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COMPENSATED CONVEXITY, MULTISCALE MEDIAL AXIS MAPS
AND SHARP REGULARITY OF THE SQUARED-DISTANCE

FUNCTION∗

KEWEI ZHANG† , ELAINE CROOKS‡ , AND ANTONIO ORLANDO§

Abstract. In this paper we introduce a new stable mathematical model for locating and mea-
suring the medial axis of geometric objects, called the quadratic multiscale medial axis map of scale
λ, and provide a sharp regularity result for the squared-distance function to any closed nonempty
subset K of Rn. Our results exploit properties of the function Cl

λ(dist
2(·; K)) obtained by applying

the quadratic lower compensated convex transform of parameter λ [K. Zhang, Ann. Inst. H. Poincaré
Anal. Non Linéaire, 25 (2008), pp. 743–771] to dist2(·; K), the Euclidean squared-distance function
to K. Using a quantitative estimate for the tight approximation of dist2(·; K) by Cl

λ(dist
2(·; K)),

we prove the C1,1-regularity of dist2(·; K) outside a neighborhood of the closure of the medial axis
MK of K, which can be viewed as a weak Lusin-type theorem for dist2(·; K), and give an asymptotic
expansion formula for Cl

λ(dist
2(·; K)) in terms of the scaled squared-distance transform to the set

and to the convex hull of the set of points that realize the minimum distance to K. The multiscale
medial axis map, denoted by Mλ(·; K), is a family of nonnegative functions, parametrized by λ > 0,
whose limit as λ → ∞ exists and is called the multiscale medial axis landscape map, M∞(·; K). We
show that M∞(·; K) is strictly positive on the medial axis MK and zero elsewhere. We give condi-
tions that ensure Mλ(·; K) keeps a constant height along the parts of MK generated by two-point
subsets with the value of the height dependent on the scale of the distance between the generating
points, thus providing a hierarchy of heights (hence, the word “multiscale”) between different parts
of MK that enables subsets of MK to be selected by simple thresholding. Asymptotically, further
understanding of the multiscale effect is provided by our exact representation of M∞(·; K). More-
over, given a compact subset K of Rn, while it is well known that MK is not Hausdorff stable, we
prove that in contrast, Mλ(·; K) is stable under the Hausdorff distance, and deduce implications for
the localization of the stable parts of MK . Explicitly calculated prototype examples of medial axis
maps are also presented and used to illustrate the theoretical findings.
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squared-distance transform, sharp regularity, Lusin theorem
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1. Introduction. The medial axis of an object is a geometric structure that was
introduced by Blum [14] as a means of providing a compact representation of a shape.
Initially defined as the set of the shock points of a grass fire lit on the boundary and
allowed to propagate uniformly inside the object, closely related definitions of skeleton
[17] and cut locus [53] have since been proposed, and have served for the study of its
topological properties [3, 22, 41, 44, 51], its stability [23, 21], and for the development
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of fast and efficient algorithms for its computation [1, 12, 11, 39, 46]. Applications of
the medial axis are ample in scope and nature, ranging from computer vision to image
analysis, from mesh generation to computer aided design. We refer to [50] and the ref-
erences therein for applications and accounts of some recent theoretical developments.

An inherent drawback of the medial axis is, however, its sensitivity to boundary
details, in the sense that small perturbations of the object (with respect to the Haus-
dorff distance) can produce huge variations of the corresponding medial axis. This
observation has prompted a large body of research that has roughly followed two
lines, both aimed at the definition of some stable modification of the medial axis: one
consists of reducing the complexity of the medial axis by pruning the less important
parts of the domain [49], the other considers the definition of filter conditions that
identify subsets of the medial axis which are stable to perturbations of the sets and
retain some of its topological properties, for instance, homotopy equivalence with the
object. Within this second line of research, we mention, among others, the λ-medial
axis introduced in [20], the θ-homotopy preserving medial axis introduced initially in
[31] and subsequently modified in [52] to ensure the homotopy equivalence, and the
power crust method [8]. The λ-medial axis and the θ-homotopy preserving medial axis
are explicitly defined as subsets of the medial axis, being collections of those points
of the medial axis that meet some geometrical criteria. Such criteria are expressed in
terms of a bound either on the distance to the boundary of the object or on the sepa-
ration angle θ (see Definition 3.16 below), respectively. The power crust, in contrast,
and also the algorithm discussed in [25, 26], provide a continuous approximation of
the medial axis constructed using a subset of the vertices, called poles, of the Voronoi
diagram of a finite-point sample of the object boundary. In all such works, the stable
modifications are sought by identifying directly points of the medial axis or of an
approximation of it. The excellent survey paper [10] contains a thorough discussion
of such approaches and of the related stability issues.

We adopt in this paper a fundamentally distinct strategy which, if compared with
the works mentioned above, represents an indirect approach relying on the use of the
compensated convex transforms [59]. The theory of compensated convex transforms
has been introduced and applied in the calculus of variations for finding the quasicon-
vex envelope of a function [55, 56, 57, 58] and for finding tight smooth approximations
of the maximum function and the squared-distance function [60]. Compensated con-
vex transforms, however, also provide a natural and stable global method to extract
geometric singularities, such as ridges, valleys, and edges, from a given function by
manipulating its “landscape” [62, 63], and it is in this way that the transforms, in
particular the lower compensated convex transform (hereafter, called also the lower
transform), will be used in this paper. Whether one applies the lower compensated
convex transform or the upper compensated convex transform depends on the type
of geometric singularities to be extracted. The works [62, 63] present a systematic
study on the use of these basic transforms to extract singularities from the graph of
functions in general, or from the characteristic functions of compact sets, whereas
the patent application [61] contains various applications including our method for
extracting the multiscale medial axis map. The key properties that are exploited to
highlight and/or to design a specific singularity are the tight approximation of the
compensated transforms, their regularity, and the manner in which they respond to
the type of curvature. More specifically, [62] focuses on the basic use of these trans-
forms to detect ridges, valleys, and saddle points of graph of functions, whereas [63]
presents the design of a transform which is capable of filtering out the “regular points”
and the “regular directions” on manifolds.
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The application of the lower transform to study the medial axis of a set is moti-
vated fundamentally by the identification of the medial axis with the singularity set
of the distance function [37, Lemma 8.5.12] and by the geometric structure of this set
[3, 18, 43]. On the other hand, the distance function, its regularity, and its geometric
structure, are well studied both in geometric measure theory [30] and in the theory
of partial differential equations [19, 29, 34, 37]. If the set K is a smooth compact
submanifold of Rn, there are many local regularity results of the distance function
near K [40, 32, 27, 28], whereas, for a general bounded open set Ω, some results by
Albano [2] imply that the distance function dist(·; Ωc) is locally C1,1 in Ω \ MΩc in
the sense that if x ∈ Ω \MΩc , there is a δ > 0 such that dist(·; Ωc) ∈ C1,1(B(x; δ)).

In the following, however, it is more convenient to refer to the squared-distance
function and use the identification of the singular set of the distance function with
the set of points where the squared-distance function fails to be locally C1,1. Here,
we just note that the advantage of referring to the squared distance function rather
than to the distance function has also been realized in other contexts, such as in the
study of the motion of surfaces by its mean curvature represented by manifolds with
codimension greater than one [24, 5]. We refer to [4] for a detailed study on the
properties of the squared-distance function and on its applications in the geometric
evolution problems.

Using properties of the lower transform, we apply the lower compensated convex
transform to the Euclidean squared-distance function which gives a smooth (C1,1)
tight approximation outside a neighborhood of the closure of the medial axis (see
Theorem 3.3), and define our multiscale medial axis map as a scaled difference between
the squared-distance function and its lower transform. From the property of the tight
approximation of the lower transform of the squared-distance function, we also deduce
a sharp C1,1-regularity result (see Corollary 3.8 and Example 3.10) of the squared-
distance function outside a neighborhood of the closure of the medial axis of K, which
can be viewed as a weak Lusin-type theorem for the squared-distance function and
extend regularity results of the squared-distance function to any closed nonempty
subset of Rn. This result also offers an instance of application of the compensated
convex transform to obtain a fine result of geometric measure theory and is, somehow,
related to the behavior of semiconcave functions (see [19] and Remark 2.7(c) below).
We observe that, in general, the regularity of dist2(·; K) cannot be better than C1,1

even for a compact convex set K, where MK = ∅. A simple example is given by the
square K = [0, 1]× [0, 1] ⊂ R

2. In this case, it can be easily verified that dist2(x; K)
is globally C1,1 but not C2.

The application of the lower compensated convex transform of scale λ to the
squared-distance function produces a continuous function in R

n that remains strictly
positive on the medial axis and tends to zero outside of it as a positive parameter λ
becomes very large (see Proposition 3.20). We will, in fact, characterize the limit of
the multiscale medial axis map of scale λ as λ approaches infinity (see Theorem 3.23)
and refer to this geometric structure as the quadratic multiscale medial axis landscape
map of K. The values of this map are well separated, in the sense that they are zero
outside the medial axis and remain strictly positive on it. Furthermore, we will give
conditions (see Proposition 3.18 and section 5) that ensure that the multiscale medial
axis map of scale λ actually keeps a constant height along the parts of the medial
axis generated by two-point subsets, with the value of the height dependent on the
distance between the two generating points. Such values can, therefore, be used to
define a hierarchy between different parts of the medial axis and we can thus select
the relevant parts through simple thresholding, that is, by taking suplevel sets of the
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multiscale medial axis map. To reflect this property, we use the word “multiscale.”
For each branch of the medial axis, the multiscale medial axis map automatically
defines a scale associated with it. In other words, a given branch has a strength which
depends on some geometric features of the part of the set that generates that branch.

Given a closed nonempty subset K of Rn, we will also prove that, despite the
medial axis of K not being Hausdorff stable, the quadratic multiscale medial axis
map, is indeed Hausdorff stable (see Theorem 4.3). It follows that the graph of the
medial axis map carries more information than the medial axis itself, which allows
the definition of a hierarchy between the parts of the medial axis and the selection of
the relevant ones through simple thresholding, that is, by taking suplevel sets of the
medial axis map. In this manner, it is possible to choose the main parts that reflect
genuine geometric features of the object and remove minor ones generated by noise.

In conclusion, we observe that while our method seems to share similarities with
those based on the extraction of ridges of the distance transform [9, 16, 39, 45, 54],
(that require, however, an a priori definition of ridge, based usually on an approxima-
tion of the derivative of the distance transform), the method we propose is, in fact,
substantially different from such approaches, given that we obtain a neighborhood
of the singularities as the difference between the squared-distance transform and its
smooth tight approximation. In this manner, as mentioned above, we provide an indi-
rect definition of the singularity, which does not require any derivative approximation
or any differentiability assumption.

After this brief introduction, the next section will introduce the relevant notation
and recall basic results in convex analysis and lower compensated convex transforms.
Section 3 contains the definition of the multiscale medial axis map, and some of
its principal properties, such as the tight approximation of the lower compensated
transform to the squared-distance transform (see Theorem 3.3) and as an application,
we deduce a sharp regularity result of the squared-distance function to any nonempty
closed subset of Rn (see Corollary 3.8). Section 4 presents the Hausdorff stability
of the multiscale medial axis map whereas section 5 discusses some mathematical
prototype models of explicitly calculated medial axis maps for a simple four-point set
to some more complicated three dimensional objects. Finally, section 6 concludes the
paper with the proofs of the main results.

2. Notation, basic definitions, and preliminary results. Throughout the
paper Rn denotes the n-dimensional Euclidean space, and |x| and x · y the standard
Euclidean norm and inner product, respectively, for x, y ∈ R

n. In some cases, we will
also make use of the notation (x, y) to denote the point of Rn given by xe1 + y2e2 +
· · ·+ynen, where {e1, . . . , en} is an orthornormal basis of Rn, (x, y2, . . . , yn) ∈ R

n, and
y = y2e2+ · · ·+ynen. Given a nonempty subset K of Rn, Kc denotes the complement
of K in R

n, i.e., Kc = R
n \K, K its closure, and co[K] the convex hull of K, that

is, the smallest (with respect to inclusion) convex set that contains the set K. For
x ∈ R

n and r > 0, B(x; r) indicates the open ball with center x and radius r whereas
S(x; r) denotes the sphere with center x and radius r and is the boundary of B(x; r).
The distance transform of a nonempty set K ⊂ R

n is the function that, at any point
x ∈ R

n, associates the distance of x to K, which is defined as inf{|x− y|, y ∈ K} and
is denoted as dist(x; K). We use the notation Df to denote the derivative of f .

Across the current literature, there is no uniform definition of the medial axis,
with its meaning changing from one author to another. What the medial axis is for
one, becomes the skeleton for another, and in some cases subtle differences are present,
especially in the continuum case, where the closure of such sets is considered. In this
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paper we adopt the definition given by Lieutier in [41], but it is reformulated here to
include a nonempty closed set K ⊂ R

n with K �= R
n as well as a nonempty bounded

open set Ω.
Definition 2.1. For a given nonempty closed set K ⊂ R

n, with K �= R
n, we

define the medial axis MK of K as the set of points x ∈ R
n \K such that x ∈ MK if

and only if there are at least two different points y1, y2 ∈ K, satisfying dist(x; K) =
|x − y1| = |x − y2|. For a nonempty bounded open set Ω ⊂ R

n, the medial axis of Ω
is defined by MΩ := Ω ∩M∂Ω.

Remark 2.2.

(a) The definition of medial axis for a bounded open set Ω is equivalent to that
of the closed set Ωc, since the definition of MK implies that MΩc = M∂Ω and, hence,
MΩ = MΩc .

(b) Other frequently used notions are those of the skeleton of K, denoted as
skl(K), and the cut locus of a manifold, denoted as cl(K), which applies to the more
general case of Riemannian geometry. Here, for a nonempty closed subset K of the
Euclidean space R

n, we define the skeleton of K to be the set of the centers of the
maximal (with respect to inclusion) open balls contained in Kc, whereas the cut locus
of K is taken to be the set of the cut locus of the points of the boundary of K in R

n,
where the cut locus of p in ∂K is the set of points in the manifold where the geodesics
starting at p stop being minimizing. It can then be shown that cl(K) = MK . As a
result, the notions of medial axis, skeleton, and cut locus are related but are not the
same; for example, in general [44, 25],

MK ⊂ skl(K) ⊂ MK .

(c) Our definition of the medial axis MK is, in particular, consistent with our
main convergence result (Theorem 3.23) which recovers MK as the set on which the
limit of the medial axis map Mλ(·; K) (Definition 3.1) as λ tends to infinity is strictly
positive.

Next we collect definitions and results from convex analysis for functions f taking
finite values, i.e., for f : Rn �→ R, which will be used in this paper, and refer to [36, 47]
for details and proofs.

Given a function f : Rn �→ R bounded below, the convex envelope co[f ] is the
largest convex function not greater than f . We will often make use of the following
characterization.

Proposition 2.3. Let f : Rn �→ R be coercive in the sense that f(x)/|x| → ∞
as |x| → ∞, and x0 ∈ R

n. Then
(i) The value co [f ] (x0) of the convex envelope of f at x0 ∈ R

n is given by

co [f ] (x0) = inf
i=1,...,n+1

{
n+1∑
i=1

λif(xi) :

n+1∑
i=1

λi = 1,

n+1∑
i=1

λixi = x0, λi ≥ 0, xi ∈ R
n

}
.

If, in addition, f is lower semicontinuous, the infimum is reached by some (λ∗
i , x

∗
i )

for i = 1, 2, . . . , n+ 1 with (x∗
i , f(x

∗
i ))’s lying in the intersection of the epigraph of f ,

epi(f), and the supporting plane of epi(f);
(ii) the value co [f ] (x0), for f taking only finite values, can also be obtained as

follows:

co [f ] (x0) = sup {�(x0) : � affine and �(y) ≤ f(y) for all y ∈ R
n}

with the sup attained by an affine function �∗ ∈ Aff(Rn).
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We then introduce the following definition [13], which is needed in Lemma 2.5.
Definition 2.4. Assume x0 ∈ R

n. We say that a function f : R
n �→ R is

uppersemidifferentiable at x0 if there exists a ∈ R
n such that

lim sup
y→0

f(x+ y)− f(x)− a · y
|y| ≤ 0 .

The following lemma, concerning the existence and properties of an optimal affine
function, will be needed for the proofs of Proposition 2.14 and Theorem 3.3.

Lemma 2.5. Suppose f : Rn �→ R is continuous, uppersemidifferentiable, coercive
in the sense that lim|x|→∞ f(x)/|x| = +∞, and co[f ] ∈ C1,1(Rn). If co[f ](0) < f(0),
then there is an affine function �(x) = 2a ·x+b and distinct points x1, x2, . . . , xk ∈ R

n

and λ1 > 0, λ2 > 0, . . . , λk > 0 satisfying 2 ≤ k ≤ n+1,
∑k

i=1 λi = 1,
∑k

i=1 λixi = 0,
and xi �= 0, xi �= xj if 1 ≤ i �= j ≤ k, such that

(2.1)

(i) �(x) ≤ f(x) for all x ∈ R
n ;

(ii) �(xi) = f(xi) for i = 1, 2, . . . , k ;
(iii) 2a = D�(xi) = Df(xi) for i = 1, 2, . . . , k;
(iv) b = �(0) = co[f ](0) ;
(v) 2a = D�(0) = D co[f ](0) .

The quadratic lower compensated convex transform, introduced in [59], will play
a pivotal role in the definition of our multiscale medial axis map. We next recall its
definition and some of its properties, and refer to [59, 62, 63] for details and proofs.

Definition 2.6. Let f : Rn �→ R be a lower semicontinuous function [47, 36]
satisfying

(2.2) f(x) ≥ −A1|x|2 −A2

for some constants A1, A2 ≥ 0. The (quadratic) lower compensated convex transform
(lower transform for short) for f with scale λ > A1 is defined for x ∈ R

n by

(2.3) Cl
λ(f)(x) = co[f + λ| · |2](x) − λ|x|2.

If f is bounded below, we may set λ ≥ 0.
Remark 2.7.

(a) The requirement of the lower semicontinuity of f is to guarantee that
Cl

λ(f)(x) → f(x) as λ → ∞ for all x ∈ R
n, since otherwise, the lower transform

will converge to the lower semicontinuous envelope of f .
(b) From (2.3) it also follows that Cl

λ(f)(x) is the envelope of all the quadratic
functions with fixed quadratic term λ|x|2 that are less than or equal to f , that is, for
x ∈ R

n [62, (1.4)]

Cl
λ(f)(x) = sup

{−λ|x|2 + �(x) : −λ|y|2 + �(y) ≤ f(y) for all y ∈ R
n and � affine

}
.

(c) Recalling from [19] that a function f : Rn �→ R is called c-semiconvex if, for
some constant c > 0, the function f(x) + c/2|x|2 is convex, we observe that the lower
compensated convex transform for f with scale λ, Cl

λ(f) is a 2λ-semiconvex function.
In fact, Cl

λ(f) represents the 2λ-semiconvex envelope of f . We sometimes use such a
property to extend some properties of semiconvex functions to Cl

λ(f).
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Fig. 1. Steps illustrating the construction of the lower compensated convex transform of f(x) =
dist2(x; K) with K = −1, 1. (a) Graph of the function f ; (b) graph of the augmented function
f +λ| · |2 with λ = 2; (c) graph of the convex envelope of f +λ| · |2 compared to that of f +λ| · |; (d)
graph of Cl

λ(f) compared to that of f .

(d) To gain further geometric insight into the lower compensated convex trans-
form defined by (2.3), in Figure 1 we display the steps of the construction of Cl

λ(f)
for f(x) = dist2(x; K) with K = {−1, 1} and λ = 2. The graph of the augmented
function f +λ|x|2 is displayed in Figure 1(b) along with f , whereas Figure 1(c) shows
the convex envelope of the augmented function. Figure 1(d) displays finally the graph
of Cl

λ(f) which is compared with that of f . Note that the convex envelope of the
augmented function is different from f +λ|x|2 only in a neighborhood of the singular
point 0 of f , so that, when then we subtract the weight, the final effect is a smoothing
of f only in such neighborhood. This simple example, along with the ones discussed
in section 5, enables one also to understand the role of the parameter λ and our mean-
ing of scale. The parameter λ acts as a scale parameter in the sense that it controls
the curvature of the lower compensated convex transform in the neighborhood of the
singularity of the function and allows the extraction of the singularity with a value
which gives somehow a measure of its strength. Also one may observe the so-called
“tightness” of the lower compensated convex transform approximation of the original
function from below (see Proposition 2.10), which agrees with the original function
except in the neighborhood near the singular point.
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The following properties of Cl
λ(f) will also be used.

Proposition 2.8. Given f : Rn �→ R that satisfies (2.2), then for all A1 < λ <
τ < ∞, we have

Cl
λ(f)(x) ≤ Cl

τ (f)(x) for x ∈ R
n ,

and, for λ > A1

Cl
λ(f)(x) ≤ f(x) for x ∈ R

n .

Proposition 2.9. If f ≤ g in R
n and satisfies (2.2), then

Cl
λ(f)(x) ≤ Cl

λ(g)(x) for x ∈ R
n and λ ≥ max{A1,f , A1,g} .

The transform Cl
λ(f) realizes a “tight” approximation of the function f , in the

following sense (see [59, Theorem 2.3(iv)]).
Proposition 2.10. Let f ∈ C1,1(B(x0; r)), with B(x0; r) the open ball of cen-

ter x0 and radius r > 0. Then for sufficiently large λ > 0, we have that f(x0) =
Cl

λ(f)(x0).
Such a property motivates the definition of the multiscale ridge transform which

was introduced in [62] to extract ridges of general functions and shown to be invariant
with respect to translation. This multiscale ridge transform will be used in section 3
to define the multiscale medial axis map (see Definition 3.1).

Definition 2.11. Given λ > 0, the ridge transform of scale λ, for a given
function f : Rn �→ R satisfying (2.2), is defined as:

Rλ(f(x)) := f(x)− Cl
λ(f)(x), x ∈ R

n .

We now present some regularity properties of Cl
λ(dist

2(·; K)), which will be ex-
ploited to analyze the behavior of the multiscale medial axis map. We recall first the
following result given in [59, Lemma 4.3].

Lemma 2.12. Suppose f : Rn → R is convex and such that |f(x)| ≤ c|x|2 + c1
for x ∈ R

n with c, c1 > 0. Assume λ > 0 and define fλ = λ| · |2 − f . Then for λ > c,

(2.4) co[fλ](x+ y)− co[fλ](x) −D co[fλ](x) · y ≤ λ|y|2

for x, y ∈ R
n.

The next proposition improves a result in [59, Theorem 3.1].
Proposition 2.13. Suppose K ⊂ R

n is a nonempty closed set. Then for λ > 0,

Cl
λ(dist

2(·; K)) ∈ C1,1(Rn) .

Furthermore, the Lipschitz constant of the gradient DCl
λ(dist

2(·, K)) is at most
2max{1, λ}.

The next property is a useful inequality for the derivative of the lower transform,
DCl

λ(dist
2(·; K)).

Proposition 2.14. Suppose K ⊂ R
n is a nonempty closed set. Then

(2.5) |DCl
λ(dist

2(·; K))(x)|2 ≤ 4Cl
λ(dist

2(·; K))(x)

and equality holds in (2.5) if and only if Cl
λ(dist

2(·; K))(x) = dist2(x; K).

Remark 2.15. Given that u = dist2(·; K) is known to be a viscosity solution of
the Hamilton–Jacobi equation [43, 19]

(2.6) |Du|2 = 4u ,
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Propositions 2.13 and 2.14 together imply that the lower transform Cl
λ(dist

2(·; K)) is
a C1,1 subsolution of the Hamilton–Jacobi equation (2.6).

We next introduce the sets K(x) and K2,λ(x), which will be used to gain insight
into the geometric structure of Cl

λ(dist
2(·; K)).

Definition 2.16. Let K ⊂ R
n be a nonempty closed set. For any x ∈ R

n, let
r(x) = dist(x; K). We then define the following sets:

(2.7) K(x) =
{
x+ y ∈ R

n : x+ y ∈ ∂K and |y| = r(x)
}

and, for λ > 0,

(2.8) K2,λ(x) :=

{
x+

y

1 + λ
∈ R

n : x+ y ∈ ∂K and |y| = r(x)

}
.

Remark 2.17. If x �∈ K, the set K(x) is the set of points of ∂K that realize the
distance of x to K. Note also that it follows from (2.7) that K(x) = B(x; r(x)) ∩K,
so, in particular, K(x) is compact, and if x �∈ K, B(x; r(x)) ⊂ Kc.

The following result, obtained in the proof of [59, Theorem 3.7], gives an explicit
expression of the lower transform of dist2(·; K(x)), the squared distance to the set
K(x), and will be used to produce a bound on the multiscale medial axis map (see
Theorem 3.15(i)).

Proposition 2.18. Let K ⊂ R
n be a nonempty closed set and MK the medial

axis of K. Assume x ∈ MK and denote by K(x) and K2,λ(x) the sets defined by (2.7)
and by (2.8), respectively. Then, for all y ∈ R

n,

Cl
λ(dist

2(·; K(x)))(y) = (1 + λ)dist2(y; co[K2,λ(x)]) +
λ

1 + λ
r2(x) − λ|y − x|2,

where co[K2,λ(x)] is the convex hull of K2,λ(x).
We will also need, for the proof of Theorem 3.23, the following explicitly calculated

formula of the lower transform for compact sets contained in a sphere S(0; r) =
{x ∈ R

n, |x| = r} centered at 0 ∈ R
n with radius r > 0. The formula is easy to

derive following similar calculations to those in the proof of [60, Theorem 1] or of [59,
Theorem 5.1].

Proposition 2.19. Let K ⊂ S(0; r) be a nonempty compact set. Then for every
x ∈ R

n,

Cl
λ(dist

2(·; K))(x) =
λr2

1 + λ
+ (1 + λ)dist2

(
x; co

[
K

1 + λ

])
− λ|x|2,

where co[K/(1 + λ)] is the convex hull of K/(1 + λ) = {x/(1 + λ), x ∈ K}.
We will invoke the following technical lemma several times (see Lemma 3.2 in

[59]).
Lemma 2.20. Assume ρ > 0. Let K = Bc(0; ρ) = {x ∈ R

n, |x| ≥ ρ} be the
complement of the open ball B(0; ρ) with center the point 0 and radius ρ, then

Cl
λ(dist

2(·; K))(x) =

⎧⎪⎨
⎪⎩

λ

1 + λ
ρ2 − λ|x|2, |x| ≤ ρ

1 + λ
,

dist2(x; K), |x| ≥ ρ

1 + λ
.

In the next lemma, which generalizes slightly [59, Lemma 3.3], we give the ex-
pression of the lower transform of the squared distance to a set of two points. The
two points, without loss of generality, are assumed to lie along a basis vector of Rn,
specifically, along the basis vector e1 ∈ R

n. This lemma will be used extensively
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when we investigate the behavior of the multiscale medial axis map with respect to
perturbations of the boundary of K.

Lemma 2.21. Assume n ≥ 2 and let {e1, . . . , en} be an orthonormal basis of the
Euclidean space R

n. Let K = {−αe1, αe1}, where α > 0. We write y = e2y2 + · · ·+
enyn ∈ R

n−1 and represent the point xe1 + y ∈ R
n as the pair (x, y), which therefore

denotes the point (x, y2, . . . , yn) ∈ R
n. Then for every λ > 0, we have

Cl
λ(dist

2(·; K))(x, y) =

⎧⎪⎨
⎪⎩

λ

1 + λ
α2 − λx2 + |y|2 , |x| ≤ α

1 + λ
,

dist2((x, y); K) |x| ≥ α

1 + λ
.

In particular,

Cl
λ(dist

2(·; K))(0, y) =
λ

1 + λ
α2 + |y|2 < α2 + |y|2 = dist2((0, y); K) .

We conclude this section with the definition of δ-neighborhood of a set, of Haus-
dorff distance between two sets [6], and of ε-sample of a set [10].

Definition 2.22. Given a nonempty subset E of Rn and δ > 0, we define the
δ-neighborhood Eδ of E by

Eδ = {x ∈ R
n : dist(x; E) < δ}.

Note that Eδ is an open subset of Rn.
Definition 2.23. Let E, F be nonempty subsets of Rn. The Hausdorff distance

between E and F is defined in [6] by

distH(E,F ) = inf
{
δ > 0 : F ⊂ Eδ and E ⊂ F δ

}
.

This definition is also equivalent to saying that

distH(E,F ) = max

{
sup
x∈E

dist(x; F ), sup
x∈F

dist(x; E)

}
.

Definition 2.24. Let K be a compact subset of Rn. A sample S of the boundary
of K is a finite set of points of the boundary of K, i.e., S ⊂ ∂K and #(S) ∈ N where
#(S) denotes the cardinality of S. An ε-sample of ∂K is a sample whose Hausdorff
distance to ∂K is less than ε, that is, distH(S, ∂K) < ε.

A uniform ε-sample S of ∂K is an ε-sample of ∂K such that

distH(S, ∂K) < ε diam(K),

where the diameter of K, diam(K), is defined as

diam(K) = sup
x,y∈K

|x− y| .

3. The multiscale medial axis map. In this section, we define the quadratic
multiscale medial axis mapMλ(·;K), characterize some of its properties, and establish
its relation to the medial axis MK . As a by-product, we also infer sharp regularity
results for the squared-distance function dist2(·;K), which are of independent interest.

Definition 3.1. Let K ⊂ R
n be a nonempty closed set. The quadratic multiscale

medial axis map of K (medial axis map for short) with scale λ > 0 is defined for
x ∈ R

n by
(3.1)

Mλ(x; K) := (1+λ)Rλ(dist
2(·; K))(x) = (1+λ)

(
dist2(x; K))−Cl

λ(dist
2(·; K)))(x)

)
.

For a bounded open set Ω ⊂ R
n with boundary ∂Ω, we define the quadratic multiscale
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medial axis map of Ω with scale λ > 0 as

Mλ(x; Ω) := Mλ(x; ∂Ω) x ∈ Ω.

Remark 3.2.

(a) The convergence of the lower transform to the original function as λ → ∞
yields that limλ→∞ Rλ(dist

2(·; K))(x) = 0, implying that the values of the ridge
transform can be very small when λ > 0 is large. To make the height of our medial
axis map on the medial axis bounded away from zero, we thus need to scale the
ridge transform. The factor (1 + λ) turns out to be the “right” scaling factor, as will
be justified in Theorem 3.15 below, where it will be shown that on the medial axis
MK , the medial axis map Mλ(x; K) is bounded both above and below by quantities
independent of λ.

(b) The quadratic multiscale medial axis map can also be seen as a morpho-
logical operator [48], equal to the scaled top-hat transform of the squared-distance
transform with quadratic structuring function. Letting f(x) = dist2(x; K) and
bλ(x) = −λ|x|2, it can be shown that the lower transform corresponds to the grayscale
opening operator with quadratic structuring function [62]; i.e.,

Cl
λ(f) =

(
f � bλ

)⊕ bλ ,

and thus,

Mλ(·; K) = (1 + λ)

[
f − (

f � bλ
)⊕ bλ

]
.

Notwithstanding such an interpretation, it is convenient to view Definition 3.1 in
terms of the lower compensated convex transform. The exploitation of properties of
such transforms permits a relatively easy evaluation of the geometrical properties of
Mλ(·; K) and also permits an easy numerical realization of Mλ(·; K). This relies on
the availability of numerical schemes for computing the lower transform of a given
function, which entails the availability of schemes to compute the convex envelope
of a function. We refer to [64] for the algorithmic and implementation details of the
schemes for realizing the lower transform of a function.

We begin with a key quantitative estimate of the tight approximation of the
squared distance function dist2(·;K) by its lower transform Cl

λ(dist
2(·; K)). This

result not only underpins our study of the rôle of Mλ in characterizing the medial
axisMK , but also yields improved locality and regularity properties of Cl

λ(dist
2(·; K))

and dist2(·;K), respectively (see Corollaries 3.6, 3.8, and 3.13), which are of interest
in their own right.

Theorem 3.3. Let K ⊂ R
n be a nonempty closed set and denote by MK the

medial axis of K. Suppose MK �= ∅, λ > 0, assume x ∈ R
n \MK , and let Mλ(x; K)

be the multiscale medial axis map of K with scale λ. If

(3.2) λ ≥ dist(x; K)

dist(x; MK)
,

then

dist2(x; K) = Cl
λ(dist

2(·; K))(x)

and, consequently,
Mλ(x; K) = 0.

Remark 3.4. Note that MK = ∅ if and only if K is convex (see, for exam-
ple, [33, Theorem 2.21]), in which case dist2(·; K) is convex and, therefore, equals
Cl

λ(dist
2(·; K)) in R

n for all λ > 0.
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Now assume λ > 0 and introduce the set

(3.3) Vλ,K = {x ∈ R
n : λdist(x; MK) ≤ dist(x; K)} .

Clearly MK ⊂ Vλ,K , so this defines a “neighborhood” of the medial axis MK of K
(note that it is possible that MK ∩K �= ∅, so Vλ,K is not necessarily a neighborhood
in the strict sense), and Vλ,K is a closed set. Moreover, as λ > 0 increases, Vλ,K

describes a family of shrinking sets such that

(3.4)
⋂
λ>0

Vλ,K = MK ,

and if we take the support of the multiscale medial axis map, Theorem 3.3 yields that

(3.5) spprt(Mλ(·; K)) ⊂ Vλ,K .

With the help of (3.5), we can show the following result that characterizes MK

in terms of spprt(Mλ(·; K)).
Corollary 3.5. Suppose K ⊂ R

n is a nonempty closed set and MK �= ∅. Then⋂
0<λ<+∞

spprt(Mλ(·; K)) = MK .

An important consequence of Theorem 3.3 is the following locality property of the
lower transform of the squared-distance function. This result is also of independent
interest, in particular, because it quantifies the size of neighborhood needed to evaluate
Cl

λ(dist
2(·;K)), and also because it will be exploited in the proofs of Theorem 3.15

and Proposition 3.20 to establish results characterizing the properties of Mλ(·;K).
Corollary 3.6 (locality property). Suppose K ⊂ R

n is a nonempty closed set.
Then for every x0 ∈ R

n,

Cl
λ(dist

2(·; K))(x0) = coB(x0; r(x0))
[dist2(·; K) + λ|(·) − x0|2](x0),

where

r(x0) :=
2

λ
dist(x0; K) .

Remark 3.7.

(a) Corollary 3.6 improves the result in [38], where the radius of the ball for the
locality property is r(x0) = 6 dist(x0; K)/

√
λ for λ > 2.

(b) In [38], it was also established that x0 ∈ R
n is a stationary point of

Cl
λ(dist

2(·; K)) if and only if x0 ∈ co[K(x0)]. We will see that the “only if” part
of this result is a consequence of arguments from the proof of Theorem 3.3; see Re-
mark 6.1.

Theorem 3.3 can also be combined with Proposition 2.13 to yield a regularity
property of the distance transform, which can be viewed as a weak version of the
Lusin theorem for the squared-distance function.

Corollary 3.8. Assume λ > 0. Let K ⊂ R
n be a nonempty closed set and Vλ,K

the neighborhood of MK defined by (3.3). Then

dist2(·; K) ∈ C1,1(Rn \ Vλ,K) .
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Furthermore, for all x, y ∈ R
n \ Vλ,K

(3.6)
|Ddist2(y, K)−Ddist2(z, K)|

|y − z| ≤ 2max{1, λ} .

Remark 3.9. It follows from Corollary 3.8 and Stepanov’s theorem [35, 42] that
the Hessian of dist2(·; K) exists almost everywhere in R

n \MK .
Both estimate (3.2) in Theorem 3.3 and estimate (3.6) for the Lipschitz constant

in Corollary 3.8 (when λ ≥ 1) are, in fact, sharp, as the following example shows.
Example 3.10. Consider K = (−1, 1)c = R \ (−1, 1) ⊂ R. Then MK = {0} and

for λ > 0,

Cl
λ(dist

2(·; K))(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ

λ+ 1
− λx2, |x| ≤ 1

λ+ 1
,

dist2(x; K),
1

λ+ 1
≤ |x| ≤ 1,

0, |x| ≥ 1.

As a result, dist2(x; K) = Cl
λ(dist

2(·; K))(x) if and only if |x| ≥ 1/(λ+1). Moreover,
for this example we have that dist(x; MK) = |x|, whereas dist(x; K) = 1 − |x| if
|x| ≤ 1 and dist(x; K) = 0 if |x| ≥ 1. Therefore (3.2) holds if |x| ≥ 1. If 0 < |x| < 1,
(3.2) is given by

λ|x| ≥ 1− |x| ⇔ |x| ≥ 1/(1 + λ) ,

which shows that estimate (3.2) is sharp for K = (−1, 1)c.
Furthermore, for x± := ±1/(λ+ 1),

Ddist2(x±, K) = ∓4λ/(1 + λ), |x+ − x−| = 2/(1 + λ),

so that

|Ddist2(x+, K)−Ddist2(x−, K)|
|x+ − x−| = 2λ .

Thus we can also conclude that estimate (3.6) of Corollary 3.8 is sharp when λ ≥ 1.
We cover next the case of a bounded open set Ω ⊂ R

n, giving a precise statement
about equality of the medial axis maps Mλ(x; Ω

c) and Mλ(x; ∂Ω), followed by a
modification of Corollary 3.8.

Proposition 3.11. Suppose Ω ⊂ R
n is a nonempty bounded open set and let

λ > 0. Then

(3.7) Cl
λ(dist

2(·; ∂Ω))(x) = Cl
λ(dist

2(·; Ωc))(x), x ∈ Ω,

and, consequently,

(3.8) Mλ(x; ∂Ω) = Mλ(x; Ω
c), x ∈ Ω.

Remark 3.12.

(a) Property (3.8) of the medial axis map is important in many practical situ-
ations. For example, in image processing, the objects Ω of which we wish to find the
medial axis might be defined by taking a threshold from a grayscale image, that is, as
a suplevel set of the image function. The object is then represented by a binary image
rather than by its boundary. Therefore, in this case, it might be more convenient for
us to compute numerically the medial axis map Mλ(x; Ω

c) rather than Mλ(x; ∂Ω).
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(b) It is worth noting the different qualitative behavior of the convex envelope
and the compensated convex transform that appears in (3.7). For λ > 0, the left-hand
side of (3.7) is always positive in R

n \ Ω whereas the right-hand side equals zero in
Ωc. By setting λ = 0, the left-hand side of (3.7) reduces to the the convex envelope of
dist2(x; ∂Ω), which vanishes in the convex hull co[Ω] of the closure of Ω, whereas the
right-hand side of (3.7) gives the convex envelope of dist2(x; Ωc), which is identically
zero in R

n.
For a bounded open set Ω, Corollary 3.8 modifies as follows.
Corollary 3.13. Let Ω ⊂ R

n be a bounded nonempty open set. Then

dist2(·; Ωc) ∈ C1,1(Ω \Wλ,Ω) ,

where

Wλ,Ω :=

{
x ∈ Ω, dist(x;MΩc) ≤ diam(Ω)

λ

}
,

and diam(Ω) is the diameter of Ω. Furthermore, for all x, y ∈ Ω \Wλ,Ω,

|Ddist2(y, Ωc)−Ddist2(z, Ωc)|
|y − z| ≤ 2max{1, λ} .

A consequence of Corollary 3.13 is that outside any neighborhood of Wλ,Ω,
dist2(·; Ωc) is a C1,1 function. However, we also notice that MK can have posi-
tive n-dimensional Lebesgue measure. Therefore the measure of Wλ,Ω might not be
small even when λ > 0 is large. Corollaries 3.8 and 3.13 also demonstrate that the
lower transform can be viewed as a C1,1 extension of the squared-distance function
from the set V c

λ,K , on which dist2(·;K) = Cl
λ(dist

2(·;K)), to R
n and from Ω \Wλ,Ω

to Ω, respectively.
Theorem 3.3 showed that if x �∈ MK , then Mλ(x;K) = 0 when λ is sufficiently

large. We now further explore the relationship between the medial axis map Mλ(·;K)
and the medial axis MK , both establishing λ-independent positive upper and lower
bounds onMλ(x; K) whenever x ∈ MK , and fully characterizing the limit ofMλ(·;K)
as λ → ∞. The following geometric structure will play a key rôle in both Theo-
rems 3.15 and 3.23.

Definition 3.14. Let K ⊂ R
n be a nonempty closed set and for x ∈ R

n, denote
by K(x) the set defined by (2.7), that is, K(x) = B(x; r(x)) ∩ K, and denote by
co[K(x)] the convex hull of K(x). The quadratic multiscale medial axis landscape
map of K is defined for x ∈ R

n by

(3.9) M∞(x; K) := dist2(x; K)− dist2(x; co[K(x)]) .

It is straightforward to see that M∞(x;K) = 0 if x �∈ MK but M∞(x;K) > 0
for all x ∈ MK . Indeed, if x �∈ MK , then there exists y ∈ K such that K(x) =
{y} = co[K(x)] and dist2(x;K) = |x− y|2, thus M∞(x;K) = 0. On the other hand,
if x ∈ MK , then there exist distinct y1, y2 ∈ K(x), so since y1+y2

2 ∈ co[K(x)], we have

M∞(x;K) ≥ 1
2 |x− y1|2 + 1

2 |x− y2|2 − |x− y1+y2

2 |2 = 1
4 |y1 − y2|2 > 0.

The next result establishes key bounds on Mλ(·,K).
Theorem 3.15. Let K ⊂ R

n be a nonempty closed set, and denote by MK the
medial axis of K and by M∞(x; K) the quadratic multiscale medial axis landscape
map defined by (3.9).
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(i) For every λ > 0 and every x ∈ MK ,

(3.10) M∞(x; K) ≤ Mλ(x; K) ≤ dist2(x; K) .

(ii) For every λ > 0 and for every x ∈ R
n,

0 ≤ Mλ(x; K) ≤ dist2(x; K) .

The lower bound in (3.10) can be expressed in terms of the separation angle
which has been used, for instance, in [52], for a local geometrical characterization of
the medial axis.

Definition 3.16. Let K ⊂ R
n be a nonempty closed set and denote by MK the

medial axis of K. For x ∈ MK , let y1, y2 ∈ K(x) and denote by ∠[y1 − x, y2 − x] the
angle between the two nonzero vectors y1 − x and y2 − x, taken between 0 and π, i.e.,

∠[y1 − x, y2 − x] = cos−1 (y1−x)·(y2−x)
|y1−x||y2−x| . We then define the separation angle θx for

x ∈ MK as follows:

θx = max
{
∠[y1 − x, y2 − x], y1, y2 ∈ K(x)

}
.

Remark 3.17. Recall from Remark 2.17 that K(x) is compact and hence the
supremum of the set {∠[y1 − x, y2 − x], y1, y2 ∈ K(x)} is realized by a pair of
distinct points of K(x).

Proposition 3.18. Let K ⊂ R
n be a nonempty closed set, and denote by MK

the medial axis of K. Then for every λ > 0 and x ∈ MK,

(3.11) sin2(θx/2)dist
2(x; K) ≤ Mλ(x; K) ≤ dist2(x; K) .

Remark 3.19.

(a) For a limit point x ∈ MK \MK , we have either x ∈ K or θx = 0, and the
estimate (3.11) is valid also in this case.

(b) Since the bounds in (3.11) are independent of λ, we have that for x ∈ MK ,

sin(θx/2) dist
2(x; K) ≤ lim inf

λ→+∞
Mλ(x; K) ≤ lim sup

λ→+∞
Mλ(x; K) ≤ dist2(x; K) .

(c) Since for x ∈ MK , there are at least two different points y1, y2 ∈ ∂B(x; r(x))
∩K, it follows that θx > 0 and, hence, comparing with (3.11), we have Mλ(x; K) > 0
for x ∈ MK .

The next result gives the limit behavior of Mλ(x; K) as λ → ∞ for x �∈ MK .
Proposition 3.20. Let K ⊂ R

n be a nonempty closed set and denote by MK

the medial axis of K. Assume λ > 0 and denote by Mλ(x; K) the medial axis map of
K of scale λ. Then for x ∈ R

n \MK,

(3.12) lim
λ→+∞

Mλ(x; K) = 0 .

Remark 3.21. Theorem 3.3 clearly implies (3.12) in the special case that x �∈
MK . But the set MK \ (MK ∪K) may not be empty and we do not know whether
Mλ(x, K) > 0 for all λ > 0 for x ∈ MK \ (MK ∪K). So Proposition 3.20 is needed
for the proof of the general characterization of limλ→∞ Mλ(·; K) that will be given
in Theorem 3.23.

Remark 3.22. By Propositions 3.18 and 3.20, we have

lim inf
λ→+∞

Mλ(x; K)

{
> 0 if x ∈ MK ,

= 0 if x �∈ MK .
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This implies that the limit of Mλ(x; K) can extract exactly the medial axis of K. If
we apply a slightly weaker scaling to the ridge transform, say (1+ x)α for 0 < α < 1,
and define Mα

λ (x; K) = (1 + x)αRλ(dist
2(·; K))(x), we have

lim inf
λ→+∞

Mα
λ (x; K)

{
+∞ if x ∈ MK ,

= 0 if x �∈ MK ,

that is, Mα
λ (x; K) approaches the indicator function of MK [36] as λ becomes large.

We can now characterize the limit of Mλ(x; K) as λ → +∞ for all x ∈ R
n.

Theorem 3.23. Suppose K ⊂ R
n is a nonempty closed set. Then for every

x ∈ R
n,

lim
λ→+∞

Mλ(x; K) = M∞(x; K) .

From Theorem 3.3, Corollary 3.8, and Theorem 3.23, it follows that when λ >
0 is increasing, the support of Mλ(·; K) is contained in a shrinking neighborhood
of MK and approaches the multiscale medial axis landscape map M∞(x; K). The
numerical advantage of studying Mλ(·; K) as an approximation of the multiscale
medial axis landscape map M∞(·; K) is that it relies only on the computation of
the lower compensated convex transform of the squared-distance transform, whose
construction is local by virtue of Corollary 3.6, whereas the computation of M∞(·; K)
is difficult because we need to evaluate the convex hull co[K(x)]).

Remark 3.24. A further consequence of Theorem 3.23 is that for every fixed
x ∈ R

n and for every nonempty closed set K ⊂ R
n, the family of lower transforms

λ �→ Cl
λ(dist

2(·; K))(x) is “differentiable” at infinity. If we let ε = 1/λ, g(ε; x) =
Cl

1/ε(dist
2(·; K))(x), and g(0; x) = limε→0 g(ε; x) = dist2(x; K), then

lim
ε→0+

g(ε; x)− g(0; x)

ε
= −M∞(x; K) ,

so we have the asymptotic expansion

Cl
λ(dist

2(·; K))(x) = dist2(x; K)− M∞(x; K)

1 + λ
+ o

(
1

1 + λ

)

when λ → ∞.
Remark 3.25. In general, x �→ dist2(x; co[K(x)]) is not continuous in R

n as x
approaches the medial axis MK . But from Theorem 3.23, we can show that for every
x ∈ R

n,

(3.13) lim
λ→+∞

{
(1 + λ)Cl

λ(dist
2(·; K))(x) − λdist2(x; K)

}
= dist2(x; co[K(x)])

using the equality

dist2(x; K)−Mλ(x; K) = (1 + λ)Cl
λ(dist

2(·; K))(x)− λdist2(x; K) .

For large λ > 0, (3.13) can be viewed as an approximation of dist2(x; co[K(x)]) by
continuous functions. The function dist(x; co[K(x)]) has been used, for instance, for
surface reconstruction when K ⊂ R

3 is finite [25]. While it is difficult, in general, to
calculate dist2(x; co[K(x)]) directly, we see from (3.13) that the numerical computa-
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tion of Cl
λ(dist

2(·; K))(x), whose evaluation involves only local convex envelope calcu-
lations because of Corollary 3.6, offers an easy approximation of dist2(x; co[K(x)]).

We conclude this section by observing briefly that, based on the estimates of
Theorem 3.15 and Proposition 3.18, it is reasonable to define an alternative medial
axis map by taking the square root of Mλ(x; K).

Definition 3.26. We define the multiscale medial axis map of linear growth
(linear medial axis map for short) by

M1
λ(x; K) :=

√
Mλ(x; K)

for x ∈ R
n.

From Proposition 3.18, we obtain that the height of this linear medial axis map
is “proportional” to the distance function itself; that is, for λ > 0, we have

sin(θx/2) dist(x; K) ≤ M1
λ(x; K) ≤ dist(x; K) for x ∈ MK

and

0 ≤ M1
λ(x; K) ≤ dist(x; K) for x ∈ R

n .

Note that the linear medial axis mapM1
λ(x; K) is different from a definition based

on the lower compensated convex transform for the distance function dist(x; K) itself,
i.e., based on Rλ(dist(·; K)). Of course, we can define such maps using the p-distance
function distp(x; K) for any 1 ≤ p < ∞. But in this paper, we focus mainly on the
medial axis map Mλ(·;K) defined using the squared-distance function, i.e., for p = 2,
in which case the geometry of Mλ(x; K) is easy to control. For instance, as we will
see in the next section, Mλ(x; K) has the same height along the parts of the medial
axis generated by two points. This is a key property when one looks for approximate
medial axes by applying the Voronoi diagram method of finite ε-samples.

4. Hausdorff stability. Quantifying the instability of the medial axis is of fun-
damental importance for both theory and computation. This aspect becomes more
and more relevant in practice nowadays, given that point clouds are increasingly being
used for geometric modeling over a wide range of applications. Moreover, there are
computational approaches, such as the Voronoi diagram method, which search for a
continuous approximation of the medial axis of a shape starting from subsets of the
Voronoi diagram of a sample of the shape boundary. The presence of noise on the
boundary, and/or the discrete character of samples of the boundary shape thus call
for methods that permit the control of the parts of the medial axis which are not
stable. In this section, we will discuss how this aspect is tackled by the multiscale
medial axis map. In the first part of the section, we examine the values of Mλ(·; K)
when the distance of the point to the boundary of the set is achieved by two points,
whereas in the second part we discuss the Hausdorff stability of Mλ(·; K).

Proposition 4.1. Assume n ≥ 2 and let {e1, . . . , en} be an orthonormal basis
of the Euclidean space R

n. Let K = {−αe1, αe1}, where α > 0. We write y = e2y2+
· · ·+enyn ∈ R

n−1 and represent the point xe1+y ∈ R
n as the pair (x, y) ∈ R×R

n−1,
which therefore denotes the point (x, y2, . . . , yn) ∈ R

n. Then for every λ > 0, we have

Mλ((x, y); K) =

⎧⎪⎨
⎪⎩

(1 + λ)2
(
|x| − α

1 + λ

)2

, |x| ≤ α

1 + λ
,

0 , |x| ≥ α

1 + λ
.
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Remark 4.2. The medial axis map Mλ((x, y); K) reaches its maximum on the
medial axis of K, at the point (0, y) = y2e2 + · · ·+ ynen ∈ R

n−1, attaining the value
Mλ((0, y); K) = α2. Note that α > 0 is half the distance between the two points −αe1
and αe1 of K. Another important observation is that Mλ((x, y); K) is a function of
the x-variable only, and does not change its height along the y direction. Therefore,
on branches of the medial axis generated by two points, the height remains the same.
If α is small (equivalently, the two points in K are close to each other), the values of
Mλ((x, y); K) will be uniformly small.

We next give the Hausdorff stability property of the multiscale medial axis map,
followed by some comments on implications of this property for the localization of the
medial axis of a domain.

Theorem 4.3. Assume λ > 0. Let K, L ⊂ R
n be nonempty compact sets. Then

as L → K under the Hausdorff distance, Mλ(·; L) → Mλ(·; K) uniformly in every
fixed bounded set in R

n. More precisely, if we let μ := distH(K, L) be the Hausdorff
distance between K and L, then for x ∈ R

n,

(4.1)
∣∣∣Cl

λ(dist
2(·; K))(x) − Cl

λ(dist
2(·; L))(x)

∣∣∣ ≤ μ
(
(dist(x; K) + μ)2 + 1 + μ

)
and

(4.2)
∣∣∣Mλ(x; K)−Mλ(x; L)

∣∣∣ ≤ μ(1+λ)
(
(dist(x; K)+μ)2+2dist(x; K)+2μ+1

)
.

Remark 4.4.

(a) From Theorem 4.3 we also conclude that for any compact sets K1, K2∣∣∣Mλ(x; K1)−Mλ(x; K2)
∣∣∣ ≤ min

i=1,2

{
μ(1+λ)

(
(dist(x; Ki)+μ)2+2dist(x; Ki)+2μ+1

)}
,

which shows that the medial axis map is uniformly continuous on compact sets with
respect to the Hausdorff metric.

(b) While the medial axis of K is not a stable structure with respect to the
Hausdorff distance, its medial axis map Mλ(x; K) is by contrast a stable structure.
This result complies with (4.2) which shows that as λ becomes large, the bound in
(4.2) becomes large.

As an immediate consequence of Theorem 4.3 we have the following result, which
relates the medial axis map of the boundary of a domain Ω with that of its ε-samples
Kε.

Corollary 4.5. Assume λ > 0. Let Ω ⊂ R
n be a bounded open set with diameter

diam(Ω). Suppose Kε ⊂ R
n is a compact set such that distH(∂Ω, Kε) ≤ ε. Then for

x ∈ R
n∣∣∣Cl

λ(dist
2(·; ∂Ω))(x) − Cl

λ(dist
2(·; Kε))(x)

∣∣∣ ≤ ε
(
(diam(Ω) + ε)2 + 1 + ε

)
,

and ∣∣∣Mλ(x; ∂Ω)−Mλ(x; Kε)
∣∣∣ ≤ ε(1 + λ)

(
(diam(Ω) + ε)2 + 2 diam(Ω) + 2ε+ 1

)
for all x ∈ Ω.

Remark 4.6.

(a) If we consider an ε-sampleKε of ∂Ω, that is, a discrete set of points such that
distH(∂Ω,Kε) ≤ ε, Corollary 4.5 yields a simple criterion that permits the suppression
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Fig. 2. Multiscale medial axis map of a nonconvex domain Ω and of an ε-sample Kε of its
boundary. (a) Graph of Mλ(·; Ω) for λ = 5; (b) graph of Mλ(·; Kε); (c) support of Mλ(·; Ω); (d)
suplevel set of Mλ(x; Kε) for a threshold equal to 0.15maxx∈R2{Mλ(x; Kε)}.

of those parts of the Voronoi diagram of Kε that are not related in the limit, as ε → 0,
to the stable parts of the medial axis of Ω.

(b) Since the medial axis of Kε is the Voronoi diagram of Kε, if Vε denotes the
set of all the vertices of the Voronoi diagram Vor(Kε) of Kε, and Pε is the subset of
Vε formed by the poles of Vor(Kε) introduced in [7], (i.e., those vertices of Vor(Kε)
that converge to the medial axis of Ω as the sample density approaches infinity), then
as a result of Proposition 3.20, for λ > 0, we conclude that

lim
ε→0+

Mλ(xε; Kε) = 0 for xε ∈ Vε \ Pε .

Since as ε → 0+, Kε → ∂Ω, and knowing that Pε → MΩ [8, 15], then on the vertices of
Vor(Kε) that do not tend to MΩ, Mλ(xε; Kε) must approach zero in the limit because
of Proposition 3.20. As a result, in the context of the methods of approximating the
medial axis starting from the Voronoi diagram of a sample (such as those described
in [8, 25, 26, 50]), the use of the multiscale medial axis map offers an alternative
and much easier tool to construct continuous approximations to the medial axis with
guaranteed convergence as ε → 0+.

With the aim of giving insight into the implications of the Hausdorff stability
of Mλ(x; ∂Ω) and Corollary 4.5, we display in Figure 2 the graph of the multiscale
medial axis map of a nonconvex domain Ω and of an ε-sample Kε of its boundary.
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Inspection of the graph of Mλ(x; ∂Ω) and Mλ(x; Kε), displayed in Figures 2(a) and
2(b), reveals that both functions take comparable values along the main branches of
MΩ. Also, Mλ(x; Kε) takes small values along the secondary branches, generated
by the sampling of the boundary of Ω. These values can therefore be filtered out
by simple thresholding so that a stable approximation of the medial axis of Ω can
be computed. This can be appreciated by looking at Figure 2(d), which displays
a suplevel set of Mλ(x; Kε) that appears to be a reasonable approximation of the
support of Mλ(x; ∂Ω) shown in Figure 2(c).

5. Examples of exact medial axis maps and their supports. In this section
we illustrate the behaviors of our multiscale medial axis map for some two dimensional
geometric objects K, for which it is possible to obtain an explicit analytical expression
for Mλ(x; K). Thanks to the translation and the partial rotation invariance property
of the convex envelope [62, Propositions 2.3, 2.10], it is then possible to derive an
explicit analytical expression for Mλ(x; K) in the case that K is a three dimensional
solid obtained by, for instance, rotations or translations of the models considered in
this section. For the sake of conciseness, we leave the derivations to interested readers.

Though the derivation here is limited only to two dimensional geometric models,
these models retain, nevertheless, their basic geometric features, because they are able
to show that Mλ(x; K) can, in fact, provide an accurate and stable way to find MK ,
the medial axis of K, and represents likewise an effective tool to analyze the geometry
and structure of MK . We will also see how it is possible to select either the main
stable parts of MK or to locate its fine parts by using suplevel sets of Mλ(x; K).

Example 5.1. We consider the case of a four-point set K ⊂ R
2 defined as follows.

Let b, ε > 0 with ε ∈ (0, 1), set c = εb. Define, then,

K = {(b, c), (b,−c), (−b, c), (−b,−c)} .

For this set, we have

dist2((x, y); K) = (|x| − b)2 + (|y| − c)2

and, after some lengthy calculations based on the construction of affine functions, we
can show that the lower transform can be expressed as

Cl
λ(dist

2(·; K))(x, y) = (1 + λ)g(x, y) +
λ

1 + λ
(b2 + c2)− λ(x2 + y2) ,

where the auxiliary function g = g(x, y) is a continuous piecewise quadratic function
defined as follows:

g(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |x| ≤ b

1 + λ
, |y| ≤ c

1 + λ
,(

|x| − b

1 + λ

)2

if |x| ≥ b

1 + λ
, |y| ≤ c

1 + λ
,(

|y| − c

1 + λ

)2

if |x| ≤ b

1 + λ,
|y| ≥ c

1 + λ
,(

|x| − b

1 + λ

)2

+

(
|y| − c

1 + λ

)2

if |x| ≥ b

1 + λ
, |y| ≥ c

1 + λ
.
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The multiscale medial axis map Mλ(x; K) is then computed using the definition (3.1).
In particular, for this example, after some algebraic rearrangement, it is possible to
show that since all four points in K lie on a circle centered at the origin, the medial
axis map of K can be expressed as

(5.1) Mλ((x, y); K) = (1+λ)2
(
dist2((x, y); K/(1+λ))−dist2((x, y); co(K)/(1+λ))

)

for (x, y) ∈ R
2, where for Z ⊂ R

n and α ∈ R\{0}, we use the notation Z/α to denote
the set {w ∈ R

n : w = z/α for z ∈ Z}. By a closer inspection of (5.1), we can make
then the following observations:

(i) The support of Mλ(·; K) is

spprt(Mλ(·; K)) =

{
(x, y) ∈ R

2 : |x| ≤ 2b

1 + λ
or |y| ≤ 2εb

1 + λ

}
.

The “thickness” of the support for the main branch y-axis is, therefore, 2b/(1 + λ)
while that for the minor branch x-axis is 2εb/(1 + λ).

(ii) The height of the medial axis map along the main branch y-axis when |y| ≥
εb/(1 + λ) is b2 while the value along the x-axis when |x| ≥ b/(1 + λ) is ε2b2.

(iii) At the only Voronoi vertex 0 of the Voronoi diagram of K, the value is
Mλ(0; K) = b2(1 + ε2).

Figure 3 displays the graph of Mλ(x; K) as given by (5.1) for different values of
λ and for the set K defined by b = 2 and ε = 0.5. For each value of λ, we can easily
verify the presence of two scales in Mλ(x; K): a strong one which is reflected by the
values of Mλ(x; K) along the y-axis generated by the two-point set {(−b, c), (b, c)}
and a weak one captured by the value of Mλ(x; K) along the x-axis generated by the
two-point set {(b, −c), (−b, −c)}. In agreement with our theoretical results, we also
verify that the support of the continuous function Mλ(x; K) contains the medial axis
of K, given by the Voronoi diagram of K in this case, and such support shrinks to
MK as λ increases.

Example 5.2. In this example, we consider first the case of the open set Ωs =
(−r,∞) × (−r, r) with r > 0, whose results will be used to construct the multiscale
medial axis map of a rectangular domain. By inspection, we can easily infer that

(5.2) dist2((x, y); ∂Ωs) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(|y| − r)2 if x ≥ 0 ,

(|y| − r)2 if − r ≤ x ≤ 0, |y| ≥ |x| ,
(|x| − r)

2
if − r ≤ x ≤ 0, |y| ≤ |x| ,

(|x| − r)
2

if x ≤ −r, |y| ≤ r ,

(|x| − r)
2
+ (|y| − r)

2
if x ≤ −r, |y| ≥ r ,

whereas the lower transform, obtained after lengthy calculations based on the con-
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Fig. 3. Graph of Mλ(·; K) for the four-point set K = {(b, c), (b,−c), (−b, c), (−b,−c)} with
b = 2 and c = εb = 1, for different values of λ: (a) λ = 0.25; (b) λ = 4; (c) λ = 8; (d) λ = 15.

struction of affine functions, is given, for (x, y) ∈ Ωs by

(5.3)

Cl
λ(dist

2(·; ∂Ωs))(x, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(x+ r, y + r) if − r ≤ x ≤ 0, −r ≤ y, x+ y ≤ − r

1 + λ
,

g(x+ r, r − y) if − r ≤ x ≤ 0, −r ≤ −y, x− y ≤ − r

1 + λ
,

r2
λ

1 + λ
− λ(x2 + y2) if x ≤ 0, − r

1 + λ
≤ x+ y, − r

1 + λ
≤ x− y ,

r2
λ

1 + λ
− λy2 if x ≥ 0, |y| ≤ r

1 + λ
,

(|y| − r)
2

if x ≥ 0,
r

1 + λ
≤ |y| ,

(|y| − r)2 if x ≥ −r, |y| ≥ r ,

(|x| − r)
2

if x ≤ −r, |y| ≤ r ,

(|x| − r)
2
+ (|y| − r)

2
if x ≤ −r, |y| ≥ r ,
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where the auxiliary function g = g(x, y) is a continuous piecewise quadratic function
defined as follows:

g(x, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 if x ≤ λ

1 + λ
, x ≥ 0, y ≥ 0 ,

y2 if y ≤ xλ

1 + λ
, y ≥ 0, x ≥ 0 ,

λ

1 + λ

(
(x+ y)

1 + λ

2λ+ 1

)2

−λ

((
x− (x+ y)

1 + λ

2λ+ 1

)2

+

(
y − (x+ y)

1 + λ

2λ+ 1

)2
)

if
xλ

1 + λ
≤ y ≤ x(1 + λ)

λ
, y ≥ 0, x ≥ 0 ,

x2 if x ≤ 0, y ≥ 0 ,

y2 if x ≥ 0, y ≤ 0 ,

x2 + y2 if x ≤ 0, y ≤ 0 .

The multiscale medial axis map of Ωs, Mλ((x, y); Ωs), is obtained by applying
definition (3.1) and by taking into account (5.2) and (5.3). By exploiting proper-
ties of the lower transform with respect to symmetry and translation of axes, we
can then easily obtain the analytical expression for the multiscale medial axis map
of a rectangular domain. If, for instance, we consider the open bounded set Ω =
(−(r + r

2 ), r +
r
2 )× (−r, r), then it is not difficult to show that

Mλ((x, y); Ω) =

⎧⎪⎪⎨
⎪⎪⎩

Mλ

((
x+

r

2
, y

)
; Ωs

)
if x ≤ 0 ,

Mλ

((
−x+

r

2
, y

)
; Ωs

)
if x ≥ 0 .

Figure 4(a) displays the support of Mλ((x, y); Ω) which is a neighborhood of the
medial axis, whereas Figure 4(b) depicts the graph of Mλ((x, y); Ω). For the points
(x, y) ∈ MΩ with θx = π, it follows thatMλ((x, y); Ω) = dist2((x, y); ∂Ω), so implying
that in this sense, the upper bound in (3.11) is sharp.

Example 5.3. We consider now the oval shaped domain Ω ⊂ R
2 made by the

union of two semicircles with center at the points (−r/2, 0) and (r/2, 0) and radius
r/2, respectively, and the rectangle (−r/2, r/2)× (−r/2, r/2). For this domain, it is
not difficult to verify that

(5.4) dist2((x, y); ∂Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(|y| − r)2 if |x| ≤ r

2
,

(√(
x+

r

2

)2

+ y2 − r

)2

if x+
r

2
≤ 0 ,

(√(
x− r

2

)2

+ y2 − r

)2

if x− r

2
≥ 0 ,

whereas the lower transform, obtained after some lengthy calculations based on the
construction of affine functions, is given, for (x, y) ∈ Ω, by
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Fig. 4. Multiscale medial axis map of Ω = (−(r + r
2
), r + r

2
)× (−r, r) for λ = 10: (a) graph of

Mλ((x, y); Ω) for λ = 10; (b) domain Ω displayed along with the support of Mλ((x, y); Ω).

(5.5)

Cl
λ(dist

2(·; ∂Ω))(x, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λr2

1 + λ
− λ

((
x+

r

2

)2

+ y2
)

if

√(
x+

r

2

)2

+ y2 ≤ r

1 + λ
, x+

r

2
≤ 0 ,(√(

x+
r

2

)2

+ y2 − r

)2

if

√(
x+

r

2

)2

+ y2 ≥ r

1 + λ
, x+

r

2
≤ 0 ,

λr2

1 + λ
− λ

((
x− r

2

)2

+ y2
)

if

√(
x− r

2

)2

+ y2 ≤ r

1 + λ
, x− r

2
≥ 0 ,(√(

x− r

2

)2

+ y2 − r

)2

if

√(
x− r

2

)2

+ y2 ≥ r

1 + λ
, x− r

2
≥ 0 ,

λr2

1 + λ
− λy2 if |y| ≤ r

1 + λ
, |x| ≤ r

2
,

(|y| − r)
2

if |y| ≥ r

1 + λ
, |x| ≤ r

2
.

Figure 5(a) displays the graph of Mλ((x, y); Ω) obtained by applying definition (3.1)
where we account for (5.4) and (5.5), whereas Figure 5(b) shows the support of
Mλ((x, y); Ω) along with the domain Ω.

In the following example we describe the behavior of Mλ(x; K) for the case of a
discrete set K, sampled from a connected set, and evaluate the structure of Mλ(x; K)
as the sample density approaches infinity.

Example 5.4. We consider the geometric model of the uniform sampling of two
parallel lines at distance b to each other. The points are taken equally spaced over
each line at distance c = εb with ε ∈ (0, 1) measuring the sampling density, in the
sense that as ε → 0, the sampling density on the two lines tends to infinity. The
sampling of the two parallel lines is defined so that the discrete points are aligned
along the x- and y-axis as displayed in Figure 6(a). For such a sample K, we can then
use the results obtained in Example 5.1 for the four-point set which we refer to as
K4p. It is not difficult to show that, for (x, y) ∈ R

2, and i ∈ Z such that |y+ iεb| ≤ εb,

Mλ((x, y); K) = Mλ((x, y + iεb); K4p) ,
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Fig. 5. Multiscale medial axis map for the oval shaped domain: (a) graph of the medial axis
map, Mλ((x, y); Ω), for λ = 10 and of the squared-distance function, dist2((x, y); ∂Ω) whose zero
level set gives the boundary of the domain. Only the restriction to y ≥ 0 is displayed, given that
Mλ((x, y); Ω) ≤ dist2((x, y); ∂Ω); (b) the oval shaped domain Ω displayed with the support of its
medial axis map Mλ((x, y); Ω).

Fig. 6. (a) Geometric model of a set K representing a uniform ε-sample of two parallel lines.
Graph of the multiscale medial axis map for different sample densities: (b) b = 2, ε = 0.5, λ = 10;
(c) b = 2, ε = 0.1, λ = 10.
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Fig. 7. Geometric model of one stairlike boundary perturbation, as in a digitized domain.

where Mλ((x, y + iεb); K4p) is the multiscale medial axis map for the four-point set
discussed in Example 5.1.

Figures 6(b) and 6(c) display the graph of Mλ((x, y); K) for b = 2, λ = 10, and
for different sampling density ε, ε = 0.5 and ε = 0.1, respectively.

The comparison of the graphs of Mλ((x, y); K) for the two different sample densi-
ties of the same object shows how the value ofMλ((x, y); K) along the minor branches
of the medial axis of the discrete set K attenuates as ε → 0. Consistent with the find-
ing obtained for the four-point set, we have that the value of Mλ((x, y); K) along the
minor branches is proportional to ε2. It then follows that by setting a threshold not
lower than such a value, we can single out the stable part of MK , which provides an
approximation for (and, in this case, is, in fact, coincident with) the medial axis of
the two parallel lines.

In this last example, we analyze a model of perturbations of the boundary domain
represented by staircase-like piecewise affine curves. This effect is very common, for
instance, in digital images and is the source of unrealistic medial axis branches, which
are usually not desirable. Common practice in this case is to perform a boundary
smoothing prior to any image processing operation. We will show that this is not
needed with the multiscale medial axis map. The fine structure of the medial axis
corresponding to the irregularities of the boundary is indeed captured by the mul-
tiscale medial axis map and can be filtered out. We will verify this statement on a
prototype model of this boundary domain perturbation, by showing that the height of
the medial axis map on such branches can be very small if the stairlike effect is small.

Example 5.5. Assume c > 0 and let us consider the set K = {(x, y) ∈ R
2 : x ≥

0, y ≥ 0, x+ y ≤ c} ∩ {(x, y) ∈ R
2, x+ y ≥ c} displayed in Figure 7, which is used as

a prototype of one single step perturbation of a boundary domain.
The squared distance function dist2((x, y); Kc)) to the complement of K and the

lower transform Cl
λ(dist

2(·; Kc))(x, y) are then given, respectively, by

(5.6) dist2((x, y); Kc) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 if x ≤ y, 0 ≤ x ≤ c, 0 ≤ y ≤ c,

y2 if x ≥ y, 0 ≤ x ≤ c, 0 ≤ y ≤ c,

x2 + (y − c)2 if y ≥ c, 0 ≤ y − x ≤ c,

(x− c)2 + y2 if x ≥ c, 0 ≤ x− y ≤ c,

1

2
(x + y − c)2 if x+ y ≥ c, y − x ≥ c,

or x+ y ≥ c, x− y ≥ c,

0 otherwise,
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and
(5.7)

Cl
λ(dist

2(·; Kc))(x, y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 if x ≤ yλ

1 + λ
, 0 ≤ x ≤ c, 0 ≤ y ≤ c,

y2 if y ≤ xλ

1 + λ
, 0 ≤ x ≤ c, 0 ≤ y ≤ c,

λ(1 + λ)
( x+ y

1 + 2λ

)2

− λ
(
x− (1 + λ)(x + y)

1 + 2λ

)2

− λ
(
y − (1 + λ)(x + y)

1 + 2λ

)2

if
λx

1 + λ
≤ y ≤ (1 + λ)x

λ
, 0 ≤ x ≤ c,

0 ≤ y ≤ c, x+ y ≤ (1 + 2λ)c

1 + λ
,

1

2
(x+ y − c)2 if x+ y ≥ c, y − x ≥ c, or x+ y ≥ c, x− y ≥ c,

x2 + (y − c)2 if y ≥ c,
c

1 + λ
≤ y − x ≤ c,

(x− c)2 + y2 if x ≥ c,
c

1 + λ
≤ x− y ≤ c,

1

2

(
λc2

1 + λ
− λ(y − x)2 + (x+ y − c)2

)

if x+ y ≥ (1 + 2λ)
c

1 + λ
,

c

1 + λ
≥ y − x ≥ − c

1 + λ
,

x2 + y2 if x ≤ 0, y ≤ 0,

0 otherwise .

The medial axis map Mλ((x, y); K
c) is then obtained from (3.1) using (5.6) and (5.7).

The graph of Mλ((x, y); K
c) for λ = 9 and step size c = 1 is shown in Figure 8(a),

whereas Figure 8(b) displays its support. By inspecting the graph of Mλ((x, y); K
c),

we observe that after an initial increase near the corner tip, Mλ((x, y); K
c) keeps a

constant value along MK , with this value proportional to the square of the step size.
It is not difficult to verify the following:

lim
λ→+∞

Mλ((x, y); K) = M∞((x, y); K) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x2

2
if 0 ≤ x ≤ c, x = y ,

c2

2
if x ≥ c, x = y ,

0 if x �= y ,

with uniform convergence if y = x and x ≥ 0.
Despite its simplicity, this basic model elucidates the behavior of Mλ((x, y); K

c
s)

for a set Ks with a stairlike boundary profile as, for instance, the one displayed in
Figure 9(a).

For such a set Ks, it is not difficult to verify that for (x, y) ∈ R
2, let i ∈ Z such

that |(x− ic)− (y + ic)| ≤ c, then

(5.8) Mλ((x, y); K
c
s) = Mλ((x− ic, y + ic); Kc)
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Fig. 8. Multiscale medial axis map of the set K displayed in Figure 7, prototype of boundary
perturbation as occurring in digitized images. (a) Graph of Mλ((x, y); K

c) for λ = 10; (b) support
of Mλ((x, y); K

c) displayed together with the set K.

Fig. 9. (a) Geometric model of a prototype of staircase-type perturbation of the boundary
domain Ks. (b) Graph of Mλ((x, y); K

c
s) for λ = 10; (c) support of Mλ((x, y); K

c
s) displayed

together with the set K.

with Mλ((x, y); K
c) corresponding to the one step boundary domain perturbation dis-

cussed at the beginning of this example. Figure 9(b) contains the graph of
Mλ((x, y);Ks), whereas Figure 9(c) shows its support, displayed together with the
set Ks. The height of the ridges along MKs depends only on the gap size c, in par-
ticular, it is proportional to c2. It follows, therefore, that by setting the threshold
larger than c2, the corresponding suplevel set ofMλ((x, y); Ks) will filter out all minor
branches of MKs generated by the stepstair-like boundary.

As an application of these concepts, we show in Figure 10 the results of the
numerical realization of Mλ((x, y); K) for the digital image of a maple leaf, where we
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Fig. 10. Multiscale medial axis map as obtained by the numerical implementation of
Mλ((x, y); K): (a) support of the multiscale medial axis map Mλ((x, y); K) for the digital image of
a maple leaf, for λ = 10. All the fine branches generated by the steps on the boundary are displayed.;
(b) suplevel set of Mλ((x, y); K) corresponding to a threshold equal to one displaying only stable
parts of the medial axis.

can note the effects just discussed. In particular, Figure 10(a) depicts the support of
Mλ((x, y); K) with the display of all fine branches created by the steplike irregularities
of the boundary domain, whereas Figure 10(b) shows the suplevel set of Mλ((x, y); K)
corresponding to a threshold equal to one which singles out only the neighborhood of
stable parts of MK .

6. Proofs of main results.
Proof of Lemma 2.5. The existence of an affine function � such that (2.1)(i)

and (2.1)(ii) hold is well known (see, e.g., [59, Remark 2.1] or [36]). The claim that
2 ≤ k ≤ n + 1 comes from the Carathéodory theorem [47, Cor. 17.1.5] and the fact
that co[f ](0) < f(0). Also it is easy to see that the xi’s can be made distinct and
xi �= 0. For the proof of (2.1)(iii), observe that f is upper semidifferentiable, � ≤ f ,
and �(xi) = f(xi). By [13, Cor. 2.5], it thus follows that f is differentiable at xi

and Df(xi) = D�(xi) = 2a. The proof of (2.1)(iv) is obtained from the definition of
the convex envelope. For (2.1)(v), we have, by definition of the convex envelope, that
� ≤ co[f ] and �(0) = co[f ](0). Since by hypothesis, co[f ] ∈ C1,1(Rn), we can conclude
that 2a = D�(0) = D co[f ](0), again using [13, Cor. 2.5].

Proof of Proposition 2.13. It is known [59, Theorem 3.1] that Cl
λ(dist

2(·; K)) ∈
C1,1(Rn), so we only need to improve the estimate of the Lipschitz constant obtained
in [59, p. 755], namely, 8 + 10λ. From the definition of the lower transform, we have

(6.1) Cl
λ(dist

2(·; K))(x+y)−Cl
λ(dist

2(·; K))(x)−(DCl
λ(dist

2(·; K))(x))·y ≥ −λ|y|2

for all x, y ∈ R
n. Now dist2(·; K) is a 2-semiconcave function [19, Prop. 2.2.2],

that is, x �→ |x|2 − dist2(x, K) := g(x) is a convex function. So if we let fλ(x) :=
(λ+ 1)|x|2 − g(x), then by Lemma 2.12, we have

(6.2) co[fλ](x+ y)− co[fλ](x)− (D co[fλ](x)) · y ≤ (λ+ 1)|y|2

for all x, y ∈ R
n. We also have, for x ∈ R

n, that

Cl
λ(dist

2(·; K))(x) = co[dist2(·; K) + λ| · |2](x) − λ|x|2 = co[fλ(·)](x) − λ|x|2 .
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By (6.2), we obtain

Cl
λ(dist

2(·; K))(x+ y)− Cl
λ(dist

2(·; K))(x)− (DCl
λ(dist

2(·; K))(x)) · y
= co[fλ](x+ y)− co[fλ](x) − (D co[fλ](x)) · y − λ|y|2 ≤ (λ+ 1)|y|2 − λ|y|2
= |y|2 .

(6.3)

Combining (6.1) and (6.3), we have

−λ|y|2 ≤ Cl
λ(dist

2(·; K))(x+y)−Cl
λ(dist

2(·; K))(x)−(DCl
λ(dist

2(·; K))(x))·y ≤ |y|2 .

Thus x �→ Cl
λ(dist

2(·; K))(x) is both 2-semiconcave and 2λ-semiconvex. By [19,
Corollary 3.3.8], we therefore conclude that Cl

λ(dist
2(·; K)) ∈ C1,1(Rn), and the

Lipschitz constant of the gradient DCl
λ(dist

2(·; K)) is not greater than
2max{1, λ}.

Proof of Proposition 2.14. Let λ > 0. Without loss of generality, we may as-
sume that x0 = 0. We consider two different cases, depending on the values of
Cl

λ(dist
2(·; K))(0) and dist2(0; K).

Case (i): Cl
λ(dist

2(·; K))(0) < dist2(0; K).
In this case, by definition of the lower transform and the convex envelope, we

have

Cl
λ(dist

2(·; K))(0) = co[dist2(·; K) + λ| · |2](0).

Since the function dist2(·; K) + λ| · |2 is also continuous, upper semidifferentiable,
coercive and co[dist2(·; K)+λ|·|2] ∈ C1,1, the assumptions of Lemma 2.5 are satisfied.
Let the affine function � and x1, . . . , xk ∈ R

n, λ1 > 0, . . . , λk > 0 with 2 ≤ k ≤ n+ 1
be as given by Lemma 2.5, satisfying (2.1)(i) to (2.1)(v). We have, by (2.1)(ii) and
(2.1)(iii), that

(6.4) 2a · xi + b = dist2(xi; K) + λ|xi|2, 2a = D(dist2(·; K) + λ| · |2)(xi) .

Therefore x �→ dist2(x; K) is differentiable at xi for i = 1, 2, . . . , k. By [37, Lem-
ma 8.5.12], we see that K(xi) := {yi} consists of a single element yi ∈ K, so that
dist2(xi; K) = |xi− yi|2 and Ddist2(·; K)(xi) = 2(xi− yi). Thus (6.4) reduces in this
case to

(6.5) 2a · xi + b = |xi − yi|2 + λ|xi|2, 2a = 2(xi − yi) + 2λxi .

By (6.5)2 and knowing that
∑k

i=1 λi = 1 and
∑k

i=1 λixi = 0, we find

(6.6) a =

k∑
i=1

λi

(
(xi − yi) + λxi

)
= −

k∑
i=1

λiyi ,

whereas by (6.5)1, (6.6), and the strict convexity of | · |2, we obtain

b =
k∑

i=1

λi(2a · xi + b) =
k∑

i=1

λi(|xi − yi|2 + λ|xi|2)

>

∣∣∣∣∣
k∑

i=1

λi(xi − yi)

∣∣∣∣∣
2

=

∣∣∣∣∣−
k∑

i=1

λiyi

∣∣∣∣∣
2

= |a|2 .
(6.7)
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Hence |a|2 < b, that is,∣∣∣∣12DCl
λ(dist

2(·; K))(0)

∣∣∣∣
2

< Cl
λ(dist

2(·; K))(0) .

Case (ii): Cl
λ(dist

2(·; K))(0) = dist2(0; K).
In this case, we have

co[dist2(·; K) + λ| · |2](0) = Cl
λ(dist

2(·; K))(0) = dist2(0;K) + λ|0|2

and

co[dist2(·; K) + λ| · |2](x) ≤ dist2(x; K) + λ|x|2

for x ∈ R
n. Since co[dist2(·; K) + λ| · |2] ∈ C1,1 is convex and dist2(·; K) + λ| · |2 is

upper semidifferentiable, it follows from [13, Corollary 2.5] that D(dist2(x; K)+λ|x|2)
exists at 0, and

D(dist2(·; K) + λ| · |2)(0) = D co[dist2(·; K) + λ| · |2](0) .
Again by [37, Lemma 8.5.12], K(0) = {y0} with y0 ∈ K the unique point that realizes
the distance of 0 to K. So

|D co[dist2(·; K) + λ| · |2](0)|2 = |D(dist2(·; K) + λ| · |2)(0)|2
= | − 2y0|2 = 4dist2(0; K)

= 4 co[dist2(·; K) + λ| · |2](0) .
Proof of Theorem 3.3. Let λ > 0. Without loss of generality, we may assume that

x0 = 0. We prove our result by establishing the contrapositive, and therefore suppose
that

Cl
λ(dist

2(·; K))(0) < dist2(0; K)

and seek to prove that

λdist(0; MK) < dist(0; K) .

As in the proof of Proposition 2.14, all the assumptions of Lemma 2.5 are met for
the function f(·) = dist2(·;K) + λ| · |2. Hence there exist an affine function �, points
x1, . . . , xk ∈ R

n, and λ1 > 0, . . . , λk > 0, 2 ≤ k ≤ n + 1, that satisfy (2.1)(i) to
(2.1)(v), which ensures that (6.5) holds with {yi} = K(xi)}, i ∈ {1, . . . , k}. From
(6.5)2, we have

(6.8) xi =
yi + a

1 + λ
,

which when substituted into (6.5)1 yields

2a ·
(
yi + a

1 + λ

)
+ b =

∣∣∣∣yi + a

1 + λ
− yi

∣∣∣∣
2

+ λ

∣∣∣∣yi + a

1 + λ

∣∣∣∣
2

.

A simple manipulation of this equation in yi then gives

(6.9)
∣∣∣yi − a

λ

∣∣∣2 =
(1 + λ)|a|2

λ2
+

(1 + λ)b

λ
:= c2, i = 1, 2, . . . , k,
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and (6.8) and (6.9) together imply

(6.10)
∣∣∣xi − a

λ

∣∣∣2 =
c2

(1 + λ)2
. i = 1, 2, . . . , k .

Now from (6.9), it follows that the points y1, y2, . . . , yk ∈ K lie on the sphere S(a/λ; c)
= {y ∈ R

n, |y − a/λ| = c}, and since xi �= xj for i �= j, we also have that yi �= yj
for i �= j, by (6.8). We show next that the open ball B(a/λ; c) does not intersect K,
and hence a/λ ∈ MK , the medial axis of K. We prove this claim by contradiction.
Suppose y∗ ∈ K ∩B(a/λ; c), and define

(6.11) x∗ =
y∗ + a

1 + λ
.

Then we have, from (2.1)(i), that

(6.12) 2a · x∗ + b = �(x∗) ≤ dist2(x∗, K) + λ|x∗|2 ≤ |x∗ − y∗|2 + λ|x∗|2

and by placing (6.11) into (6.12), it follows that∣∣∣y∗ − a

λ

∣∣∣2 ≥ c2 ,

which contradicts the assumption that y∗ ∈ B(a/λ; c). Hence

(6.13) B
(a

λ
; c

)
∩K = ∅,

and thus a/λ ∈ MK . By the strict convexity of | · |2 and the fact that
∑k

i=1 λixi = 0,
we then have, from (6.10), (6.7), and Proposition 2.14, that

dist2(0; MK) ≤
∣∣∣a
λ

∣∣∣2 <

k∑
i=1

λi

∣∣∣xi − a

λ

∣∣∣2

=
c2

(λ+ 1)2
=

1

(λ + 1)2

(
(1 + λ)|a|2

λ2
+

(1 + λ)b

λ

)

=
|a|2

λ2(1 + λ)
+

b

λ(1 + λ)
<

b

λ2
<

dist2(0; K)

λ2
,

and hence

λdist(0; MK) < dist(0; K) .

This proves that if 0 /∈ MK and

λ ≥ dist(0; K)

dist(0; MK)
,

then Cl
λ(dist

2(·; K))(0) ≥ dist2(0; K). Since we always have that Cl
λ(dist

2(·; K))(0) ≤
dist2(0; K), it can be concluded that

Cl
λ(dist

2(·; K))(0) = dist2(0; K) ,

which completes the proof.
Remark 6.1. Recall that in Remark 3.7(b), we noted that if x0 is a critical

point of Cl
λ(dist

2(·; K)), then x0 ∈ co[K(x0)]. Translating x0 to 0, we can now see
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that if Cl
λ(dist

2(·; K))(0) < dist2(0;K), this follows from (6.6), (6.9), and (6.13),
since Lemma 2.5(v) implies that a = 0 if DCl

λ(dist
2(·; K))(0) = 0, whereas if

Cl
λ(dist

2(·; K))(0) = dist2(0;K), the arguments in Case (ii) of the proof of Proposi-
tion 2.14 yield that 0 ∈ K if DCl

λ(dist
2(·; K))(0) = 0, thus clearly 0 ∈ co[K(0)] in

this case also.
Proof of Corollary 3.5. Note first that (3.4) and (3.5) together yield that⋂

0<λ<+∞
spprt(Mλ(·;K)) ⊂

⋂
0<λ<+∞

Vλ,K = MK .

On the other hand, suppose x0 ∈ R
N is such that Mλ(x0;K) = 0. Then we have that

dist2(x0;K) = Cl
λ(dist

2(·;K))(x0), so as argued in Case (ii) of the proof of Proposition
2.14, it follows that x0 �∈ MK . Thus for all λ > 0, MK ⊂ {x ∈ R

N : Mλ(x;K) > 0},
which implies that

MK ⊂
⋂

0<λ<+∞
spprtMλ(·;K).

Proof of Corollary 3.6. We only need to consider the case where

Cl
λ(dist

2(·; K))(x0) < dist2(x0; K),

since otherwise the claim is clearly true. Without loss of generality, assume that
x0 = 0. As in the proof of Theorem 3.3, the assumptions of Lemma 2.5 are satisfied for
the function f(·) = dist2(·;K)+λ| · |2, so there exist an affine function �(x) = 2a ·x+b,
points x1, . . . , xk ∈ R

n, and λ1 > 0, . . . , λk > 0, 2 ≤ k ≤ n+1, that satisfy (2.1)(i) to
(2.1)(v), so that (6.10) holds. Moreover, from Proposition 2.14 and the assumption
that Cl

λ(dist
2(·; K))(0) < dist2(0; K), it follows that |a|2 < b < dist2(0;K). Hence,

for each for i = 1, 2, . . . , k, we have

|xi| − |a|
λ

≤
∣∣∣xi − a

λ

∣∣∣ = c

1 + λ
<

√
b

λ
,

and so

|xi| < |a|
λ

+

√
b

λ
<

2
√
b

λ
<

2dist(0; K)

λ
.

Thus xi ∈ B(0; r(0)) for i = 1, 2, . . . , k, where r(0) = 2dist(0; K)/λ. The conclusion
then follows from the definitions of the convex envelope and of

Cl
λ(dist

2(·; K))(0).

Proof of Corollary 3.8. Since MK ⊂ Vλ,K , it follows from Theorem 3.3 that
dist2(x;K) = Cl

λ(dist
2(·; K))(x) for all x in the set Rn \ Vλ,K , which is an open set

because Vλ,K is closed. Thus the result is immediate from Proposition 2.13.
Proof of Proposition 3.11. Since ∂Ω ⊂ Ωc, then

dist2(y,Ωc) ≤ dist2(y, ∂Ω) for y ∈ R
n ,

and by the ordering property of the lower transform,

Cl
λ(dist

2(·; Ωc))(x) ≤ Cl
λ(dist

2(·; ∂Ω))(x) for x ∈ Ω.
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We want now to prove that the equality actually holds for x ∈ Ω. We will show this
by a contradiction argument. Though the equality dist2(y; Ωc) = dist2(y; ∂Ω) holds
for all y ∈ Ω, we cannot straightforwardly deduce the equality of the lower transforms
in Ω. Assume therefore, that at some point x ∈ Ω we have that

(6.14) Cl
λ(dist

2(·; Ωc))(x) < Cl
λ(dist

2(·; ∂Ω))(x) .
By the translation invariance of the distance and of the lower transform [64, Propo-
sition 2.10], we can assume, without loss of generality, that x = 0 ∈ Ω, so that (6.14)
becomes

Cl
λ(dist

2(·; Ωc))(0) < Cl
λ(dist

2(·; ∂Ω))(0) ,
which is then equivalent to stating that

co[dist2(·; Ωc) + λ| · |2](0) < co[dist2(·; ∂Ω) + λ| · |2](0) .
Since the function dist2(x, ∂Ω) + λ|x|2 is coercive and is continuous, by Proposi-
tion 2.3(ii) there exists an affine function �(x) such that

�(x) ≤ dist2(x; ∂Ω) + λ|x|2 for all x ∈ R
n ,

and

(6.15) �(0) = co[dist2(·; ∂Ω) + λ| · |2](0) .
Note that by Proposition 2.3(i), �(0) ≥ 0. There must be a point y0 ∈ (Ω)c such that

(6.16) �(y0) > dist2(y0; Ω
c) + λ|y0|2 = λ|y0|2.

If we write our affine function as �(x) = a · x + b with b = �(0) given by (6.15) and
a ∈ R

n, then (6.16) reads as

(6.17) a · y0 + b > λ|y0|2.
Since for x ∈ ∂Ω,

�(x) ≤ dist2(x; ∂Ω) + λ|x|2 = dist2(x; Ωc) + λ|x|2 ,
and for t > 0 small enough, ty0 ∈ Ω, it follows that there exists 0 < t0 < 1 for which
t0y0 ∈ Ωc and

�(t0y0) = dist2(t0y0; Ω
c) + λ|t0y0|2 = λ|t0y0|2 .

This implies that

t0a · y0 + b = λ|t0y0|2 ,
that is,

a · y0 = t0λ|y0|2 − b/t0 .

If we substitute (6) into (6.17), we obtain

t0λ|y0|2 − b/t0 + b > λ|y0|2 ,
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that is,

b < −t0λ|y0|2 < 0 ,

which contradicts the fact that b ≥ 0. Thus

�(x) ≤ dist2(x; Ωc) + λ|x|2 for all x ∈ R
n ,

hence,

co[dist2(·; Ωc) + λ| · |2](0) ≥ co[dist2(·; ∂Ω) + λ| · |2](0) ,

thus

Cl
λ(dist

2(·; Ωc))(0) ≥ Cl
λ(dist

2(·; ∂Ω))(0) ,

which contradicts the initial assumption (6.14).
Proof of Corollary 3.13. We only need to verify that Vλ,Ωc ∩ Ω ⊂ Wλ,Ω. In fact,

if x ∈ Vλ,Ωc ∩Ω, then λdist(x; MΩc) ≤ dist(x; Ωc) ≤ diam(Ω). Thus x ∈ Wλ,Ω so that
Ω \Wλ,Ω ⊂ Ω \ Vλ,Ωc . The conclusion then follows from Corollary 3.8.

Proof of Theorem 3.15. Note first that clearly Mλ(x; K) ≥ 0 for all x ∈ R
n. We

now prove the positive lower bound for Mλ(x; K) when x ∈ MK . Let x ∈ MK and
r(x) = dist(x; K). Since K(x) ⊂ K then

dist2(y; K) ≤ dist2(y; K(x)) for all y ∈ R
n ,

hence, by the ordering property of the lower transform, Proposition 2.9,

(6.18) Cl
λ(dist

2(·; K))(y) ≤ Cl
λ(dist

2(·; K(x)))(y) for all y ∈ R
n .

Now, by Proposition 2.18, we have for y = x that

(6.19) Cl
λ(dist

2(·; K(x)))(x) = (1 + λ)dist2(x; co[K2,λ(x)]) +
λ

1 + λ
r2(x) .

By Carathéodory’s theorem [47], for every w = x+ y ∈ co[K2,λ(x)], there are at most
n+1 points x+ yi/(1+λ) ∈ K2,λ(x) with x+ yi ∈ K(x), i.e., x+ yi ∈ ∂K and |yi| =
r(x), and λ1 ≥ 0, . . . , λn+1 ≥ 0 such that

∑n+1
i=1 λi = 1 and w = x+

∑n+1
i=1 λiyi/(1+λ).

Thus we have

|x− w|2 =

∣∣∣∣∣
n+1∑
i=1

λi
yi

1 + λ

∣∣∣∣∣
2

=
1

(1 + λ)2

∣∣∣∣∣
n+1∑
i=1

λiyi

∣∣∣∣∣
2

=
1

(1 + λ)2

∣∣∣∣∣x−
n+1∑
i=1

λi(x+ yi)

∣∣∣∣∣
2

,

which yields

(6.20) dist2(x; co[K2,λ(x)]) =
1

(1 + λ)2
dist2(x; co[K(x)]) .

By substituting (6.20) into (6.19) we have

(6.21) Cl
λ(dist

2(·; K(x)))(x) =
1

1 + λ
dist2(x; co[K(x)]) +

λ

1 + λ
r2(x) .
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By comparing (6.18) and (6.21), we finally obtain

Mλ(x; K) ≥ (1 + λ)(dist2(x; K)− Cl
λ(dist

2(x; K(x))))

= dist2(x; K)− dist2(x; co[K(x)]) .

To find now an upper bound to Mλ(x; K) that holds for all x ∈ R
n, note first that if

x ∈ K, then Mλ(x; K) = dist2(x; K) = 0. Suppose now that x �∈ K. Then r(x) > 0
and B(x; r(x)) ⊂ Kc, so K ⊂ Bc(x; r(x)) and hence

dist2(y; Bc(x, r(x))) ≤ dist2(y; K) for y ∈ R
n

and, thus, by the ordering property of the lower transform (Proposition 2.9),

(6.22) Cl
λ(dist

2(·; Bc(x, r(x))))(y) ≤ Cl
λ(dist

2(·; K))(y) for y ∈ R
n .

By Lemma 2.20, for |y| ≤ r(x)/(1 + λ), after a simple translation of points and due
to the invariance of the distance transform, we have

Cl
λ(dist

2(·; Bc(x, r(x))))(y) =
λ

1 + λ
r2(x)− λ|y − x|2

which for y = x gives

Cl
λ(dist

2(·; Bc(x, r(x))))(x) =
λ

1 + λ
r2(x) ,

hence

dist2(x; K)− Cl
λ(dist

2(·; Bc(x, r(x))))(x) =
1

1 + λ
dist2(x; K) .

By comparing (6.22) and (6), we then conclude that

dist2(x; K)− Cl
λ(dist

2(·; K))(x) ≤ dist2(x; K)− Cl
λ(dist

2(·; Bc(x; r(x))))(x)

=
1

1 + λ
dist2(x; K) ,

which completes the proof.
Proof of Proposition 3.18. Let x ∈ MK , r(x) = dist(x; K) > 0, and denote

by x1, x2 ∈ B(x; r(x)) ∩ K the points of K(x) that realize the separation angle θx
at the point x. Thus |x − x1| = |x − x2| = r(x). Since {x1, x2} ⊂ K(x), then
x1 + t(x2 − x1) ∈ co[K(x)] for t ∈ [0, 1], which for t = 1/2 gives

dist(x; co[K(x)]) ≤ dist

(
x;

x1 + x2

2

)
= cos

(
θx
2

)
r(x) .

Thus

dist2(x; co[K(x)]) ≤ dist2(x; K) cos2
(
θx
2

)

and, hence,

dist2(x; K)− dist2(x; co[K(x)]) ≥ dist2(x; K)

(
1− cos2

(
θx
2

))

= dist2(x; K) sin2
(
θx
2

)
,

as required.
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Proof of Proposition 3.20. If x0 ∈ K, clearly Mλ(x0; K) = 0 for all λ > 0. So
we may assume that x0 /∈ K. Since x0 /∈ MK , dist2(·; K) is differentiable at x0 [37,
Lemma 8.5.12]. Therefore for every ε > 0, there exists δ > 0 such that

|dist2(x0 + y; K)− dist2(x0; K)−Ddist2(x0; K) · y| ≤ ε|y|
for y ∈ B(0; δ). Now by the locality property Corollary 3.6, we have

Cl
λ(dist

2(·; K))(x0) = coB(x0; r(x0))
[dist2(·; K) + λ|(·) − x0|2](x0) ,

where r(x0) = 2dist(x0; K)/λ > 0. Thus for λ > 0 sufficiently large, r(x0) < δ.
Since x �→ dist2(x; K) + λ|x − x0|2 is continuous and coercive, by Lemma 2.5 and
Corollary 3.6, there exist x1, . . . , xk ∈ B(x0; r(x0)) and λ1 > 0, . . . , λk > 0 such that∑k

i=1 λi = 1,
∑k

i=1 λixi = x0, and

coB̄(x0; r(x0))[dist
2(·; K) + λ|(·) − x0|2](x0)

=

k∑
i=1

λi

(
dist2(xi; K) + λ|xi − x0|2

)

≥
k∑

i=1

λi

(
dist2(x0; K) +Ddist2(x0; K) · (xi − x0)− ε|xi − x0|+ λ|xi − x0|2

)
≥ dist2(x0; K)− ε2

4λ
,

as |xi−x0| ≤ r(x0) < δ. Here we have also used the facts that
∑k

i=1 λiDdist2(x0; K) ·
(xi − x0) = 0 and that λt2 − εt ≥ −ε2/(4λ) for t ∈ R. Since

Cl
λ(dist

2(·; K))(x0) ≤ dist2(x0; K),

we then have

0 ≤ Mλ(x0; K) ≤ (1 + λ)ε2

4λ
.

Thus

0 ≤ lim inf
λ→+∞

Mλ(x0; K) ≤ lim sup
λ→+∞

Mλ(x0; K) ≤ ε2

4
.

Since ε > 0 is arbitrary, the conclusion follows.
Proof of Theorem 3.23. We only consider the case x0 ∈ MK . Again without loss

of generality, we may assume that x0 = 0 ∈ MK . Let K0 = K(0) and dist(0; K) =
dist(0; K0) = r0 > 0. Since K0 ⊂ K, we have dist2(x; K) ≤ dist2(x; K0) for x ∈ R

n,
so that

Cl
λ(dist

2(·; K))(x) ≤ Cl
λ(dist

2(·; K0))(x)

=
λr20
1 + λ

+ (1 + λ)dist2(x; co[K0/(1 + λ)])− λ|x|2

for x ∈ R
n. Therefore

Mλ(0; K) ≥ Mλ(0; K0) = (1 + λ)(dist2(0; K0)− Cl
λ(dist

2(·; K0))(0))

= r20 − dist2(0; co[K0]) = M(0; K0).
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Next we establish lower bounds for Cl
λ(dist

2(·; K))(x) using the locality prop-
erty from Corollary 3.6. For 0 < ε < r0 sufficiently small, let K0; ε ⊂ S(0; r0)
be the closed ε-neighborhood of K0 on the sphere, defined using the geodesic dis-
tance ρ(x, y) on S(0; r0), that is K0; ε = {y ∈ S(0; r0), ρ(y; K0) ≤ ε}, where
ρ(y; K0) = inf{ρ(y, x), x ∈ K0}.

The aim of the following technical construction is to show that for x in a small
neighborhood of 0, dist2(x; K0,2ε) is a lower bound for dist2(x; K). For δ > 0, define
the closed neighborhoodKδ

0,ε = {(r0+t)y/|y|, y ∈ K0,ε, 0 ≤ t ≤ δ} and note that Kδ
0,ε

is clearly a compact set. Then it can easily be proved, using a contradiction argument,
that for every 0 < ε < 1, there exists 0 < δ ≤ ε2 such that K ∩ B(0; r0 + δ) ⊂ Kδ

0,ε.
Define also another compact set by

Vε,δ = Kδ
0,ε ∪K0,2ε,

where K0,2ε will be used to “shadow” Kδ
0,ε, and the unbounded closed set

Wε,δ = Vε,δ ∪Bc(0; r0 + δ).

Clearly, K ⊂ Wε,δ, so that dist2(x; K) ≥ dist2(x; Wε; δ) for all x ∈ R
n.

We claim that there exists η > 0 sufficiently small such that

(6.23) dist2(x; Wε; δ) = dist2(x; K0,2ε)

for x ∈ B̄(0; η). We postpone the proof of (6.23) to the end and proceed first to
assume that (6.23) holds. Then for λ > 0 sufficiently large, we have

2dist(0; Wε,δ)

λ
=

2dist(0; K0,2ε)

λ
=

2r0
λ

< η .

By the locality property (Corollary 3.6), we have

Cl
λ(dist

2(·; Wε,δ))(0)− (dist2(·; Wε,δ) + λ| · |2)(0)
= coB(0; η)[dist

2(·; Wε,δ) + λ| · |2)](0)
= coB(0; η)[dist

2(·; K0;2ε) + λ| · |2](0)
= co[dist2(·; K0,2ε) + λ| · |2](0)
= Cl

λ(dist
2(·; K0,2ε))(0)

=
λr20
1 + λ

+ (1 + λ)dist2
(
0; co

[
K0,2ε

1 + λ

])
,

where we have used (6.23) and Proposition 2.19. Thus we obtain

Cl
λ(dist

2(·; K))(0) ≥ Cl
λ(dist

2(·; Wε,δ))(0) =
λr20
1 + λ

+(1+λ)dist2(0; co[K0,2ε/(1+λ)]).

As dist2(0; K) = dist2(0; Wε,δ) = dist2(0; K0,2ε) = r20 , we then have

Mλ(0; K) ≤ r20 − dist2(0; co[K0,2ε]) .

Therefore for sufficiently large λ > 0,

M∞(0; K0) ≤ Mλ(0; K) ≤ M∞(0; K0,2ε).
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Passing to the limit λ → +∞ then gives that for each fixed ε > 0 small,

M∞(0; K0) ≤ lim inf
λ→+∞

Mλ(0; K) ≤ lim sup
λ→+∞

Mλ(0; K) ≤ M∞(0; K0,2ε) .

Since K0 is compact and K0,2ε → K0 as ε → 0 under the Hausdorff distance in R
n,

we also have that co[K0,2ε] → co[K0] as ε → 0 under the Hausdorff distance in R
n.

Thus as V �→ dist2(0; V ) is continuous under the Hausdorff distance for compact sets
V ⊂ R

n [6], it follows that limε→0+ dist2(0; co[K0,2ε]) = dist2(0; co[K0]), and hence
limε→0+ M∞(0; K0,2ε) = M∞(0; K0). Hence limλ→+∞ Mλ(0; K) exists, and

lim
λ→+∞

Mλ(0; K) = M∞(0; K0) = M∞(0; K) .

It remains to prove (6.23). First note that when 0 < η < δ/2,

dist(x; S(0; r0 + δ)) > dist(x;K0,2ε),

because dist(x; S(0; r0 + δ)) = r0 + δ − |x| ≥ r0 + δ − η and dist(x; K0,2ε) ≤
dist(0; K0,2ε) + |x| ≤ r0 + η, so that (6) holds if r0 + η < r0 + δ − η, which is
equivalent to 2η < δ.

Now we show that dist(x; Vε,δ) = dist(x; K0,2ε). Given any point z0 = (t0+r0)y0/
|y0| ∈ Vε,δ\K0,2ε with 0 < t0 ≤ δ and y0 ∈ K0,ε, we observe that a necessary condition
for some x ∈ B(0; η) to reach the distance to Vε,δ at z0, that is, dist(x; Vε,δ) = |x−z0|,
is that the line passing through z0 and x does not intersect K0,2ε. Notice that for the
point y0 ∈ K0,ε, the ε-neighborhood of y0 in S(0; r0) under the geodesic distance ρ,
given by Sy0,ε := {w ∈ S(0; r0), ρ(y0, w) ≤ ε} is contained in K0,2ε. Therefore if we
draw a line passing through z0 and the relative boundary of Sy0,ε in S(0; r0) and we
can show that the distance between the line and the origin 0 is bounded below by a
positive constant uniformly with respect to y0 ∈ K0,ε and 0 < t0 ≤ δ, then we can
find 0 < η < δ/2 such that dist(x; Vε,δ) = dist(x; K0,2ε) for x ∈ B(0; η).

Due to the symmetry of Euclidean balls and spheres, we only need to consider
the case in R

2 with y0 = (r0, 0), z = (r0 + t, 0), where 0 < t ≤ δ, and Sy0,ε =
{(r0 cos θ, r0 sin θ), −ε/r0 ≤ θ ≤ ε/r0}. The distance between the line L passing
through z and the boundary point (r0 cos(ε/r0), r0 sin(ε/r0)) and the origin (0, 0) is
attained at a point of the form (s, u(s)), where

u(s) =
r0 sin(ε/r0)(r0 + t− s)

r0 + t− r cos(ε/r0)
,

so that the squared distance between (0, 0) and a point (s, u(s)) in L is

s2 +
r20 sin

2(ε/r0)(r0 + t− s)2

(r0 + t− r cos(ε/r0))2
,

with the minimum point at

s0 =
r20 sin

2(ε/r0)(r0 + t)

r20 sin
2(ε/r0) + (r0 + t− r cos(ε/r0))2

.

The distance between (0, 0) and L is

√
s20 + u2(s0) ≥ |s0| ≥ r30 sin

2(ε/r0)

2(r0 + δ)2
:= η0 > 0 .
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Therefore if we choose 0 < η < min{δ/2, η0}, we have, for all x ∈ B(0; η), that
dist(x; Vε,δ) = dist(x; K0,2ε), and hence

dist(x; Wε,δ) = dist(x; K0,2ε)

for all x ∈ B(0; η).
Proof of Proposition 4.1. This follows from the definition of Mλ((x, y); K) and

Lemma 2.21.
Proof of Theorem 4.3. Let μ = distH(K; L) with μ finite since K and L are

compact sets. By Definition 2.23 for Hausdorff distance, we have for x ∈ R
n

(6.24) |dist(x; K)− dist(x; L)| ≤ μ ,

hence,

dist2(x; K) ≤ μ2 + 2μdist(x; L) + dist2(x; L)

≤ μ2 + μ(1 + dist2(x; L)) + dist2(x; L) = μ(1 + μ) + (1 + μ)dist2(x; L) .

After adding λ|x|2 to both sides and taking the convex envelope, we find

co
[
dist2(·; K) + λ| · |2] (x) ≤ μ(1 + μ) + (1 + μ) co

[
dist2(·; L) + λ

1 + μ
| · |2

]
(x)

which yields

(6.25) Cl
λ(dist

2(·; K))(x) ≤ μ(1 + μ) + (1 + μ)Cl
λ/(1+μ)(dist

2(·; L))(x) .
Since

Cl
λ/(1+μ)(dist

2(·; L))(x) ≤ Cl
λ(dist

2(·; L))(x) and
Cl

λ/(1+μ)(dist
2(·; L))(x) ≤ dist2(x, L) ,

we obtain, from (6.25), after using (6.24), that

Cl
λ(dist

2(·; K))(x) ≤ μ(1 + μ) + Cl
λ(dist

2(·; L))(x) + μdist2(x; L)

≤ Cl
λ(dist

2(·; L))(x) + μ(1 + μ) + μ(μ+ dist(x; K))2) .
(6.26)

With a similar argument, we find that

Cl
λ(dist

2(·; L))(x) ≤ μ(1 + μ) + Cl
λ(dist

2(·; K))(x) + μdist2(x; K)

≤ Cl
λ(dist

2(·; K))(x) + μ(1 + μ) + μ(μ+ dist(x; K))2) .
(6.27)

By comparing (6.26) and (6.27) we therefore conclude that given a compact set K ⊂
R

n, for any compact set L ⊂ R
n, we have that, for any x ∈ R

n,

(6.28)
∣∣Cl

λ(dist
2(·; K))(x)− Cl

λ(dist
2(·; L))(x)∣∣ ≤ μ

(
(1 + μ) + (μ+dist(x; K))2)

)
,

which proves (4.1). To show (4.2), observe that after using (6.24) we have for any
x ∈ R

n

|dist2(x; K)− dist2(x; L)| ≤ |dist(x; K)− dist(x; L)||dist(x; K) + dist(x; L)|
≤ μ(2dist(x; K) + μ) ,

(6.29)
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and from the definition of the multiscale medial axis map and the triangle inequality,
we obtain

|Mλ(x; K)−Mλ(x; L)| ≤ μ(1 + λ)
(
(dist(x; K) + μ)2 + 2dist(x; K) + 2μ+ 1

)
,

where we have taken into account (6.28) and (6.29). This concludes the proof.
Proof of Corollary 4.5. This follows from Theorem 4.3, since

dist(x; ∂Ω) ≤ diam(Ω)

if x ∈ Ω̄.
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