
Numerical Solution of the Neural Field Equation in

the Two-Dimensional Case

Pedro M. Lima and Evelyn Buckwar
Institute of Stochastics

Johannes Kepler University
Altenbergerstr. 69 , 4040 Linz, Austria

August 14, 2018

Abstract

We are concerned with the numerical solution of a class integro-
differential equations, known as Neural Field Equations, which describe
the large-scale dynamics of spatially structured networks of neurons.
These equations have many applications in Neuroscience and Robotics.
We describe a numerical method for the approximation of solutions
in the two-dimensional case, including a time-dependent delay in the
integrand function. Compared with known algorithms for this type
of equation we propose a scheme with higher accuracy in the time
discretisation. Since computational efficiency is a key issue in this type
of calculations, we use a new method for reducing the complexity of the
algorithm. The convergence issues are discussed in detail and a number
of numerical examples is presented, which illustrate the performance
of the method.

1 Introduction

In recent years significant progress has been made in understanding the brain
electrodynamics using mathematical techniques. Neural field models repre-
sent the large-scale dynamics of spatially structured networks of neurons in
terms of nonlinear integro-differential equations. Such models are becoming
increasingly important for the interpretation of experimental data, including
those obtained from EEG, fMRI and optical imaging [5]. These equations
also play an important role in Cognitive Robotics, since the architecture of
autonomous robots, able to interact with other agents in solving a mutual

1

ar
X

iv
:1

50
8.

07
48

4v
1

 [
m

at
h.

N
A

]
 2

9
A

ug
 2

01
5

task, is strongly inspired by the processing principles and the neuronal cir-
cuitry in the primate brain (see [7]). All this explains why Neural Field
Equations in several dimensions are a very actual and important subject of
research.

Moreover, simulations play a fundamental role in studying brain dy-
namics in Computational Neuroscience, and to understand diseases such as
Parkinson, as well as the effect of treatments, such as in Deep Brain Stim-
ulations (DBS) or Transcranial Magnetic Stimulations (TMS). Thus, the
availability of efficient, fast, reliable numerical methods is an important in-
gredient for improving the effectiveness of techniques such as DBS or TMS in
many therapeutic applications. Integro-differential equations in several spa-
cial dimensions are quite a challenge for numerical simulation, because the
standard approaches require a very high computational effort. Maybe this
explains why there exist very few studies concerning the numerical analysis
of NFEs. Some important papers which inspired our work are [8, 15, 11];
as other relevant references we can cite [2, 6] . Overall the lack of efficient
algorithms represents a serious drawback for the use of NFEs in practical
applications. This is the main motivation for the present work.

We are concerned with the numerical solution of the following integro-
differential equation:

c
∂

∂t
V (x̄, t) = I(x̄, t)− V (x̄, t) +

∫
Ω
K(|x̄− ȳ|)S(V (ȳ, t))dȳ, (1)

t ∈ [0, T], x̄ ∈ Ω ⊂ R2,

where the unknown V (x̄, t) is a continuous function V : Ω × [0, T] → R, I,
K and S are given functions; c is a constant. In this article, by |x̄ − ȳ| we
mean ‖x̄ − ȳ‖2. We search for a solution V of this equation which satisfies
the initial condition

V (x̄, 0) = V0(x̄), x̄ ∈ Ω. (2)

Along with equation (1) we will also consider

c
∂

∂t
V (x̄, t) = I(x̄, t)− V (x̄, t) +

∫
Ω
K(|x̄− ȳ|)S(V (y, t− τ(x̄, ȳ))dȳ, (3)

t ∈ [0, T], x̄ ∈ Ω ⊂ R2,

where τ(x̄, ȳ) > 0 is a delay, depending on the spatial variables. In the latter
case, the initial condition has the form

V (x̄, t) = V0(x̄, t), x̄ ∈ Ω, t ∈ [−τmax, 0], (4)

2

where τmax = maxx̄,ȳ∈Ω τ(x̄, ȳ). By integrating both sides of (3) with respect
to time on [0, T], we obtain the Volterra-Fredholm integral equation:

cV (x̄, t) = V0(x̄)+

∫ t

0

(
(I(x̄, s)− V (x̄, s) +

∫
Ω
K(|x̄− ȳ|)S(V (ȳ, s− τ(x̄, ȳ))dȳ

)
ds,

(5)
t ∈ [0, T], x̄ ∈ Ω ⊂ R2.

The existence and uniqueness of a solution of equation (1) in the case
Ω = Rm, m ≥ 2, was proved in [15], both in the case of a smooth and dis-
continuous function S. An analytical study of equation (3) was carried out
in [8], where the authors have addressed the problems of existence, unique-
ness and stability of solutions. They define the Banach space C̃ = C([l, F),
were l is some real interval, containing 0, and F denotes the Banach space
L2(Ω,R),with the norm

‖Ψ‖F =

√∫
Ω

Ψ2(r)dr, ∀Ψ ∈ F.

Hence the norm in C̃ is defined by

‖Φ‖C̃ = sup
t∈l

√∫
Ω

Φ2(r, t)dr, ∀Φ ∈ C̃.

They have proved that if K ∈ L2(Ω2,R), I ∈ C̃([−τmax,∞[, F) and τ ∈
C(Ω̄2,R+), then for every V0 ∈ C̃([−τmax, 0]) equation (3) has a unique
solution V ∈ C̃1([0,∞[, F) ∩ C̃([−τmax,∞[, F). Subsequently in this paper
we will use the same notations and definitions of norms. Moreover, as the
authors of [8], we will assume that S and its derivative S′ are positive and
bounded. When solving numerically equations of the forms (1) and (3), they
are often reduced to the form (5); therefore we begin by discussing literature
on computational methods for Volterra-Fredholm equations. Starting with
the one-dimensional case, without delay, Brunner has analysed the conver-
gence of collocation methods [3], while Kauthen has proposed continuous
time collocation methods [14]. In [9] an asymptotic error expansion for the
Nyström method was proposed, which enabled the use of extrapolation al-
gorithms to accelerate the convergence of the method. Another approach
was developped by Z. Jackiewicz and co-authors [12], [13], who have applied
Gaussian quadrature rules and interpolation to approximate the solution of
integro-differential equations modelling neural networks, which are similar
to equation (1).

3

In all the above mentioned papers the authors were concerned with the
one-dimensional case. In the two-dimensional case, the required computa-
tional effort to solve equations (1) and (5) grows very fast as the discretiza-
tion step is reduced, and therefore special attention has to be paid to the
creation of effective methods. This can be achieved by means of low-rank
methods, as those discussed in [17], when the kernel is approximated by
polynomial interpolation, which enables a significant reduction of the di-
mensions of the matrices. In [4], the authors use an iterative method to
solve linear systems of equations which takes into account the special form
of the matrix to introduce parallel computation. Concerning equation (3),
besides the existence and stability of solution, numerical approximations
were obtained in [8]. The computational method applies quadrature rule
in space to reduce the problem to a system of delay differential equations,
which is then solved by a standard algorithm for this kind of equations. A
more efficient approach was recently proposed in [10] [11], where the authors
introduce a new approach to deal with the convolution kernel of the equation
and use Fast Fourier Transforms to reduce significantly the computational
effort required by numerical integration.

The above mentioned equations are known as Neural Field Equations
(NFE) and have played an important role in mathematical neuroscience for
a long time. Equation (1) was introduced first by Wilson and Cowan [16],
and then by Amari [1], to describe excitatory and inhibitory interactions in
populations of neurons. While in other mathematical models of neuronal
interactions the function V (membrane potential) depends only on time, in
the case of NFE it is a function of time and space. The function I represents
external sources of excitation and S describes the dependence between the
firing rate of the neurons and their membrane potential. It can be either
a smooth function (typically of sigmoidal type) or a Heaviside function.
The kernel function K(|x̄ − ȳ|) gives the connectivity between neurons in
positions x̄ and ȳ. By writing the arguments of the function in this form
we mean that we consider the connectivity homogeneous, that is, it depends
only on the distance between neurons, and not on their specific location.

According to many authors, realistic models of neural fields must take
into account that the propagation speed of neuronal interactions is finite,
which leads to NFE with delays of the form (3).

In the present paper we propose a new numerical approach to the Neu-
ral Field Equation, in the forms (1) and (5). One remarkable feature of our
method is that we use use a implicit second order scheme for the time dis-
cretisation, which improves its accuracy and stability, when compared with
the available algorithms. Moreover, to reduce the computational complex-

4

ity of our method we use an interpolation procedure which allows a drastic
reduction of matrix dimensions, without a significant loss of accuracy. This
improves the efficiency of the algorithm.

The outline of the method is as follows. In Sec. 2, we describe the nu-
merical algorithm, for equation (1); its stability, convergence and complexity
are analysed. In the same section, we introduce an algorithm for equation
(3). In Sec. 3 a set of numerical examples is presented, which illustrate
both cases, and the numerical results are discussed. We finish with some
conclusions in Sec. 4.

2 Numerical Method

2.1 Neural Field Equation without delay

2.1.1 Time Discretization

We begin by rewriting equation (1) in the form

c
∂

∂t
V (x̄, t) = I(x̄, t)− V (x̄, t) + κ(V (x̄, t)) (6)

t ∈ [0, T], x̄ ∈ Ω ⊂ R2,

where κ denotes the nonlinear integral operator defined by

κ(V (x̄, t)) =

∫
Ω
K(|x̄− ȳ|)S(V (ȳ, t))dȳ. (7)

We shall first deal with the time discretization in equation (6), therefore we
introduce the stepsize ht > 0 and define

ti = iht, i = 0, ...,M, T = htM.

Moreover, let

Vi(x̄) = V (ti, x̄), ∀x ∈ Ω, i = 0, ...,M.

We shall approximate the partial derivative in time by the backward differ-
ence

∂

∂t
V (x̄, ti) ≈

3Vi(x̄)− 4Vi−1(x̄) + Vi−2(x̄)

2ht
, (8)

which gives a discretization error of the order O(h2
t), for sufficiently smooth

V . By substituting (8) into (6) we obtain the implicit scheme

c
3Ui − 4Ui−1 + Ui−2

2ht
= Ii − Ui + κ(Ui), i = 2, ...,M, (9)

5

where Ui approximates the solution of (6).
To start this scheme we need to know U0, which is defined by the initial

condition V0, and U1, which can be obtained by a one-step method, for
example, the explicit Euler method.

It is important to analyse the stability of the numerical scheme (9). If
we denote

ei = ‖Vi − Ui‖

(the discretization error at time ti), we want to analyse the conditions under
which, if Ii = 0, we have ei < ei−1, if ht is sufficiently small. We can look
at the scheme (9) as a multistep method for the solution of a system of
differential equations (the approximate solution Ui , at time ti, is obtained
from Ui−1 and Ui−2). Therefore, we should begin by studying the zero-
stability. If we multply both sides of (9) by 2ht and then ignore the terms
containing ht, we have an equation of the form

3Ui − 4Ui−1 + Ui−2 = 0,

to which corresponds the characteristic equation

3µ2 − 4µ+ 1 = 0.

The roots of this equation are

µ1,2 =
2± 1

3
;

it is easily seen that |µ1,2| ≤ 1 and µ1 = 1 is not a multiple root. Therefore,
the scheme (9) is zero-stable. This means that we have ei ≤ ei−1, if ht is
sufficiently small.

The above result can be summarized in the form of the following theorem:

Theorem 2.1. The scheme (9) is zero-stable.

Our next step is to investigate under which conditions equation (9) has
a unique solution, so that each step of the iterative process is well defined.
With this purpose we write this equation in the form

Ui(x̄)− 1

1 + 3c
2ht

κ(Ui) = fi(x̄), x̄ ∈ Ω (10)

where

fi(x̄) =

(
1 +

2ht
3c

)−1(
Ii +

c

ht
2Ui−1(x̄)− c

2ht
Ui−2(x̄)

)
, x̄ ∈ Ω (11)

6

Equation (10) - (11) is a nonlinear Fredholm integral equation of the second
kind and we will analyse its solvability using standard results of functional
analysis.

In order to apply the Banach fixed point theorem, we define the iterative
process:

U
(ν)
i (x̄) = λκ(U

(ν−1)
i) + fi(x̄) = G(Uν−1

i), x̄ ∈ Ω, n = 1, 2, ... (12)

were

λ =
1

1 + 3c
2ht

=
2ht

2ht + 3c
. (13)

If the function G is contractive in a certain closed set X ⊂ F , such
that G(X) ⊂ X, then by the Banach fixed point theorem equation (10) has

a unique solution in X and the sequence U
(n)
i , defined by (12), converges

to this solution in the norm of F , for any initial guess U
(0)
i ∈ X. In our

case, the solution is by construction the iterate Ui, so it should be close to
Ui−1 and Ui−2. Therefore it makes sense to assume that X is a certain set

containing Ui−1 and Ui−2 and to choose U
(0)
i = Ui−1.

To prove that G is contractive in X we need to show that for a certain
constant L, L < 1, we have

‖G(V)−G(U)‖F ≤ L‖V − U‖F , ∀U, V ∈ X. (14)

By definition

(‖G(V)−G(U)‖F)2 = λ2

∫
Ω
|K(x̄− ȳ)|2|S(V)− S(U)|2dȳ; (15)

Using the mean value theorem for integrals, we get

(‖G(V)−G(U)‖F)2 ≤ λ2|Ω|(‖K‖L2(Ω2))
2 max
U,V ∈X

(‖S(V)− S(U)‖F)2, (16)

where |Ω| denotes the area of Ω. Since we have assumed that S has a
bounded continuous derivative in R, we can write

(‖G(V)−G(U)‖F)2 ≤ |Ω|λ2
(
‖K‖L2(Ω2)

)2
S2
max (‖V − U‖F)2 , (17)

where
Smax = max

x∈R
|S′(x)|.

Finally, we rewrite (17) in the form

‖G(V)−G(U)‖F ≤ λ
√
|Ω|‖K‖L2(Ω2)Smax‖V − U‖F (18)

7

and we conclude that (14) holds with

L = λ
√
|Ω|‖K‖L2(Ω2)Smax. (19)

Recall that

λ =
2ht

2ht + 3c
<

2ht
3c
.

Then, in order to satisfy L < 1 it is sufficient to require that

2ht
3c

√
|Ω|‖K‖L2(Ω2)Smax < 1 (20)

or equivalently

ht <
3c

2
√
|Ω|‖K‖L2(Ω2)Smax

. (21)

From (21) we conclude that G will be contractive in a certain set X ⊂ F
if we take ht sufficiently small. Moreover, if ht is sufficiently small, we can
choose a set X such that G(X) ⊂ X and {Ui−1, Ui−2} ⊂ X. Therefore the

iterative process (12) with U
(0)
i = Ui−1 will converge to the solution of (10).

The above construction not only shows that the equation (10) has a
unique solution in a certain set X, but it also suggests that the iterative

process (12), starting with U
(0)
i = Ui−1 can be effectively used to approxi-

mate this solution. Actually, the convergence rate of this process depends
on the constant L, which as follows from (19) is approximately proportional
to ht. In other words, the convergence of the process will be faster and faster
as ht tends to zero.

The above result can be formulated in the form of the following theorem.

Theorem 2.2. For each i = 2, 3... , if ht satisfies (21) the nonlinear equa-
tion (10) has a unique solution Ui ∈ X, where X ⊂ F is a certain closed
set containing Ui−1 and Ui−2. Moreover, the iterative process (12) with

U
(0)
i = Ui−1converges to this solution.

2.1.2 Space Discretization

Since the equation (10) in general cannot be solved analytically, we need
a computational method to compute a numerical approximation of its so-
lution. By other words, we need a space discretization, which will be the
subject of this subsection.

For the sake of simplicity, assume that Ω is a rectangle: Ω = [−1, 1] ×
[−1, 1]. We now introduce a uniform grid of points (xi, xj), such that

8

xi = −1 + ih, i = 0, ..., n, where h is the discretization step in space. In
each subinterval [xi, xi+1] we introduce k Gaussian nodes: xi,s = xi + h

2 (1 +
ξs), i = 0, 1, . . . n − 1, where ξs are the roots of the k-th degree Legendre
polynomial, s = 1, ..., k. We shall denote Ωh the set of all grid points
(xis, xjt), i, j = 0, ..., n− 1,s, t = 1, ..., k. A Gaussian quadrature formula to
evaluate the integral

∫
Ω f(u, v)dudv will have the form

Q(f) =
n−1∑
i=0

n−1∑
j=0

k∑
s=1

k∑
t=1

w̃sw̃tf(xis, xjt), (22)

with w̃s = h
2ws, where ws are the standard weights of a Gaussian quadra-

ture formula with k nodes on [−1, 1], s = 1, ..., k. As it is well-known, a
quadrature formula of this type has degree 2k − 1 and therefore, assuming
that f has at least 2k continuous derivatives on Ω, the integration error of
(22) is of the order of h2k. Note that the total number of nodes in the space
discretization is k2n2 .

When we introduce the quadrature formula (22) to compute κ(U) we
define a finite-dimensional approximation of the operator κ. Let us denote
Uh a vector with N2 entries, where N = nk, such that

(Uh)is,jt ≈ U(xis, xjt);

then the finite-dimensional approximation of κ(U) may be given by

(κh(Uh))mu,lv =

n1∑
i=0

n2∑
j=0

k∑
s=1

k∑
t=1

w̃sw̃tK(‖(xmu, xlv)−(yis, yjt)‖2)S((Uh)is,jt).

(23)
By replacing κ with κh in equation (10) we obtain the following system of
nonlinear equations:

Uh − 1

1 + 2ht
3c

κh(Uh) = fh, (24)

where κh(Uh) is defined by (23) and

(fh)is,jt = f(xis, xjt),

with f defined by (11); in (24), for the sake of simplicity, we have omitted
the index i of Uhi . Note that for the the computation of fh we have to
evaluate the iterates Ui−1 and Ui−2 at all the points of Ωh. We denote the

9

vectors resulting from this evaluation by Uhi−1 and Uhi−2, respectively. We
conclude that at each time step of our numerical scheme we must solve (24),
which is a system of N2 nonlinear equations. From this discretization some
questions arise:

1. Is the system (24) solvable?

2. Does the solution Uh of this system converge in some sense to Ui, as
h→ 0?

3. How can we estimate the error Ehi = ‖Uh − Ui‖ ?

We can investigate the solvability of (24) in the same way as we have studied
the Fredholm integral equation (10). More precisely, we can introduce the
iterative procedure

Uh,(ν) = λκh(Uh,(ν−1)) + fh = Gh(Uh,(ν−1)), (25)

m = 1, 2, As in the case of the Fredholm integral equation, the con-
vergence of the iterative procedure (25) depends on the contractivity of Gh.
Using the same arguments as in subsection 2.1.1, we obtain the following
inequality, which is a finite-dimensional analogue of (18):

‖Gh(V)−Gh(U)‖2 ≤ λKmaxS
′
max‖V − U‖2

n∑
i=0

n∑
j=0

k∑
s=1

k∑
t=1

w̃sw̃t, (26)

for U, V ∈ Xh ⊂ RN2
, where

Kmax = max
(xmu,xlv),(yis,yjt)∈Ωh

|K(‖(xmu, xlv)− (yis, yjt)‖2)|. (27)

Since, by the construction of the Gaussian quadrature,

n∑
i=0

n∑
j=0

k∑
s=1

k∑
t=1

w̃sw̃t = 1,

we get that Gh is Lipschitzian in Xh with the Lipschitz constant

L1 = λKmaxSmax, (28)

where λ is defined by (13). Finally we conclude that Gh is contractive if

ht <
3c

2KmaxSmax
. (29)

10

Theorem 2.3. For each i = 2, 3... , if S and K are such that Smax and Kmax

exist and ht satisfies (29), then the nonlinear equation (24) has a unique
solution Uh ∈ Xh, where Xh ⊂ RN2

is a certain closed set containing Uhi−1

and Uhi−2. Moreover, the iterative process (25) with Uh,(0) = Uhi−1 converges
to this solution.

Since we know that the equation (24) is solvable under certain conditions
and we even know an iterative scheme to obtain its solution, we should now
address the problem of the convergence of the solution Uh to Ui, as h→ 0.

With this purpose, we write equation (10) at each grid point of Ωh:

Ui(xis,jt)−
1

1 + 2ht
3c

κ(Ui(xis,jt)) = fi(xis,jt), xis,jt ∈ Ωh. (30)

Subtracting from this equation (24), we obtain

Ui(xis,jt)−Uhis,jt = λ(κ(Ui(xis,jt))−κh(Uhis,jt)), i, j = 0, ..., n−1, s, t = 1, ..., k.
(31)

We note that

κ(Ui(xis,jt))−κh(Uhis,jt) = κ(Ui(xis,jt))−κh(Ui(xis,jt))+(κh(Ui(xis,jt)−κh(Uhis,jt)).
(32)

Substituting (32) into (31) yields

Ui(xis,jt)−Uhis,jt = λ(κ(Ui(xis,jt))−κh(Ui(is, jt))+κ
h(Ui(is, jt))−κh(Uhis,jt)),

(33)
i, j = 0, ..., n− 1, s, t = 1, ..., k. From (33), we obtain

‖Ui − Uh‖∞ ≤ λ(‖κ(Ui)− κh(Ui))‖∞ + ‖κh(Ui)− κh(Uh)‖∞). (34)

The second term in the last sum can be expressed in terms of ‖Ui −Uh‖, if
we take into account that κh is a Lipschitzian function, that is, there exists
a certain constant L1 such that

‖κh(Ui)− κh(Uh)‖∞ ≤ L1‖Ui − Uh‖∞,∀Ui, Uh ∈ Xh, (35)

where L1 is defined by (28). Hence we may rewrite (33) in the form

‖Ui − Uh‖∞(1− λL1) ≤ λ‖κ(Ui)− κh(Ui)‖∞. (36)

Recall that λ is approximately proportional to ht and therefore we have
λL1 < 1 if we choose ht sufficiently small.

11

Finally, in order to evaluate ‖κ(Ui)−κh(Ui))‖∞, we must remember that
κh results from the approximation of the integral κ by a Gaussian quadrature
rule, with stepsize h and k nodes at each subinterval. Therefore, if Ui, K
and S are sufficiently smooth, there exists a certain M > 0, which does not
depend on h, such that

‖κ(Ui)− κh(Ui))‖∞ ≤Mh2k. (37)

Finally, from (36) and (37) we conclude that there exists such a constant M̃
that

‖Ui − Uh‖∞ ≤ M̃h2k. (38)

The above results lead to the following theorem.

Theorem 2.4. Under the conditions of Theorem 2.3, the unique solution
Uh of (24) converges to the solution Ui of (10) as h→ 0. Moreover, if Ui,
K and S are sufficiently smooth, the following error estimate holds

‖Ui − Uh‖∞ = O(h2k), ash → 0.

2.1.3 Computational Implementation

The above numerical algorithm for the approximate solution of the neural
field equation in the two-dimensional case was implemented by means of a
MATLAB code.

The code has the following structure. After introducing the input data
(step size in time and in space, initial condition U0, error tolerance for the
inner cycle, required number of steps in time) , there is an outer cycle that
computes each vector Uh , given Uhi−1 and Uhi−2, according to the multistep
method (9). In order to initialize this cycle, besides U0, we need Uh1 , which
is obtained by the explicit Euler method. More precisely, we compute

Uh1 = U0 +
ht
c

(I0 − U0 + κh(U0)). (39)

We recall that at each step in time we must solve the nonlinear system of
equations (10), which as suggested above is obtained by means of the fixed
point method, that is, we iterate the scheme (25), until the iterates satisfy

‖Uh,(n) − Uh,(n−1)‖∞ < ε,

for some given ε. This is the inner cycle of our scheme. Typically, in all the
examples we have computed the number of iterations in the inner cycle is

12

not very high (3-4, in general), confirming that the fixed point method is an
efficient way of solving the system (10). To start the inner cycle we use an
initial guess which is obtained from Uhi−1 using again the Euler method:

Uh,(0) = Ui−1 +
ht
c

(Ii − Uhi−1 + κh(Uhi−1)). (40)

Note that at each step of the inner cycle it is necessary to compute the
function κh at all the grid points. From the computational point of view,
this means that we must evaluate N2 times a quadrature rule of the form
(22) (with N2 nodes). Of course, this requires a high computational effort
and the greatest part of the computing time of our algorithm is spent in
this process. Therefore, we pay special attention to reducing the computa-
tional cost at this stage. In order to improve the efficiency of the numerical
method, we apply the following technique, proposed in [17] for the solution
of two-dimensional Fredholm equations. Assuming that the function V is
sufficiently smooth, we can approximate it by an interpolating polynomial of
a certain degree. As it is known from the theory of approximation, the best
approximation of a smooth function by an interpolating polynomial of de-
gree m is obtained if the interpolating points are the roots of the Chebyshev
polynomial of degree m:

pmi = cos

(
(2i− 1)π

m

)
, i = 1, ...,m (41)

Our approach for reducing the matrices rank in our method consists in
replacing the solution Vi by its interpolating polynomial at the Chebyshev
nodes in Ω. If Vi is sufficiently smooth, this produces a very small error and
yields a very significant reduction of computational cost. Actually, when
computing the vector κ̃(Ui) (see formula (7)) we have only to compute m2

components, one for each Chebyshev node on [−1, 1]× [−1, 1]. Choosing m
much smaller than n, we thus obtain a significant computational advantage.

The procedure at each iteration is as follows. We compute the matrix
M such that

Mi,j = Q(V (pmi , p
m
j , t)), i = 1, ...,m, j = 1, ...,m,

where Q is the approximation of the integral κ, obtained by means of the
quadrature (22), pmi are the Chebyshev nodes, defined by (41).

Then we have to perform the matrix multiplication

Λ = CMCT , (42)

13

where C is the matrix defined by

Cij = ci−1(pmj), i = 1, ...,m, j = 1, ...,m;

here ck represents the scaled Chebyshev polynomial of degree k,

ck(x) = δk cos(k arcos(x)), k = 0, 1, ..

with δ0 = 1/
√
n, δk =

√
2δ0, k = 1, ...,m − 1. The matrix Λ contains

the coefficients of the interpolating polynomial of the solution (expanded in
terms of scaled Chebyshev polynomials). Finally, in order to obtain the in-
terpolated values of the solution at the Gaussian nodes, we have to compute

T = P TΛP, (43)

where P is the transformation matrix, given by

Pij = ci−1(x(j)), i = 1, ...,m, j = 1, ..., N.

Here x(j) represents each Gaussian node: x(j) = xi,s, if j = ik + s. Finally,
the vector Ui for the next time step (of size N2) is obtained by copying T ,
row by row (note that T is a matrix of dimension N ×N).

2.1.4 Complexity Analysis

As remarked before, it is important to analyse the complexity of the com-
putations, since the computational effort can be signifficantly reduced by
the application of adequate techniques. In the previous section, we have de-
scribed an algorithm for computing each iterate of the fixed point method,
which requires m2 applications of the quadrature formula (22). Since this
quadrature implies N2 evaluations of the integrand function, we have a
total of m2N2 function evaluations. Note that if no polynomial interpola-
tion would be applied, N4 evaluations of the integrand function would be
required at each iteration. It is easy to conclude that the number of arith-
metic operations required to apply the quadrature is also proportional to
m2N2.

Then, according to the described algorithm, we must perform the matrix
multiplication (42). Since the involved matrices have dimension m×m, the
total number of arithmetic operations is O(m3) . Since, by construction,
m << N , the complexity of this part of the computations is much less than
the previous one.

14

Finally, we have the matrix product (43). Here the transformation ma-
trix P has dimensions m × N , as the resulting matrix T has dimensions
N ×N The resulting complexity is therefore O(mN2).

In conclusion, the number of evaluations of the integrand function in
each iterate of the fixed point method is N2m2 and the complexity of each
iteration is O(N2m2). Note that the number of iterations of the fixed point
method at each time step is typically 2− 4.

2.1.5 Error Analysis

We start by analysing the error resulting from the time discretization. As-

suming that the partial derivatives ∂iV (x,t)
∂it

, i = 1, 2, 3, are continuous on a
certain domain Ω×[0, T], the local discretization error of the approximation,
given by (8), has the order of O(h2

t).
Concerning the space discretization, the error has two components: one

resulting from the application of the discretization scheme (24) , and the
other resulting from the polynomial interpolation. In both cases, the order
of the approximation depends on the smoothness of the solution. Therefore
we must choose the degree of the Gaussian quadrature according to the
smoothness of the mentioned functions.

The first component was analysed in Sec. 2.1.2. According to Theorem
2.4, if the functions S , K and Ui satisfy certain smoothness conditions, the
discretization scheme (24) has order 2k in space, where k is the number of
Gaussian nodes at each subinterval.

To analyse the interpolation error, we refer to Lemma 3 in [17]. Accord-

ing to this Lemma, if the partial derivatives ∂if(y1,y2)
∂iyj

of a certain function

f are continuous, with j = 1, 2, i = 1, 2, .., s then

‖f − Cmf‖ = O(m−s log2m), (44)

where Cmf represents the interpolating m-th degree polynomial of f in the
Chebyshev nodes.

In order to obtain an optimal precision of the method, we require that
the components of the error, given by (38) and (44), are of the same order.
Hence, to ensure that we can choose m � N , the degree of smoothness
s of the solution should be significantly higher than 2k (otherwise we will
not obtain a significant reduction of the matrices rank). For example, sup-
pose that m = N1/2 = h−1/2, then for the interpolation error we have
m−s log2m = hs/2 log2(h−1/2)=−1

2h
s/2 log2 h . Comparing with (38), we

conclude that for optimal precision we must have s/2 ≈ 2k.

15

Hence the described method is specially suitable in the case of a smooth
solution , so that one can take advantage of the small quadrature error and
strong rank reduction.

Summarizing, we have so far shown that the numerical scheme has local
discretization order O(h2

t) +O(h2k). Let us now analyse the global error

Ei,j = V (x̄j , ti)− (Uhi)j .

For i = 0, we have E0,j = 0,j = 1, ..., N2. For i = 1, we know that Uh1 is
computed according to (40). According to the results of section 2.1.2 about
space discretization, and since the Euler method has local discretization
error of order 2, we have

‖E1,j‖ = max
x̄j∈Ωh

|V (x̄j , t1)− (Uh1)j | = O(h2
t) +O(h2k). (45)

Concerning the subsequent steps in time, i = 2, 3, ... from (24) and (10) we
can conclude that

Ei,j −
4

3
Ei−1,j +

1

3
Ei−2,j =

2ht
3c

(
Ei,j + κ(Vi)j − κh(Uhi)j

)
. (46)

As in Section 2.1.2, we can write

κ(Vi)j − κh(Uhi)j = κ(Vi)j − κh(Vi)j + κh(Vi)j − κh(Uhi)j (47)

and therefore

‖κ(Vi)j − κh(Uhi)j‖ ≤ L1‖Ei,j‖+O(h2k), (48)

where L1 is given by (28). Substituting (48) into (46) we obtain

‖Ei,j‖ ≤
4

3
‖Ei−1,j‖+

1

3
‖Ei−2,j‖+

2ht
3c

(
‖Ei,j‖+ L1‖Ei,j‖+O(h2k)

)
, i = 2, 3, ...

(49)
which is equivalent to

‖Ei,j‖(1−
2ht
3c

(1 + L1)) ≤ 4

3
‖Ei−1,j‖+

1

3
‖Ei−2,j‖+O(h2k), i = 2, 3, ...

(50)
provided that

2ht
3c

(1 + L1) < 1. (51)

In particular, for i = 2, we get

‖E2,j‖ ≤
(

1− 2ht
3c

(1 + L)

)−1 4

3
‖E1,j‖+

1

3
‖E0‖+O(h2k); (52)

16

according to (45) we conclude that

‖E2,j‖ ≤ (1− 2ht
3c

(1 + L))−1(O(h2k) +O(h2
t)) +O(h2k) = O(h2

t) +O(h2k).

(53)
Due to the complexity of our numerical method, it was not possible to obtain
a closed expression of the global error, for an arbitrary value of i. However,
according to Theorem 2.1, the multistep scheme is zero-stable, which means
that it will be stable for a sufficiently small value of ht. The condition (51)
actually shows us how small ht must be in order to achieve stability. If
this condition is satisfied, we expect that the scheme will be stable and the
method will be convergent, with the convergence order O(h2

t) +O(h2k) (the
same as for the local discretization error).

We remark that if we used an explicit method, like the Euler method, the
stability condition on ht would be much more restrictive. In other words,
the fact that we use an implicit method allows us to use larger step size in
time, which makes the method more efficient.

The numerical results presented in Sec. 3 are in agreement with the error
analysis and confirm the expected convergence orders, for a set of different
cases.

2.2 Delay Equation

We now focus our attention on equation (3), where the argument of the
solution inside the integral has a delay τ(x̄, ȳ). This delay takes into account
the fact that the propagation speed of signals between neurons is finite and
therefore the post-synaptic potential generated at location x̄ in instant t
by action potentials arriving from connected neurons at location ȳ actually
depends on the potential of these neurons at instant t−τ(x̄, ȳ), where τ(x̄, ȳ)
is the time taken by the signal to come from ȳ to x̄. Since we assume that
the propagation speed v is constant and uniform in space, we have

τ(x̄, ȳ) =
|ȳ − x̄|
v

.

Hence, the delay integro-differential equation that we must solve has the
form

c
∂

∂t
V (x̄, t) = I(x̄, t)− V (x̄, t) +

∫
Ω
K(|x̄− ȳ|)S(V (ȳ, t− |ȳ − x̄|

v
))dȳ. (54)

17

Note that in this case the initial conditions satisfied by the solution of our
problem have the form (4), where

τmax = max
x̄,ȳ∈Ω

|ȳ − x̄|
v

.

The numerical algorithm used to solve equation (54) is essentially the
same as described in the previous sections. The main difference results from
the fact that when computing the integral on the right-hand side of (54) at
instant ti we must use not only the approximate solution at instants ti−1 and
ti−2, but at all instants ti−k, k = 1, ..., kmax, where kmax is the integer part

of τmax/ht. Note also that the argument ti− |ȳ−x̄|v may not be a multiple of

ht. In general let j and δt be the integer and the fractional part of |ȳ−x̄|vht
. In

this case, we have

ti−j−1 ≤ ti −
|ȳ − x̄|
v

≤ ti−j

and

htδt =

(
ti −

|ȳ − x̄|
v

)
− ti−j−1.

The needed value of the solution V (ȳ, ti − |ȳ−x̄|v) is then approximated by
linear interpolation:

V

(
ȳ, ti −

|ȳ − x̄|
v

)
≈ δtUi−j + (1− δt)Ui−j−1. (55)

Note that the error analysis that we have carried out in the previous sub-
section may not apply to the delay equation. What we can say in this case,
assuming that V is a smooth function of t, is that the error introduced
each time we use the approximation formula (55) has the order of O(h2

t)
(the same as the error resulting from the time discretization). However,
the overall effect of this error in the computations requires a more detailed
analysis, which is left for a future work.

Concerning complexity, in the case of the delay equation, each time we
compute the integrand function, we must compute the delay τ(x̄, ȳ). As
discussed above, this delay is obtained dividing the distance ‖ȳ − x̄‖2 by
v. Since this distance is also required to compute the kernel connectivity
K(‖ȳ− x̄‖2), for an effective computation this quantity should be evaluated
only once and then kept in memory.

18

3 Numerical Results

3.1 Neural Field Equation without delay

Here we present the results of some numerical tests we have carried out,
in order to check the convergence properties of the described method (in
the case where no delay is considered). Our main purpose is to test exper-
imentally the convergence of the method and measure the error; therefore
we have chosen some cases where the exact solution is known and do not
arise from applications. However the form of the connectivity kernels and
firing rate functions in these examples are close to the ones of neuroscience
problems. We first check the convergence order in time. With this purpose,
we consider the following example.

Example 1. In this example,

K(|x̄− ȳ|) = K(x1, x2, y1, y2) = exp
(
−λ(x1 − y1)2 − λ(x2 − y2)2

)
,

where λ ∈ R+; S(x) = tanh(σx), σ ∈ R+. We set

I(x, y, t) = − tanh

(
σ exp

(
− t
c

))
b(λ, x, y),

where

b(λ, x1, x2) =
∫ 1
−1

∫ 1
−1K(x1, x2, y1, y2)dy1dy2 =

= π
4λ

(
Erf(
√
λ(1− x1)) + Erf(

√
λ(1 + x1))

)(
Erf(
√
λ(1− x2)) + Erf(

√
λ(1 + x2))

)
,

where Erf represents the Gaussian error function.
In this case, it is easy to check that the exact solution is

V (x̄, t) = exp(− t
c
).

The initial condition is V0(x̄) ≡ 1.
For the space discretisation, we have used k = 4, that is, 4 Gaussian

nodes in each subinterval. Since the discretisation error in space must be
O(h8), we consider it negligible, compared with the discretisation error in
time.

With the following tests, we want to check that the discretisation error
in time satisfies the condition

ei = ‖Vi − Ui‖ = O(h2
t).

19

t ei(0.01) ei(0.02) ei(0.02)/ei(0.01)

0.02 6.66E − 5
0.03 7.24E − 5
0.04 7.46E − 5 2.66E − 4 3.57
0.05 7.56E − 5
0.06 7.61E − 5 2.91E − 4 3.82
0.07 7.65E − 5
0.08 7.69E − 5 3.01E − 4 3.91
0.09 7.72E − 5
0.10 7.76E − 5 3.06E − 4 3.94

Table 1: Numerical results for Example 1

The results are displayed in Table 1. We have used two different time
steps, ht = 0.02 and ht = 0.01, and we have approximated the solution over
the time interval [0, 0.1]. For the space discretisation, we have considered
N = 24, m = 12. The equation parameters are λ = σ = c = 1.

The discretisation errors ei(ht) = ‖Vi−Ui‖ are displayed at different mo-
ments ti, for different stepsizes ht. We also present the ratios ei(2ht)/ei(ht),
which allow us check the convergence order. The ratios are close to 4, which
confirms the second order convergence.

Now, in order to check the convergence of the space discretisation, we
choose an example, where the time discretisation is exact (does not produce
any error).

Example 2. In this example, the functions K and S are the same as in
example 1. We set

I(x, y, t) = c+ t− tanh(σt)b(λ, x, y).

As in Example 1, c = 1. In this case, it is easy to check that the exact
solution is

V (x̄, t) = t.

The initial condition is V0(x̄) ≡ 0. The difference operator (8) is exact
for linear functions of t, and this is why the scheme in this case does not
have discretisation error in time. Therefore, the observed errors result from
the space discretisation. In this case, we are only considering the norm of
the error at t = 0.1. The derivatives of S and K with respect to the space
variables depend strongly from the values of λ and σ, and therefore these
values should influence the error of the space discretisation. To check this,

20

m N = 12 N = 24 e12/e24 N = 48 e24/e48

12 3.11E − 10 1.11E − 12 280 3.997E − 15 278
24 1.03E − 12 4.413E − 15 234

Table 2: Numerical results for Example 2, with λ = 1, σ = 1.

m N = 24 N = 48 e24/e48 N = 96 e48/e96

12 1.62E − 10 5.52E − 13 293 2.36E − 15 234
24 1.69E − 10 5.33E − 13 317 2.22E − 15 240

Table 3: Numerical results for Example 2, with λ = 5, σ = 1.

we consider 3 different cases: λ = 1, σ = 1 ; λ = 1, σ = 5; and λ = 5, σ = 5,
which are described in tables 2,3 and 4, respectively.

Since we are using 4 Gaussian points in each subinterval, we expect
that the error of the space discretisation is O(h8) . Therefore, when we
duplicate the number N of gridpoints, the error should decrease by a factor
of approximately 28 = 256.

In order to check the influence of interpolation error, for each N , we
consider a set of different values of m (interpolation polynomial degree).

When m increases from 12 to 24, the difference in accuracy is not sig-
nificant. This means that for values of N up to 96 it is enough to consider
m = 12. When λ or σ increase we observe that the errors (for the same
discretisation step) also increase. This could be expected, since the dis-

cretisation error in space depends on the derivatives ∂iK(x̄,y1,y2)
∂iyj

and ∂iS(V)
∂iV

,

which increase with λ and σ, respectively.
Example 3. Finally let us consider an example where the potential

distribution is not constant, nor in time, neither in space. In this example,
the function K has the same form as in the previous ones, but the forcing
function is

I(x1, x2, t) = − exp

(
− t
c

)
β(λ, µ, x1, x2),

m N = 24 N = 48 e24/e48 N = 96 e48/e96

12 7.31E − 10 2.48E − 12 295 9.38E − 15 264
24 7.65E − 10 2.40E − 12 319 8.94E − 15 268

Table 4: Numerical results for Example 2, with λ = 5, σ = 5.

21

ht ‖eht‖∞ ‖eht‖∞/‖eht/2‖∞
0.01 7.66E − 5 3.97
0.005 1.93E − 5 3.99
0.0025 4.83E − 6

Table 5: Error norms and convergence rates for Example 3, with λ = 1, σ =
1.

where

β(λ, µ, x1, x2) =

∫ 1

0

∫ 1

0
exp

(
−λ((x1 − y1)2 + (x2 − y2)2)− µ(y2

1 + y2
2)
)
dy1dy2.

Let us consider a linear firing rate function S(x) = x. If the we set the
initial condition

V0(x1, x2) = exp
(
−µ(x2

1 + x2
2)
)
,

we conclude that the exact solution of this problem is

V (x1, x2, t) = exp

(
− t
c

)
exp

(
−µ(x2

1 + x2
2)
)
.

We have computed the numerical solution by our method , over the time
interval [0, 0.05], with stepsize ht = 0.01, 0.005 and ht = 0.0025. The pa-
rameters of the space discretisation are m = 12,N = 24, therefore the error
resulting from the space discretisation is in this case negligible, compared
with the global error. The error analysis for this example is displayed in
table 5. We see again that the convergence rate is in agreement with the
theoretical results.

3.2 Neural Field Equation with Delay

Example 4. In order to analyse the effect of delay, we now consider equation
(3) with the same data as in Example 3, but with some finite propagation
speed v. We consider the initial condition V0(x̄) = exp

(
−µ(x2

1 + x2
2)
)
, ∀x̄ ∈

Ω, t ∈ [−τmax, 0].
In Fig. 1 some graphs of the solution are displayed. On the left-hand

side, one can see the plots of the solution at t = 0.5, t = 1, t = 1.5, and
t = 2.0, for the non-delay case. On the right-hand side the corresponding
plots are depicted, but for the delayed equation, when the propagation speed
is v = 1. The values of the remaining parameters are c = 1, µ = 1, λ = 1.
In both cases the stepsize in time is ht = 0.1, and the parameters of the

22

space discretisation are m = 12, N = 24. From this figure it is clear that
as an effect of the delay, the decay of the solution in the case of the delayed
equation is much slower.

4 Conclusions

We have described and analysed a new numerical algorithm for computing
approximate solutions of the two-dimensional neural field equations with de-
lay. The stability, convergence and complexity of this algorithm have been
analysed and a set of numerical examples has been presented. The numerical
experiments are in agreement with the theoretical results and confirm that
this algorithm can be successfully used for the solution of problems in Neu-
roscience and Robotics. The main advantages of the described algorithm are
its stability and accuracy, which is illustrated by the presented examples.
Moreover, due to the use of a rank reduction technique, it is efficient when
dealing with the two-dimensional case.

5 Acknowledgements

This research was supported by a Marie Curie Intra European Fellowship
within the 7th European Community Framework Programme (PIEF-GA-
2013-629496).

References

[1] S.L. Amari, Dynamics of pattern formation in lateral-inhibition type
neural fields, Biol. Cybernet. 27 (2) (1977) 77–87.

[2] I. Bojak, D.T.J. Lily, Axonal Velocity Distributions in Neural Field
Equations, PLoS Comput Biol 6(1), (2010), e1000653.

[3] H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm
integral equations by collocation methods, SIAM J. Numer. Anal. 27
(1990) 987-1000.

[4] A. Cardone, E. Messina, and E.Russo, A fast iterative method for
discretized Volterra-Fredholm integral equations, J. Comput. Applied
Math. 189 (2006) 568-579.

23

−1
0

1
−1

0
1
0

0.5

1

−1
0

1
−1

0
1
0

0.5

1

−1
0

1
−1

0
1
0

0.5

1

−1
0

1
−1

0
1
0

0.5

1

−1
0

1
−1

0
1
0

0.5

1

−1
0

1
−1

0
1
0

0.5

1

−1
0

1
−1

0
1
0

0.5

1

−1
0

1
−1

0
1
0

0.5

1

Figure 1: Plots of the solution without delay (left) and with delay (right)

24

[5] S. Coombes, Large-scale neural dynamics: Simple and complex, Neu-
roImage 52, (2010), 731–739.

[6] S. Coombes, N.A. Venkov, L. Shiau, I. Bojak, D.T.J. Liley, C.R. Laing,
Modeling electrocortical activity through improved local approxima-
tions of integral neural field equations, Phys. Rev. E 76, (2007), 051901.

[7] W. Erlhagen, E. Bicho, The dynamic neural field approach to cognitive
robotics, J. Neural Eng. 3, (2006), R36-R54.

[8] G. Faye and O. Faugeras, Some theoretical and numerical results for
delayed neural field equations, Physica D 239 (2010) 561–578.

[9] Han Guoqiang, Asymtotic error expansion for a nonlinear Volterra-
Fredholm integral equation, J. Comput. Applied Math. 59 (1995) 49-59.

[10] A. Hutt and N. Rougier, Activity spread and breathers induced by
finite transmission speeds in two-dimensional neuronal fields, Physical
Review,E 82 (2010) 055701.

[11] A. Hutt and N. Rougier, Numerical Simulations of One- and Two-
dimensional Neural Fields Involving Space-Dependent Delays, in S.
Coombes et al., Eds., Neural Fields Theory and Applications, Springer,
2014.

[12] Z. Jackiewicz, M. Rahman, B.D. Welfert, Numerical Solution of a Fred-
holm integro-differential equation modelling neural networks, Applied
Numerical Mathematics, 56 (2006) 423-432.

[13] Z. Jackiewicz, M. Rahman, B.D. Welfert, Numerical Solution of a Fred-
holm integro-differential equation modelling θ-neural networks, Appl.
Math. Comput., 195 (2008) 523-536.

[14] J.-P. Kauthen, Continuous time collocation methods for Volterra-
Fredholm integral equations, Num. Math. 56 (1989) 409–424.

[15] R. Potthast and P. beim Graben, Existence and properties of solutions
for neural field equations, Math. Meth. Appl. Sci., 33 (2010) 935-949.

[16] H.R. Wilson and J.D. Cowan, Excitatory and inhibitory interactions in
localized populations of model neurons, Bipophys. J., 12 (1972) 1-24.

[17] Weng-Jing Xie, Fu-Rong Lin, A fast numerical solution method for two
dimensional Fredholm integral equations of the second kind, Applied
Numerical Mathematics, 59 (2009) 1709-1719.

25

	1 Introduction
	2 Numerical Method
	2.1 Neural Field Equation without delay
	2.1.1 Time Discretization
	2.1.2 Space Discretization
	2.1.3 Computational Implementation
	2.1.4 Complexity Analysis
	2.1.5 Error Analysis

	2.2 Delay Equation

	3 Numerical Results
	3.1 Neural Field Equation without delay
	3.2 Neural Field Equation with Delay

	4 Conclusions
	5 Acknowledgements

