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HIDDEN SYMMETRY SUBGROUP PROBLEMS∗

THOMAS DECKER† , GÁBOR IVANYOS‡ , MIKLOS SANTHA§ , AND PAWEL WOCJAN¶

Abstract. We advocate a new approach for addressing hidden structure problems and finding
efficient quantum algorithms. We introduce and investigate the hidden symmetry subgroup problem
(HSSP), which is a generalization of the well-studied hidden subgroup problem (HSP). Given a
group acting on a set and an oracle whose level sets define a partition of the set, the task is to
recover the subgroup of symmetries of this partition inside the group. The HSSP provides a unifying
framework that, besides the HSP, encompasses a wide range of algebraic oracle problems, including
quadratic hidden polynomial problems. While the HSSP can have provably exponential quantum
query complexity, we obtain efficient quantum algorithms for various interesting cases. To achieve
this, we present a general method for reducing the HSSP to the HSP, which works efficiently in several
cases related to symmetries of polynomials. The HSSP therefore connects in a rather surprising way
certain hidden polynomial problems with the HSP. Using this connection, we obtain the first efficient
quantum algorithm for the hidden polynomial problem for multivariate quadratic polynomials over
fields of constant characteristic. We also apply the new methods to polynomial function graph
problems and present an efficient quantum procedure for constant degree multivariate polynomials
over any field. This result improves in several ways the currently known algorithms.
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1. Introduction. The main goal of quantum computing is to identify suitable
classes of problems and to find efficient quantum algorithms for them that provide
a significant speed-up over their classical counterparts. The vast majority of such
examples consists of group-theoretical problems that can be formulated within the
framework of the hidden subgroup problem (HSP). This problem can be cast in
the following terms: We are given a finite group G and a black-box function from
G to some finite set. The level sets of the function correspond to the right cosets of
some subgroup H . We say that f hides H , and the task is to determine this hidden
subgroup. One query of the function counts as one step in the computation, and an
algorithm is efficient if its running time is polynomial in the logarithm of the size of the
group. While no classical algorithm is known to solve this problem with polynomial
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query complexity, the problem is computationally solvable in quantum polynomial
time for every abelian group [1, 2, 3].

Several attempts were made to extend the quantum solution of the abelian HSP.
Most of the research focused on the HSP in nonabelian groups since these include
several algorithmically important problems. For example, it is known that efficient
solutions for the dihedral and the symmetric group would imply efficient solutions
for some lattice problems [4] and for graph isomorphism, respectively. While some
progress has been made in this direction [5, 6, 7, 8, 9, 10, 11], the HSP for the dihe-
dral and symmetric groups remains unsolved. It is already known that the methods
for solving the abelian case fail for several nonabelian groups [12, 13]. The goal of
obtaining efficient quantum algorithms for larger classes of nonabelian groups turned
out to be rather elusive.

Another idea for generalizing the problem was proposed by Childs, Schulman,
and Vazirani [14], who considered properties of algebraic sets hidden by black-box
functions. One of these problems is the hidden polynomial problem (HPP), where
the hidden object is a polynomial. To recover it we have at our disposal an oracle
whose level sets coincide with the level sets of the polynomial. Childs et al. [14]
showed that the quantum query complexity of this problem is polynomial in the
logarithm of the field size, provided that the degree and the number of variables are
held constant, leaving open the question of the time complexity. The authors also
formulated computationally efficient quantum procedures for some related problems,
such as the hidden radius and the hidden flat of centers. Nonetheless, to the best of
our knowledge, no efficient quantum polynomial time algorithm has been proposed for
the general HPP, not even for the simplest problem of hidden quadratic polynomials
in one variable (HQPP).

In [15], Decker, Draisma, and Wocjan defined a related problem that we refer to
as the hidden polynomial graph problem (HPGP) to distinguish it from the HPP.
Here, similarly to the HPP, the hidden object is a polynomial, but the oracle is
more powerful. They obtained a polynomial time quantum algorithm that correctly
identifies the hidden polynomial when the degree and the number of variables are
considered to be constant. Their proof applies to all finite fields whose characteristic
is not in a finite set of exceptional characteristics that depend on the degree of the
polynomials.

In this paper, we advocate a third possible approach for finding hidden structures.
We consider a group G acting on some finite set M , and we suppose that we have
at our disposal a black-box function whose level sets define a partition of M . The
object we would like to recover is the group of symmetries of this partition inside G,
i.e., the largest subgroup whose orbits under the action coincide with the classes of
the partition. We call this problem the hidden symmetry subgroup problem (HSSP).
It is easy to see that the HSP is a special case of the HSSP when the group acts on
itself and the action corresponds to the group operation. But, for some actions, the
HSSP is provably harder than any HSP. We show that Grover’s search can be cast
as an HSSP, establishing that certain cases of the HSSP have exponential quantum
query complexity. This is in contrast to the HSP, which has polynomial quantum
query complexity for all groups [16].

The potential of the HSSP lies mainly in the possibility of extending the HSP
techniques to more general group actions that still admit efficient quantum procedures.
We demonstrate the power of this new approach by designing and improving quantum
algorithms for several algebraic problems. To achieve this we reduce both the HQPP

and the univariate HPGP to appropriate HSSPs for which we can give efficient
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quantum solutions in some interesting cases. Besides the construction of efficient
algorithms, the formulation of problems as HSSP can also shed new light on their
structure. For example, the apparent difficulty of the HQPP over prime fields might
be explained by the equivalence of this problem to the HSP in the dihedral group, a
connection discovered via their relations to the HSSP. It is also worth noting that
the hidden shifted multiplicative character problem of van Dam, Hallgren, and Ip [17]
is a version of the HSSP with an additional promise on the input.

To establish our algorithmic results, we first concentrate on the question of
whether the HSSP can be reduced in some cases to the related HSP that we ob-
tain by forgetting about the action. We design a reduction scheme, which involves
the generalization of bases known from the theory of permutation groups. We are
able to show that when the action has an efficiently computable generalized base then
the HSSP is indeed efficiently reducible to the related HSP (Proposition 3.4). Then
we describe a probabilistic construction of such bases for a large class of Frobenius
groups. Therefore, the above reduction applies to these groups (Theorem 4.4). These
groups include among others a large variety of affine groups, and the HSSP is effi-
ciently solvable for these groups by a quantum algorithm. We remark that in [18] it is
proved that the HSSP (in a slightly different formulation) can be solved efficiently for
some of these affine groups. The proof uses essentially the same reduction technique.

We then establish several surprising connections between hidden polynomial prob-
lems and the HSSP. In fact, the HQPP turns out to be equivalent in a very strong
sense to the HSSP over a related affine group. Combined with the above reduction to
the related HSP, we are able to give the first ever quantum polynomial time solution
for the HQPP over fields of constant characteristic (Theorem 4.7). We then give a
quantum reduction of the multivariate quadratic HPP to the HQPP, which implies
that over fields of constant characteristic this multivariate problem is also solvable in
quantum polynomial time (Theorem 4.9).

Finally, for dealing with theHPGP, we define a class of semidirect product groups
which we call function graph groups. We show that the HPGP for univariate poly-
nomials of degree at most d coincides with the HSSP over a corresponding function
graph group. These groups turn out to have a base of size d, and therefore our gen-
eral reduction to the related HSP applies (Theorem 5.5). Based on this reduction, we
improve the results of [15] by showing that there is a quantum polynomial time algo-
rithm for the HPGP over every field when the degree of the polynomials is constant
(Theorem 5.7).

2. Preliminaries. We first fix some useful notation: n denotes a positive integer,
p a prime number, q a prime power, Zn the additive group of integers modulo n, Fq

the finite field of size q, and F
(d)
q [x] the set of univariate polynomials of degree at most

d over Fq.

2.1. Level sets and problem classes. Simply speaking, we study the general
problem of determining hidden objects related to a given algebraic structure. The
algebraic structure is specified by parameters of the problem, which are finite groups,
families of subgroups of a given group, group actions, finite fields, and integers in the
present case. We assume that we have access to an unknown member of a family of
black-box functions f : A→ S, where A is part of the structure and S is some finite
set. We consider this function f as the oracle input. We are restricted to identifying
the hidden object solely from the information we obtain by querying the oracle f .
In fact, the only useful information we can obtain is the structure of the level sets
f−1(s) = {a ∈ A : f(a) = s}, s ∈ S; that is, we can only determine whether two
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elements in A are mapped to the same value or not. All nonempty level sets together
constitute a partition of A which we denote by πf .

Definition 2.1. The hidden subgroup problem HSP is parametrized by a finite
group G and a family H of subgroups of G.

HSP(G,H)
Oracle input: A function f from G to some finite set S such that for
some subgroup H ∈ H, we have f(x) = f(y)⇐⇒ Hx = Hy.
Output: H.

The hidden polynomial problem HPP is parametrized by a finite field Fq and two
positive integers n and d.

HPP(Fq, n, d).
Oracle input: A function f from F

n
q to some finite set S such that

for some n-variate polynomial P of degree d over Fq, we have f(x) =
f(y)⇐⇒ P(x) = P(y).
Output: P.

For every u ∈ Fq we define a monic quadratic polynomial over Fq by Pu(x) = x2−2ux.
The hidden quadratic polynomial problem HQPP is parametrized by some finite
field Fq.

HQPP(Fq).
Oracle input: A function f from Fq to some finite set S such that we
have f(x) = f(y)⇐⇒ Pu(x) = Pu(y).
Output: Pu (or just u).

The hidden polynomial graph problem HPGP is parametrized by a finite field Fq and
two positive integers n and d.

HPGP(Fq, n, d).
Oracle input: A function f from Fn

q ×Fq to a finite set S such that for
some n-variate polynomial Q of degree d over Fq we have f(x1, y1) =
f(x2, y2)⇐⇒ y1 −Q(x1) = y2 −Q(x2).
Output: Q.

In all these problems we say that the input f hides the output of the problem.
In the definition of the HQPP we restrict our attention to monic polynomials

with zero constant term, because adding a constant to a polynomial or multiplying
all coefficients with the same nonzero constant does not change the partition πf .
Furthermore, observe that the HPGP is a special case of the HPP in n+1 variables,
where the dependence on the (n+1)st variable is linear. Also, the fact that an HPGP

oracle f(x, y) restricted to y = 0 is equivalent to an HPP oracle can be interpreted
as the HPGP being a version of HPP with a more powerful oracle.

In all these problems the task is to determine the output hidden by the oracle
input. We measure the time complexity of an algorithm by the overall running time
when a query counts as one computational step. An algorithm is efficient if its time
complexity is polynomial in the logarithm of the size of the group or field, and in the
size of the integers in unary in the parametrization of the problem.

2.2. Semidirect product groups. Let K and H be finite groups and let φ :
h �→ φh be a homomorphism from H to the group of automorphisms of K. Then
the semidirect product K �φ H is the cartesian product of K and H equipped with
the multiplication defined as (k, h) · (k′, h′) = (k · φh(k

′), h · h′). We use the notation
K �H for K �φ H whenever φ is clear from the context.
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2.3. Group actions and partitions. A left permutation action of a group G
on a set M is a binary function ◦ : G×M →M , where we denote ◦(g,m) by g ◦m,
which for all g, h ∈ G and m ∈ M satisfies g ◦ (h ◦m) = (gh) ◦m and e ◦m = m for
the identity element e of G. For a subset L ⊆M we set g ◦L = {g ◦m : m ∈ L}. The
stabilizer subgroup Gm of m is defined as {g ∈ G : g ◦m = m}, the set of elements in
G which fix m. The action ◦ is faithful if ⋂m∈M Gm = {e}. Throughout the paper we
assume faithfulness. If G acts on M , then every subgroup H of G acts also naturally
on M . The H-orbit of m ∈M is the set of elements of M to which m can be moved
by elements of H , formally H ◦m = {h ◦m : h ∈ H}.

For each subgroupH , theH-orbits form a partitionH∗ = {S : ∃m ∈M such that
S = H ◦m} of M . For a partition π = {π1, . . . , π�} of the set M , we define the sub-
group π∗ = {g ∈ G : (∀i) g ◦ πi = πi}. We call π∗ ≤ G the group of symmetries
of π within G. This is the subgroup of elements that stabilize every class of the
partition π under the given action. Let (S(G),⊆) be the lattice of subgroups of G
under the inclusion relation, and let (Π(M),≤) be the lattice of partitions of M ,
where by definition π ≤ π′ if π′ is finer than π. The maps H �→ H∗ and π �→ π∗

define an order-reversing Galois connection between (S(G),⊆) and (Π(M),≤), that
is, H ⊆ π∗ if and only if π ≤ H∗. The subgroup H∗∗ is the closure of H [19]; it
consists of the elements in G which stabilize every H-orbit. The closure of a parti-
tion π is π∗∗; it consists of the orbits of its group of symmetries. It is always true
that H∗∗ ⊇ H and π∗∗ ≤ π. The subgroup H is ◦-closed (or just closed if ◦ is clear
from the context) if H = H∗∗, or, equivalently, there exists a partition π such that
H = π∗. Similarly, π is closed if π = π∗∗. We denote by C(G) the family of all closed
subgroups in G.

2.4. The hidden symmetry subgroup problem. We now have all prerequi-
sites to define the new problem class.

Definition 2.2. The hidden symmetry subgroup problem HSSP is parametrized
by a finite group G, a finite set M , an action ◦ : G ×M → M of G on M , and a
family H of closed subgroups of G.

HSSP(G,M, ◦,H).
Oracle input: A function f from M to some finite set S such that
for some subgroup H ∈ H, we have f(x) = f(y)⇐⇒ H ◦ x = H ◦ y.
Output: H.

In general, there can be several subgroups whose orbits coincide with the level sets
of f , but the closures of these subgroups are the same. The unique closed subgroup
that satisfies the promise is π∗

f , and this is exactly the output of the problem. We
will say that f hides H by symmetries. In fact, it would be natural to extend HSSP

to the more general setting where f is an arbitrary function on M and the task is to
determine the (closed) subgroup π∗

f . The restriction we use in this paper is that πf

is a closed partition with π∗
f ∈ H. We define an algorithm for solving the HSSP as

efficient if it is polylogarithmic in |G|.
It is easy to see that the HSP is a special case of the HSSP when we set M = G

and choose the group action ◦ to be the group operation, that is, g ◦ h = gh. For this
action every subgroup H of G is closed. Indeed, the stabilizer of any left coset of H is
H , and hence H belongs to the partition of G into the left cosets of H . Furthermore,
a function f hides a subgroup H if and only if f hides H by symmetries.

Given HSSP(G,M, ◦,H), by forgetting about the action we obtain HSP(G,H).
We call this problem the related HSP.
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2.5. Related results. While the HSP is generally hard in nonabelian groups,
its query complexity is always small, due to a classical result of Ettinger, Høyer, and
Knill [16].

Fact 1. For every finite G, the HSP(G, C(G)) has polynomial query complexity.
Here C(G) is just the set of all the subgroups of G, since for the action corre-

sponding to the HSP, every subgroup is closed. Among groups where the HSP is
solvable in quantum polynomial time, some affine groups will be of importance for us.
For a subgroup H of F∗

q , let Affq(H) denote the semidirect product Fq �H , and let
FC be the family of conjugates of H by an element of Fq (for a detailed discussion of
these groups see section 4.2). The following positive results on the solvability of the
HSP were obtained, respectively, by Moore et al. [11] and Friedl et al. [7].

Fact 2. The following cases of the HSP can be solved in polynomial time:
(a) HSP(Affq(H),FC), where q is a prime and H ≤ F

∗
q such that 1 < |H | ≤ q−1

and |H | = Ω(q/polylog(q)).
(b) HSP(G, C(G)), where G is a finite group such that G′ is commutative and

every element of G′ has an order bounded by a constant.
The query complexity of the HPP was investigated by Childs, Schulman, and

Vazirani [14]. They showed the following.
Fact 3. If n ≥ 2 and d are constants, then for an 1− o(1) fraction of the hidden

polynomials, HPP(Fq, n, d) has polylogarithmic query complexity.
Here, like in the case of the HQPP, polynomials are determined up to constant

terms and scalar factors. We are not aware of any results regarding the quantum
computational complexity even in the univariate quadratic case. Rötteler showed
that multivariate quadratic (not hidden) Boolean functions can be identified using a
linear number of quantum queries [20]. For the HPGP, Decker, Draisma, and Wocjan
[15] showed the following.

Fact 4.

(a) HPGP(Fq, n, d) can be reduced in polynomial time to HPGP(Fq, 1, d) for
every constant n.

(b) For every d there exists a finite set Ed of primes such that if d is constant
and the characteristic of Fq is not in Ed, then HPGP(Fq, 1, d) can be solved
in quantum polynomial time.

3. A general reduction of the HSSP to the HSP. How much greater is the
complexity of an HSSP compared to the complexity of the related HSP? To analyze
this, we first give a simple example, which shows that the query complexity of the
HSSP can be exponentially higher than the query complexity of the related HSP.
Then, more interestingly, we will establish a general condition on the group action
under which the HSSP can be reduced in polynomial time to the related HSP.

3.1. HSSP with exponential query complexity. While the quantum query
complexity of the HSP is polylogarithmic in the size of the group, we show in this
section that the query complexity of an HSSP can be in the order of |G|1/4. More
precisely, we show that Grover’s search problem can be reduced to some specific
HSSP.

For a prime power q, the general affine group Affq of invertible affine transforma-
tions over Fq is defined as the semidirect product Fq�F

∗
q, where F

∗
q denotes the multi-

plicative group of Fq. The natural action of Affq on Fq is defined as (b, a)◦x = ax+b.
For every c ∈ Fq, the stabilizer of c is the subgroup Hc = {((1 − a)c, a) : a ∈ F∗

q},
which has two orbits, {c} and {d ∈ Fq : d �= c}, and thus Affq is 2-transitive. Clearly,
Hc is a closed subgroup. We set H = {Hc : c ∈ Fq}.
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Proposition 3.1. The query complexity of HSSP(Affq,Fq, ◦,H) is Ω(q1/2).
Proof. Grover’s search over Fq can be trivially reduced to this HSSP. Indeed, if

the oracle input is fc, defined by fc(x) = δc,x, where δc,x is the Kronecker delta, then
fc hides Hc as symmetry subgroup. From any generator (b, a) of Hc one recovers c
simply by computing (1−a)−1b. Hence, the query complexity of the HSSP is at least
the query complexity Ω(q1/2) of Grover’s search [21].

3.2. A reduction scheme of the HSSP to the HSP. In this section, we
describe a rather natural framework for reducing the HSSP to the related HSP. Es-
sentially, the same idea was used in [18] for reducing certain hidden shift problems
to the HSP in the affine group over prime fields. We assume that we are given a
black-box function f over M , which hides some subgroup H of G by symmetries.
With the help of f , we would like to construct a suitable function fHSP over G, which
hides H . A first approach could be to define fHSP(g) = f(g ◦m), where m is a fixed
element of M . Unfortunately, this works only in very exceptional cases because fHSP

takes constant values on the left cosets of the stabilizer Hm of m. Therefore, even in
the simple case when f hides the trivial subgroup, the function fHSP will not work
unless the stabilizer of m is trivial. As a straightforward refinement of this idea, we
can pick several elements m1, . . . ,mt ∈M and define

fHSP(g) = (f(g ◦m1), . . . , f(g ◦mt)).

For the trivial hidden subgroup, this idea works when the common stabilizer of
m1, . . . ,mt is trivial, that is, when

⋂t
i=1 Hmi = {e}. In the theory of permutation

groups such a system of elements is called a base [22]. Of course, bases exist only
if the action of G is faithful. The following definition includes further conditions on
m1, . . . ,mt in order to make the above construction work in general.

Definition 3.2. Let G be a finite group and let ◦ : G ×M → M be an action
of G on the finite set M . Let H ≤ G be a subgroup of G, and let H be a family of
subgroups of G. A set B ⊆M is an H-strong base if for every g ∈ G, we have⋂

m∈B

HGg◦m = H.

We call B an H-strong base when it is H-strong for every subgroup H ∈ H.
Observe that a strong {e}-base is just a base in the conventional sense, and also

that
⋂

m∈M HGm = H∗∗. Hence, M itself is always a C(G)-strong base. If B is
an H-strong base, then B is also an (xHx−1)-strong base for every x ∈ G, because
Gxg◦m = xGg◦mx−1. Therefore, if H consists of conjugated subgroups, then B is an
H-strong base if it is an H-strong base for some H ∈ H. Also, if H is closed under
conjugation by elements of G, B is an H-strong base if and only if

⋂
m∈B HGm = H

for every H ∈ H.
The following lemma states that the HSSP is indeed reducible to the HSP via an

H-strong base.
Lemma 3.3 (reduction of HSSP to HSP). Let G be a finite group, and let ◦ be

an action of G on M . Suppose that the function f : G → S hides some H ∈ H by
symmetries. Let B = {m1, . . . ,mt} be an H-strong base. Then H is hidden by the
function fHSP(g) = (f(g ◦m1), . . . , f(g ◦mt)).

Proof. We will show that for every x, y ∈ G, we have fHSP(x) = fHSP(y) if and
only if y ∈ Hx. To see the “only if” part, suppose that fHSP(x) = fHSP(y). Then by
definition f(x ◦m) = f(y ◦m) for every m ∈ B. Therefore, for every m ∈ B there
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exists an element hm ∈ H such that x ◦m = hm ◦ (y ◦m). This equality implies that
m = (x−1hmy) ◦ m, that is, x−1hmy ∈ Gm. Thus y ∈ h−1

m xGm for every m ∈ B,
from which we can deduce y ∈ ⋂

m∈B HxGm. Now observe that xGmx−1 = Gx◦m,
and therefore y ∈ ⋂

m∈B HGx◦mx. From this we can conclude y ∈ Hx because B is
an H-strong base.

To show the reverse implication, suppose that y = hx for some h ∈ H . This
implies y ◦m = h ◦ (x ◦m) for all m ∈ B. Since f hides H as symmetry subgroup, we
have f(y ◦m) = f(x ◦m), again for all m ∈ B, implying fHSP(y) = fHSP(x) by the
definition of fHSP.

The following statement is immediate from Lemma 3.3.
Proposition 3.4. Let G be a finite group, M a finite set, ◦ a polynomial time

computable action of G on M , and H a family of subgroups of G. If there exists an
efficiently computable H-strong base in M , then HSSP(G,M, ◦,H) is polynomial time
reducible to HSP(G,H).

Together with Proposition 3.1, this result demonstrates that, in contrast to or-
dinary bases, finding (and even understanding the existence of) strong bases can be
quite difficult. The results in the rest of the paper rely on constructing strong bases
in two different contexts.

4. The HSSP for Frobenius complements and the HQPP. In view of
Proposition 3.4, we are interested in group actions for which there exist easily com-
putable (and therefore also small) bases for some interesting families of subgroups. If
in addition the related HSP is easy to solve, then we have efficiently solvable HSSPs.
It turns out not only that Frobenius groups under some conditions have these prop-
erties, but also that the HQPP can be cast as one of these HSSPs.

4.1. Strong bases in Frobenius groups. A Frobenius group is a transitive
permutation group acting on a finite set such that only the identity element has more
than one fixed point and some nontrivial element fixes a point (see, for example, [23]).
Let us recall here some notions and facts about these groups. Let G be a Frobenius
group with action ◦M on M . The identity element together with the elements of G
that have no fixed points form a normal subgroup K, the Frobenius kernel, for which
we also have |K| = |M |. This latter fact and that K is closed under conjugation
are easy to prove. Surprisingly, all the known proofs for the statement that K is a
subgroup require representation theory. A subgroupH of G is a Frobenius complement
if it is the stabilizer Hm of some element m ∈ M . It is a subgroup complementary
to K, that is, K∩H = {1} and G = KH . Hence, the group G is a semidirect product
K �H of K and H . We define the binary operation ◦K : G×K → K by

g ◦K x = yhxh−1,

when x ∈ K and g = yh with y ∈ K and h ∈ H . It is a straightforward computation to
check that ◦K is an action of G on K. Observe that K acts on itself by multiplication
from the left, while H acts on K by conjugation. Furthermore, we can identify the
action ◦M with the action ◦K via the map φ : M → K defined as follows. For any
n ∈M , there exists gn ∈ G such that gn ◦M m = n since G is transitive. If gn = ynhn

with yn ∈ K and hn ∈ H , by definition we set φ(n) = yn. Note that φ depends on
the choice of m, or, equivalently, on the choice of the complement H . Observe also
that φ(n) can be characterized as the unique element yn of K with yn ◦M m = n,
and therefore φ is a bijection. Then indeed for every g ∈ G and n ∈ M , we have
g ◦K φ(n) = φ(g ◦M n). From now on we will suppose without loss of generality that
the action is ◦K , which we denote for simplicity by ◦.
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Observe then that with respect to ◦, the Frobenius complement H is the stabilizer
of e, the identity element of K. The orbits of H are {e} and some other subsets of
K, each consisting of |H | elements. The other Frobenius complements are Hx =
xHx−1 for x ∈ K. They are closed subgroups and their orbits form closed partitions
{{x},K \ {x}}. We denote by FC the set of Frobenius complements in G. Since the
Frobenius complements are all conjugates of H , being an FC-strong base is equivalent
to being an H-strong base.

To characterize H-strong bases it will be convenient to use the following notion.
For u, v ∈ K with u �= v, we say that z ∈ K separates u and v if v ◦ z �∈ H ◦ (u ◦ z), or,
in other words, vz is not a conjugate of uz by an element of H . We have the following
characterization.

Lemma 4.1. Let B ⊆ K. Then B is an H-strong base if and only if for all u �= v
in K there exists z ∈ B which separates u and v.

Proof. To see the “if” part of the statement, suppose that g′ ∈ ⋂
z∈B HGg◦z

for some g′, g ∈ G. We will prove that g′ ∈ H . Let g = yh and g′ = y′h′, where
y, y′ ∈ K and h, h′ ∈ H . Then for every z ∈ B, there exists hz ∈ H such that
g′ ◦ (g ◦ z) = hz ◦ (g ◦ z). Using the definition of ◦, this equality can be rewritten
as y′h′yhzh−1h′−1 = hzyhzh

−1h−1
z . Multiplying both sides by h−1h′−1 from the

left and by h′h from the right gives h−1h′−1y′h′yhz = h−1h′−1hzhh
−1yhzh−1h−1

z h′h.
Put u = h−1yh, v = h−1h′−1y′h′yh, and h′′

z = h−1h′−1hzh. Then we can rewrite

the equality as vz = h′′
zuzh

′′
z
−1

. We have u, v ∈ K and h′′
z ∈ H . Using that K

acts on itself by multiplication, and that the action of H is conjugation, we obtain
v ◦ z = h′′

z ◦ u ◦ z. This means that for every z ∈ B, we have v ◦ z ∈ H ◦ (u ◦ z); that
is, no element in B separates u and v. Therefore, by the assumption we get u = v,
which is equivalent to y′ = e. Thus g′ = h′ is indeed an element of H .

To see the reverse implication, assume that there exist u, v ∈ K,u �= v, such that
none of the elements z ∈ B separate u and v. This means that for every z ∈ B there
exists an element hz ∈ H such that v ◦ z = hz ◦ (u ◦ z). Using v ◦ z = (vu−1) ◦ (u ◦ z),
this equality implies vu−1(u ◦ z) = hz ◦ (u ◦ z), whence h−1

z vu−1(u ◦ z) = u ◦ z, that
is, h−1

z vu−1 ∈ Gu◦z . This gives vu−1 ∈ hzGu◦z ⊆ HGu◦z for every z ∈ B, that
is, vu−1 ∈ ⋂

z∈B HGu◦z. As vu−1 �∈ H , this contradicts the definition of a strong
base.

Our next lemma gives a lower bound on the number of elements inK that separate
u and v.

Lemma 4.2. Let |H | �= |K| − 1. Then for any two distinct elements u and v of
K we have

|{z ∈ K : z separates u and v}| > |K|/2.
Proof. If z does not separate u and v, then there exists an element h ∈ H such

that vz = huzh−1 which can also be written as hu−1h−1v = hzh−1z−1. We say that
such an element h belongs to z. The identity element h = e does not belong to any
element z ∈ K since u �= v. We claim that h �= e cannot belong to two distinct
elements of K. Indeed, if hzh−1z−1 = hz′h−1z′−1, then hz′−1zh−1 = z′−1z, which in
turn implies that z′−1z = e as e is the only element of K stabilized by the elements
of H . Therefore, there are at most |H | − 1 elements in K which do not separate u
and v. In other words, at least |K| − |H |+ 1 of the elements of K separate u and v.
Note that H has (|K| − 1)/|H | orbits of length |H | on the nontrivial elements of K,
and thus |H | divides but is not equal to |K| − 1, which implies |H | ≤ (|K| − 1)/2.
From this we can indeed conclude, since then |K| − |H |+ 1 > |K|/2.

We have the following result regarding the existence of small strong bases for FC.
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Proposition 4.3. Let G be a Frobenius group with kernel K such that the
cardinality of the Frobenius complements is different from |K| − 1. Let B ⊆ K be a
uniformly random set of size �, where � = Θ(log |K| log 1/ε). Then B is an FC-strong
base with probability of at least 1− ε.

Proof. Let B be a uniformly random subset of K of size �. By Lemma 4.1 it is
sufficient to prove that with a probability of at least 1−ε, for every u �= v, there exists
an element in B which separates u and v. We will in fact upper bound the probability
of the opposite event. For a fixed pair u �= v, by Lemma 4.2, the probability that a
random z does not separate u and v is at most 1/2. Therefore, the probability that
none of the elements in B separates u and v is less than 2−�. Thus, the probability
that for some pair u �= v none of the elements in B separates u and v is less than(|K|

2

)
2−�, which is at most ε by the choice of �.
If G is a Frobenius group that satisfies the condition of Proposition 4.3, then we

can compute efficiently a small base for the Frobenius complements, because there are
efficient algorithms for random sampling nearly uniformly in black-box groups [24].
Therefore, by Proposition 3.4 we can efficiently reduce the HSSP to the related HSP,
and we obtain the following result.

Theorem 4.4. Let G = K � H be a Frobenius group with action ◦ such that
|H | < |K| − 1. Then HSSP(G,K, ◦,FC) is reducible in probabilistic polynomial time
to HSP(G,FC).

We remark that the reduction of Grover’s search to a specific HSSP in Proposi-
tion 3.1 can be extended to arbitrary Frobenius groups when |H | = |K| − 1, that is,
sharply 2-transitive groups. Therefore, for such groups it not only follows that small
H-bases fail to exist, but it also follows that even the quantum query complexity of
the HSSP is Ω(|G|1/4). Also, the only strong base in a sharply 2-transitive group is
the whole K.

4.2. Affine groups. As any affine group, the general affine group Affq = Fq�F∗
q

defined in section 3.1 is a Frobenius group. Its kernel is Fq. In the terminology of
Frobenius groups, we have proved in Proposition 3.1 that for Affq the HSSP for
the complements is difficult. Let H be a proper subgroup of F∗

q which is not the
trivial group. We define the group Affq(H) as Fq � H . With the restriction of the
natural action, denoted here by ◦, Affq(H) is also a Frobenius group. In contrast
to the difficulty in the full affine group, we obtain the following positive results for
the smaller Frobenius groups. They are consequences of the analogous results for the
relatedHSP stated in Facts 1 and 2, via the reduction of Theorem 4.4. Statements (a)
and (b) are not new; they are proved in a slightly different formulation in [18], using
implicitly the randomized construction for a strong base. For (c) note that the derived
subgroup in Affq(H) is indeed commutative.

Corollary 4.5. Let q be a prime power and let H ≤ F∗
q such that 1 < |H | < q−1.

The following results hold for HSSP(Affq(H),Fq, ◦,FC):
(a) It has polynomial query complexity.
(b) It can be solved in quantum polynomial time when q is prime and |H | =

Ω(q/polylog(q)).
(c) It can be solved in quantum polynomial time when q is the power of a fixed

prime.
The case of Affq({±1}), when q is an odd prime power, is particularly interesting.

If q is itself an odd prime, then Affq({±1}) is just the familiar dihedral group Dq. It
turns out that the HSSP over Affq({±1}) for the Frobenius complements is essentially
the same problem as the HQPP over Fq.
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Proposition 4.6. The following problems are polynomially equivalent:
1. HQPP(Fq).
2. HSSP(Affq({±1}),Fq, ◦,FC).
3. HSP(Affq({±1}),FC).

Proof. The first two problems are equivalent as we claim that every f : Fq → S,
as oracle input for HQPP(Fq) hides the polynomial Pu if and only if as oracle input
for HSSP(Affq({±1}),Fq, ◦,FC) it hides the Frobenius complement Hu. To see this,
observe that the level sets of Pu are of the form {x + u,−x + u}, which are exactly
the orbits of Hu. Therefore, we have the following equivalences:

f hides pu ⇐⇒ πf = {{x+ u,−x+ u} : x ∈ Fq}
⇐⇒ π∗

f = Hu

⇐⇒ f hides Hu by symmetries.

The reduction from the second problem to the third one is provided by Theorem 4.4.
Note that we can construct a base deterministically by choosing two different elements
of order two. For a reduction in the reverse direction, consider a function f on
Affq({±1}) which hides the subgroup Hu = {(0, 1), (2u,−1)}. Then all the collisions
taken by f on elements of Affq({±1}) are f(2u − b,−1) = f(b, 1) for b ∈ Fq. We
define a new function f◦ on Fq as f◦(b) = min (f(b, 1), f(b,−1)). Examining the
possible collisions gives that for b �= b′ ∈ Fq, we have f◦(b) = f◦(b′) if and only if
b′ = 2u− b = (2u,−1) ◦ b.

Together with Corollary 4.5 (c) the statements of this proposition imply the fol-
lowing result.

Theorem 4.7. HQPP(Fq) is solvable in quantum polynomial time over constant
characteristic fields.

We observe that in contrast to the constant characteristic case, the HQPP ap-
pears to be difficult over prime fields Fp, as it is equivalent to the HSP in the dihedral
group Dp

∼= Affp({±1}).
Note that in [17] van Dam, Hallgren, and Ip gave a polynomial time solution to a

problem which can be considered as a version of HSSP(Affq(H),Fq, ◦,FC), where the
function hiding the complement is promised to be a shifted multiplicative character
χ : F

∗
q → C

∗. This strong promise (in our oracle model we can only check for
equality of the output values) makes the problem efficiently solvable even in the case
H = {±1}, where the HSSP with general hiding function appears to be difficult.

We also remark that strong bases in the Frobenius group Affq(H) with |H | =
(q−1)/2 play an important role (under the name factoring sets) in certain algorithms
for factoring univariate polynomials over Fq; see [25]. This is because a set B which
separates two (unknown) field elements u and v can be used to find a proper decompo-
sition of a polynomial having both u and v as roots. In fact, an efficient deterministic
construction of strong bases for such affine groups over prime fields would imply an
efficient deterministic algorithm for factoring polynomials over finite fields.

4.3. Multivariate quadratic hidden polynomials. In this part, we reduce
the HPP for multivariate polynomials of degree at most two to the univariate HQPP.
As already noted, adding a constant term does not change the level sets; therefore
we consider polynomials with zero constant term. Thus, we assume that the hidden
polynomial is of the form

(4.1) P(x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj +
∑

1≤k≤n

bkxk.
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Also, as the partition πP remains the same when we multiply all coefficients with
the same nonzero element from Fq, we consider that the HPP has been solved if we
determine the ratios between all the pairs of the n(n+ 1)/2 coefficients aij and bk.

Proposition 4.8. The problem HPP(Fq, n, 2) can be reduced on a quantum
computer to O(n2) instances of HQPP(Fq) in time (n+ log q)O(1).

Proof. In order to simplify the following discussions we define aji to be aij for
j > i. Additionally, if q = 2, then we also assume aii = 0 because x2 = x holds
over F2. We assume that we have a procedure R for determining the coefficients of a
univariate quadratic polynomial up to a common factor. Its oracle input is a function
on Fq that has the same level set structure as a polynomial of the form ax2 + bx. We
assume that R decides whether a is zero, and if a �= 0, then R returns the quotient
b/a.

We start with the case n = 2. We have an oracle with the same level sets as the
polynomial

P(x1, x2) = a11x
2
1 + a22x

2
2 + a12x1x2 + b1x1 + b2x2 .

We use the oracle with the inputs (x1, x2) := (x, 0). This way, we obtain an instance
of HQPP for the univariate polynomial a11x

2+ b1x. We use R to decide whether a11
is zero or not, and if a11 �= 0, then we compute the quotient b1/a11. Furthermore,
we set (x1, x2) := (x, 1) for the inputs of the oracle to compute (a12 + b1)/a11 in the
second step. From this result we can easily compute the quotient a12/a11. Similarly,
using the substitutions (x1, x2) := (0, x) and (x1, x2) := (1, x), we decide whether a22
is zero or not. If a22 �= 0, then we obtain the quotients a12/a22 and b2/a22. We now
consider the following different cases.

• a11, a22 �= 0: If a12 �= 0, then we have determined all coefficients of P up
to a common factor. If a12 = 0, then we use the inputs (x1, x2) := (x, x)
and obtain HQPP for (a11 + a22)x

2 + (b1 + b2)x. With R we can determine
whether a11 + a22 is zero or not. If it is nonzero, then we find an element
r ∈ Fq such that b1 + b2 = r(a11 + a22). When we write bi/aii = ci, then the
equation (r − c1)a11 = (c2 − r)a22 follows. Since aii �= 0, we can compute
easily all coefficients of P up to a common factor. If a11 + a22 = 0, then we
also can compute all coefficients easily.
• a11 �= 0, a22 = 0: If a12 = 0, then we use the inputs (x1, x2) := (x, x) and
obtainHQPP for the polynomial a11x

2+(b1+b2)x. WithR we can determine
the quotient (b1 + b2)/a11 and together with the already known value b1/a11
we obtain the missing b2/a11. If a12 �= 0, then we pick α ∈ Fq \ {0} such
that 1 + αa12/a11 �= 0 and we use the inputs (x1, x2) := (x, αx). We obtain
HQPP for (a11+αa12)x

2+(b1+αb2)x, which can be used to find r ∈ Fq such
that (b1 + αb2) = r(a11 + αa12). This gives us the missing fraction b2/a11.
The case a22 �= 0 and a11 = 0 can be treated in a similar way.
• a11 = a22 = 0, q �= 2: We use the inputs (x1, x2) := (x, x) and obtain HQPP

for the polynomial a12x
2 + (b1 + b2)x that can be used to decide whether

a12 = 0 or not. If it is nonzero, then we compute (b1+ b2)/a12. Furthermore,
we can choose α ∈ F×

q , α �= 1, and we use the inputs (x1, x2) := (x, αx)
to compute the fraction (b1 + αb2)/(αa12). From these two fractions we
can determine b1/a12 and b2/a12. If a12 = 0, then we have the polynomial
b1x1+b2x2 and can determine the ratio between b1 and b2 by the algorithm for
the abelian HSP over the additive group of F2

q. Note that we use a quantum
computer for an efficient implementation of this step of the reduction.
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• a11, a22 = 0, q = 2: We use the inputs (x1, x2) := (x, 0) and obtain HPP for
the polynomial b1x. We can easily test whether it is constant, i.e., b1 = 0,
or not. The coefficient b2 can be computed in a similar way. The input
(x1, x2) := (x, 1) give us a12 + b1.

This shows that we can find all coefficients of a bivariate polynomial up to a
common factor when we use R only a constant number of times and some additional
operations, which can be performed efficiently on a quantum computer.

Next we consider the case n = 3. Substituting zero in x3, we can use the algorithm
for the bivariate case to test whether a11 = 0. If a11 �= 0, we can determine the
quotient of the remaining coefficients (except for a23) and a11 by substituting zero in
x2 or x3 and using the algorithm for the bivariate case. For a23 we can substitute
(x1, x2, x3) = (x, y, y) and obtain the polynomial

a11x
2 + (a12 + a13)xy + (a22 + a23 + a33)y

2 + b1x+ (b2 + b3)y .

Then the algorithm for the bivariate case gives us (a22 + a23 + a33)/a11 from which
we can compute a23/a11. The cases where any of the coefficients b1, a22, b2, a33,
or b3 is nonzero can be treated in a similar way. It remains to handle the case of a
polynomial of the form a12x1x2 + a13x1x3 + a23x2x3. Then substituting 1 in x3 gives
the polynomial a12x1x2 + a13x1 + a23x2, and the ratio between the three coefficients
can be found by the bivariate algorithm.

The case n = 4 can be handled as follows. We apply the algorithm of the preceding
paragraph to the four polynomials obtained by substituting zero in x1, x2, x3, and x4,
respectively. Observe that these steps determine the ratio between pairs of coefficients
that have indices that fit in a three-element subset of {1, 2, 3, 4}. By transitivity, we
are done unless our polynomial is of the form a12x1x2 + a34x3x4, a13x1x3 + a24x2x4,
or a14x1x4 + a23x2x3. If it is of the form a12x1x2 + a34x3x4, then we can determine
the ratio between the coefficients by using the bivariate algorithm by substituting x1

in x2 and x3 in x4. The two remaining polynomials can be treated in a similar way.
Finally we consider the case n > 4. Using O(n2) applications of the bivariate

algorithm, we find indices i �= j such that at least one of aii, bi, and aij is nonzero.
The ratio between this coefficient and any other can be computed using the algorithm
for two, three, or four variables. The cost of these steps amounts to O(n2) applications
of the procedure R and a polynomial number of other operations.

Theorem 4.9. HPP(Fq, n, 2) can be solved by a polynomial time quantum algo-
rithm over fields of constant characteristic.

5. Function graph groups and the HPGP. For dealing with the HPGP we
define a family of semidirect product groups that we call function graph groups. We
show that each instance of the HPGP(Fq, 1, d) can be reduced to the HSP for an
appropriate function graph group corresponding to univariate polynomials of degree
at most d. These special function graph groups are semidirect products of groups of
q-power order. Therefore, they cannot be Frobenius groups.

5.1. The HPGP as HSSP over function graph groups. It will be conve-
nient to work in a more general setting.

Definition 5.1. Let A and B be two abelian groups. The family of functions
mapping A to B forms an abelian group F with the addition defined as (Q1+Q2)(x) =
Q1(x) +Q2(x). For every t ∈ A, the shift map at defined as (atQ)(x) = Q(x − t) is
an automorphism of this group. A function group from A to B is a subgroup K of F
which is closed under the shift maps. We denote the restriction of at to K also with at.
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Then the map t �→ at is a homomorphism from A to the automorphism group of K.
The function graph group Fg(K) is defined as the semidirect product K �t�→at A.

The multiplication of Fg(K) is given by the rule

(Q1, t1)(Q2, t2) = (Q1 + at1Q2, t1 + t2).

The shifting action ◦ of Fg(K) on A×B is defined as

(Q, t) ◦ (x, y) = (x+ t, y +Q(x+ t)).

For t ∈ A and Q ∈ K, we set aQ,t = (Q−atQ, t), the conjugate of the element (0, t) by
(Q, 0). Furthermore, let AQ = {aQ,t : t ∈ A} be the conjugate of the subgroup {(0, t) :
t ∈ A} by (Q, 0). Then every AQ is a subgroup of Fg(K) that is complementary to
the normal subgroup {(Q, 0) : Q ∈ K}. We call them standard complements, and we
denote by SC the family {AQ : Q ∈ K} of the standard complements.

We are now ready to show a connection between function graph problems and
the orbits of the standard complements in function graph groups.

Proposition 5.2. Let Fg(K) be a function graph group, let ◦ be its shifting
action on A× B, and let AQ be a standard complement. Then AQ is closed and the
orbits of AQ are the level sets of the function f : (x, y) �→ y −Q(x) on A×B.

Proof. Assume that AQ is not closed. Then, as AQ is a complement of {(Q′, 0) :
Q′ ∈ K}, there existsQ′ ∈ K\{0} such that (x, y+Q′(x)) = (Q′, 0)◦(x, y) ∈ AQ◦(x, y)
for every pair (x, y) ∈ A×B. This is a contradiction since aQ,t(x, y) = (x, y′) is only
possible if t = 0 and y′ = y.

To see the second part of the statement, observe that f(x, y) = f(x′, y′) if and
only if ∃t ∈ A : (x′, y′) = (x+ t, y−Q(x)+Q(x+ t)) if and only if ∃t ∈ A : (x′, y′) =
aQ,t ◦ (x, y) if and only if (x′, y′) ∈ AQ ◦ (x, y).

We now specialize function graph groups to polynomials which relate them to

the HPGP. Let A and B be the additive group of Fq, and let K be F
(d)
q [x], the set

of polynomials of degree at most d. Observe that we include also polynomials with
nonzero constant terms in order to be closed under the shifts. Then Proposition 5.2
translates to the following statement.

Proposition 5.3. Let f : Fq × Fq → S be a function. Then f hides for

HPGP(Fq, 1, d) the polynomial Q if and only if for HSSP(Fg(F
(d)
q [x]),Fq ×Fq, ◦,SC)

it hides the standard complement AQ by symmetries.

5.2. Small bases for standard complements. In this section, we construct
strong bases for the standard complements in function graph groups. The next lemma
gives a simple characterization of such bases.

Lemma 5.4. Let Fg(K) = K � A be a function graph group with action ◦ on
A×B. Let D = {(x1, y1), . . . , (x�, y�)} be a subset of A×B. Then D is an SC-strong
base if and only if for all Q ∈ K the equation Q(x1) = · · · = Q(x�) = 0 implies
Q = 0.

Proof. As SC is closed under conjugation, by the remarks following Definition 3.2,
D is an SC-strong base if and only if

⋂�
i=1 AQFg(K)(xi,yi) = AQ for every Q ∈ K.

The statement (Q′, t′) ∈ AQFg(K)(xi,yi) is true if and only if there is a ti ∈ A such
that (Q′, t′) ◦ (xi, yi) = aQ,ti ◦ (xi, yi) . This can be rewritten as (xi + t′, yi +Q′(xi +
t′)) = (xi + ti, yi − Q(xi) + Q(xi + ti)) . The equality holds if and only if ti = t′

and (a−t′Q
′ − a−t′Q + Q)(xi) = 0. Hence, an element (Q′, t′) is in the intersection⋂�

i=1 AQFg(K)(xi,yi) if and only if ti = t′ and (a−t′Q
′− a−t′Q+Q)(xi) = 0 holds for

all i.
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We first prove the “only if” part of the lemma. To this end, let D be an AQ-strong
base, and let R ∈ C be a function such that R(xi) = 0 for all i. Let

(Q′, t′) ∈
�⋂

i=1

AQFg(K)(xi,yi)

be any element. Since D is a base, we know that the intersection is equal to AQ, and
from this (Q′, t′) = (Q−at′Q, t′) follows. We also know that (a−t′Q

′−a−t′Q+Q)(xi) =
0 for all i, and the same is true for a−t′Q

′ + R − a−t′Q + Q. Hence, we also have
(Q′ + at′R, t′) in the intersection and (Q′ + at′R, t′) = (Q− at′Q, t′) follows. We have
(Q′, t′) = (Q′ + at′R, t′), and this directly implies at′R = R = 0.

To see the “if” part of the lemma, observe that the second statement of the lemma,
applied to the function a−t′Q

′− a−t′Q+Q, implies that a−t′Q
′− a−t′Q+Q = 0. We

apply the shift map at′ to this equality and obtain Q′ = Q − at′Q. Hence, we have
(Q′, t′) = aQ,t′ ∈ AQ, and this shows that D is an SC-strong base.

Combining the statements of this section, we obtain the following result.

Theorem 5.5. HPGP(Fq, 1, d) can be reduced to HSP(Fg(F
(d)
q [x]),SC) in poly-

nomial time in d and log q.
Proof. Univariate polynomials of degree d have at most d roots over a field.

Therefore, by Proposition 5.3 and Lemmas 5.4 and 3.3, we can associate in polynomial
time an instance of HPGP(Fq, 1, d) that hides a polynomial Q with symmetries to an

instance of HSP(Fg(F
(d)
q [x]),SC) that hides the subgroup AQ. Then the polynomial

Q (up to a constant term) can be recovered from generators for AQ as follows. The
elements (Q−at1Q, t1), . . . , (Q−at�Q, t�) generate AQ if and only if t1, . . . , t� generate
the additive group of Fq. It follows that for arbitrary s ∈ Fq, we can efficiently

compute Q− asQ using the group operation in AQ ≤ Fg(F
(d)
q [x]). Substituting s into

Q − asQ gives Q(s) − Q(0). We do this for d different values s ∈ F and compute
Q−Q(0) using Lagrange interpolation.

We remark that the group Fg(F
(d)
q [x]) is of nilpotency class d + 1. However, we

can actually give a reduction to the HSP in a group of class d. To this end, observe
that the hidden subgroup is a conjugate of the complement Fq. Therefore, it can be

found in the subgroup generated by the commutator of Fq with F
(d)
q [x] (this is an

abelian normal subgroup) and the complement Fq. This semidirect product group
has nilpotency class d.

Note that semidirect product groups Fg(F
(d)
q [x]) have commutative commutator

subgroups and that their exponent is the characteristic of Fq. Therefore, for fixed
characteristic, we can apply Fact 2 (b) to obtain the following result.

Corollary 5.6. Assume that q is a power of a fixed prime p. Then we can solve
HPGP(Fq, 1, d) by a quantum algorithm in time polynomial in d and log q.

This corollary allows us to complete Fact 4 (b), because it can be applied to fields
of characteristic in the set Ed that were left open. Since Ed is finite, it follows that for
fixed d we can solve HPGP(Fq, 1, d) in quantum polynomial time for all finite fields.
Together with Fact 4 (a) this improves the overall result of [15]: the HPGP(Fq, n, d)
can be solved efficiently for all finite fields when n and d are constant. We further
improve this result in the next section, where we present a more powerful reduction
of the multivariate problem to the univariate case.

We conclude this section by showing that the HSP for semidirect product groups
of the form Zm

p � Zp can be reduced to a multidimensional analogue of the HPGP.
This HSP is discussed in [5], where it is shown that the HSP for all possible subgroups
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can be reduced to the HSP in which the hidden subgroups are complements of Zm
p .

Let H be such a subgroup. Following arguments of [5], we show that the cosets of
H can be considered as level sets of a polynomial map from Zm+1

p to Zm
p of the form

y − Q(x), where y = (y1, . . . , ym) and Q(x) = (Q1(x), . . . , Qm(x)), each Qi(x) being
a univariate polynomial over Zp of degree at most d. Here d ≤ min(m, p) depends on
the structure of G (actually its nilpotency class).

To this end, notice that the semidirect product structure is given by a linear
transformation A on Zm

p . (This is the action of the generator 1 of Zp on Zm
p .) We

have Ap = I, whence B = A − I satisfies Bp = (A − I)p = Ap − Ip = 0. Therefore,
there exists a smallest positive integer d ≤ min(m, p) such that Bd = 0.

A subgroup Hv complementary to Zm
p in Zm

p � Zp consists of the powers of an
element of the form (v, 1) for some v ∈ Zm

p . With the map

(5.1) Qv :

{
Zp → Zm

p ,

t �→∑t−1
j=0 A

jv

these powers are the pairs (Qv(t), t) for t ∈ Zp, and the right cosets of Hv are the sets
of the pairs (Qv(t) + y, t) for t ∈ Zp, where y ∈ Zm

p . It turns out that the entries of

the matrix of
∑t−1

j=0 A
j , as functions in t, are polynomials of degree at most d with

zero constant term (see [5]). Therefore, the same holds for the coordinates Q
(i)
v of the

vector Qv(t). In other words, the map t �→ Qv(t) is a polynomial map from Zp to Zm
p

of degree d with zero constant term. Hence, the cosets of Hv are exactly the level sets
for the polynomial map

(5.2) (y1, . . . , ym, x) �→ (y1 −Q(1)
v (x), . . . , ym −Q(m)

v (x))

from Zm+1
p to Zm

p .
It follows that any function on Z

m
p � Zp that hides the subgroup Hv = 〈(v, 1)〉

directly defines an instance of the m-dimensional analogue of the HPGP for Qv as
defined in (5.1). If we solve the m-dimensional HPGP for these instances, i.e., if we
determine Qv, then we obtain v by calculating v = Qv(1).

This shows that the HSP of Zm
p �Zp can be indeed efficiently reduced to the m-

dimensional analogue of the HPGP. Plugging A = Zp, B = Zm
p , and K = (Z

(d)
p [x])m

into Proposition 5.2, we obtain that this problem can be viewed as an instance of
the HSSP over a semidirect product K with Zp. Here the functions are vectors of
univariate polynomials. Therefore, by Lemma 5.4, small bases exist and can be found
easily and the reduction to a HSP works. Note, however, that the new group is in
general much bigger than the original one.

These reductions explain why it was possible to construct the algorithm of [15]
in close analogy with the pretty good measurement framework of [5] for semidirect
product groups.

5.3. Reduction of multivariate HPGP to univariate case. The scheme of
[15] for reducing the multivariate HPGP to the univariate case can be improved with
the help of a generalized Vandermonde matrix.

Theorem 5.7. An instance of HPGP(Fq, n, d) can be reduced to O
(
d+n
n

)
in-

stances of HPGP(Fq, 1, d) by a classical algorithm with running time polynomial in(
d+n
n

)
. If d is constant, then HPGP(Fq, n, d) can be solved by a polynomial time

quantum algorithm.
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We prove the theorem in the remainder of the subsection. For this, we consider
n-variate polynomials of the special form

(5.3) y −Q(x1, . . . , xn) with Q ∈ Fq[x1, . . . , xn] .

Note that we changed the notation by replacing the polynomials Q(x1) in Defini-
tion 2.1 by polynomials Q(x1, . . . , xn) ∈ Fq[x1, . . . , xn]. This makes the following
discussion easier. Recall that the constant term of the polynomials Q(x1, . . . , xn) is
assumed to be zero since it cannot be determined. Furthermore, the identity xq = x in
Fq implies that we can only distinguish polynomials that are reduced modulo xq

i − xi

for all variables xi. Hence, for a maximum total degree d we consider only local de-
grees of at most min{d, q − 1}; i.e., the power of each xi in all monomials occurring
in Q(x1, . . . , xn) is less or equal to this minimum.

For each j with 1 ≤ j ≤ n let

I(j) :=
{
α ∈ N

j :

j∑
i=1

αi ≤ d, αi ≤ min{d, q − 1} for i = 1, . . . , j

}
\ {(0, . . . , 0)}

be the set of all exponent vectors for the monomials of total degree at most d when
the variables are restricted to x1, . . . , xj . For each α ∈ I(j) let

mα := xα1
1 · . . . · xαj

j

denote the corresponding monomial. For j and j′ with 1 ≤ j < j′ ≤ k, a monomial
mα with α = (α1, . . . , αj) ∈ I(j) is also defined by α̃ = (α1, . . . , αj , 0, . . . , 0) ∈ I(j′).
Finally, for v = (v1, . . . , vj) ∈ Fj

q let

mα(v) := vα1

1 · . . . · vαj

j

denote the evaluation of the monomial mα at the point v. For q > �, the number of
such monomials is given by the simple expression

|I(j)| =
(
d+ j

j

)
− 1 .

For q ≤ �, the number of such monomials is determined with the inclusion-exclusion
principle, which leads to the expression

|I(j)| =
j∑

i=0

(−1)i
(
j

i

)(
d− iq + j

j

)
− 1 .

We use the convention that the binomial coefficient is zero if the number at the top
is negative. With the help of I(j) we can define the generalized Vandermonde matrix
and describe an efficient construction.

Lemma 5.8. Let d be the maximum total degree of the monomials in I(j) over
the field Fq. Then there is a classical algorithm for constructing a set V(j) ⊂ Fj

q of

cardinality |I(j)| such that the square matrix

(5.4) M (j) :=
[
mα(v)

]
v∈V(j), α∈I(j)

has full rank. This matrix is called the generalized Vandermonde matrix. The running
time of the algorithm is polynomial in |I(j)|.
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Proof. This statement is proved in [26]. For the sake of completeness we present
here another proof which is also much simpler than the original one. The condition
that M (j) has full rank is equivalent to the following condition: for every (nonzero)
polynomial

(5.5) F (x1, . . . , xj) =
∑

α∈I(j)

cαmα

there is at least one v ∈ V(j) such that F (v) �= 0.
Let b := min{d, q−1} denote the upper bound on the local degrees. For j = 1, we

have I(1) = {(1), . . . , (b)} and the corresponding set of monomials is {x1, x
2
1, . . . , x

b
1}.

We can choose V(1) := {v1, v2, . . . , vb} to be a set containing b different nonzero
elements of Fq. Then the matrix

M (1) =

⎛
⎜⎜⎜⎝

v11 v21 · · · vb1
v12 v22 · · · vb2
...

...
. . .

...
v1b v2b · · · vbb

⎞
⎟⎟⎟⎠

has full rank |I(1)| = b. Observe that we obtain a (square) Vandermonde matrix by
multiplying M (1) with diag(v−1

1 , v−1
2 , . . . , v−1

b ) from the left. We choose v1 to be equal
to 1.

Assume that we have already determined a suitable V(j−1) for some j ≥ 2. We
show how to obtain V(j) using V(j−1).

1. Set V(j) ← {(1, . . . , 1)} ⊆ Fj
q

2. Set

(5.6) L(j) ←
[
mα(v)

]
v∈V(j), α∈I(j)

3. REPEAT
4. Determine a (nontrivial) vector c = (cα) ∈ F

|I(j)|
q in the kernel of L(j)

5. Set

G(x1, . . . , xj)←
∑

α∈I(j)

cαmα

6. Determine a vector u ∈ Fj
q such that G(u) �= 0

7. Set V(j) ← V(j) ∪ {u}
8. Add the row vector

(
mα(u)

)
α∈I(j) at the bottom of L(j)

9. UNTIL the rank of L(j) is maximal
We now explain how the different steps can be implemented efficiently and why

the algorithm produces a valid V(j).
We can compute a nontrivial vector c in the kernel of L(j) in step 4 with Gaussian

elimination. To find a u with G(u) �= 0 in step 5, we write G in the form

G(x1, . . . , xj) =

b∑
i=1

Fi(x1, . . . , xj−1) · xi
j ∈ Fq[x1, . . . , xj−1][xj ] .

At least one of the polynomials Fi is nonzero because G is nonzero. Set F to be the
nonzero Fi with the smallest i. We can write F as

F (x1, . . . , xj−1) =
∑

β∈I(j−1)

dβmβ ∈ Fq[x1, . . . , xj−1]
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with appropriate coefficients dβ ∈ Fq. There exists a vector v = (v1, . . . , vj−1) ∈
V(j−1) with F (v) �= 0. This is because otherwise we would have a nontrivial linear
dependency of the rows of L(j−1) corresponding to the elements in V(j−1). Hence, the
polynomial P (x) := G(v1, . . . , vj−1, x) is a nonzero univariate polynomial that can be
written as a linear combination of monomials mγ with γ ∈ I(1). The element w ∈ Fq

with P (w) �= 0 can be found among the elements of V(1). We obtain the desired
vector u by setting it equal to (v1, . . . , vj−1, w).

By adding the new row vector to L(j) in step 8, we achieve that the vector c is no
longer in the kernel of the new augmented matrix. Hence, we reduced the dimension of
the kernel of the linear map defined by this matrix. In other words, we have increased
its rank by exactly 1. This shows that the algorithm terminates.

We are now ready to describe the improved reduction.
Lemma 5.9. Let V(n) be as in Lemma 5.8. Then the coefficients of the hid-

den polynomial of (5.3) can be determined by solving the univariate HPGP for the
polynomials Q(v1x, v2x, . . . , vnx) for all v ∈ V(n).

Proof. The unknown polynomials can be expressed as

Q(x1, . . . , xn) =

d∑
�=1

Q�(x1, . . . , xn) ,

where Q� denotes the homogeneous part of total degree �.
For each v = (v1, . . . , vn) ∈ F

n
q , the substitution xi �→ vix in the hidden multi-

variate polynomial Q leads to the univariate polynomial

Pv(x) := Q(v1x, . . . , vnx) =
d∑

�=1

Q�(v)x
�.

We determine the coefficients Q�(v) of Pv(x) by using the quantum algorithm
for the univariate case. Let z = [qα]

T
α∈I(n) be the column vector whose entries are

the unknown coefficients we seek to learn. Let y = [Q1(v) + · · · + Qd(v)]v∈V(n) be
the column vector whose entries are the sum of evaluations of the homogeneous part
Q� at the points v ∈ V(n). We have M (n)z = y. Hence, we can recover y since the
generalized Vandermonde matrix M (n) has full rank.

Theorem 5.7 follows directly from Lemma 5.9. Note that in the course of the above
reduction, we learn d|I(n)| log2(q) bits by solving |I(n)| instances of the univariate
case (each instance yielding exactly d coefficients in Fq). The absolute lower bound is
given by |I(n)| log2(q), which corresponds to the number of bits necessary to specify
all coefficients of the hidden polynomial Q. This discussion shows that our method is
optimal up to the factor d.

Theorem 5.7 also gives an instance of the HSSP which is solvable in quantum
polynomial time, although no small strong bases exist (and therefore the reduction
scheme of section 3 does not work directly). Let A and B be the additive group of

Fn
q and Fq, respectively, and let K be F

(d)
q [x1, . . . , xn], the set of polynomials in n

variables of total degree at most d. Then Proposition 5.2 translates to the following
statement.

Proposition 5.10. Let f : Fn
q × Fq → S be a function. Then f hides for

HPGP(Fq, n, d) the polynomial Q if and only if for HSSP(Fg(F
(d)
q [x1, . . . , xn]),F

n
q ×

Fq, ◦,SC) it hides the standard complement AQ by symmetries.

Hence, by Theorem 5.7, for constant d, HSSP(Fg(F
(d)
q [x1, . . . , xn]),F

n
q ×Fq, ◦,SC)

can be solved in quantum polynomial time. On the other hand, as multivariate
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polynomials have many zeros, there are no bases of polynomial size for the action ◦
for n ≥ 2; see Lemma 5.4.

Acknowledgment. The authors are grateful to the anonymous referees for their
helpful remarks and suggestions on a previous version of the paper.
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