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A Sharp Sufficient Condition for B-Spline Vector Field Invertibility. Application
to Diffeomorphic Registration and Interslice Interpolation∗
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Abstract. In this paper, a new sufficient condition for the invertibility of a B-spline vector field as well as
its extension to spatio-temporal vector fields are presented. The new condition, while guaranteeing
that the vector field is diffeomorphic, is sharp enough to allow large deformations. The complexity
of the constraint is also discussed. A new diffeomorphic registration algorithm using this condition
and its application to interslice interpolation are presented and evaluated on synthetic images and
in vivo magnetic resonance T2 images of the brain. The registration method has also been compared
to some state-of-the-art registration methods.
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1. Introduction. Image registration is the process of finding, given two images, a trans-
formation that maps the pixels of one image (the reference image) to the corresponding pixels
in the other image (the floating image). Since its introduction as an image processing tool
in [12], it is now a common tool for imaging based studies and has been extensively used for
atlas based segmentation [51], [44], [32]; morphometry study [16], [5]; motion estimation [42];
slice interpolation [35]; and handwritten character recognition [10], [50].

The mapping from the reference to the floating image to be estimated is a geometric
transformation. It can be a simple translation or an isometry for the registration of a rigid
body in a different position. In the general case, it is a nonlinear mapping, represented by a
vector field.

A common requirement for the transformation to estimate is, besides its smoothness, to be
invertible. A diffeomorphic mapping is indeed physically meaningful when this mapping rep-
resents the deformation of the same object at several timepoints, for example, when studying
the deformation of the cardiac muscle [37] or the lung [48]. When the objects to register are
different, invertibility may be debatable but is still commonly used to preserve the topology
of the object in the floating image after deformation. Diffeomorphism may also be necessary
to register vector or tensor images, for example, diffusion tensor images. In this case, non-
singularity in the Jacobian map is necessary to correctly orient the tensor or vector pixels
(see for example [13]). Diffeomorphic registration can also be necessary if the inverse of the
transformation is concretely needed for further processing as for example in [39], in which the
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inverse is needed to compute the accuracy map of a segmentation atlas. Finally, diffeomorphic
transformation can also be useful for parameterization of a three-dimensional (3D) surface.
In this case, one looks for a mapping with specific properties (for example, area or angular
preservation) from a two-dimensional (2D) region to a 3D surface [22], [27], [7]. This mapping
should obviously be invertible.

In the literature of nonrigid registration, two models can be distinguished to represent the
transformation: either a closed form expression parameterized by a finite-dimensional vector
or a dense array of vectors giving the position of each pixel in the other image. In the former
case, the vector field is often a linear combination of vector basis functions such as B-splines.

Dense diffeomorphic registration have been extensively studied; see [45], [9], [8]. The main

idea is to model transformations as solutions at t = 1 of equations ∂T
∂t = v(t, T ), where the

velocity v is now the unknown of the problem. This requires the addition of the time dimension
to the unknown and the resolution of a differential equation to compute the transformation.
Fast registration can, however, be achieved when the velocity is stationary. In this case the
exponential map, which maps the velocity to the transformation, can be computed efficiently
as in [4], [25], or [49].

However, there are several advantages in using parametric models for the transformation:
transformation resolution can be chosen independently from the image resolution, values of
the transformation are continuously defined in the model, and derivatives can be computed
exactly from analytical expressions. More specifically, an exact and consistent Jacobian can
be computed for further analysis.

Dense and parametric registration can also be distinguished by the moment the approx-
imation occurs in the resolution process. In dense diffeomorphic registration, the theory is
developed for continuous transformation; the solution is then approximated by discretization
of the transformations and equations from the theory. With parametric diffeomorphic regis-
tration, the approximation comes first by restricting the search space of the solution to some
set of parameterized transformations. This will guarantee that theoretical properties derived
for these transformations will apply to the objects effectively used in the software implemen-
tation. The difficulty, however, is to be able to have a sufficiently large search space to model
the transformation of interest.

When the deformation is modeled as a B-spline vector field, diffeomorphic registration is
based on solving the registration problem with the additional constraint that the transforma-
tion Jacobian be (continuously) positive.

In [38], pixelwise constraints are included in the registration framework. The Jacobian of
the transformation is guaranteed to be positive on pixels, and its negativity can be further pe-
nalized between pixels. However, if nondiffeomorphic transformations are strongly penalized,
invertibility is not strictly guaranteed.

In [33], the optimization is performed one node at a time. For 2D registration and when the
transformation is modeled with degree-1 B-splines, this allows us to reduce the diffeomorphic
constraint to two linear inequality constraints per node. This approach has been extended in
[34] to 3D registration with the use of interval arithmetic to solve the constraints, but it is
still restrained to degree-1 B-splines.

As the transformation is continuously defined by a finite number of parameters (the B-
spline coefficients), it would be interesting to transfer the infinite number of constraints (the
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continuous positivity of the Jacobian) to the parameter space. To the best of our knowledge,
two sufficient conditions have been proposed to guarantee the invertibility of the transforma-
tion.

The first condition, proposed in [14], is a bound constraint on the coefficients of the
displacement field. It has been used in the context of image registration in [36]. However, as
the constraint is very restrictive, the transformation is modeled as a composition of B-spline
vector fields, losing the advantages of a parametric representation.

A bound on the finite differences of the displacement field coefficients has been proposed
in [28] and extended in [15]. This constraint is much less restrictive than that of [14]: compo-
sitions are still necessary but in a much lower quantity. From a practical point of view, the
authors propose not to enforce the constraint but to use it as a regularizer.

In this paper, a new sufficient condition for continuous positivity of the Jacobian of a
B-spline vector field is derived. This condition is much less restrictive than state-of-the-art
sufficient conditions. No composition is needed to obtain a correct diffeomorphic registration
of common images. The condition is used as a hard constraint to develop a new diffeomorphic
registration algorithm, and its use in the context of interslice interpolation is discussed.

B-spline vector fields are introduced in section 2, and the condition for vector fields and
spatio-temporal vector fields is proposed in section 3. Analysis of the complexity and the
sharpness of the proposed conditions is given in sections 4 and 5. In section 6, the condition
is used to build a diffeomorphic registration algorithm, and the spatio-temporal version of the
condition is used to propose a well-defined interslice interpolation method. Numerical exper-
iments on synthetic and in vivo images and comparisons to some state-of-the-art algorithms
are presented in section 7.

2. B-spline vector field. The D-dimensional vector field is defined using B-splines of
degree n:

T (x) = x+
∑
i

c̃iβ(x/h− i)

=
∑
i

ciβ(x/h− i),

where x and ci are in R
D, h ∈ N

D, and i ∈ Z
D. The c̃i coefficients are used to model the

displacement, and the transformation itself can be represented by the coefficients ci = c̃i+ ih.
Note that the two representations are equal only when the degree n is greater than one. In
this presentation β will represent either the B-spline function of degree n or its tensor product,
depending on the context: β(x) =

∏D
i=1 β(xi). The definition and main properties of B-splines

are given in Appendix A. The vector h is the node spacing and will be considered as an integer
for the sake of efficiency. This parameter allows us to choose the transformation resolution
independently from the image resolution.

The exact computation of the transformation derivatives is made possible by the use
of a continuous model. The B-spline representation allows further development, and, using
property 5 of Appendix A, partial derivatives of the transformation can themselves be written
with B-splines (see [47]):

(2.1)
∂T

∂xl
(x) =

∑
i

dliβ̃
l(x/h − i).
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The (dli)i are the finite difference of the B-spline coefficient in the xl direction:

dli =
c̃i − c̃i−el

hl
+ el

=
ci − ci−el

hl
,

where el is the lth vector of the canonical basis and β̃l is the tensor product of β−, the B-spline
of degree n− 1, and β:

β̃l(x) = β−
(
xl +

1

2

)∏
k �=l

β(xk).

From the expression (2.1) of the derivatives of T and using the multilinearity of the deter-
minant, a B-spline representation of the Jacobian J of the transformation can be derived as
follows:

J(x) = det(T ′(x))

= det

(
∂T

∂x1
(x), . . . ,

∂T

∂xD
(x)

)

= det

⎛
⎝∑

i1

d1i1 β̃
1
i1(x), . . . ,

∑
iD

dDiD β̃
D
iD
(x)

⎞
⎠

=
∑

i1,...,iD

det
(
d1i1 , . . . , d

D
iD

)
︸ ︷︷ ︸

Ji1,...,iD

β̃1
i1(x) . . . β̃

D
iD(x)︸ ︷︷ ︸

β̃i1,...,iD
(x)

,(2.2)

where β̃l
i(x) = β̃l(x/h − i). The Jacobian of T can be expressed as the linear combination of

the Ji1,...,iD , the B-spline coefficient “Jacobians,” weighted by β̃i1,...,iD , a product of tensor B-
splines. This formula is very inefficient if used to compute J(x) but is theoretically important
for the derivation of our condition.

3. A sufficient condition for B-spline vector field invertibility.

3.1. D-dimensional B-spline vector field. As in [14] and [15], our invertibility condition is
found by bounding the Jacobian on R

D. The sufficient invertibility condition is then that the
lower bound must remain positive. To find the condition, the following definition is needed.

Definition 3.1. ED is the set of active D-tuples in the Jacobian of a D-dimensional B-spline
vector field of degree n:

ED =
{
i1, . . . , iD/∃x β̃i1,...,iD(x) �= 0

}
.

In other words, ED is the set of multi-indexes that are actually used in the Jacobian
computation. The sum in the expression (2.2) can therefore be restricted to the indices of
ED. In the following proposition, ED is characterized.

Proposition 3.2. Let ED be the set of active D-tuples in Jacobians of D-dimensional B-
spline vector fields of degree n, and let I− = [−n, n − 1] and I = [−n, n]; then ED is the set
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of index D-tuples i1, . . . , iD such that for all a �= b,

ib − ia ∈
∏
k

Ik,

where

Ik =

∣∣∣∣∣∣
I− if k = a,
−I− if k = b,
I otherwise.

Proof. Let us first define ED(x), the set of indices having an influence in the computation
of Jacobian functions at x. Looking at (2.2), this set can be expressed as

ED(x) =
{
i1, . . . , iD/β̃i1,...,iD(x) �= 0

}
.

Now let’s try to give an explicit expression of ED, the union over x of these sets. If i1, . . . , iD ∈
ED, then ∃x such that β̃i1,...,iD(x) is not null. Given that

β̃i1,...,iD(x) =
∏
l

β̃l
il
(x)

=
∏
l

β−
(
xl
hl

− ill +
1

2

)∏
k �=l

β

(
xk
hk

− ikl

)
,

then, for each l, the following expression is not null:

β−
(
xl
hl

− ill +
1

2

)∏
k �=l

β

(
xl
hl

− ilk

)
.

Using Lemma B.1 of Appendix B, for each j �= l and k �= l,

ilj − ilk ∈ I.

Using Lemma B.2, for each k �= l,
ilk − ill ∈ I−.

Consequently, for a �= b, we have

ikb − ika ∈
∣∣∣∣∣∣

I− if a = k,
−I− if b = k,
I otherwise.

Now that the Jacobian has been expanded with B-splines (expression (2.2)) and the ac-
tive coefficients in this expansion have been identified (Proposition 3.2), the Jacobian can be
bounded by its B-spline expansion coefficients using the bounding property of B-splines (prop-
erty 6 of Appendix A). In the following theorem, upper and lower bounds on the Jacobian
are derived for D-dimensional B-spline vector fields.

Theorem 3.3. Let T be a D-dimensional B-spline of degree n vector field, and let J be its
Jacobian; then, for all x, the following expression holds:

min
i1,...,iD∈ED

Ji1,...,iD ≤ J(x) ≤ max
i1,...,iD∈ED

Ji1,...,iD .
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Proof. Let us first define the extrema over ED of the B-spline coefficients Jacobian:

m = min
i1,...,iD∈ED

Ji1,...,iD

and

M = max
i1,...,iD∈ED

Ji1,...,iD .

So, for i1, . . . , iD ∈ ED, the following relation holds:

m ≤ Ji1,...,iD ≤ M.

For a given x, if this relation is multiplied by the positive tensor B-spline β̃i1,...,iD(x) and if
we consider the definition of ED, then for all i1, . . . , iD,

mβ̃i1,...,iD(x) ≤ Ji1,...,iD β̃i1,...,iD(x) ≤ Mβ̃i1,...,iD(x).

Summing over i1, . . . , iD and using the partition of unity property of B-splines (property 4 of
Appendix A), the following relation is obtained:

m ≤ J(x) ≤ M.

This theorem gives upper and lower bounds of the continuous Jacobian of the transforma-
tion using only the B-spline coefficients. The Jacobian of a B-spline vector field is bounded
by the extrema over ED of the B-spline coefficient “Jacobians.” Regarding invertibility, the
property one tries to have in the continuous domain (positivity of the Jacobian in R

D) is trans-
ferred in the B-spline coefficient domain (positivity of all the B-spline coefficient Jacobians in
ED).

For the sake of concreteness, the Jacobian bounds are given for low-dimensional problems.
In one dimension, the following theorem is trivial.

Theorem 3.4. Let T be a one-dimensional ( 1D) B-spline of degree n; then, for all x,

min
i

di ≤ T ′(x) ≤ max
i

di.

In one dimension, the relationship between the continuous function and the B-spline co-
efficients is visible. Regarding invertibility, the strict monotony condition of the continuous
function is transformed in the strict monotony of the B-spline coefficients.

In two dimensions, the set of active indices is

E2 =
{
(i, j)/j − i ∈ I− × (−I−)

}
.

In three dimensions, E3 is the set of triples (i, j, k) such that

⎧⎨
⎩

j − i ∈ I− × (−I−) × I,
k − i ∈ I− × I × (−I−),
k − j ∈ I × I− × (−I−).
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3.2. D-dimensional + t B-spline vector fields. When studying the deformation of an
object over a whole sequence of images at several timepoints, the motion can be advanta-
geously represented by a continuous family of diffeomorphisms: for all t, T (., t) should be a
diffeomorphism. B-splines can also be used for interpolation in the time dimension:

T (x, t) = x+
∑
i,j

c̃i,jβ(x/h − i)β2(t/ht − j)

=
∑
i,j

ci,jβ(x/h − i)β2(t/ht − j),

where β2 is a B-spline function of degree n2.
If the finite difference coefficients dli,j and the Jacobian coefficients Ji1,...,iD,j1,...,jD are

defined by

dli,j =
ci,j − ci−el,j

hl

and

Ji1,...,iD,j1,...,jD = det
(
d1i1,j1 , . . . , d

D
iD ,jD

)
,

then the Jacobian of T (., t) can be bounded independently from x and t by the extrema of
the Jacobian coefficients.

Theorem 3.5. Let T be a continuous family of D-dimensional B-spline vector fields of degree
n in space and n2 in time with J its (spatial) Jacobian. Also, let I2 = [−n2, n2] and FD =
{j1, . . . , jD/∀k,∀l, jk − jl ∈ I2}; then, for all x and t the following expression holds:

min
i1,...,iD∈ED
j1,...,jD∈FD

Ji1,...,iD ,j1,...,jD ≤ J(x, t) ≤ max
i1,...,iD∈ED
j1,...,jD∈FD

Ji1,...,iD,j1,...,jD .

Proof. For a given t, T (., t) is a B-spline vector field whose coefficients are

ci(t) =
∑
j

ci,jβ2(t/ht − j),

whose finite differences are

dli(t) =
ci(t)− ci−el(t)

hl

=
∑
j

ci,j − ci−el,j

hl
β2

(
t

ht
− j

)

=
∑
j

dli,jβ2

(
t

ht
− j

)
,
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and whose Jacobian coefficients at t can be expressed as

Ji1,...,iD(t) = det
(
d1i1(t), . . . , d

D
iD
(t)

)

= det

⎛
⎝∑

j1

d1i1(t)β2(t/ht − j1), . . . ,
∑
jD

dDiD(t)β2(t/ht − jD)

⎞
⎠

=
∑

j1,...,jD

det
(
d1i1,j1 , . . . , d

D
iD ,jD

)∏
l

β2(t/ht − jl)

=
∑

j1,...,jD

Ji1,...,iD,j1,...,jD

∏
l

β2(t/ht − jl).

From Lemma B.1, it can be proved that
∏

l β2(. − jl) is not identically null if and only
if j1, . . . , jD ∈ FD. As β2 is a B-spline, it also satisfies the partition of unity property,∑

j β2(. − jl) = 1, and consequently
∑

j1,...,jD

∏
l β2(.− jl) = 1. From these two properties, a

lower bound can be deduced:

min
j1,...,jD∈FD

Ji1,...,iD,j1,...,jD = min
j1,...,jD∈FD

Ji1,...,iD,j1,...,jD

∑
j1,...,jD

∏
l

β2(t/ht − jl)

= min
j1,...,jD∈FD

Ji1,...,iD,j1,...,jD

∑
j1,...,jD∈FD

∏
l

β2(t/ht − jl)

≤
∑

j1,...,jD∈FD

Ji1,...,iD,j1,...,jD

∏
l

β2(t/ht − jl)

=
∑

j1,...,jD

Ji1,...,iD,j1,...,jD

∏
l

β2(t/ht − jl)

= Ji1,...,iD(t).

Taking the min over ED of this expression and applying Theorem 3.3, the Jacobian can be
bounded below:

min
i1,...,iD∈ED
j1,...,jD∈FD

Ji1,...,iD,j1,...,jD ≤ min
i1,...,iD∈ED

Ji1,...,iD(t) ≤ J(x, t).

The upper bound is derived similarly.

4. A curse of dimensionality. From Theorem 3.3, a sufficient condition on B-spline coeffi-
cients to guarantee that the transformation is a diffeomorphism can be deduced. Unfortunately
the complexity of the condition does not scale well with the dimensionality D. When D = 2,
the number of constraints per node is 4n2, where n is the B-spline degree. In Table 1, the
number of constraints per node is indicated as a function of the dimension and the degree.

As one can see, the number of constraints per node grows very fast with the dimension
D. From a computational point of view, the condition can be used without restriction for 2D
vector fields and actually leads to fast algorithms. Unfortunately, for full 3D transformations,
the number of constraints per node to enforce can be prohibitive.
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Table 1
Number of constraints per node given the dimension and the degree of the vector field.

Degree 1D 2D 3D

1 1 4 64
2 1 16 2744
3 1 36 27000
4 1 64 140608

5. Sharpness of the sufficient conditions. The three invertibility conditions from [14],
[15], or the present paper are sufficient conditions. This means that when they are satisfied,
the vector field is guaranteed to be invertible, but this also means that not all of the B-spline
diffeomorphisms satisfy these conditions. If the condition is too restrictive, the search space
may not be large enough to contain the diffeomorphism of interest.

Evaluating the size of the search space defined by these conditions is not straightfor-
ward. However, one can get an idea of the sharpness of the conditions by considering affine
transforms. The analysis using affine transforms is relevant for two reasons. First, affine
transformations can be exactly represented using B-splines:

Ax+ b =
∑
i

(A(hi) + b) β
(x
h
− i

)
.

The B-spline coefficients of Ax + b are ci = A(hi) + b, and the displacement coefficients are
c̃i = ci − ih = (A − I)(ih) + b. When looking at the set of affine transforms that satisfy a
condition, one can get an idea of the range of deformations that satisfy the condition. Then,
as B-splines have a compact support, their influence is local, so the analysis considering global
transforms such as affine ones can be applied locally and in fact gives some clues about the
local deformations that satisfy the condition. The locality of the analysis is defined by the
node spacing.

Choi–Lee condition. In [14], a bound on each component of the displacement field coeffi-
cients is derived that guarantees that the B-spline transform is invertible:

‖c̃li‖∞ <
hl
K

,

where K � 2.05 in two dimensions and K � 2.48 in three dimensions. If A = I, the condition
applied to a translation from the identity becomes |b| < hl

K . This condition is very restrictive
as it allows only small variation from the identity both for the matrix and the translation
part of the transform. It can be noted that even transforms as simple as translations can be
unable to satisfy it.

Kim–Chun–Fessler condition. In [28] and [15] the invertibility is guaranteed by bounding
the finite differences in every direction of the displacement field coefficients:

‖c̃i − c̃i−el‖∞ < Khl,

where K = 1
D . When applied to the affine transform Ax+ b, the condition becomes

‖(A− I)el‖∞ < K.
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In other words, A is in the ball of center I and radius K for the matrix norm ‖M‖ =
maxij |mij|. This condition is a clear improvement over the previous one as all translations
are now accepted. However, the affine matrix must remain close enough to the identity.

The new condition. In this work, the invertibility is guaranteed by keeping the Jacobian
coefficients positive:

Ji1,...,iD > 0.

When applied to the affine transform Ax+ b, the condition simply becomes

det(A) > 0.

All the invertible affine transforms satisfy the new condition. This confirms that our condition
is sharp, as the deformation can be as close to an invertible affine transform as needed. This
will be visually confirmed in an example in the numerical experiments in section 7.1.

6. Application to nonrigid registration and interslice interpolation.

6.1. Nonrigid registration algorithm. B-spline nonrigid registration is usually solved
through the resolution of an optimization problem. In this work, it will be a constrained
problem:

min
g(c)≤0

Fλ(c) = F (c) + λR(c),

where F is the data fitting term of the cost function, R the regularization term, g the con-
straints, and c the B-spline coefficients of the transformation. Note that only the coefficients
inside the image are estimated, while coefficients outside the reference image are kept fixed;
i.e., ci = A(ih) + b, where A and b define an affine transform which can be the identity or
an affine transform from a potential preliminary affine registration step. Many data terms
have been proposed for F , from a simple sum of squared differences between the deformed
floating image and the reference image [41] to the opposite of their mutual information when
registering images of different modality [31], [43]. In this work, a least squares cost function
has been used within a multiresolution framework.

The diffeomorphic constraints g are given by Theorem 3.3: the coefficient Jacobians should
be above a given threshold εd:

(6.1) i1, . . . , iD ∈ ED : gi1,...,iD(c) = εd − Ji1,...,iD .

As in [38], the constrained problem is solved by the multipliers method. The augmented
Lagrangian is considered:

Lr(c, μ) = Fλ(c) + μg̃(c) +
r

2
||g̃(c)||2,

where μ is the vector of the Lagrange multipliers, r is a penalization coefficient, and g̃(c) =
max(g(c),−μ

r ). The problem is solved by alternatively minimizing with respect to x and
updating μ.

At the end of the algorithm, Jacobian coefficients will be greater than εd − Cstop. By
choosing Cstop < εd, the output transformation will be a diffeomorphism. Values of Jacobian
coefficients between Cstop and εd will only be penalized, and Jacobian coefficients are free
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Algorithm 1. Multipliers method.
μ = 0, c = c0, cprec = c0, r = r0
while ‖g(c)‖∞ > Cstop do
c = argminLr(. , μ)
μ = max(0, μ + rg(c))
if ‖g(c)‖∞ > Cspeed‖g(cprec)‖∞ then

r = rCincr

end if
end while

when above εd. In our implementation, Cstop has been set to εd
2 . For more insight into the

augmented Lagrangian and the multipliers method, please refer to [17], [11], [18], [2], [23].
The unconstrained inner optimization procedure used is the limited memory BFGS (L-

BFGS) method, which is a quasi-Newton method requiring a low memory size (see [24] or
[30]). Derivatives of the cost function can be found in [38] or [29], and derivatives of the
constraints are given in Appendix C.

6.2. Interslice interpolation. Diffeomorphic nonrigid registration can be used advanta-
geously in the context of interslice interpolation. Instead of using only the pixel positions to
interpolate the intensity of an image between two slices of a 3D image, nonrigid registration
can incorporate the image content into the interpolation process as in [35], [6], or [19]. If a
transformation T that maps one slice, I0, to the next, I1, is known, then

I1(x) = I0
(
T−1(x)

)
,

and given that
I0(x) = I0

(
Id−1(x)

)
,

the interpolation of the images between I0 and I1 can be done by interpolating the transforma-
tion between the identity and T . Nonrigid registration offers an approximate solution to the
transformation T ; the problem is to have a solution such that the interpolated transformations
are invertible.

The transformation to a slice between these two slices is defined as the linear interpolation
between the identity and T :

Tα(x) = (1− α)x+ αT (x),

where α is a parameter in [0, 1] to locate the slice. Tα can be seen as a spatio-temporal B-
spline vector field, where α is the time variable and the degree in the time dimension is 1.
Note that the identity is a B-spline vector field with displacement coefficients all null, and its
Jacobian coefficient matrix is the identity. Let’s apply Theorem 3.5: if, for all i, j ∈ E2, the
four determinants

det(d1i , d
2
j ), det(e1, d

2
j ),

det(d1i , e2), det(e1, e2)

are positive, then Tα is invertible for all α ∈ [0, 1]. In other words, the determinant as well as
the diagonal elements of the Jacobian coefficient matrices should be positive.
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When T is the result of the registration between I0 and I1 subject to the former conditions,
a first interslice intermediate interpolant can be defined as

I0(x, α) = I0(T
−1
α (x)).

To remain unbiased toward the direction of registration, a second intermediate interpolant
I1(., α) is found by swapping the two slices and the final interslice interpolant is found by
averaging the two intermediate ones:

I(x, α) = αI0(x, α) + (1− α)I1(x, 1− α).

7. Numerical experiments.

7.1. 2D registration of synthetic images. A comparison of the new diffeomorphic reg-
istration with other registration methods from the literature has been done on the classical
problem of the registration of a disk to a C shape. The images are binary, and the size of both
is 300×300 pixels. The coefficient Jacobian constraint (CJ) presented in this work is compared
to unconstrained registration (NO), to a registration with the bound constraint (BC) of [14],
to the bound on finite differences constraint (DC) of [28], [15], and to the constraint on pix-
elwise sampled Jacobian (SJ) of [38]. To these B-spline based registration methods we added
the diffeomorphic demons (DD) of [49]. Node spacing for B-spline registrations was 6×6, and
third degree B-splines were used for interpolate the image and to model the transformation.
For DD, the fluid-like and diffusion-like σ were both set to 1, and the maximum step length
was 2. The registration was done using four scales. The maximum number of iterations was
set on each scale from coarse to fine to 15, 10, 5, and 5 for DD and 50, 25, 10, and 15 for
the other methods. The multipliers method was run until convergence, i.e., until constraints
satisfaction.

The different methods are visually compared by mapping the input floating image and the
disk, as well as a grid using the transformation found by each method. The contours of the
reference image are overlaid on each image, and the results are presented in Figure 1. Simple
statistics on the Jacobian map of each method (range and percentage of negative Jacobians),
as well as the CPU time of the registration, are presented in Table 2.

Except for BC and DC, all methods are able to produce a visually correct registration:
the disk is perfectly transformed into the C shape. By imposing a bound on the displacement
coefficient or its finite differences, BC and DC guarantee that the resulting transformation is
a diffeomorphism. The cost of this guarantee is a reduction of the search space so important
that large deformations cannot be recovered. Note that the results obtained in this work
are similar to those of [15]. In the latter, the authors also try to get a perfect match by
composing the transformation. Thirty-five compositions of BC or three compositions of DC
were required to correctly register the disk to the C. Using the new constraints CJ, the
diffeomorphic property is guaranteed, but large deformations are recovered directly, without
the need to compose several vector fields. This allows us to keep the B-spline representation
as the output of the final transformation.

The unconstrained registration indeed does a good job of matching the two images. How-
ever as one can see on the deformation of the grid, serious foldings are present in the trans-
formation. One can also see that Jacobians are negative on 15% of the pixels.
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(a) Reference image (b) Floating image

(c) No constraint (NO) (d) No constraint (NO) (e) Choi–Lee (BC) (f) Choi–Lee (BC)

(g) Sampled Jacobian
(SJ)

(h) Sampled Jacobian
(SJ)

(i) Kim–Chun–Fessler
(DC)

(j) Kim–Chun–Fessler
(DC)

(k) Diffeomorphic
demons (DD)

(l) Diffeomorphic demons
(DD)

(m) New constraint (CJ) (n) New constraint (CJ)

Figure 1. Results of the registration for different methods: the floating image and a grid are mapped through
the transformation. A contour image of the reference is overlaid on these images.

No folding is apparent on the deformation grid image for the SJ method, while at the same
time the two images are correctly matched. It can be seen from Table 2 that Jacobians are
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Table 2
Extrema of the Jacobians, percentage of negative Jacobians, and CPU time (in seconds) for the different

methods.

Method min J max J J ≤ 0 Time

Unconstrained (NO) −2.703 5.69 14.5 4
Sampled Jacobian (SJ) 0.008 3.10 0 14
Choi–Lee (BC) 0.220 1.49 0 6
Kim–Chun–Fessler (DC) 0.128 3.78 0 11
New constraint (CJ) 0.011 3.46 0 13
Diffeomorphic demon (DD) −1.871 8.06 5.7 12

positive on all pixels (as imposed by the constraints). If this point is of important practical
value (for example, for further statistical analysis of Jacobian maps), this does not guarantee
that the transformation found by this method is a diffeomorphism as the Jacobian map can
take negative values between pixels.

DD also correctly registers the two images while apparently avoiding foldings in the trans-
formation. However, as seen in Table 2, 6% of the Jacobians are negative in the image with
values down to −1.87. As opposed to B-spline based registration, analytical expression of the
Jacobians is not available for DD, and Jacobians have to be computed using a finite different
scheme. As pointed out in [49], the numerical computation of Jacobians is not consistent with
the theory behind DD. This is why negative Jacobians can be obtained even if the transfor-
mation is diffeomorphic. Note also that if the maximum length of an update vector parameter
of DD is too large, the transformation might not be invertible at all.

Regarding the computation time, the registration is performed in about 5s for BC and
NO and in around 12s for the other methods. This makes the new diffeomorphic registration
in two dimensions competitive with DD, which is considered a fast registration method. Note
that DD was run using the C++ software provided with the Insight Toolkit (ITK) library
and the other algorithms are based on a MATLAB/C implementation1 and can be further
optimized. For the registrations using the multipliers method to solve the constrained problem
(SJ, DC, and CJ), convergence was reached after four to six outer iterations. Note also that
the number of inner iterations for all methods is manually set and a robust stopping criterion
would be of great interest in reducing the computational time.

7.2. Topology preservation experiment. In this experiment, the registration between
two synthetic images is performed for unconstrained registration and the new diffeomorphic
registration. The diffeomorphic registration was performed using several values for the B-
spline degree and for the Jacobian lower bound (the εd parameter of (6.1)). To observe the
topology preservation property of diffeomorphic registration and its behavior in the presence of
nondiffeomorphic structures, the reference image (two balls) and the floating image (an ellipse)
have been chosen such that they cannot be matched using a diffeomorphic transformation.

Node spacing for B-spline registrations was 6 × 6. The registration was done using four
scales. The maximum number of inner iterations was set on each scale from coarse to fine to
30, 30, 20, and 8. The multipliers method was run until convergence.

The results are visually compared by mapping the input floating image, the ellipse, as well

1The code is based on the library provided at http://web.eecs.umich.edu/∼fessler/code/index.html.

http://web.eecs.umich.edu/~fessler/code/index.html
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Figure 2. Results of the registration for unconstrained registration and constrained registration for several
values of the B-spline degree and the determinant lower bound εd. The reference and floating images are in the
top row; in rows 2–3 are the deformed image for B-spline degrees 1 and 3 and in rows 4–5 the deformed grid
for degrees 1 and 3. The first column shows the results of unconstrained registration, followed by the results of
the new constrained registration with the εd parameter sets to 0.001, 0.25, and 1.
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Table 3
Number of multipliers method (MM) iterations, CPU time, and minimum Jacobians for different spline

degree and εd values.

MM iterations CPU time min J

εd deg. 1 deg. 2 deg. 3 deg. 1 deg. 2 deg. 3 deg. 1 deg. 2 deg. 3

NO 1.91 1.94 1.96 −3.7342 −7.7438 −3.0352
0.0001 7 20 16 6.40 13.74 14.01 0.0013 0.0001 0.0003
0.001 9 36 18 10.06 23.11 14.85 0.0022 0.0010 0.0011
0.01 6 23 8 5.96 15.52 8.08 0.0136 0.0074 0.0107
0.05 7 8 5 6.26 6.96 6.09 0.0492 0.0359 0.0405
0.10 4 7 5 4.39 6.50 6.05 0.0781 0.0868 0.0816
0.25 1 2 4 3.04 3.86 5.26 0.1687 0.2147 0.2338
0.50 3 1 1 4.09 3.33 3.48 0.4682 0.4432 0.4219
0.75 1 1 1 2.88 3.23 3.42 0.7180 0.6961 0.6199
1 1 1 1 2.82 2.88 3.01 0.8255 0.7412 0.7276

as a grid using the transformations found. The contours of the reference image are overlaid
on each image, and the results are presented in Figure 2. The number of outer iterations of
the multipliers method, the CPU time, and the minimum Jacobian are presented in Table 3.

One can see in Figure 2 that the unconstrained registration gives a perfect match of the two
images, but consequently the topology of the floating image is changed by the deformation.
Using the constrained registration, the matching is good everywhere but on a ribbon between
the two balls. This ribbon makes the topology of the floating image equivalent before and after
deformation. Its shape seems to be variable, which makes us suspect that the cost function is
quite flat in this region and/or has local minima. With the increase on the εd parameter, one
can also notice a small enlargement of the ribbon and that the grid becomes more regular.
The change of B-spline degree does not seem to affect the registration very much.

From Table 3, one can see that computational time and the number of outer iterations
decrease when εd is increased. This is due to the value of Cstop (see Algorithm 1), which is
set to εd

2 . When εd is increased, the search space is reduced, but the constraints need to be
satisfied less strictly to make the transformation diffeomorphic.

Regarding the B-spline degree, the CPU time and number of outer iterations increase
somewhat when changing the degree from 1 to 3. This was expected as when the degree
increases, the number of constraints as well as the complexity of the data fitting term also
increases. Surprisingly, when using quadratic B-splines, the number of iterations and the CPU
time are higher than when cubic B-splines are used. As expected, the Jacobian minimum is
correlated to εd. The B-spline degree does not seem to have an influence on the Jacobian
minimum.

7.3. Interslice interpolation. The registration based interpolation (RBI) has been com-
pared to a standard linear interpolation (LI) on in vivo T2 magnetic resonance images of the
brain. The data were downloaded from the NAMIC website.2 The image is 256 × 256 × 176
voxels and voxel size is 1mm× 1mm× 1mm. In real life clinical protocol, it is not unusual to
have a 3mm or even 5mm interslice spacing for a T2 image. Two slices 5mm apart have been

2See http://hdl.handle.net/1926/1687.

http://hdl.handle.net/1926/1687
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Table 4
MAD for each slice between LI and RBI.

Slice LI RBI

0 0.00 0.00
1 18.08 15.55
2 27.01 20.93
3 27.65 20.95
4 19.06 15.38
5 0.00 0.00

Figure 3. Interslice interpolation (zoom around the ventricles). The first and last columns are the input
slices of the interpolation, and the middle columns are the interpolated slices. The LI results are in the first
row, the RBI results are in the second row and the third row is the ground truth.

extracted and used to test the interslice interpolation.
The mean of absolute differences (MAD) between the interpolated images (Ii) and the

ground truth (Ig) is used to compare the LI and RBI:

MAD =
1

N

∑
x

|Ii(x)− Ig(x)| .

The MAD for each slice is given in Table 4.
As expected, for both methods, the error is null on the first and last slices and increases

with the distance from the input slices. One can notice that a better result is obtained with
RBI for all slices and that the best improvement is obtained for middle slices (slices 2 and 3).

Figure 3 presents the result of the two interpolations in the ventricular region. In this
region, the deformation of the ventricles is important between the two slices, and the two
images are very different. This is why LI does a poor job. It can be clearly seen that the
resulting intensity around the ventricles is a mix of the two input images. With RBI, as the
input images are deformed before they are mixed, such an artifact does not occur, and the
interpolated images keep sharp boundaries.
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8. Conclusion. A new sufficient condition to guarantee the invertibility of a B-spline
vector field T is presented in this work. The condition is also extended to a spatio-temporal
vector field. The condition, that Jacobians of the B-spline coefficient should be positive, can
be seen as the natural extension of the continuous condition for all x,det(T ′(x)) > 0 to the
B-spline coefficients. The infinite number of inequality constraints in the continuous space is
reduced to a finite set of inequality constraints.

A diffeomorphic registration method has also been proposed using the sufficient condition
as inequality constraint in a constrained optimization modelization of the registration process.
This diffeomorphic registration has further been used to propose a high quality interslice
interpolation.

The main limitation of our proposal can be resumed as a curse of dimensionality: the
number of constraints increases very quickly with the dimension of the vector field. In practical
application, we would say that this limits the usability of our proposal to a 2D vector field,
2D + t spatio-temporal vector field, or inplane constrained 3D deformation. For full 3D
transformation, the the number of constraints per node necessary to guarantee invertibility
makes it unusable. Despite this restriction, our method can still be applied to a large number
of problems. For example, it can be used for atlas based segmentation of 2D images [40]; to
segment 3D images with 2D atlases as in [21]; to correct the geometric distortion occurring in
the phase direction of echo planar images [3], [1]; to perform high quality slice interpolation
[35], [6], [19]; for cortical surface matching [27], [26]; or for transmission electron microscopy
reconstruction [20].

Numerical experiments have been performed on synthetic and real life problems. The
2D diffeomorphic registration has been compared to different state-of-the-art methods on the
standard registration problem between a disk and a C shape. Our method is the only one
with all of the following properties: the registration is visually correct, the transformation is
truly diffeomorphic, the Jacobian map can be computed exactly, and only positive Jacobians
are obtained. Regarding the computation time, for a 2D problem, our method is competitive
with DD, which is considered a fast method.

Slice interpolation experiments have also been performed. For this more realistic experi-
ment, our diffeomorphic registration has been used to interpolate the data between two slices
of a T2 weighted image of the brain. Interpolation errors have been measured, and a compar-
ison has been made to a linear interpolation of the slices. Numerical results as well as visual
inspection clearly show that our method offers a strong improvement over LI.

Appendix A. Main B-spline properties. In this section, the definition and main properties
of B-splines are presented. For more insight on B-splines, please refer, for example, to [46].

Definition A.1. The 1D 0th-degree B-spline β0 is the characteristic function of the interval[−1
2 ,

1
2

[
. The nth-degree B-spline βn is obtained by convolving this function with itself n times:

βn = βn−1 ∗ β0.

Here we summarize some basic properties of the 1D B-splines used in this paper:
1. βn is an nth-degree piecewise polynomial function.
2. βn(t) ≥ 0.
3. The support of βn is

[−n+1
2 , n+1

2

]
.
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4. For all t,
∑

i βn (t− i) = 1.
5. β′

n(t) = βn−1(t+
1
2)− βn−1(t− 1

2).
6. If f(t) =

∑
i ciβn(t− i), then for all t,mini ci ≤ f(t) ≤ maxi ci.

Appendix B. B-spline overlap lemmas. Let β be the n-degree 1D B-spline and β− the
spline of degree n−1. β is null everywhere except on the interval n+1

2 × ]−1, 1[. Consequently,
for (a, b) ∈ Z

2 and h > 0, β(t/h− a) does not vanish only on the interval

h×
(
a+

n+ 1

2
× ]− 1, 1[

)
,

and β−(t/h− a+ 1
2) is null everywhere except on

h×
(
a− 1

2
+

n

2
× ]− 1, 1[

)
.

Lemma B.1. There exists t such that β(t/h−a)β(t/h−b) �= 0 if and only if b−a ∈ [−n, n].
Proof. Take such a t; then there exists (λ, μ) ∈ ]− 1, 1[2 such that

t = h×
(
a+ λ

n+ 1

2

)
= h×

(
b+ μ

n+ 1

2

)
.

We deduce that

b− a = (λ− μ)
n+ 1

2
.

As (λ− μ) ∈ ]− 2, 2[, we can conclude that

b− a ∈ [−n, n].

Lemma B.2. There exists t such that β−(t/h− a+ 1
2)β(t/h− b) �= 0 if and only if b− a ∈

[−n, n− 1].
Proof. If the B-spline product above is not null for a given t, this t can be expressed as

t = h×
(
b+ μ

n+ 1

2

)
= h×

(
a− 1

2
+ λ

n

2

)

with (λ, μ) ∈ ]− 1, 1[2. We deduce that

b− a = λ
n

2
− 1

2
− μ

n+ 1

2
∈ ]− n− 1, n[,

and finally

b− a ∈ [−n, n− 1].

Appendix C. Constraint derivatives. In this appendix, the derivatives of the constraints
in two dimensions with respect to a B-spline coefficient ck,q, where k is the B-spline index and
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q is the component index, are given. Let us start with the derivatives of the finite difference
coefficient,

∂dli
∂ck,q

=
∂

∂ck,q

(
ci − ci−el

hl

)

=
δik − δi−el,k

hl
eq,

where δ is the Kronecker symbol and eq is the qth vector of the canonical basis.
In two dimensions, the Jacobian coefficient derivatives are

∂Jij
∂cqk

=
∂

∂ck,q

∣∣d1i , d2j ∣∣
=

∣∣∣∣ ∂d
1
i

∂ck,q
, d2j

∣∣∣∣+
∣∣∣∣d1i , ∂d2i

∂ck,q

∣∣∣∣
=

δik − δi−el,k

h1

∣∣eq, d2j ∣∣+ δjk − δj−el,k

h2

∣∣d1i , eq∣∣
= (−1)q+1

(
δik − δi−el,k

h1
d2j,q +

δjk − δj−el,k

h2
d1i,q

)
,

where q = 3 − q. One can see that each Jacobian coefficient has an influence on only four
gradient components.
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