrature rule is accurate enough so that (5) holds. We consider A
a matrix by assuming a linear ordering of the elements in J ; the particular ordering chosen may be arbitrary in the
context of this paper.

We define b ∈ Rm to be the vector of weighted model evaluations at the m quadrature points, where individual
entries of b are given by

b(i) = ωif (ζi) , (7)

where f (·) represents the quantity of interest from our computational model; we seek to approximate this with g(s)

f (s) ≈ g(s) =

n∑
i∈J

xiψi (s) . (8)

This is equivalent to solving the least squares problem Ax = b for the coefficients x ∈ Rn. This requires our
model to be evaluated at each tensor grid quadrature point. A non-deterministic (i.e., randomized) approach to
reduce the cost associated with this least squares problem is to randomly subsample tensor grid quadrature points as
outlined in [43]. This strategy requires a reduction in the number of basis terms in A to promote stability. We make
specific comments regarding the randomized strategy in the numerical studies section of this paper. To contrast, our
approach in this paper is deterministic and rooted in a heuristic that is tailored for least squares problems.

1Either a hyperbolic cross space or a hyperbolic space
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Figure 2: Step-by-step outline of the effectively subsampled quadrature technique for computing polynomial least
squares approximations: (a) Setting up the A matrix; (b) QR factorization with column pivoting on AT ; (c) Column
pruning; (d) Solving the least squares problem.
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2.2 QR factorization with column pivoting on AT

To reduce the cost associated with evaluating our model at each point in a tensor grid, we utilize QR column
pivoting—a well-known heuristic for solving rank deficient least squares problems. QR column pivoting works by (i)
determining the numerical rank r < n of an m-by-n matrix, and (ii) permuting columns of the matrix such that the
first r columns are linearly independent [23]. Here, we apply this heuristic for subselecting rows of A. Let the QR
column pivoting factorization of AT be given by

ATP = Q
(
R1 R2

)
(9)

where Q ∈ Rn×n is orthogonal, R1 ∈ Rn×n is nonsingular2 and upper triangular with positive diagonal elements,
and R2 ∈ Rn×(m−n). The matrix P is a permutation matrix that permutes columns of AT such that the diagonal
entries of R1 are greedily maximized. It should be noted that the factorization in (9) is not necessarily unique as
there may be numerous ways to select n linearly independent columns of A [1]. To determine precisely which rows of
A to subselect (equivalent to determining which points to subsample) we define a vector π that converts the pivots
encoded in the matrix P to the specific rows in A by

π = P Tu, (10)

where u = (1, 2, . . . ,m)T is a vector of integers from 1 to m. The vector π contains ordered rows of A that are
subselected via the QR factorization. For clarity let πn = π(1 : n) be the first n entries of π, and the operator Gπn

that selects the rows indexed by πn. We define

A� = Gπn
(A) (11)

where A� ∈ Rn×n (see Figure 2(b)). For ease in notation we define column-wise vectors of AT using c as follows:

AT =

 − aT1 −
...

− aTn −

 =

 | |
c1 . . . cn
| |

 . (12)

The QR pivoting algorithm used in this study—shown in Algorithm 1—is based on the work of Dax [13] and uses
modified Gram-Schmidt QR factorization. As shown in lines 14-15 of the algorithm, the vector cj is orthogonalized by
iteratively projecting it on to the subspace orthogonal to span(g1, . . . ,gk−1), where gk = ck/ ‖ck‖2 [23]. Householder
QR pivoting (see page 227 of [20]) may also be used instead. Both algorithms require an initial computation of the
column norms followed by subsequent updates after iterative orthogonalization. As Björck [1] notes, once the initial
column norms have been computed, they may be updated using the identity∥∥∥c(k+1)

j

∥∥∥
2

=

√∥∥∥a(k)k

∥∥∥2
2
−
(
gT c

(k)
j

)2

=
∥∥∥c(k)k

∥∥∥
2

1−

 gT c
(k)
j∥∥∥c(k)k

∥∥∥
2

2


1/2

,

(13)

instead of directly computing the column norms. The above identity is applied in line 16 of Algorithm 1. While (13)
reduces the overhead of pivoting from O

(
mn2

)
flops to O (mn) flops [20], there are some sailent computational issues

that need to be considered when using such an updating rule. (See page 6 of [13].) A small but notable difference
in our implementation of the QR with column pivoting algorithm is that our for-loop terminates at k=n, which is
sufficient for computing the n pivots we need. A python implementation of the above algorithm is included in our
effective-quadratures toolkit, and is utilized in all the numerical studies in this paper. For QR factorizations
with column pivoting, there are comprehensive LAPACK routines, such as DGEQP3 [32].

2By assuming (5), A must be of full rank, equal to min{m,n} = n. Thus R1 also has rank n.
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Algorithm 1 QR with column pivoting on AT = (c1, . . . , cm) ∈ Rn×m where m > n

1: procedure QR Column Pivoting(AT )
2: Compute and store column norms of AT in colnorms

3: Declare permutation vector π=1:m
4: for k=1:n do
5: Store max(colnorms(k:n)) index as jmax

6: Set jmax = jmax + (k-1)

7: if k is not equal to jmax then
8: Swap ck with cjmax . Swaping
9: Swap colnorms(k) with colnorms(jmax)

10: Swap π(k) with π(jmax)
11: end if
12: if k is not equal to n then . Orthogonalization
13: for j=k+1:n do
14: g = ck/ ‖ck‖2
15: cj = cj − gT cjg
16: Update colnorms(j)

17: end for
18: end if
19: if k is not equal to 1 then . Reorthogonalization
20: for i=1:k-1 do
21: h = ci/ ‖ci‖2
22: ck = ck − hT ckh
23: end for
24: end if
25: end for
26: return π
27: end procedure

7



2.2.1 Relation to rank revealing QR factorizations

The factorization in (9) is called a rank revealing QR (RRQR) factorization if it satisfies the property that σmin(R1) ≥
σk(AT )/p(n,m), where p(n,m) is a function bounded by a lower order polynomial in n and m. The Businger and
Golub Householder QR with pivoting algorithm [20], the Chandrasekaran and Ipsen algorithm [9] and that of Golub,
Klema and Stewart [19] fall into this category. Bounds on all n singular values of R1—and not just the minimum—
can be obtained when using algorithms that yield a strong RRQR factorization; a term coined by Gu and Eisenstat
[21]. The latter also provide an efficient algorithm for computing a strong RRQR. Broadbent et al. [6] follow this
work and proved that a strong RRQR applied to matrices with more columns than rows—as in the case for our QR
factorization with AT —yields the following identity

σi (R1) ≥ σi (A)√
1 + δ2n (m− n)

for 1 ≤ i ≤ n, (14)

for some constant δ > 1. As the singular values of R1 are equivalent to those of A�, this imples that singular values
σi(A�) lie between σi(A) and the right-hand-side of (14). We briefly analyze the stability of solving a linear system
involving the rank-n matrix A� by bounding its condition number relative to the condition number.

Lemma 1 With δ the parameter in the inequality (14), and κ(·) the 2-norm condition number of a matrix, then

κ (A�) ≤ κ (A)
√

1 + δ2n(m− n) (15)

Proof 1 We first note that

κ (A) :=
σ1 (A)

σn (A)
. (16a)

By (14), we have

1

σn (A�)
≤
√

1 + δ2n(m− n)

σn (A)
(16b)

Finally, since A� is precisely a submatrix of A (see (11)), then the singular values of A and A� interlace [41], in
particular,

σ1 (A�) ≤ σ1 (A) . (16c)

Combining the three relations (16) with κ (A�) := σ1 (A�) / σn (A�) proves (15).

2.2.2 Relation to subset selection

Like QR with column pivoting, subset selection is an alternative heuristic that aims to produce a well-conditioned
submatrix with linearly independent columns. In practice, subset selection can produce a submatrix with smaller
condition number than that provided by QR with column pivoting [20]. The algorithm has two key steps that can
be adapted to determine which rows of A to subselect for A�. The first step involves computing the singular value
decomposition of AT . The next step requires QR column pivoting to be applied to a matrix formed by the transpose
of the first n right-singular vectors of A,

V (:, 1 : n)
T
P = QR, (17)

where as before the columns of P encode the permutations. Equations (10) and (11) can subsequently be used
determine A�. One of main computational bottlenecks with subset selection is the aggregated cost of performing
both an SVD—costing O(m2n3) flops—with a QR column pivoting routine [20].
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2.3 Column pruning

In (7) we defined elements of the vector b to be the weighted model evaluations at all m quadrature points. In
practice we only require the model evaluations at the n quadrature points identified by πn. We define the effectively
subsampled quadrature points and weights to be

ζe,j = ζπ(j), ωe,j = ωπ(j) (18)

respectively, for j = 1, . . . , n, where π is the QR permutation vector defined in (11). Thus the vector of weighted
model evaluations at these points is given by

bn (j) = ωe,jf (ζe,j) , j = 1, . . . , n. (19)

Assembling the square linear system of equations yields

minimize
xn

‖A�xn − bn‖2 . (20)

The subscript n in xn simply denotes the number of coefficient terms—equivalent to the cardinality of the polynomial
basis defined by J—that are to be solved for. While (20) can be solved to yield accurate coefficient estimates for
smooth functions, it is generally ill-advised, as we wish to approximate rather than interpolate. Consequently, we
prune down the number of columns of A� from n to l. It is difficult to offer heuristics for column pruning as this
will no doubt vary across applications, as it is dependent on which polynomial basis terms can be truncated without
significant loss of accuracy in approximating f . Our experience (from the examples later in this paper) suggests
that better results are obtaining by eliminating columns with the highest total degrees first, and our results using
n/l ∈ [1, 1.5] show promise.

The matrices A and A� are formed from the polynomial basis defined by J . The above procedure prunes
elements from J . We define the index set that results from this pruning as I. I.e., I is defined by

|I| = l I ⊆ J , k ∈ J \ I =⇒
d∑

i=1

kd ≥
d∑

i=1

jd for all j ∈ I. (21)

This does not uniquely define I as there is usually not a unique element of J with highest total order. In this paper
we perform the following methodology for pruning a single element from J : We specify an (arbitrary) ordering of
elements in J , and based on this ordering prune the first k ∈ J achieving the maximum total order.

Let A‡ ∈ Rn×l be the submatrix of A� associated with the pruned set, I, i.e.,

A‡ (i, j) = ωe,iψj (ζe,i) , j ∈ I, i = 1, . . . , n. (22)

Regardless of how pruning is performed, the following result holds:

Corollary 1 With δ as in Lemma 1, let A‡ be the column-pruned version of A�. Then

κ (A‡) ≤ κ (A�) ≤ κ (An)
√

1 + δ2n(m− n) (23)

Proof 2 From the interlacing property of singular values we have

σ1(A�) ≥ σ1(A‡) and σl(A‡) ≥ σn(A�), (24)

where the singular values are ordered such that σ1 (·) ≥ σ2 (·) ≥ . . . ≥ σn (·). Then

σ1 (A‡)
σl (A‡)

≤ σ1 (A�)

σn (A�)
=⇒ κ (A‡) ≤ κ (A�) . (25)

The second inequality in (23) is an application of Lemma 1.

This implies that reducing the number of columns—in particular for our case of eliminating the basis terms with the
highest total degrees—will not cause an increase in the condition number of A‡ compared to A�. Thus compared
to solving a least-squares problem with the best rank-n approximation to A, we suffer a penalty of the order δ

√
mn

(when m� n).
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2.4 Solving the least squares problem

We now reach the main objective of this paper, which is to solve the least squares problem given by

minimize
xl

‖A‡xl − bn‖2 , (26)

for the coefficients xl ∈ Rl. There are two sailent points we wish to emphasize upon when solving (26). The first
pertains to preconditioning. We impose a unit length diagonal column scaling, a preconditioner that is frequently
selected when solving least squares problems [23]. We define the preconditioner (a nonsingular matrix) S ∈ Rn×n as

S =

 ‖a‡1‖2 . . .

‖a‡n‖2

 (27)

where vectors {a‡1, . . . ,a‡n} are the columns of A‡. This yields the modified least squares problem

minimize
zl

∥∥A‡S−1zl − bn

∥∥
2

with Sxl = zl. (28)

This brings us to a well-known observation about solving least-squares problems: Solving the normal equations, e.g.,
computing the inverse of S−TAT

‡ A‡S
−1 or even forming an associated Cholesky factorization, is relatively unstable.

Our results reported here solve the system (28) via the more stable QR factorization approach (see Chapter 4 of
[23]).

2.5 A step-by-step algorithm

We summarize this section with an algorithm incorporating the previously defined computational techniques given
a function f = f (ζ) defined on R = supp (ρ) with joint probability density function ρ (ζ).

1. Polynomial basis selection: Let a joint density ρ(ζ) be given. Select a hyperbolic or total order index set
J , with a cardinality |J | = n.

2. Initial grid selection: Choose a tensorized quadrature rule consisting of m points and weights {ζj , ωj}mj=1

such that the quadrature rule satisfies (5). This defines the matrix A.

3. Subselecting points from initial grid: Compute the QR with pivoting factorization ATP = QR and
select the first n entries encoded in P to compute the matrix A�. Evaluate the model at the quadrature points
corresponding to these n pivots to compute bn.

4. Column pruning: For noisy f , prune down the number of columns by eliminating the columns of A� that
correspond to the highest total orders. Store the remaining columns in a new matrix, A‡. As a heuristic, we
recommend pruning down by ratios of 1.25 and 1.50.

5. Least squares: Solve the least squares problem with A‡ and bn.

3 Discussion & heuristics

The stategy described is similar to the procedure of constructing approximate Fekete points [4] ; this latter approach
has been used in the context of finding near-optimal interpolation points in multidimensional space. An alternative
way to think about the strategy above is that for a given design matrix A, and a maximum number of permitted
model evaluations n, we are extracting a set of at most n sample points. Our algorithm in this context offers a
deterministic recipe for subsampling a tensor grid. The notable difference between our algorithm and that produced
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by approximate Fekete points is that we introduce (square-root) quadrature weights ωi in the definition of A. The
algorithm as we have decribed it can produce accurate low-rank approximations to the matrix A [24].

We note that we have described this quadrature subselection strategy as an attempt to construct a well-conditioned
design matrix. Remarkably, if ωi ≡ 1, then the limiting behavior of the points selected via this algorithm is known.
Consider the univariate case on a bounded set but with large m and n. In this case it is known that as m and n
tend to infinity appropriately, the QR selection strategy chooses points that distribute according to the Chebyshev
(arcsine) measure [3]. In addition, this property holds in the multidimensional setting on a hypercube (the set
formed from the Cartesian product of univariate bounded intervals). If we use the QR strategy to select points from
a sufficiently dense grid on a hypercube, these points distribute according to the product Chebyshev measure on the
hypercube. Precise conditions on m, n, the type of grid, and the type of convergence is given in [3].

3.1 Memory requirements

One of the disadvantages of QR with column pivoting is that to pivot the column with the largest norm, we must
compute the norms of all the remaining columns. In the next stage of the for-loop, we then need to downdate these
norms. This is where Identity (13) is useful. Occasionally, a cancellation occurs in (13) requiring knowledge of all
the column entries to recompute its norm. Thus, it is not possible to carry out QR with column pivoting by storing
2-3 rows or columns at a time; access to the full matrix is required. This implies that the cost of our technique scales
exponentially with the dimension of f ’s inputs—owing to QR column pivoting. This is one drawback of the current
approach. This scaling is however independent from the number of evaluations of f that we require.

While writing the entire matrix A on the disk and then extracting rows and columns as required is one option,
it is far from elegant. One possible path forward lies in randomized QR column pivoting techniques [5]. These
techniques are promising because they restrict the size of A; however, a detailed investigation of this procedure is
outisde the scope of this manuscript.

4 An Analytical Example

In this simple analytical example we set
f(ζ) = exp(ζ(1) + ζ(2)) (29)

defined over R = [−1, 1]2 with ρ(ζ) the uniform density. We wish to approximate f using a basis of Legendre
orthonormal polynomials with effectively subsampled quadratures. We subsample an isotropic tensor grid formed
from a 21-point Gauss-Legendre stencil in each dimension. We let J be a total order basis for our least squares com-
putations. In this example, we compare our method with the randomized sampling approach of [43] and investigate
the sensitivity of the procedure to column pruning.

Figure 3(a) plots the approximation errors in the polynomial coefficients using both the randomized and effectively
subsampled methods. Here values on the x−axis represent the maximum degree defining the total-order index set J .
The y−axis defines the coefficient error on a base-10 logarithmic scale. For each x−axis value, this error is computed
using

ε = ‖x⊗,J − xn‖2 (30)

where x⊗ are the coefficients estimated from a 21-point tensor grid quadrature rule. The subscript J in x⊗,J
denotes the coefficient values only associated with the multi-indices in the total order index set J . As mentioned
earlier, the coefficients xn (see Figure 2) are obtained by solving the least squares problem with the polynomial basis
J . The coefficient errors in Figure 3(a) correspond to the errors associated with solving the least squares problem
on the square matrix A�. The green line in the figure shows the coefficient error resulting from using effectively
subsampled quadratures, while the yellow shaded regions denote the minimum and maximum values of ε obtained
using randomized subsampling—with 20 repetitions of the experiment. The red line represents the mean result from
those 20 trials.
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Table 1: Input parameters and ranges for the piston problem

Input parameters Range Description

M [30, 60] Piston weight (kg)
S [0.005, 0.0020] Piston surface area (m2)
V0 [0.002, 0.010] Initial gas volume (m3)
k [1000, 5000] Spring coefficient (N/m)
P0 [90000, 110000] Atmospheric pressure (N/m2)
Ta [290, 296] Ambient temperature (K)
T0 [340, 360] Filling gas temperature (K)

In Figures 3(b-d), for a fixed maximum degree k, we prune down the number of columns in A� from n = |J | to l
to yield a smaller index set I and matrix A‡. This column pruning starts with those columns that have the highest
total orders. The errors we report here are given by

ε = ‖x⊗,I − xl‖2 (31)

where x⊗,I are only the coefficients x⊗ that have multi-indices in I, and where xl are the coefficients obtained via
least squares on the matrix A‡. In Figures 3(b-d) we plot ε values for varying total orders with n/l ratios of 1.15,
1.25 and 1.5. Condition numbers associated with the matrices A� and A‡ in Figure 3 are shown in Figure 4.

First let us consider the results when n/l=1.0 as in Figure 3(a) and Figure 4(a). Random draws of rows for low
maximum degrees—from k = 2 to k = 8—leads to, on average, matrices that are nearly singular. This results in
coefficient errors that extremely high as illustrated in Figure 3(a). By pruning down the number of columns, this
effect can be reduced as shown in Figures 3(b-d). This also results in better coefficient error estimates, however this
comes at the cost of requiring more model evaluations for a given number of coefficients to be estimated. In contrast,
our effectively subsampled procedure offers reduced error estimates even at a n/l ratio of 1.0; condition numbers for
all k never exceed 10.

5 Piston model problem

In this example, we apply our method on a non-linear model of the cycle time of a piston given in [25]. The piston
cycle time C is expressed as

C = 2π

√
M

k + S2 P0V0Ta

T0V 2

, (32)

with

V =
S

2k

(√
A2 + 4k

P0V0
T0

Ta −A
)

and A = P0S + 19.62M − kV0
S

(33)

which depends on the seven inputs given in Table 1. These inputs are uniformly distributed over their respective
ranges. Our task here is to contrast effective quadrature subsampling with randomized quadrature subsampling on a
total order basis.

To begin, we compute the full tensor grid solution using 5 points in each direction, yielding a total of 57 = 78, 125
function evaluations. We then use these coefficients for computing the errors from both effectively subsampled and
randomly subsampled approaches—i.e., ε computed as per (30) and (31). We also use these coefficients to compute
the full tensor grid Sobol’ indices shown Figure 5.

We run numerical experiments using total order basis with maximum degrees of k = 2, 3 and 4. Table 2 shows
the number of basis terms at each of these k values for three different n/l ratios. Both randomly subsampled and
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Figure 3: Approximation errors in polynomial coefficients—computed using (30) and (31)—plotted on a base-10
logarithmic scale for the bivariate function, f(ζ) = exp(ζ(1) + ζ(2)) defined on the [−1, 1] hypercube, using Leg-
endre orthonormal polynomials. Polynomial approximations are constructed via least squares using randomized
quadratures— repeated 20 times—and effectively subsampled quadratures. Results are plotted for n/l ratios of (a)
1.0; (b) 1.15; (c) 1.25; (d) 1.5.
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Figure 4: Condition numbers of A� and A‡, plotted on a base-10 logarithmic scale for the bivariate function,
f(ζ) = exp(ζ(1) + ζ(2)) defined on the [−1, 1] hypercube, using Legendre orthonormal polynomials. Polynomial
approximations are constructed via least squares using randomized quadratures—repeated 20 times—and effectively
subsampled quadratures. Results are plotted for n/l ratios of (a) 1.0; (b) 1.15; (c) 1.25; (d) 1.5.
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effectively subsampled condition numbers and errors for these numerical experiments are reported in Tables 3-5. The
randomized experiments were repeated 20 times and their minimum, maximum and mean values are reported.

Table 2: Number of tensor grid points and cardinality of total order basis used for the piston problem numerical
experiments

k Points Cardinality
n/l = 1.0

Cardinality
n/l = 1.15

Cardinality
n/l = 1.25

2 37 = 2, 187 36 31 29
3 47 = 16, 384 120 104 96
4 57 = 78, 125 330 287 264

Table 3: Comparison of error ε in the coefficients and the condition number κ of A� for randomized and effective
quadratures for n/l=1.00. Reported randomized results are the outcome of 20 repetitions. Here k indicates the
maximum degree of the 7D total order polynomial.

k
Randomized Effective

min(ε) max(ε) µ(ε) min(κ) max(κ) µ(κ) ε κ

2 0.051 3.061 0.448 48.244 1559.1 301.56 0.0252 5.185
3 0.066 3.083 0.671 115.35 12422.1 2118.2 0.01463 15.098
4 0.066 0.901 0.199 595.4 32782.6 2989.0 0.0597 791.98

Table 4: Comparison of error ε in the coefficients and the condition number κ of A‡ for randomized and effective
quadratures for n/l=1.15. Reported randomized results are the outcome of 20 repetitions. Here k indicates the
maximum degree of the 7D total order polynomial.

k
Randomized Effective

min(ε) max(ε) µ(ε) min(κ) max(κ) µ(κ) ε κ

2 0.0367 0.252 0.0779 15.02 60.83 23.41 0.0375 3.912
3 0.0284 0.051 0.0403 22.92 36.98 29.60 0.0196 6.821
4 0.0151 0.023 0.0194 30.275 40.97 35.317 0.0159 33.652

Table 5: Comparison of error ε in the coefficients and the condition number κ of A‡ for randomized and effective
quadratures for n/l=1.25. Reported randomized results are the outcome of 20 repetitions. Here k indicates the
maximum degree of the 7D total order polynomial.

k
Randomized Effective

min(ε) max(ε) µ(ε) min(κ) max(κ) µ(κ) ε κ

2 0.0440 0.129 0.0719 9.809 27.043 16.008 0.0362 4.9126
3 0.0244 0.0469 0.0329 14.98 23.61 19.63 0.0186 5.7832
4 0.0145 0.0217 0.0168 18.72 25.164 21.95 0.0163 20.507
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Figure 5: First order Sobol’ indices for the seven parameters with k = 4 for (a) Total order basis with n/l = 1.00;
(b) Total order basis with n/l = 1.25. The error bars indicate the minimum and maximum Sobol’ indices from the
mean (red dot) obtained from 20 repetitions of the randomized approach.

For all k across all n/l ratios, the effectively subsampled approach yields lower coefficient errors and lower condition
numbers compared to the averaged randomized quadrature results. In particular, when n/l = 1.0 the ε values from
effectively subsampled quadratures are 1-3 orders of magnitude below those of the corresponding randomized values.
Randomized subsampling in general yields lower coefficient errors at n/l ratios greater than one. For a fixed k, as
the n/l ratio is increased, both condition numbers and errors are found to drop for both approaches.

For completeness, we compare the Sobol’ indices of both the random and effectively subsampled quadratures
approaches in Figure 5. These indices are computed using the coefficient estimates obtained from the randomized,
effectively subsampled and full tensor grid quadrature rule—using the approach in Sudret [37], which is detailed in
the Appendix of this paper. These results highlight the point that even with an n/l = 1.0, effectively subsampled
quadratures does yield results that are comparable to those obtained from the full tensor grid.

6 A problem where effectively subsampled quadratures fails

In this section we present an example that illustrates a limitation of our method. Consider the function

f(ζ) =
1

(1 + 50(ζ1 − 0.9)2 + 50(ζ2 + 0.9)2)
(34)

defined over R = [−1, 1]2. The contours of this function are shown in Figure 6(a) and its bi-variate Legendre
polynomial approximation—obtained by evaluating the function at a tensor grid with 10 points in each direction
and computing the coefficients with the corresponding tensor product integration rule—is shown in Figure 6(b). The
function is relatively flat throughout most of its domain, but it exhibits a steep variation in the lower right hand
corner around (-0.9, -0.9).

In Figure 7 we plot the effectively subsampled quadrature approximation with different hyperbolic basis index
sets that all have a maximum order of 9 in each direction. Figure 7(a-b) shows the results for a q factor of 0.3; (c-d)
for a q factor of 0.5 and (e-f) for a q factor of 1.0 which is equivalent to a total order basis (For the definition of q
see (4)). The tensor grid points in Figures (a,c,e) are given by red circular markers, while the effectively subsampled
points—used for generating the polynomial approximation contours—are shown as green “x” markers.
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Figure 6: Contour plots for (34) with the real function in (a) and its tensor grid polynomial approximant in (b).

It is clear that in Figure 7(a) and to a certain extent in (c), the subsampled points do not lie in the vicinity of
(-0.9, 0.9), hence the polynomial approximation does a rather poor job of approximating the overall response of the
function. This approximation is however improved in Figure 7(e-f) when using a total order basis, as the subsampled
points do lie around (-0.9, 0.9). This illustrates a limitation of effectively subsampled quadratures—i.e., they are
based solely on ρ(ζ), the choice of the tensor grid and basis—and are invariant to the function response.

7 Conclusion

In this paper, we proposed a new sampling strategy for generating polynomial least squares approximations, titled
effectively subsampled quadratures. This technique uses a QR column pivoting heuristic for subsampling points from
a tensor grid. Numerical results showed the advantages of this technique compared with randomized quadrature
subsampling. In future work we will investigate the incorporation of gradients.
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Appendix: Computing Sobol’ indices

Consider the polynomial approximation of f(s) provided earlier (see (8))

f (s) ≈ g(s) =

n∑
j∈J

xjψj (s) . (35)
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Figure 7: Effectively subsampled quadratures approximations of (34) with the chosen hyperbolic basis with: (a-b)
q = 0.3; (c-d) q = 0.5; (e-f) q = 1.0.
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By using the orthogonality properties of the polynomial basis, the mean µ and variance σ2 of g(s) can be expresed
solely using the expansion’s coefficients (see [36] page 210)

µ = x0, σ2 =
∑

j∈J , j 6=0

x2j . (36)

Recall that Sobol’ indices represent a fraction of the total variance that is attributed to each input variable (the first
order Sobol’ indices) or combinations thereof (higher order Sobol’ indices). Let Js be the set of multi-indices that
depend only on the subset of variables s = {j1, . . . , js}, i.e.,

Js =
{
j ∈ Nd : l ∈ s⇔ jl 6= 0

}
. (37)

The first order partial variances σ2
i are then obtained by summing up the square of the coefficients in Js

σ2
i =

∑
j∈Ji

x2j , Ji =
{
j ∈ Nd : ji > 0

}
, (38)

and the higher order variances σ2
{j1,...,js} can be written as

σ2
s =

∑
j∈Js

x2j , J{j1,...,js} =
{
j ∈ Nd : l ∈ s⇔ jl > 0

}
. (39)

The first and higher order Sobol indices are then given by

Si =
σ2
i

σ2
and Ss =

σ2
s

σ2
(40)

respectively (for further details see [37]).
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[1] Björck, Å. Numerical methods in matrix computations. Springer, 2015.

[2] Blatman, G., and Sudret, B. Adaptive sparse polynomial chaos expansion based on least angle regression.
Journal of Computational Physics 230, 6 (2011), 2345–2367.

[3] Bos, L., Calvi, J.-P., Levenberg, N., Sommariva, A., and Vianello, M. Geometric weakly admissible
meshes, discrete least squares approximations and approximate Fekete points. Mathematics of Computation
80, 275 (Jan. 2011), 1623–1638.

[4] Bos, L., De Marchi, S., Sommariva, A., and Vianello, M. Computing Multivariate Fekete and Leja
Points by Numerical Linear Algebra. SIAM Journal on Numerical Analysis 48, 5 (2010), 1984.

[5] Boutsidis, C., Mahoney, M. W., and Drineas, P. An improved approximation algorithm for the col-
umn subset selection problem. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms (2009), Society for Industrial and Applied Mathematics, pp. 968–977.

[6] Broadbent, M. E., Brown, M., and Penner, K. Subset selection algorithms: Randomized vs. determin-
istic. SIAM Undergraduate Research Online 3 (2010).

[7] Bruno, L., Canuto, C., and Fransos, D. Stochastic aerodynamics and aeroelasticity of a flat plate via
generalised polynomial chaos. Journal of Fluids and Structures 25, 7 (2009), 1158 – 1176.

19



[8] Bungartz, H. J., and Griebel, M. Sparse grids. Acta numerica 13 (2004), 147–269.

[9] Chandrasekaran, S., and Ipsen, I. C. F. On rank-revealing factorisations. SIAM Journal on Matrix
Analysis and Applications 15, 2 (1994), 592–622.

[10] Chkifa, A., Cohen, A., Migliorati, G., Nobile, F., and Tempone, R. Discrete least squares polyno-
mial approximation with random evaluations- application to parametric and stochastic elliptic pdes. ESAIM:
Mathematical Modelling and Numerical Analysis (2015).

[11] Cohen, A., Davenport, M. A., and Leviatan, D. On the stability and accuracy of least squares approx-
imations. Foundations of computational mathematics 13, 5 (2013), 819–834.

[12] Constantine, P. G., Eldred, M. S., and Phipps, E. T. Sparse pseudospectral approximation method.
Computer Methods in Applied Mechanics and Engineering 229 (2012), 1–12.

[13] Dax, A. A modified gram–schmidt algorithm with iterative orthogonalization and column pivoting. Linear
algebra and its applications 310, 1 (2000), 25–42.

[14] Doostan, A., and Owhadi, H. A non-adapted sparse approximation of pdes with stochastic inputs. Journal
of Computational Physics 230, 8 (2011), 3015–3034.

[15] Ernst, O. G., Mugler, A., Starkloff, H., and Ullmann, E. On the convergence of generalized
polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis 46, 2 (2012), 317–339.

[16] Freud, G. Orthogonal Polynomials. Elsevier, 1971.

[17] Gautschi, W. Orthogonal Polynomials: Computation and Approximation. Oxford University Press, USA,
2004.

[18] Gerstner, T., and Griebel, M. Numerical integration using sparse grids. Numerical algorithms 18, 3-4
(1998), 209–232.

[19] Golub, G. H., Klema, V., and Stewart, G. W. Rank degeneracy and least squares problems. Tech. rep.,
DTIC Document, 1976.

[20] Golub, G. H., and Van Loan, C. F. Matrix computations, vol. 3. JHU Press, 2012.

[21] Gu, M., and Eisenstat, S. C. Efficient algorithms for computing a strong rank-revealing qr factorization.
SIAM Journal on Scientific Computing 17, 4 (1996), 848–869.

[22] Hampton, J., and Doostan, A. Compressive sampling of polynomial chaos expansions: convergence analysis
and sampling strategies. Journal of Computational Physics 280 (2015), 363–386.

[23] Hansen, P. C., Pereyra, V., and Scherer, G. Least squares data fitting with applications. JHU Press,
2012.

[24] Harbrecht, H., Peters, M., and Schneider, R. On the low-rank approximation by the pivoted Cholesky
decomposition. Applied Numerical Mathematics 62, 4 (Apr. 2012), 428–440.

[25] Kenett, R., Zacks, S., and Amberti, D. Modern Industrial Statistics: with applications in R, MINITAB
and JMP. John Wiley & Sons, 2013.

[26] Lubinsky, D. A survey of weighted polynomial approximation with exponential weights. Surveys in Approx-
imation Theory 3 (2007), 1–105.

20



[27] Migliorati, G., Nobile, F., von Schwerin, E., and Tempone, R. Approximation of quantities of
interest in stochastic pdes by the random discrete l2 projection on polynomial spaces. SIAM Journal on
Scientific Computing 35, 3 (2013), A1440–A1460.

[28] Migliorati, G., Nobile, F., von Schwerin, E., and Tempone, R. Analysis of discrete l2 projection on
polynomial spaces with random evaluations. Foundations of Computational Mathematics 14, 3 (2014), 419–456.

[29] Narayan, A., Jakeman, J. D., and Zhou, T. A christoffel function weighted least squares algorithm for
collocation approximations. To appear: Mathematics of Computation (2014). arXiv:1412.4305 [math].

[30] Peng, J., Hampton, J., and Doostan, A. A weighted l1-minimization approach for sparse polynomial
chaos expansions. Journal of Computational Physics 267 (2014), 92–111.

[31] Platte, R., Trefethen, L. N., and Kuijlaars, A. Impossibility of fast stable approximation of analytic
functions from equispaced samples. SIAM Review 53, 2 (2011), 308–318.

[32] Quintana-Ort́ı, G., Sun, X., and Bischof, C. H. A blas-3 version of the qr factorization with column
pivoting. SIAM Journal on Scientific Computing 19, 5 (1998), 1486–1494.

[33] Sandu, A., Sandu, C., and Ahmadian, M. Modeling multibody systems with uncertainties. part i: Theo-
retical and computational aspects. Multibody System Dynamics 15, 4 (2006), 369–391.

[34] Seshadri, P., and Parks, G. Effective-quadratures (EQ): Polynomials for computational engineering studies.
The Journal of Open Source Software, 2(11). DOI: 10.21105/joss.00166.

[35] Seshadri, P., Parks, G. T., and Shahpar, S. Leakage uncertainties in compressors: The case of rotor 37.
Journal of Propulsion and Power 31, 1 (2014), 456–466.

[36] Smith, R. C. Uncertainty quantification: theory, implementation, and applications, vol. 12. Siam, 2013.

[37] Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering and System
Safety 93, 7 (2008), 964–979. Bayesian Networks in Dependability.

[38] Tang, G., and Iaccarino, G. Subsampled gauss quadrature nodes for estimating polynomial chaos expan-
sions. SIAM/ASA Journal on Uncertainty Quantification 2, 1 (2014), 423–443.

[39] Taylor, M. A., Wingate, B. A., and Bos, L. P. A cardinal function algorithm for computing multivariate
quadrature points. SIAM Journal on Numerical Analysis 45, 1 (2007), 193–205.

[40] Temljakov, V. N. Approximation of periodic functions of several variables with bounded mixed difference.
Mathematics of the USSR-Sbornik 41, 1 (1982), 53.

[41] Thompson, R. C. Principal submatrices IX: Interlacing inequalities for singular values of submatrices. Linear
Algebra and its Applications 5, 1 (Jan. 1972), 1–12.

[42] Zhang, Y., and Sahinidis, N. V. Uncertainty quantification in co2 sequestration using surrogate models
from polynomial chaos expansion. Industrial & Engineering Chemistry Research 52, 9 (2012), 3121–3132.

[43] Zhou, T., Narayan, A., and Xiu, D. Weighted discrete least-squares polynomial approximation using
randomized quadratures. Journal of Computational Physics 298 (2015), 787–800.

21


	1 Introduction & motivation
	1.1 Preliminaries & notation
	1.2 On polynomials
	1.3 On quadrature rules
	1.4 On matrices

	2 Effectively subsampled quadratures
	2.1 Setting up the A matrix
	2.2 QR factorization with column pivoting on AT
	2.2.1 Relation to rank revealing QR factorizations
	2.2.2 Relation to subset selection

	2.3 Column pruning
	2.4 Solving the least squares problem
	2.5 A step-by-step algorithm

	3 Discussion & heuristics
	3.1 Memory requirements

	4 An Analytical Example
	5 Piston model problem
	6 A problem where effectively subsampled quadratures fails
	7 Conclusion
	8 Acknowledgements

