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Abstract

Suppose we would like to knowi! answers to a set of statistical quer@&sn a data set up to small
error, but we can only access the data itself using statlstigeries. A trivial solution is to exhaustively
ask all queries irC. Can we do any better?

1. We show that the number of statistical queries necessatysdficient for this task is—up to
polynomial factors—equal to the agnostic learning comipyeaf C in Kearns’ statistical query
(SQ) model. This gives a complete answer to the question wiraring time is not a concern.

2. We then show that the problem can be solv@diently (allowing arbitrary error on a small fraction
of queries) whenever the answergdaan be described by a submodular function. This includes
many natural concept classes, such as graph cuts and Balidpamctions and conjunctions.

While interesting from a learning theoretic point of viewyramain applications are iprivacy-
preserving data analysis: Here, our second result leads to an algorithm ttigtiently releases élier-
entially private answers to all Boolean conjunctions with average error. This presents significant
progress on a key open problem in privacy-preserving dadéysis. Our first result on the other hand
gives unconditional lower bounds on anyfdrentially private algorithm that admits a (potentiallynro
privacy-preserving) implementation using only statetigueries. Not only our algorithms, but also most
known private algorithms can be implemented using onlysdiedl queries, and hence are constrained
by these lower bounds. Our result therefore isolates thexity of agnostic learning in the SQ-model
as a new barrier in the design ofi@rentially private algorithms.
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1 Introduction

Consider a data sé < {0, 1} in which each element corresponds to an individual's recwet d binary
attributes. The goal of privacy-preserving data analysi® ienable rich statistical analyses on the data set
while respecting individual privacy. In paritcular, we wdlike to guarantedifferential privacy [DMNS0§,

a rigorous notion of privacy that guarantees the outcomestdtistical analysis is nearly indistinguishable
on any two data sets thatffir only in a single individual’s data.

One of the most important classes of statistical queriehemlata set are Boolean conjunctions, some-
times called contingency tables or marginal queries. Seexfample, BCD*07, BLR08, KRSU1Q UV10Q].

A boolean conjunction corresponding to a sulss&t [d] counts what fraction of the individuals have each
attribute inS set to 1 A major open problem in privacy-preserving data analysi® idficiently create a
differentially private synopsis of the data set that accuraetyodes answers to all Boolean conjunctions.
In this work we give an algorithm with runtime polynomialdiwhich outputs a dierentially private data
structure that represents all boolean conjunctions up avarage error of 1%.

Our result is significantly more general and applies to anlection of queries that can be described
by a low sensitivitysubmodular function. Submodularity is a property that often arisesatacanalysis and
machine learning problem#&{07], including problems for which privacy is a first-order dgsiconstraint.
Imagine, for example, a social network drvertices. A data analyst may wish to analyze the size of the
cuts induced by various subsets of the vertices. Here, suttrgrovides a data structure that represents all
cuts up to a small average error. Another important examipselemodularity is thaet-coverage function,
which given a set system over elements in some universeepresents the number of elements that are
covered by the union of any collection of the sets.

The size of our data structure grows exponentially in therge error desired, and hence we can rep-
resent submodular functions only up to constant error if ve@twolynomial query complexityCan any
efficient algorithm do even better? \We give evidence that in order to do better, fundamentally texh-
niques are needed. Specifically, we show that no polynotimed-algorithm that guarantees small error for
every boolean conjunction can do substantially better if the @tlgm permits an implementation that only
accesses the database through statistical queries. atessint holds regardless of whether such an imple-
mentation is privacy-preserving. (A statistical queryiigeg by a functiory: {0, 1}¢ — {0, 1}, to which the
answer iSE,cp[g(x)].)

We show this limitation using connection between the daase problem and standard problems in
learning theory. Putting aside privacy concerns, we posefdhowing question: How many statistical
queries to a data set are necessary and sufficent in order to approximately answer all queries in a class C?

We show that the number of statistical queries necessarguiicient for this task is, up to a factor 6f(d),
equal to the agnostic learning complexity Gf(over arbitrary distributions) in Kearns’ statistical que
(SQ) model Kea9g. Using an SQ lower bound for agnostically learning moneta@onjunctions shown
by Feldman [Fel1q, this connection implies that no polynomial-time algbnit operating in the SQ-model
can release even monotone conjunctions to subconstamt 8irece monotone conjunction queries can be
described by a submodular function, the lower bound appiiesleasing submodular functions as well.

While the characterization above is independent of privaycerns, it has two immediate implications
for private data release:

e Firstly, it also characterizes what can be released indh@ privacy model of Kasiviswanathan et
al. [KLN *08]; this follows from the fact that{ LN *08] showed that SQ algorithms are precisely what
can be computed in the local privacy model.

1For example, Kempe, Kleinberg, and Tardos show that for twaraon models of influence propagation on social networks,
the function capturing the “influence” of a set of users (pedthe targets of a viral marketing campaign) is a monotobeedular
function [KKTO3].



e Secondly, and perhaps even more importantly, it gives usl#imed unconditional lower bounds on
the running time of any query-release algorithm that perrait implementation using only statisti-
cal queries—regardless of whether its privacy analysisbeacarried out in the local privacy model.
To our knowledge, this class includes almost all privacysereing algorithms developed to date, in-
cluding the recently introduced Median MechanisRR[L( and Multiplicative Weights Mechanism
[HR102. Note that these mechanisms cannot be implemented in tabddeacy model while pre-
serving their privacy guarantees, because they will haveake too many queries. Indeed, they are
capable of releasing conjunctions to subconstant error, tfiey can be implemented using only
statistical queries, and so our lower bounds apply to theining time.

To summarize, our results imply that if we want to develdijcznt algorithms to solve the query release
problem for classes as expressive as monotone conjungtisak an extremely simple class!), we need to
develop techniques that are able to sidestepsthisstical query barrier. On a conceptual level, our results
present new reductions from problems iffeliential privacy to problems in learning theory.

1.1 Overview of our results

In this section we give an informal statement of our theorevritk pointers to the relevant sections. Our
theorem on approximating submodular functions is provesidotion3. The definition of submodularity is
found in the Preliminaries (Sectid).

Informal Theorem 1.1 (Approximating submodular functionslLer @ > 0,8 > 0. Let f: {0,1}¢ — [0, 1] be
a submodular function. Then, there is an algorithm with runtime d°(°9(/A)/ @) \which produces an approxi-
mation h: {0, 1} — [0, 1] such that Pr o 1a{|f(x) — h(x)] < @} > 1 - B.

In Section4 we then show how this algorithm gives the followindfdrentially private release mecha-
nism for Boolean conjunctions. The definition offdrential privacy is given in Sectich

Informal Theorem 1.2 (Differentially private query release for conjunctiank}r a > 0,8 > 0. There is an

e-differentially private algorithm with runtime d°(°9WA)/ @) \which releases the set of Boolean conjunctions
2

with error at most @ on a 1 — 8 fraction of the queries provided that |D| > d0Uog(lp)/e%) /¢

The guarantee in our theorem can be refined to give-approximation to a + g fraction of the set
of w-way conjunctions (conjunctions of widih) for all w € {1, ..., d}. Nevertheless, our algorithm has the
property that the error may be larger thamn a small fraction of the queries. We note, however, that for
B < a”/2 our guarantee is stronger than ersioin the L,-norm which is also a natural objective that has
been considered in other works. For example, Hardt and Tatuay error bounds on mechanisms with
respect to the Euclidean norm across all answiefisLp]. From a practical point of view, it also turns out
that some privacy-preserving algorithms in the literatadeed only require the ability to answemdom
conjunction queries privately, e.gJFWO09.

Finally, in Section5, we study the general query release problem and relate lietagnostic learning
complexity in the Statistical Query model.

Informal Theorem 1.3 (Equivalence between query release and agnostic learrSagpose there exists an
algorithm that learns a class C up to error a under arbitrary distributions using at most q statistical queries.
Then, there is a release mechanism for C that makes at most O(qd|a?) statistical queries.

Moreover, any release mechanism for C that makes at most q statistical queries implies an agnostic
learner that makes at most 2q queries.

2A notable exception is the private parity-learning alduritof [KLN *08], which explicitly escapes the statistical query model.



While both reductions preserve the query complexity of tfubjem neither reduction preserves runtime.
We also note that our equivalence characterization is menermgl than what we stated: the same proof
shows that agnostic learning of a cla8ds (up to small factors) information theoretically equimal to
releasing the answers to all queries in a clader any class of algorithms that may access the database
only in some restricted manner. The ability to make only S€&rigs is one restriction, and the requirement
to be diferentially private is another. Thus, we also show that orasscby class basis, the privacy cost of
releasing the answers to a class of queries using any tehisqnot much larger than the privacy cost of
simply optimizing over the same class to find the query withttghest value, and vice versa.

Our techniques. Our release algorithm is based on a structural theorem asméral submodular func-
tionsf : 2V — [0, 1] that may be of independent interest. Informally, we shoat ainy submodular function
has a “small” “approximate” representation. Specificalg show that for any > 0, there exist at most
|U1?’* submodular functiong; such that each; satisfies a strong Lipschitz condition, and for edch U,
there exists am such thatf(S) = ¢;(S). We then take advantage of Vondrak’s observationvim[L(] that
Lipschitz submodular functions aself-bounding, which allows us to apply recent dimension-free concen-
tration bounds for self-bounding function8L[M00, BLMO09]. These concentration results imply that if we
associate each functignwith its expectation, and respond to queriés) with [E[g;(S )] for the appropriate
gi, then most queries are answered to within andditive error. This yields an algorithm féaarning sub-
modular functions over product distributions, which casilgebe made privacy preserving when the values
f(S) correspond to queries on a sensitive database.

Our characterization of the query complexity of the relgasblem in the SQ model uses the multiplica-
tive weights methodyW94, AHKO05] similar to how it was used recently itHR1(. That is we maintain
a distribution over the universe on which the queries arenddfi What is new is the observation that an
agnostic learning algorithm for a cla€scan be used to find a query frogththat distinguishes between the
true data set and our distribution as much as possible. Sqderg can then be used in the multiplicative
weights update to reduce the relative entropy between tleedata set and our distribution significantly.
Since the relative entropy is nonnegative there can only t@svasuch steps before we find a distribution
which provides a good approximation to the true data set/bqueries in the class.

1.2 Related Work

Learning Submodular Functions. The problem of learning submodular functions was recemttyot
duced by Balcan and HarveyH1(0]; their PAC-style definition was flierent from previously studied
point-wise learning approache&ItHIM09, SF0]. For product distributions, Balcan and Harvey give an
algorithm for learning monotone, Lipschitz continuousmegdlular functions up to constamiultiplicative
error using only random examplesBHI10] also give strong lower bounds and matching algorithmic re-
sults for non-product distributions. Our main algorithmasult is similar in spirit, and is inspired by their
concentration-of-measure approach. Our model fieidint from theirs, which makes our results incom-
parable. We introduce a decomposition that allows us taleabitrary (i.e. potentially non-Lipschitz,
non-monotone) submodular functions to constatfatitive error. Moreover, our decomposition makes value
gueries to the submodular function, which are prohibitethexmodel studied bygH10].

Information Theoretic Characterizations in Privacy. Kasiviswanathan et alK[LN *08] introduced the
centralized andlocal models of privacy and gave information theoretic charagagons for which classes
of functions could bdearned in these models: they showed that information theoregicéiie class of
functions that can be learned in the centralized model ohpyi is equivalent to the class of functions that
can be agnostically PAC learned, and the class of functiwaiscan be learned in the local privacy model is
equivalent to the class of functions that can be learnederst) model of Kearn€lea9q.
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Blum, Ligett, and RothBBLRO8] considered theyuery release problem (the task of releasing the ap-
proximate value of all functions in some class) and charaet@ exactly which classes of functions can be
information theoretically released while preservingetiential privacy in theentralized model of data pri-
vacy. They also posed the question: which classes of furetian be released using mechanisms that have
running time only polylogarithmic in the size of the datawanse and the class of interest? In particular,
they asked if conjunctions were such a class.

In this paper, we give an exact information theoretic chiaragation of which classes of functions can
be released in the SQ model, and hence in the local privacyemaa show that it is exactly the class of
functions that can begnostically learned in the SQ model. We note that the agnostic SQ learnability of
a classC (and hence, by our result, the SQ releasabilityChfcan also be characterized by combinatorial
properties ofC, as done by Blum et alBFJ"94] and recently FeldmarHel1q.

Lower bounds and hardness results. There are also several conditional lower bounds on the ngriithe

of private mechanisms for solving the query release problBmork et al. PNR*09] showed that under
cryptographic assumptions, there exists a class of quitrd¢san be privately released using thefiicéent
mechanism of BLR08], but cannot be privately released by any mechanism thatirutime polynomial in
the dimension of the data universe (elgwhen the data universe §6, 1}%). Ullman and VadhanJ\V10]
extended this result to the class of conjunctions: they sldothat under cryptographic assumptions, no
polynomial time mechanisnhat outputs a data set can answer even the set @t conjunctions of two-
literals!

The latter lower bound applies only to the class of mechasmifrat output data sets, rather than some
other data structure encoding their answers, and only tdhamsms that answeti/ conjunctions of two-
literals with small error. In fact, because there are @fflgonjunctions of size 2 in total, the hardness result
of [UV10] does not hold if the mechanism is allowed to output somerathta structure — such a mechanism
can simply privately query each of té questions.

We circumvent the hardness result bf\{10] by outputting a data structure rather than a synthetic data
set, and by releasing all conjunctions with smaltrage error. Although there are no known computational
lower bounds for releasing conjunctions with small averager, even for algorithms that output a data
set, since our algorithm does not output a data set, our appnmay be useful in circumventing the lower
bounds of JV10].

We also prove a new unconditional (information theoretmyér bound on algorithms for privately
releasing monotone conjunctions that applies to the clasdgorithms that interact with the data using
only SQ queries: no such polynomial time algorithm can #emonotone conjunctions witl{l) average
error. We note that our lower bound does not depend on theibrgpresentation of the algorithm. Because
almost all known private algorithms can indeed be impleménising statistical queries, this provides a
new perspective on sources of hardness for private quesgsel We note that information theoretic lower
bounds on the query complexity imply lower bounds on the inopriime of such dterentially private
algorithms.

There are also many lower bounds on #rer that must be introduced by any private mechanism,
independent of its running time. In particular, Kasivisatran et. al. KRSU1(JQ showed that average
error of Q(1/ +/n) is necessary for private mechanisms that answer all cotiumqueries of constant size.
Recently, this work was extended by Oed11] to apply to mechanisms that are allowed to have arbitrarily
large error on a constant fraction of conjunction queriesonistant size. These results extend earlier results
by Dinur and Nissim[DNO3] showing that average err€X(1/ /n) is necessary for random queries.

Interactive private query release mechanisms. Recently, Roth and RoughgardéRH1( and Hardt and
Rothblum HR1( gave interactive private query release mechanisms tlwat al data analyst to ask a large



number of questions, while only expending their privacy detd slowly. Their privacy analyses depend
on the fact that only a small fraction of the queries asketesstate updating the internal state of the
algorithm. However, to answer large classes of queriesethéorithms need to make a large number of
statistical queries to the database, even though only d swomaber of statistical queries result in update
steps! Intuitively, our characterization of the query coemjiy of the release problem in the SQ model is
based on two observations: first, that it would be possiblenfdlement these interactive mechanisms using
only a small number of statistical queries if the data arntalas able to ask only those queries that would
result in update steps, and second, that finding queriesnithate large update steps is exactly the problem
of agnostic learning.

2 Preliminaries

Differential privacy and counting queries. \We study the question of answeringunting queries over a
database while preservingfidirential privacy. Given an arbitrary domaii) we consider databasése X".
We writen = |D|. Two databaseB = (xi,..., x,) andD’ = (x7,..., x,) are calledidjacent if they differ only
in one entry. That is, there exist& [n] such that for every # i, x; = x;.. We are interested in algorithms
(or mechanisms) that map databases to some abstract régiile satisfyinge-differential privacy:

Definition 2.1 (Differential Privacy DMNSO06]). A mechanismM : X* — R satisfiese-differential privacy
if forall S ¢ R and every pair of two adjacent database®’, we havePr(M(D) € §) < e Pr(M(D’) € S).

A counting query is specified by a predicatg: X — [0, 1]. We will denote the answer to a counting
query (with some abuse of notation) hyD) = %erD ¢(X). Note that a count query canfilir by at
most ¥n on any two adjacent databases. In particular, adding Leglawise of magnitude/£n, denoted
Lap(1/en), guarantees-differential privacy on a single count query (s€2/[NS0€ for details).

The statistical query model and its connection to differential privacy. We will state our algorithms in
Kearns’ statistical query (SQ) model. In this model an dthar A9 can access a distributioP over a
universeX only throughstatistical queries to an oracle). That is, the algorithm may ask any queryX —
[0,1] and the oracle may respond with any answsatisfyingla — E,-p ¢(x)| < 7. Here,r is a parameter
called thetolerance of the query.

In the context of diterential privacy, the distributio® will typically be the uniform distribution over
a data set of size. A statistical query is then just the same as a counting queigeéined earlier. Since
SQ algorithms are tolerant to noise it is noffidult to turn them into dterentially private algorithms using
a suitable oracle. This observation is not new, and has bsed previously, for example by Blum et al.
[BDMNO5] and Kasiviswanathan et alK[N *08].

Proposition 2.1. Let A denote an algorithm that requires k queries of tolerance 1. Let O denote the oracle
that outputs E,_p q(x) + Lap(k/ng). Then, the algorithm A satisfies e-differential privacy and with proba-

bility at least 1 — B, the oracle answers all q queries with error at most T provided that n > w .

Proof. The first claim follows directly from the properties of thegdlacian mechanism and the composition
property ofe-differential privacy. To argue the second claim note Br@iLap(c)| > 7) < exp(~7/o) . Using
thato = k/ne and the assumption on we get that this probability is less thgpk. The claim now follows
by taking a union bound over alqueries. m|

Query release. A concept class (Or query class) is a set of predicates froixi — [0, 1].

Definition 2.2 (Query Release)Let C be a concept class. We say that an algorith{w, 8)-releases C over
a data seD if Pr,.c{lg(D) - A(g)l < a} > 1 - .



Specifically, we are interested in algorithms which rele@sesing few statistical queries to the under-
lying data set. We will study the query release problem bysim®ring the functionf(q) = ¢(D). In this
setting, releasing a concept classs equivalent tapproximating the functiong is the following sense

Definition 2.3. We say that an algorithm (a, 8)-approximates a functionf: 2V — [0, 1] over a distribution
Dif Prgollf(S) —A(S) <a} >1-5.

For many concept classes of interest, the funcfi@y) = ¢(D) will be submodular, defined next.

Submodularity. Given a universd/, a functionf : 2V — R is calledsubmodular if for all S, T c U it
holds thatf(S UT) + f(S N T) < f(S) + f(T) . We define thenarginal value of x (or discrete derivative) at

S asd.f(S) = f(S U{x}) - f(S).
Fact 2.1. A function f is submodular if and only if 8, f(S) = 0,f(T) forall S C T C U and all x € U.

Definition 2.4. A function f : 2V — R is y-Lipschitz if for everyS c U andx € U, |0, f(S)| < .

Concentration bounds for submodular functions. The next lemma was shown by Vondrakohl1(]
building on concentration bounds for so-called self-bangdunctions due toBLMO00, BLMO9].

Lemma 2.1 (Concentration for submodular functiond)er f: 2Y — R be a 1-Lipschitz submodular func-
tion. Then for any product distribution D over 2Y, we have

[2
FLWE) -EfS) =1 < 2exp| —5E—ry 5t/6))’ W

where the expectations are taken over S ~ D.
We obtain as a simple corollary

Corollary 2.2. Let f: 2V — [0,1] be a y-Lipschitz submodular function. Then for any product distribu-
tion D over 2V, we have

2
S]ljg){lf(S) ~Ef(S) =y < ZGXD(—W), )

where the expectations are taken over S ~ D.

3 Approximating Submodular Functions

Our algorithm for approximating submodular functions isdxhon a structural theorem, together with some
strong concentration inequalities for submodular fumgi¢gsee Lemma.1). The structure theorem essen-
tially says that we can decompose any bounded submodulatidaninto a small collection of Lipschitz
submodular functions, one for each region of the domainhihgection, we prove our structure theorem,
present our algorithm, and prove its correctness.



Algorithm 1 Decomposition for monotone submodular functions

Input: Oracle access to a submodular functioft 2 — [0,1] and parametery >
0.

Let < denote an arbitrary ordering &f.
Let 7 < {0}
for x € U (in ascending order undet) do
I <0
for Be 7 do
if 3, f(B) >y then I’ «— I’ U{BU {x}}
I —JTUT
Let V(S) = {x e U | d,f(S) <y} denote the set of elements that have small marginal vallrerespect
toS c U.
Output: the collection of functiong = {¢? | B € I}, where forB € T we define the functiog? : 2"() —
[0,1] asg®(S) = f(S U B).

3.1 Monotone Submodular Functions

We begin with a simpler version of the structure theoremsWeirsion will be sfficient for approximating
bounded monotone submodular functions from value quesied,will be the main building block in our
stronger results, which will allow us to approximate adniyr bounded submodular functions, even from
“tolerant” value queries.

Our structure theorem follows from an algorithm that decosgs a given submodular function into
Lipschitz submodular functions. The algorithm is presémtext and analyzed in Lemn3al

Lemma 3.1. Given any submodular function f: 2V — [0, 1] and y > 0, Algorithm 1 makes the following
guarantee. There are maps F,T: 2V — 2Y such that:

1. (Lipschitz) For every g% € G, g% is submodular and satisfies SURey(B).scv(B) 0.g%(S) < v.
2. (Completenesshor every S C U, F(S) €S C V(F(S)) and g"®)(S) = £(S).

3. (UniquenessFor every S C U and every B € I, we have F(S) = Bifand only if BC S C V(B) and
S NT(B)=0.

4. (Size)The size of G is at most |G| = |U|°Y7). Moreover, given oracle access to f, we compute F,V,T
in time U1/,

Note that the lemma applies to non-monotone submodulatitunsrf as well; however, since our release
algorithm will require the stronger condition sUp ) scy(s) [0:9(S)| < v, the lemma will only be sflicient
for releasing monotone submodular functions (where iththat|o,g(S)| <y < 9,9(S) < ). We will
return to the non-monotone case later.

Proof. Algorithm 1 always terminates and we have the following bound on thed§iZe
Claim 3.2. |7| < |UYY

Proof. LetB e I beasetB ={x1,...,xp). LetBo=0andB; = {x1,...,x;}fori=1,...,|B|- 1. Then

|Bl-1
12 f(B)= ). 9. f(B) > 1Bl (3)
i=0
Therefore, it must be th#B| < 1/y, and there are at mog#|'/” such sets ovei/| elements. o
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Iltem 1 is shown next.

Claim 3.3 (Lipschitz) For every g® € G, g* is submodular and SUP,cy ) scy () 09" (S) < .

Proof. Submodularity follows from the fact thagf is a “shifted” version off. Specifically, if 7 S, then
0.95%(S) = 0, f(BUS) <0.f(BUT) = d,9%(T), where the inequality is by submodularity ff

To establish the Lipschitz property, we note that by the aefmof V, 9, f(B) < v for everyx € V(B).
Also, by the submodularity of, we haved,g?(S) = 0, f(BUS) < d,.f(B) <. O

Definition of F and proof of Item 2. Now we turn to constructing the promised mappidgand 7T in
order to Propertie€ and3. Roughly, we wani'(S) to choose a maximal set i such thatF(S) € S, in
order to assure that € V(F(S)). This task is complicated by the fact that there could beyrsich sets.
We want to be able to choose a unique such set, and moreoxem, @iy such sa®, determine ficiently if
F(S) = B. To achieve the former task, we define a specific, deterranisappingF(S) and to achieve the
latter we will carefully define the mappirig.
We defineF(S) as follows:
let j < 0,B; <0
for x € U (in ascending order undet) do
if x¢ V(Bj)andxe S then Bj,1 « B;U{x}, j« j+1

return F(S) = B;.
Note that this procedure is similar to the procedure we usmsistructf. To constructZ, we gradually
constructed a tree of sets, where eactbBsetl had a child for every se#U{x} such thatc has high influence
on B (x ¢ V(B).. The procedurd (S) differs in that it only constructs a single root-leaf path in thé,
where for eaclB; in the path, the next set in the pathAsuU {x} wherex is theminimal x € S that has high
influence onB; (and has not already been considered”yy). We will useP(S) = (Bo c By C --- C F(S))
to denote this path, which is the sequence of intermedidseBsan the execution of"(S). Given these
observations, we can state the following useful facts about

Fact 3.1. If F(S) = B, then P(S) = P(B). Moreover, for every S € U, P(S) C 1.
We can now establish Propeyby the following claim.
Claim 3.4 (Completeness)For every S C U, F(S) € S C V(F(S)), and g")(S) = £(S).

Proof. Let P(S) = Boc B1 C --- C F(S). F(S) always checks that € S before including an element
SOF(S) C §. To see that C V(F(S)), assume there exisise S \ V(F(S)). By submodularity we have
0<f(Bj) = 0.f(F(S)) > v for every setB;. Butif d,f(B;) > y for everyB; andx € §, it must be that
x € F(S). Butthend, f(F(S)) = 0, contradicting the fact thatg V(F(S)).

Finally, we note that sincé < V(F(S)), g"®)(S) is defined § is in the domain of"®)) and since
F(S) S, g"®(S) = f(F(S)US) = f(S). o

Definition of 7 and proof of Item 3. We will now define the mappin@. The idea is to consider a set
B € 7 andP(B) and consider all the elements we had to “reject” on the wamnfthe root taB. We say that
an elemenk € U is “rejected” if, whenx is considered by'(S), it has high influence on the current set, but
is not inB. Since any sef such thatB = F(S) satisfiesP(S) = P(B) (Fact3.1), and any sef that contains
a rejected element would have taken fiatent path, we will get that the elements T'(B) “witness” the
fact thatB # F(S). We define the mafp(B) as follows:

let j < 0,B;j < 0,R< 0

for x € U (in ascending order undes) do

if x¢ V(B;) andx ¢ Bthen R < R U {x}



elseif x ¢ Vg, andx € Bthen Bj,1 « B; U{x}, j«— j+1
return 7(B) = R.

We'll establish Property via the following two claims.
Claim 3.5. If B=F(S), then BC S C V(B)and S N T(B) = 0.

Proof. We have already demonstrated the first part of the claim imC84, so we focus on the claim that
S NT(B) = 0. By Fact3.1, every sefS s.t. B = F(S) satisfiesP(S) = P(B). Let (Bo c By C --- C B) = P(B).
Suppose there is an element S N T'(B). Then there is a s&; such thatr ¢ V(B;) andx ¢ B. But since
x ¢ V(Bj) andx € S, it must be thak € B;,1, contradicting the fact that;,; C B. O

Now we establish the converse.
Claim 3.6. I[fBC S C V(B), S NT(B) =0, then B= F(S).

Proof. Suppose for the sake of contradiction that there &Bset B such thatB’ = F(S). There exists an
elementx € BAB’, and we consider the minimal suahunder<. Let P(B) = (Bo € By € --- ¢ B) and
P(S) = P(B") = (By c B} C --- C B’). Sincex is minimal inBAB’, there must bg be such thaB; = B’ for
alli < j, butxe Bj+1AB;.+1. Consider two cases:

1. B> B’. Thusx € B\ B’ Moreover, sincex € B C §, it must be that when was considered in
the execution ofF (S), andB;. was the current set, it was the case that V(B;.). ButB; = B;, SO
x € V(B)), contradicting the fact thate B ;.

2. B? B'. Thusx € B’ \ B. Sincex € B = F(S) ¢ § (Claim 3.4), we havex € S. Moreover, since
X € B;Jrl we must haver ¢ V(B;.) = V(Bj). Thus we havex ¢ V(B;) andx ¢ B, which implies
x € T(B), by construction. Thu§ N T(B) # 0, a contradiction.

The previous two claims establish Ite&8n

Finally we observe that the enumerationfofequires time at most/| - |[7] = |U|°Y?), since we iterate
over each element d and then iterate over each set currentlyZ/inWe also note that we can compute
the mappings” and7 in time linear in|7| = |U|°Y?) and can comput&(B) in time linear in|U|. These
observations establish Propedynd complete the proof of Lemn3al ]

Lemma 3.7 (Lemma3.1 with tolerance) Given any submodular function f: 2V — [0,1] and y > O,
Algorithm 2 makes the following guarantee. There are maps F,T: 2V — 2V satisfying properties 1-4 of
Lemma 3.1 and moreover, can be computed using tolerant queries to f with tolerance y/12.

Proof. Throughout the proof, we will assume that the oracle alwayssgthe same answer to each query.
Thus the functionf defined in Algorithn2 is well defined. Note that(S) need not be submodular everyif

is, however, we can assume that we have exact oracle accfs)tdlso note that, since we can compute
0. f(S) using two queries tg, we are guaranteed that for evetyc U, andx € U,

10, (S) = 8.£(S)| < y/6. (4)

Observe that Algorithn® differs from Algorithm1 only in the choice of parameters. The analysis
required to establish the Lemma is also a natural modificatfahe analysis of Lemma.1, so we will refer
the reader to the proof of that Lemma for several details agaall attention to the steps of the proof that
require modification.



Algorithm 2 Decomposition for monotone submodular functions fromrtoté queries

Input: Tolerant oracle access to a submodular functfor2’ — [0, 1] with tolerance at mosj/12 and
parametety > 0.

Let f denote the function specified by tolerant oracle querigssoch that for everg ¢ U

I£(S) - f(S) < y/12

Let < denote an arbitrary ordering &f.
Let 7 < {0}
for x € U (in ascending order undet) do

I 0

for B € I do

if 0, f(B) > y/3then I’ — I’ U{B U {x}}

I —71TUTl
Let V(S) = {x € U | 8,f(S) < 2y/3} denote the set of elements that have small marginal value wit
respect t&§ C U.

Output: the collection of functiong = {¢® | B € I}, where forB € I we define the functiog? : 2"() —
[0,1] asg®(S) = f(S U B).

We will proceed by running through the construction of Lem8aaon £(S) usingy/3 as the error
parameter. Since the argument is a fairly straightforwamdlifircation to Lemma3.1, we will refer the
reader to the proof of that Lemma for several details, ang oall attention to the steps of the proof that
require modification.

First, we establish a bound on the sizelof

Claim 3.8. 7] < |U|®”
Proof. LetB e I beasetB ={x1,...,xp)}. LetBo=0andB; = {x1,...,x;}fori=1,...,|B|- 1. Then

[Bl-1 |B|-1

12 f(B) = > 0uuf(B) 2 ) (95, f(B) ~7/6) > BI- (y/3~y/6) = BI- ¥/6. (5)
i=0

i=0
Therefore, it must be théB| < 6/y, and there are at mogt|%” such sets ovel/| elements. O

Iltem 1 is shown next.

Claim 3.9 (Lipschitz) For every g® € G, g* is submodular and SUP,cy ) scy () 0x9°(S) < .

Proof. The proof of submodularity is identical to Claig3
To establish the Lipschitz property, observe that for everg U, and everyx € V(B), d,f(B) <

0.f(B) +v/6 < y. 0

Definition of F and proof of Item 2. In addition to the set¥(B) = {x € U | ,f(B) < 2y/3}, we will
define the set¥’(B) = {x € U | 4,f(B) < y/3}, note that for every3 C U, V’(B) C V(B). We define the
promised mappingd’(S) in the the same manner as in the proof of Len8riga but we usé/’ in place ofV
to decide whether or not we select an elemefdr inclusion in the seF(S).

Now we establish Proper@via the following claim, analogous to Claih4in the proof of Lemma.1
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Claim 3.10 (Completeness)For every S C U, F(S) C S C V(F(S)). Moreover, g*S)(S) = £(S).

Proof. Let P(S) = Bp € B1 C --- C F(S). The fact thatF(S) c S follows as in Claim3.4. To see that
S C V(F(S)), assume there existse S \ V(F(S)). By submodularity off, and @), we have

0. f(Bj) = 0. f(B}) = v/6 > dxf(F(S)) —y/6 > 0. f(F(S)) — /3> /3.

Thus,axf(Bj) > y/3 for every seB;. Butif d.f(B;) > y/3 for everyB; andx € S, thenx ¢ V'(B;) for
everyB;, and it must be that € F(S). But thend, f(F(S)) = 0, contradicting the fact that¢ V(F(S)).
The fact thay")(S) = £(5) follows as in the proof of Clain3.4. O

Definition of 7 and proof of Item 3. We also define the promised mappifi¢S) in the same manner as
in the proof of Lemma&B.1, but usingV” in place ofV to decide whether or not we select an elemefdr
inclusion in the seF(S).

To establish Propertg, we note that the proofs of Claing&5 and 3.6 do not rely on the submodular-
ity of £, therefore they apply as-is to the case where we computg ewen thoughyf is not necessarily
submodular.

Property4 also follows as in the proof of Lemnfal This completes the proof of the Lemma. 0O

We now present our algorithm for learning monotone subnmarduinctions over product distributions.
For a subset of the univer3éc U, let Dy denote the distributiorD restricted to the variables ii. Note
that if O is a product distribution, the®y, remains a product distribution and is easy to sample from.

Algorithm 3 Approximating a monotone submodular function from toléigureries
Learn(f, a,8, D)
Lety = srgrrs
Construct the collection of functiongz returned by Algorithm2 and letF, V, T be the associated map-
pings given by Lemma&.7 with parametely.
Estimate the valueu,s = Esp,, ., [¢°(S)] for eachg® € G.
Output the data structure that consists of the valugg for everyg® e G as well as the mapping.

Theorem 3.11. For any a,8 € (0, 1], Algorithm 5 (a, B)-approximates any submodular function f: 2V —
[0,1] under any product distribution D in time |U|2@ 109U ysing oracle queries to f of tolerance

a?/7210g(2/p).

Proof. ForasetS C U, we letB = F(S) andg® be the corresponding submodular function as in Lerriia
Note that since the queries have toleranég¢72 log(1/8) < y/12, the lemma applies. We will analyze the
error probability as if the estimatggs were computed using exact oracle queriegtand will note that
using tolerant queries t can only introduce an additional error @f/72l0og(1/8) < «/6. We claim that,
under this condition

Pr{I£(S) = h(S)l > 50/6) = Pr {|g"®)(S) ~ pyrcs)| > 5er/6]

i Bzgs“%“* = F($))- Pr {[g(S) ~ | > 50/61B=F(S)| . (6)
gBe

To see this, recall that for evesy C U, g"®)(S) = f(S). By Property3 of Lemma3.1, the condition that
B = F(S) is equivalent to the conditions th&tC S C V(B) andS n T(B) = 0. Hence,

Pr{lg”(5) ~ ngs| > 52/61 B = F(S)) = {lo°($) — gp| > 5a/6 .

~DV(B)\T(B)
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Now, applying the concentration inequality for submoddilarctions stated as Corollag/2, we get

B r
S~Z]§/II;\TB {|g (S) —ﬂgB| > ’yt} < 2exp(—m) . (7)

Plugging in = 5a/6y = 2298 and simplifying we gePrs -, {|g%(S) = pys| > o} < B. Combining
this with (6), the claim follows. m|

3.2 Non-monotone Submodular Functions

For non-monotone functions, we need a more refined argur@mtmain structure theorem replaces Prop-
erty 1 in Lemma3.1 by the stronger guarantee tHatg(S)| < « for all g € G, even for non-monotone
submodular functions. Observe that for a submodular fancti : 2¥ — R, the functionf: 2 — R
defined asf(S) = f(V\S) is also submodular; moreover

xglvgfgv 9, f(S) = _xe‘f?,lﬁgv 0xf(S). (8)

Given these two facts, we can now prove our main structurar¢me.

Algorithm 4 Decomposition for submodular functions from tolerant dgger
Input: Tolerant oracle access to a submodular functfor2’ — [0, 1] with tolerance at mosj/12 and
parametety > 0.

Let f denote the function specified by tolerant oracle querigssoch that for everg ¢ U

1£(S) - £(S)I <y/12

Let < denote an arbitrary ordering of.
Let G(f) denote the collection of functions returned by Algorit2with oracle f and parametey, and
let F, V¢, T be the associated mappings promised by Leriria
for g% € G(f) do
Let G(B) be the collection of functions returned by Algoritiwith oracleg® and parametey, and
let Fg, Vg, T be the associated mappings promised by Lermia
Let V(S,T) = V¢(S) n Vs(T') denote the set of elements that have small marginal aleseéltie with
respecttay, 7 C U.

Output: the collection of functiongg = U scg(5{g”C =5 | ¢ € G(B)} whereg®€: 2V(€) [0, 1].

Theorem 3.12. Given any submodular function f: 2V — [0, 1] and y > 0, Algorithm 4 makes the following
guarantee. There are maps F: 2V — 2V x 2V and T: 2V x 2V — 2Y such that:

1. (Lipschitz) For every g®C € G, g% is submodular and satisfies SURcy (5,¢),s cV(B,C) 1095 (S) < .
2. (Completenessfor every S C U, F(S) C S C V(F(S)) and g"®)(S) = £(S).
3. (Uniquenessfor every g5€ € G, F(S) = (B, C) ifand only if B,C € S C V(B,C)and SNT(B, C) = 0.

4. (Size) The size of G is at most |G| = |UI°YM. Moreover, given tolerant oracle access to f with
tolerance y /12 we compute F,V,T in time |U |0/,

Proof. First we show Iteml
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Claim 3.13 (Lipschitz) For every g®€ € G, ¢%€ is submodular and SURev(8,0).5cV(B.C) 10.g%C(S)| <.

Proof. Submodularity follows directly from Property of Lemma3.7. The same property of the lemma
guarantees that for evegf e G(f) andg¢ € G(B), SURev4(C).5cVs(C) d.9°(S) < y. Moreover, by 8),

infrev,(B).5cv,(8) 8,3°(S) > —y. Taken together, we obtain SUP(5.0).5cv(B.0) 10.g5€(S)] < 7. i

Definition of F and proof of Item 2. Item 2 will follow from the analogous property in Lemn&7 almost
directly. To construct the mapping(S), we want to first compute the appropriate functigh € G(f),
using F¢(S) and then find the appropriate functiogh € G(B) using F(S). Thus we can také(S) =
(F#(S), Frps)(S)). By Lemma3.7, ltem2 we haveB C § C V¢(B) andC € S C Vp(C), so we conclude
B,Cc S CcV(B,C).

Definition of 7" and proof of Item 3. Item ?? will also follow from the analogous property in Lemr&.
By Lemmag3.7, Item 3, we have that';(S) = Bifand only if BC S C V¢(B) andS N T¢(B) = 0. By the
same Lemma, we also have thgg(S) = Cifand only if C € § C Vg(C) andS N Tg(C) = 0. So if we
defineT' (B, C) = T¢(B) U Tg(C), we can conclude that(S) = (B,C) ifand only if B,C c S c V(B,C) and
SNT(B,C)=0.

Now it is clear thatF(S) = (B,C) if Fy(S) = BandFp(S) = C, which by Property3 of Lemmag3.7
necessitates thdt € S € V¢(B), SNTy(B) =0,C S C Vp(S), andS N Tp(C) = 0. We have already
definedV (B, C) and now we defind (B, C) = T¢(B) U Tp(C). Itis clear now tha#(S) = (B, C) if and only
if B,CCS CV(B,C)andS NnT(B,C) = 0.

The size ofg and running time bounds in Propef9 also follow directly from the analogous property
of Lemma3.1 The fact that we can compute the famgjyand the associated mappingsV, T using oracle
access tg’ with tolerancey/12 follows from the fact that each invocation of Lem@a can be computed
using queries with tolerancg/12 and from the fact that Algorithm only queriesf in order to invoke
Lemma3.7. This completes the proof of the Theorem. m|

We now present our algorithm for learning arbitrary subntadtunctions over product distributions.
For a subset of the universéc C, let Dy denote the distributioD restricted to the variables ii. Note
that if O is a product distribution, the®, remains a product distribution and is easy to sample from. To

Algorithm 5 Approximating a non-monotone submodular function
Learn(f, a, 8, D)
Lety = sTerp-
Construct the collection of functiong and the associated mappings/, T given by Theoren3.12with
parametely.
Estimate the valueu,sc = Es-p, 0097 ()] for eachg?c € .
Output the data structurg that consists of the valuggsc for everyg®€ e G as well as the mapping.

avoid notational clutter, throughout this section we witt ronsider the details of how we construct our
estimatey,. However, it is an easy observation that this quantity caedienated to a dficiently high
degree of accuracy using a small number of random samples.

Theorem 3.14. For any a, 8 € (0, 1], Algorithm 5 (a, B)-approximates any submodular function f: 2V —
[0, 1] under any product distribution in time U |O(‘f2 09(UB) ysing oracle queries to f of tolerance /72 109(1/p)

Proof. For asetS c U, we let 8,C) = F(S) andg?C be the corresponding submodular function as in
Theorem3.12 Note that since the queries have toleranég72 log(1/8) < y/12, the lemma applies. We

13



will analyze the error probability as if the estimajes were computed using exact oracle querieg,tand
will note that using tolerant queries focan only introduce an additional error@f/72 log(1/B) < a/6. We
claim that, under this condition We claim that

Pr{If(S) = h(S)| > 5a/6) = Pr {lg"}(S) - pyr0| > 5a/6)

= = . B.C(qy _ B
= gégﬁg{(& C)=F(S)} S]E’E)“g () ,ugg,c| > 50/6| (B,C) = F(S)} .

9)

To see this, recall that for evesy € U, ¢"®)(S) = f(S). By Property3 of Lemma3.1, the condition that
B = F(S) is equivalent to the conditions th&tC ¢ S ¢ V(B,C) andS N T(B,C) = 0. Hence,

S]E)E)“gB,C(S) —,ugs,c| > 5a/6|(B,C) = F(S)} = SNDV(]EE)\T(B’C) {|gB(S) —ug3| > 5&/6} )

Now, applying the concentration inequality for submoddilarctions stated as Corollag/2, we get

t2
Pr B’CS - cl >yt <2expl-————| . 10
5D e 187 =] 2 1) p( 2(1/y+5r/6)) (10)

Plugging ins = 5a/6y = 22928 ang simplifying we 9etPrs -0y 0100 {|gB’C(S) — pgpe| > a} < B.
Combining this with Equation9), the claim follows. m|

4 Applications to privacy-preserving query release

In this section, we show how to apply our algorithm from S@e8 to the problem of releasing monotone
conjunctions over a boolean database. In SectiGnwe also show how our mechanism can be applied to
release theut function of an arbitrary graph.

Let us now begin with the monotone disjunctions. We will tlesttend the result to monotone conjunc-
tions. Given our previous results, we only need to arguerti@iotone disjunctions can be described by
a submodular function. Indeed, every elemé&nt {0, 1}¢ naturally corresponds to a monotone Boolean
disjunctionds : {0, 1}¢ — {0, 1} by putting

ds (x) def \/ Xi.
i: S()=1

Note that in contrast to Secti@here we use to denote an element ¢, 1}¢. Let Fpisj : {0, 1}¢ — [0, 1] be
the function such thal'pisi(S) = ds (D). It is easy to show thalp;sj(S) is @ monotone submodular function.

Lemma 4.1. Fp;; is a monotone submodular function.

Proof. Let Xl.+ denote the set of elementse D such thaty; = 1, and IetXl.‘ denote the set of elements
x € D such thaty; = 0. Consider the set systetn= {X;", X"}, over the universe of elementss D. Then

there is a natural bijection betweéi;sj(D) and the set coverage function Cov¥ 2> [0, |D|] defined to be
Cov(S) = | Uxey XI, which is a monotone submodular function. m]

We therefore obtain the following corollary directly by cbming Theoren8.11with Proposition2.1

Corollary 4.2. Let a,,& > 0. There is an e-differentially private algorithm that (a, B)-releases the set of
monotone Boolean disjunctions over any product distribution in time d"®) for any data set of size |D| >
d"@P) | where t(e, B) = O(a2log(1/B)).
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Algorithm 6 Privately Releasing Monotone Disjunctions
Release(D, o, 3, &, D)
Simulate the oracle queriesp;,;(S) by answering withis (D) + Lap(t(e, 8)/£|D).

2
Lety = s _ _ _ _
Construct the collection of functiongs and the associated mappingsV, T given by Lemma3.7 on the
function Fp;s; with parametely.
Estimate the valueu,s = Es_p, ., [¢°(S)] for eachg® € G.
Output the data structuré that consists of the estimated valygs for everyg? € G as well as the
mappingF. To evaluate any monotone disjunction quegyD), computew,rs).

For completeness, we will present the algorithm for priyateleasing monotone disjunctions over a
product distributionD for a data seD, though we will rely on Corollaryt.2 for the formal analysis.

We will next see that this corollary directly transfers tomotone conjunctions. A monotone Boolean
conjunctioncs : {0, 1}¢ — {0, 1} is defined as

cs () dgf/\xi = 1_\/(1_xi)-

ieS ieS

Given the last equation, it is clear that in order to releasgunctions over some distribution, it isfRgient
to release disjunctions over the same distribution aftglaceng every data item € D by its negationy, i.e.,
x; = 1 - x;. Hence, Corollaryt.2 extends directly to monotone conjunctions.

Extension to width w. Note that the uniform distribution on disjunctions of widthis not a product
distribution, which is what we require to apply Theor&i4 directly. However, in Lemmd.3 we show
that for monotone submodular functions (sucw«%%j) the concentration of measure property required in
the proof Theoren3.14is still satisfied. Of course, we can instantiate the thedi@meveryw € {1,...,k}

to obtain a statement for conjunctions of any width.

Indeed, given a monotone submodular functfor2? — R, letS € 2V be the random variable where
for everyx € U, independently € S with probabilityw/d andx ¢ S with probability 1— w/d. On the other
hand, letT” € 2V denote the uniform distribution over strings ifi &f weightw. The following lemma is due
to Balcan and HarveygH1(0].

Lemma 4.3. Assume f : 2V 5 R is monotone function, and S and T are chosen at random as above. Then,
Prf(T) = 7] < 2Pr[f(S) = 1] (11)
Pr[f(T) < 7] < 2Pr[f(S) < 1] (12)

Remark 4.1. Throughout this section we focus on the case of monotonedisjunctions and conjunctions.
Our algorithm can be extended to non-monotone conjunctions/disjunctions as well. However, this turns out
to be less interesting than the monotone case. Indeed, a random non-monotone conjunction of width w is
false on any fixed data item with probability 27", thus when w > log(1/a), the constant function O is a
good approximation to Fp;sj on a random non-monotone conjunction of width w. We therefore omit the
non-monotone case from our presentation.

4.1 Releasing the cut function of a graph

Consider a grapty = (V, E) in which the edge-set represents the private databasegteng here that each
individual is associated with a single edgedn The following discussion generalizes to the case in which

15



individuals may be associated with multiple edges, with mesponding increase in sensitivity). Ther
function associated witlG is f; : 2" — [0, 1], defined as:

1
V|2
We observe that the graph cut function encodes a collecficounting queries over the databasand so
has sensitivity 1|V/|?.

f6(S) = fw,v) e E:ueS,v¢ S}

Fact 4.1. For any graph G, fg is submodular.
Lemma 4.4. The decomposition from Theorem 3.12 constructs a collection of functions G of size |G| < 2%/.

Proof. Letu € V, andS c V such thatd,fc(S)| = «. It must be that the degree aofin G is at least
« - |E|. But there can be at most@ such high-influence vertices, and therefore at mést Qubsets of high
influence vertices. O

Corollary 4.5. Algorithm 5 can be used to privately («, 8)-release the cut function on any graph over any
product distribution in time t(a, B, €) for any database of size |D| > t(«, B, €), while preserving e-differential

privacy, where:
20(a?1og(1/B))
t(a,B,6) = ————

Proof. This follows directly from a simple modification of Theorednl4, by applying Lemmat.4 and
plugging in the size of the decompositioh The algorithm can then be made privacy preserving by applyi
proposition2.1 m|

S Equivalence between agnostic learning and query release

In this section we show an information-theoretic equiveéehetweerignostic learning andquery release
in the statistical queries model. In particular, given anaaggic learning algorithm for a specific concept
class we construct a query release algorithm for the sanmmepblass.

Consider a distributiom over X x {0,1} and a concept clasS. An agnostic learning algorithm (in
the strong sense) finds the concgpt C that approximately maximizeBr(, »)-4 {g(x) = b} to within an
additive error ofa. Our reduction from query release to agnostic learningadlgtinolds even fonveak
agnostic learning. A weak agnostic learner is not required to maxinibzg, ;)4 {g(x) = b}, but only to find
a suficiently good predicatg provided that one exists.

We use STAT(A) to denote thatatistical query oracle for distribution A that takes as input a predicate
q : X — {0,1} and returns a valuesuch thatv — E,.a[¢(x)]|

Definition 5.1 (Weak Agnostic SQ-Learning)_et C be a concept class andr > 0 and 0< 8 < a < 1/2.
An algorithm A with oracle access to STA[A) is an @, B, v, 7)-weak agnostic learner for C if for every
distributionA such that there existg € C satisfyingPr(, ;)-4 {¢"(x) = b} > /2+a, A(A) outputs a predicate
g : X — {0,1} such thatPr(, ;)4 {g(x) = b} > Y2+ 3, with probability at least 1 y.

Note that if we can agnostically leaéhin the strong sense from queries of tolerant¢e within additive
errora — B with probability 1- vy, then there is also am(B, y, 7)-weak agnostic learner.

We are now ready to state the main result of this section, w$lows that a weak agnostic SQ-learner
for any concept class is ficient to release the same concept class in the SQ model.

Theorem 5.1. Let C be a concept class. Let A be an algorithm that («/2, 8,7, 7) weak agnostic-SQ learns
C with © < f8/8. Then there exists an algorithm B that invokes A at most T = 8log|X|/B? times and
(a, 0)-releases C with probability at least 1 — Ty.
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Algorithm 7 Multiplicative weights update

Let Do denote the uniform distribution ovéf.

For:=1,.. T =[8log|X|/8*] + 1:
Consider the distributions

Al =Y2(D, 1)+ Y2(D,1,0) Ar = Y2(D,0)+Y2(D;-1,1).

Letg = A(A]) andg; = A(A]). Letv] be the value returned by STAR;) on the query; andv; be
the value returned by STATA;) on the queryy; . Lety, = maxuv;, v, } — 1/2 andg, be the corresponding
query.

If:

vtsg—‘r, (13)

proceed to “output” step.
Update: Let D, be the distribution obtained from;_; using a multiplicative weights update step with
penalty function induced by, and penalty parameter= 3/2 as follows:
Dj(x) = exppq:(x)) - Di-1(x)
DI
Di(x) = ———
)= D

Output a. = E,.p, c(x) for eachc € C.

The proof strategy is as follows. We will start froby being the uniform distribution ovex. We will
then construct a short sequence of distributidnsD,, ..., D7 such that no concept i@ can distinguish
betweenD andD7 up to biasy. Each distributionD; is obtained from the previous one using a multiplicative
weights approach as itHR10 and with the help of the learning algorithm that's given lire tassumption
of the theorem. Intuitively, at every step we use the agadsérner to give us the predicajee C which
distinguishes betwedah, andD. In order to accomplish this we feed the agnostic learner thighdistribution
A, that labels elements sampled frdrby 1 and elements sampled fraba by 0. For a technical reason we
also need to consider the distribution with 0 and 1 flippedcéwe obtained, we can use it as a penalty
function in the update rule of the multiplicative weightsthed. This has theftect of bringingD and D,
closer in relative entropy. A typical potential argumergritbounds the number of update steps that can
occur before we reach a distributi@n for which no good distinguisher i@ exists.

5.1 Proof of Theorem 5.1

Proof. \We start by relating the probability that predictsb from x on the distributior4; to the diference
in expectation of;, on D andD,_1.

Lemma 5.2. Forany q: X — {0,1},

1 1
(XJ])I;IA:{C](X) =b} - E = E X]FD q(x) — x~]g,_l q(x)) (14)
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Proof. If ¢; = ¢/ then

1 1
« }])[))IN{Q(X) =5 ]PV{Q(X) =1+ > XN]PL’)L{Q(X) =

=S E LW +5 B [1-q(]

-1

1
2]
1 1

1 2(15 - E )

Note that]Pr(x’b%At—{q(x) =b}=1- ]Pr(x’b)wA[—{q(x) =(1-b}=1- ]Pr(x’b)wA;r{q(x) = b}, soifg; = ¢q; then

1 1
Bl =0 =1= Brja)=b1=1- (53 B a - glqm))
11

-3+ 3B E )

O

The rest of the proof closely follow${R10. For two distributionsP, Q on a universeX we define the
relative entropy t0 be REP||Q) = 3. .cx P(x) log(P(x)/Q(x)). We consider the potential

¥, = RE(DIIDy) .

Fact5.1. ¥, >0
Fact 5.2. ¥y < log|X|

We will argue that in every step the potential drops by attlggst Hence, we know that there can be at
most 4 logX|/e? steps before we reach a distribution that satisfl&. (

The next lemma gives a lower bound on the potential drop mgesf the conceply,, returned by the
learning algorithm at time. Recall, that; (used below) is the penalty parameter used in the multipliea
weights update rule.

Lemma 5.3 ((HR1Q).
SR n‘ E g()- E |- (15)
x~D x~D;_1
Let
opt = sup| Pr {g(x) = b} -
= X) = - =
qeC (x,h> 2

Note thatPr(,;)-a-{g(x) = b} = 1 - ]Pr(x,b)NA;{ﬂq(x) = b}. For the remainder of the proof we treat the two
cases symmetrically and only look at how far frorf2 these probabilities are. The next lemma shows that
either optis large or else we are done in the sense fhas indistinguishable fronD for any concept from

C.

Lemma 5.4. Let @ > 0. Suppose
o'
opt < —.
Pt <5
Then, for all g € C,
- <
E - E (| <a (16)
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Proof. From Lemmab.2we have that for every € C

1 1
opt, > « }])I)’IAJCI(X) “5=5 (X]PD q(x) - xiED, Qt(x))

NIQ

Thusa > (E,.p g(x) — E..p, g:(x)). Similarly,

a 1 1
— > _ — = = —
32 0PL> T al) =01~ 5= 5( B a) - E,a)
Thus—a < (Ex-p q(x) — Ex-p, ¢/(x)). So we concluder > |E..p g(x) — E.p, ¢:(x)|. O

We can now finish the proof of Theorebnl. By our assumption, we have that so long as epi/2 the
algorithmA produces a concept such that with probability + y

>p. (a7)

() =) - 5

(x b)~A+

For the remainder of the proof we assume that our algorithtare a concept satisfying Equatioh7f in
every stage for which opt a/2. By a union bound over the stages of the algorithm, thistesecurs with
probability at least & Ty.

Assuming Equation(3) is not satisfied we have that

§S§—27<v,—7<

]Pr {g:(x) = ‘ .

[

The leftmost inequality follows because< 5/8. We then get

Pen -2 [Bal) - F o) - (Lemmas.3)
>n ‘4]Er{qt(x) =b} - 2‘ o (Lemmab.2)
>n-B-n° (Equation13 not satisfied)
B P

> - =
> "2 (n=p/2)
ﬂZ

4

Hence, if we pul” > 4log|X|/3%, we must reach a distribution that satisfié8)( But at that point, call
it ¢z, the subroutineA outputs a concept, such that

pr (qx)—b)—}

o <vt+r<§+r</§

In this case, by our assumption that Equatiohis satisfied whenever gpt 1/2 + «/2, we conclude that
opt < 1/2 + /2. By Lemmab.4, we get

sup <a.

qeC

Ea() - B a()

x~D

But this is what we wanted to show, since it means that ourutwip all concepts i will be accurate up
to errora. i

19



We remark that for clarity, we let the failure probability thfe release algorithm grow linearly in the
number of calls we made to the learning algorithm (by the mifiound). However, this is not necessary:
we could have driven down the probability of error in eaclysthy independent repetition of the agnostic
learner.

This equivalence between release and agnostic learningcats easily be seen to hold in the reverse
direction as well.

Theorem 5.5. Let C be a concept class. If there exists an algorithm B that (a, 0)-releases C with probability
1 — y and accesses the database using at most k oracle accesses to STAT(A), then there is an algorithm
that makes 2k queries to STAT(A) and agnostically learns C in the strong sense with accuracy 2a with
probability at least 1 — 2y.

Proof. LetY denote the set of examples with label 1, andVietenote the set of examples with label 0. We
use STAT(A) to simulate oracles STA(Y) and STAT,(N) that condition the queried concept on the label.
That is, STAT.(Y), when invoked on concept returns an approximation ®r,.{g(x) = 1 A (x € Y)} and
STAT,(N) returns an approximation r,.4{g(x) = 1 A (x € Y)]. We can simulate a query to either oracle
using only one query to STATA).

Run B(Y) to obtain answers{,...,alycv and runB(N) to obtain answersN,...,al’gl. Note that this
takes at mostRoracle queries, using the simulation described above, bgssumption oB. By the union
bound, except with probability,2 we have for allg; € C: |¢;(Y) — aiYI < a and|g¢;(B) - af’l < a. Let
q* = arg ma@iec(af - af\’ ). Observe thag* (D) > max,c ¢(D) — 2a, and so we have agnostically learnéd
up to error 2. O

Feldman proves that even monotone conjunctions cannot mestggally learned to subconstant error
with polynomially many SQ queries:

Theorem 5.6 ([FellQ). Let C be the class of monotone conjunctions. Let k(d) be any polynomial in d, the
dimension of the data space. There is no algorithm A which agnostically learns C to error o(1) using k(D)
queries to STATya).

Corollary 5.7. For any polynomial in d, k(d), no algorithm that makes k(d) statistical queries to a database
of size k(d) can release the class of monotone conjunctions to error o(1).

Note that formally, Corollarys.7 only precludes algorithms which release the approximatelyect
answers taevery monotone conjunction, whereas our algorithm is allowed &kenarbitrary errors on a
small fraction of conjunctions.

Remark 5.1. It can be shown that the lower bound from Corollary 5.7 in fact does not hold when the accu-
racy requirement is relaxed so that the algorithm may err arbitrarily on 1% of all the conjunctions. Indeed,
there is an inefficient algorithm (runtime poly(2?)) that makes poly(d) statistical queries and releases ran-
dom conjunctions up to a small additive error. The algorithm roughly proceeds by running multiplicative
weights privately (as in [HR10] or above) while sampling, say, 1000 random conjunctions at every step
and checking if any of them have large error. If so, an update occurs. We omit the formal description and
analysis of the algorithm.

We also remark that the proofs of Theoresand5.5are not particular to the statistical queries model:
we showed generically that it is possible to solve the quelgase problem using a small number of black-
box calls to a learning algorithmyithout accessing the database except through the learning algorithm.
This has interesting implications for any class of algonghthat may make only restricted access to the
database. For example, this also proves that if it is passibhgnostically learn some concept cl@sshile
preservings-differential privacy (even using algorithms that do not fit ifte 5Q model), then it is possible
to release the same class while presendiegr log|X|e-differential privacy.
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