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Abstract

Suppose we would like to knowall answers to a set of statistical queriesC on a data set up to small
error, but we can only access the data itself using statistical queries. A trivial solution is to exhaustively
ask all queries inC. Can we do any better?

1. We show that the number of statistical queries necessary and sufficient for this task is—up to
polynomial factors—equal to the agnostic learning complexity of C in Kearns’ statistical query
(SQ) model. This gives a complete answer to the question whenrunning time is not a concern.

2. We then show that the problem can be solved efficiently (allowing arbitrary error on a small fraction
of queries) whenever the answers toC can be described by a submodular function. This includes
many natural concept classes, such as graph cuts and Booleandisjunctions and conjunctions.

While interesting from a learning theoretic point of view, our main applications are inprivacy-

preserving data analysis: Here, our second result leads to an algorithm that efficiently releases differ-
entially private answers to all Boolean conjunctions with 1% average error. This presents significant
progress on a key open problem in privacy-preserving data analysis. Our first result on the other hand
gives unconditional lower bounds on any differentially private algorithm that admits a (potentially non-
privacy-preserving) implementation using only statistical queries. Not only our algorithms, but also most
known private algorithms can be implemented using only statistical queries, and hence are constrained
by these lower bounds. Our result therefore isolates the complexity of agnostic learning in the SQ-model
as a new barrier in the design of differentially private algorithms.
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1 Introduction

Consider a data setD ⊆ {0, 1}d in which each element corresponds to an individual’s recordover d binary
attributes. The goal of privacy-preserving data analysis is to enable rich statistical analyses on the data set
while respecting individual privacy. In paritcular, we would like to guaranteedifferential privacy [DMNS06],
a rigorous notion of privacy that guarantees the outcome of astatistical analysis is nearly indistinguishable
on any two data sets that differ only in a single individual’s data.

One of the most important classes of statistical queries on the data set are Boolean conjunctions, some-
times called contingency tables or marginal queries. See, for example, [BCD+07, BLR08, KRSU10, UV10].
A boolean conjunction corresponding to a subsetS ⊆ [d] counts what fraction of the individuals have each
attribute inS set to 1. A major open problem in privacy-preserving data analysis isto efficiently create a
differentially private synopsis of the data set that accuratelyencodes answers to all Boolean conjunctions.
In this work we give an algorithm with runtime polynomial ind, which outputs a differentially private data
structure that represents all boolean conjunctions up to anaverage error of 1%.

Our result is significantly more general and applies to any collection of queries that can be described
by a low sensitivitysubmodular function. Submodularity is a property that often arises in data analysis and
machine learning problems [KG07], including problems for which privacy is a first-order design constraint1.
Imagine, for example, a social network ond vertices. A data analyst may wish to analyze the size of the
cuts induced by various subsets of the vertices. Here, our result provides a data structure that represents all
cuts up to a small average error. Another important example of submodularity is theset-coverage function,
which given a set system over elements in some universeU, represents the number of elements that are
covered by the union of any collection of the sets.

The size of our data structure grows exponentially in the inverse error desired, and hence we can rep-
resent submodular functions only up to constant error if we want polynomial query complexity.Can any

efficient algorithm do even better? We give evidence that in order to do better, fundamentally new tech-
niques are needed. Specifically, we show that no polynomial-time algorithm that guarantees small error for
every boolean conjunction can do substantially better if the algorithm permits an implementation that only
accesses the database through statistical queries. This statement holds regardless of whether such an imple-
mentation is privacy-preserving. (A statistical query is given by a functionq : {0, 1}d → {0, 1}, to which the
answer is�x∈D[q(x)].)

We show this limitation using connection between the data release problem and standard problems in
learning theory. Putting aside privacy concerns, we pose the following question:How many statistical

queries to a data set are necessary and sufficent in order to approximately answer all queries in a class C?

We show that the number of statistical queries necessary andsufficient for this task is, up to a factor ofO(d),
equal to the agnostic learning complexity ofC (over arbitrary distributions) in Kearns’ statistical query
(SQ) model [Kea98]. Using an SQ lower bound for agnostically learning monotone conjunctions shown
by Feldman [Fel10], this connection implies that no polynomial-time algorithm operating in the SQ-model
can release even monotone conjunctions to subconstant error. Since monotone conjunction queries can be
described by a submodular function, the lower bound appliesto releasing submodular functions as well.

While the characterization above is independent of privacyconcerns, it has two immediate implications
for private data release:

• Firstly, it also characterizes what can be released in thelocal privacy model of Kasiviswanathan et
al. [KLN+08]; this follows from the fact that [KLN+08] showed that SQ algorithms are precisely what
can be computed in the local privacy model.

1For example, Kempe, Kleinberg, and Tardos show that for two common models of influence propagation on social networks,
the function capturing the “influence” of a set of users (perhaps the targets of a viral marketing campaign) is a monotone submodular
function [KKT03].
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• Secondly, and perhaps even more importantly, it gives us theclaimed unconditional lower bounds on
the running time of any query-release algorithm that permits an implementation using only statisti-
cal queries—regardless of whether its privacy analysis canbe carried out in the local privacy model.
To our knowledge, this class includes almost all privacy preserving algorithms developed to date, in-
cluding the recently introduced Median Mechanism [RR10] and Multiplicative Weights Mechanism
[HR10]2. Note that these mechanisms cannot be implemented in the local privacy model while pre-
serving their privacy guarantees, because they will have tomake too many queries. Indeed, they are
capable of releasing conjunctions to subconstant error! Yet, they can be implemented using only
statistical queries, and so our lower bounds apply to their running time.

To summarize, our results imply that if we want to develop efficient algorithms to solve the query release
problem for classes as expressive as monotone conjunctions(itself an extremely simple class!), we need to
develop techniques that are able to sidestep thisstatistical query barrier. On a conceptual level, our results
present new reductions from problems in differential privacy to problems in learning theory.

1.1 Overview of our results

In this section we give an informal statement of our theoremswith pointers to the relevant sections. Our
theorem on approximating submodular functions is proved inSection3. The definition of submodularity is
found in the Preliminaries (Section2).

Informal Theorem 1.1 (Approximating submodular functions). Let α > 0, β > 0. Let f : {0, 1}d → [0, 1] be

a submodular function. Then, there is an algorithm with runtime dO(log(1/β)/α2) which produces an approxi-

mation h : {0, 1}d → [0, 1] such that �rx∈{0,1}d {| f (x) − h(x)| ≤ α} ≥ 1− β.

In Section4 we then show how this algorithm gives the following differentially private release mecha-
nism for Boolean conjunctions. The definition of differential privacy is given in Section2.

Informal Theorem 1.2 (Differentially private query release for conjunctions). Let α > 0, β > 0. There is an

ε-differentially private algorithm with runtime dO(log(1/β)/α2) which releases the set of Boolean conjunctions

with error at most α on a 1− β fraction of the queries provided that |D| ≥ dO(log(1/β)/α2)/ε .

The guarantee in our theorem can be refined to give anα-approximation to a 1− β fraction of the set
of w-way conjunctions (conjunctions of widthw) for all w ∈ {1, ..., d}. Nevertheless, our algorithm has the
property that the error may be larger thanα on a small fraction of the queries. We note, however, that for
β ≤ αp/2 our guarantee is stronger than errorα in the Lp-norm which is also a natural objective that has
been considered in other works. For example, Hardt and Talwar study error bounds on mechanisms with
respect to the Euclidean norm across all answers [HT10]. From a practical point of view, it also turns out
that some privacy-preserving algorithms in the literatureindeed only require the ability to answerrandom

conjunction queries privately, e.g., [JPW09].
Finally, in Section5, we study the general query release problem and relate it to the agnostic learning

complexity in the Statistical Query model.

Informal Theorem 1.3 (Equivalence between query release and agnostic learning). Suppose there exists an

algorithm that learns a class C up to error α under arbitrary distributions using at most q statistical queries.

Then, there is a release mechanism for C that makes at most O(qd/α2) statistical queries.

Moreover, any release mechanism for C that makes at most q statistical queries implies an agnostic

learner that makes at most 2q queries.

2A notable exception is the private parity-learning algorithm of [KLN+08], which explicitly escapes the statistical query model.
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While both reductions preserve the query complexity of the problem neither reduction preserves runtime.
We also note that our equivalence characterization is more general than what we stated: the same proof
shows that agnostic learning of a classC is (up to small factors) information theoretically equivalent to
releasing the answers to all queries in a classC for any class of algorithms that may access the database
only in some restricted manner. The ability to make only SQ queries is one restriction, and the requirement
to be differentially private is another. Thus, we also show that on a class by class basis, the privacy cost of
releasing the answers to a class of queries using any technique is not much larger than the privacy cost of
simply optimizing over the same class to find the query with the highest value, and vice versa.

Our techniques. Our release algorithm is based on a structural theorem aboutgeneral submodular func-
tions f : 2U → [0, 1] that may be of independent interest. Informally, we show that any submodular function
has a “small” “approximate” representation. Specifically,we show that for anyα > 0, there exist at most
|U |2/α submodular functionsgi such that eachgi satisfies a strong Lipschitz condition, and for eachS ⊂ U,
there exists ani such thatf (S ) = gi(S ). We then take advantage of Vondrak’s observation in [Von10] that
Lipschitz submodular functions areself-bounding, which allows us to apply recent dimension-free concen-
tration bounds for self-bounding functions [BLM00, BLM09]. These concentration results imply that if we
associate each functiongi with its expectation, and respond to queriesf (S ) with �[gi(S )] for the appropriate
gi, then most queries are answered to within onlyα additive error. This yields an algorithm forlearning sub-
modular functions over product distributions, which can easily be made privacy preserving when the values
f (S ) correspond to queries on a sensitive database.

Our characterization of the query complexity of the releaseproblem in the SQ model uses the multiplica-
tive weights method [LW94, AHK05] similar to how it was used recently in [HR10]. That is we maintain
a distribution over the universe on which the queries are defined. What is new is the observation that an
agnostic learning algorithm for a classC can be used to find a query fromC that distinguishes between the
true data set and our distribution as much as possible. Such aquery can then be used in the multiplicative
weights update to reduce the relative entropy between the true data set and our distribution significantly.
Since the relative entropy is nonnegative there can only be afew such steps before we find a distribution
which provides a good approximation to the true data set onall queries in the classC.

1.2 Related Work

Learning Submodular Functions. The problem of learning submodular functions was recently intro-
duced by Balcan and Harvey [BH10]; their PAC-style definition was different from previously studied
point-wise learning approaches [GHIM09, SF08]. For product distributions, Balcan and Harvey give an
algorithm for learning monotone, Lipschitz continuous submodular functions up to constantmultiplicative

error using only random examples. [BH10] also give strong lower bounds and matching algorithmic re-
sults for non-product distributions. Our main algorithmicresult is similar in spirit, and is inspired by their
concentration-of-measure approach. Our model is different from theirs, which makes our results incom-
parable. We introduce a decomposition that allows us to learn arbitrary (i.e. potentially non-Lipschitz,
non-monotone) submodular functions to constantadditive error. Moreover, our decomposition makes value
queries to the submodular function, which are prohibited inthe model studied by [BH10].

Information Theoretic Characterizations in Privacy. Kasiviswanathan et al. [KLN+08] introduced the
centralized andlocal models of privacy and gave information theoretic characterizations for which classes
of functions could belearned in these models: they showed that information theoretically, the class of
functions that can be learned in the centralized model of privacy is equivalent to the class of functions that
can be agnostically PAC learned, and the class of functions that can be learned in the local privacy model is
equivalent to the class of functions that can be learned in the SQ model of Kearns [Kea98].
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Blum, Ligett, and Roth [BLR08] considered thequery release problem (the task of releasing the ap-
proximate value of all functions in some class) and characterized exactly which classes of functions can be
information theoretically released while preserving differential privacy in thecentralized model of data pri-
vacy. They also posed the question: which classes of functions can be released using mechanisms that have
running time only polylogarithmic in the size of the data universe and the class of interest? In particular,
they asked if conjunctions were such a class.

In this paper, we give an exact information theoretic characterization of which classes of functions can
be released in the SQ model, and hence in the local privacy model: we show that it is exactly the class of
functions that can beagnostically learned in the SQ model. We note that the agnostic SQ learnability of
a classC (and hence, by our result, the SQ releasability ofC) can also be characterized by combinatorial
properties ofC, as done by Blum et al. [BFJ+94] and recently Feldman [Fel10].

Lower bounds and hardness results. There are also several conditional lower bounds on the running time
of private mechanisms for solving the query release problem. Dwork et al. [DNR+09] showed that under
cryptographic assumptions, there exists a class of queriesthat can be privately released using the inefficient
mechanism of [BLR08], but cannot be privately released by any mechanism that runs in time polynomial in
the dimension of the data universe (e.g.d, when the data universe is{0, 1}d). Ullman and Vadhan [UV10]
extended this result to the class of conjunctions: they showed that under cryptographic assumptions, no
polynomial time mechanismthat outputs a data set can answer even the set ofd2 conjunctions of two-
literals!

The latter lower bound applies only to the class of mechanisms that output data sets, rather than some
other data structure encoding their answers, and only to mechanisms that answerall conjunctions of two-
literals with small error. In fact, because there are onlyd2 conjunctions of size 2 in total, the hardness result
of [UV10] does not hold if the mechanism is allowed to output some other data structure – such a mechanism
can simply privately query each of thed2 questions.

We circumvent the hardness result of [UV10] by outputting a data structure rather than a synthetic data
set, and by releasing all conjunctions with smallaverage error. Although there are no known computational
lower bounds for releasing conjunctions with small averageerror, even for algorithms that output a data
set, since our algorithm does not output a data set, our approach may be useful in circumventing the lower
bounds of [UV10].

We also prove a new unconditional (information theoretic) lower bound on algorithms for privately
releasing monotone conjunctions that applies to the class of algorithms that interact with the data using
only SQ queries: no such polynomial time algorithm can release monotone conjunctions witho(1) average
error. We note that our lower bound does not depend on the output representation of the algorithm. Because
almost all known private algorithms can indeed be implemented using statistical queries, this provides a
new perspective on sources of hardness for private query release. We note that information theoretic lower
bounds on the query complexity imply lower bounds on the running time of such differentially private
algorithms.

There are also many lower bounds on theerror that must be introduced by any private mechanism,
independent of its running time. In particular, Kasiviswanathan et. al. [KRSU10] showed that average
error ofΩ(1/

√
n) is necessary for private mechanisms that answer all conjunction queries of constant size.

Recently, this work was extended by De [De11] to apply to mechanisms that are allowed to have arbitrarily
large error on a constant fraction of conjunction queries ofconstant size. These results extend earlier results
by Dinur and Nissim [DN03] showing that average errorΩ(1/

√
n) is necessary for random queries.

Interactive private query release mechanisms. Recently, Roth and Roughgarden [RR10] and Hardt and
Rothblum [HR10] gave interactive private query release mechanisms that allow a data analyst to ask a large
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number of questions, while only expending their privacy budgets slowly. Their privacy analyses depend
on the fact that only a small fraction of the queries asked necessitate updating the internal state of the
algorithm. However, to answer large classes of queries, these algorithms need to make a large number of
statistical queries to the database, even though only a small number of statistical queries result in update
steps! Intuitively, our characterization of the query complexity of the release problem in the SQ model is
based on two observations: first, that it would be possible toimplement these interactive mechanisms using
only a small number of statistical queries if the data analyst was able to ask only those queries that would
result in update steps, and second, that finding queries thatinduce large update steps is exactly the problem
of agnostic learning.

2 Preliminaries

Differential privacy and counting queries. We study the question of answeringcounting queries over a
database while preserving differential privacy. Given an arbitrary domainX, we consider databasesD ∈ Xn.
We writen = |D|. Two databasesD = (x1, . . . , xn) andD′ = (x′1, . . . , x

′
n) are calledadjacent if they differ only

in one entry. That is, there existsi ∈ [n] such that for everyj , i, x j = x′
j
. We are interested in algorithms

(or mechanisms) that map databases to some abstract rangeR while satisfyingε-differential privacy:

Definition 2.1 (Differential Privacy [DMNS06]). A mechanismM : X∗ → R satisfiesε-differential privacy
if for all S ⊂ R and every pair of two adjacent databasesD,D′,we have�r(M(D) ∈ S ) ≤ eε �r(M(D′) ∈ S ) .

A counting query is specified by a predicateq : X → [0, 1]. We will denote the answer to a counting
query (with some abuse of notation) byq(D) = 1

n

∑

x∈D q(X) . Note that a count query can differ by at
most 1/n on any two adjacent databases. In particular, adding Laplacian noise of magnitude 1/εn, denoted
Lap(1/εn), guaranteesε-differential privacy on a single count query (see [DMNS06] for details).

The statistical query model and its connection to differential privacy. We will state our algorithms in
Kearns’ statistical query (SQ) model. In this model an algorithm AO can access a distributionD over a
universeX only throughstatistical queries to an oracleO. That is, the algorithm may ask any queryq : X →
[0, 1] and the oracle may respond with any answera satisfying|a − �x∼D q(x)| ≤ τ . Here,τ is a parameter
called thetolerance of the query.

In the context of differential privacy, the distributionD will typically be the uniform distribution over
a data set of sizen. A statistical query is then just the same as a counting query as defined earlier. Since
SQ algorithms are tolerant to noise it is not difficult to turn them into differentially private algorithms using
a suitable oracle. This observation is not new, and has been used previously, for example by Blum et al.
[BDMN05] and Kasiviswanathan et al. [KLN+08].

Proposition 2.1. Let A denote an algorithm that requires k queries of tolerance τ. Let O denote the oracle

that outputs �x∼D q(x) + Lap(k/nε). Then, the algorithm AO satisfies ε-differential privacy and with proba-

bility at least 1− β, the oracle answers all q queries with error at most τ provided that n ≥ k(log k+log(1/β))
ετ

.

Proof. The first claim follows directly from the properties of the Laplacian mechanism and the composition
property ofε-differential privacy. To argue the second claim note that�r(|Lap(σ)| ≥ τ) ≤ exp(−τ/σ) . Using
thatσ = k/nε and the assumption onn, we get that this probability is less thanβ/k. The claim now follows
by taking a union bound over allk queries. �

Query release. A concept class (or query class) is a set of predicates fromX → [0, 1].

Definition 2.2 (Query Release). Let C be a concept class. We say that an algorithmA (α, β)-releases C over
a data setD if �rq∼C{|q(D) − A(q)| ≤ α} ≥ 1− β .

5



Specifically, we are interested in algorithms which releaseC using few statistical queries to the under-
lying data set. We will study the query release problem by considering the functionf (q) = q(D). In this
setting, releasing a concept classC is equivalent toapproximating the functionq is the following sense

Definition 2.3. We say that an algorithmA (α, β)-approximates a function f : 2U → [0, 1] over a distribution
D if �rS∼D{| f (S ) − A(S )| ≤ α} ≥ 1− β .

For many concept classes of interest, the functionf (q) = q(D) will be submodular, defined next.

Submodularity. Given a universeU, a function f : 2U → � is calledsubmodular if for all S , T ⊂ U it
holds thatf (S ∪ T ) + f (S ∩ T ) ≤ f (S )+ f (T ) .We define themarginal value of x (or discrete derivative) at
S as∂x f (S ) = f (S ∪ {x}) − f (S ).

Fact 2.1. A function f is submodular if and only if ∂x f (S ) ≥ ∂x f (T ) for all S ⊆ T ⊆ U and all x ∈ U.

Definition 2.4. A function f : 2U → � is γ-Lipschitz if for everyS ⊆ U andx ∈ U, |∂x f (S )| ≤ γ.

Concentration bounds for submodular functions. The next lemma was shown by Vondrak [Von10]
building on concentration bounds for so-called self-bounding functions due to [BLM00, BLM09].

Lemma 2.1 (Concentration for submodular functions). Let f : 2U → � be a 1-Lipschitz submodular func-

tion. Then for any product distribution D over 2U , we have

�r
S∼D
{| f (S ) − � f (S )| ≥ t} ≤ 2 exp

(

− t2

2(� f (S ) + 5t/6)

)

, (1)

where the expectations are taken over S ∼ D.

We obtain as a simple corollary

Corollary 2.2. Let f : 2U → [0, 1] be a γ-Lipschitz submodular function. Then for any product distribu-

tion D over 2U , we have

�r
S∼D
{| f (S ) − � f (S )| ≥ γt} ≤ 2 exp

(

− t2

2(1/γ + 5t/6)

)

, (2)

where the expectations are taken over S ∼ D.

3 Approximating Submodular Functions

Our algorithm for approximating submodular functions is based on a structural theorem, together with some
strong concentration inequalities for submodular functions (see Lemma2.1). The structure theorem essen-
tially says that we can decompose any bounded submodular function into a small collection of Lipschitz
submodular functions, one for each region of the domain. In this section, we prove our structure theorem,
present our algorithm, and prove its correctness.
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Algorithm 1 Decomposition for monotone submodular functions

Input: Oracle access to a submodular functionf : 2U → [0, 1] and parameterγ >

0.

Let ≺ denote an arbitrary ordering ofU.
Let I ← {∅}
for x ∈ U (in ascending order under≺) do

I′ ← ∅
for B ∈ I do

if ∂x f (B) > γ then I′ ← I′ ∪ {B ∪ {x}}
I ← I ∪ I′

Let V(S ) = {x ∈ U | ∂x f (S ) ≤ γ} denote the set of elements that have small marginal value with respect
to S ⊆ U.

Output: the collection of functionsG = {gB | B ∈ I}, where forB ∈ I we define the functiongB : 2V(B) →
[0, 1] asgB(S ) = f (S ∪ B).

3.1 Monotone Submodular Functions

We begin with a simpler version of the structure theorem. This version will be sufficient for approximating
bounded monotone submodular functions from value queries,and will be the main building block in our
stronger results, which will allow us to approximate arbitrary bounded submodular functions, even from
“tolerant” value queries.

Our structure theorem follows from an algorithm that decomposes a given submodular function into
Lipschitz submodular functions. The algorithm is presented next and analyzed in Lemma3.1.

Lemma 3.1. Given any submodular function f : 2U → [0, 1] and γ > 0, Algorithm 1 makes the following

guarantee. There are maps F, T : 2U → 2U such that:

1. (Lipschitz)For every gB ∈ G, gB is submodular and satisfies supx∈V(B),S⊆V(B) ∂xg
B(S ) ≤ γ.

2. (Completeness)For every S ⊆ U, F(S ) ⊆ S ⊆ V(F(S )) and gF(S )(S ) = f (S ).

3. (Uniqueness)For every S ⊆ U and every B ∈ I, we have F(S ) = B if and only if B ⊆ S ⊆ V(B) and

S ∩ T (B) = ∅.

4. (Size)The size of G is at most |G| = |U |O(1/γ). Moreover, given oracle access to f , we compute F,V, T

in time |U |O(1/γ).

Note that the lemma applies to non-monotone submodular functions f as well; however, since our release
algorithm will require the stronger condition supx∈V(B),S⊆V(B) |∂xg(S )| ≤ γ, the lemma will only be sufficient
for releasing monotone submodular functions (where it holds that|∂xg(S )| ≤ γ ⇐⇒ ∂xg(S ) ≤ γ). We will
return to the non-monotone case later.

Proof. Algorithm 1 always terminates and we have the following bound on the sizeof I.

Claim 3.2. |I| ≤ |U |1/γ

Proof. Let B ∈ I be a set,B = {x1, . . . , x|B|}. Let B0 = ∅ andBi = {x1, . . . , xi} for i = 1, . . . , |B| − 1. Then

1 ≥ f (B) =
|B|−1
∑

i=0

∂xi+1 f (Bi) > |B| · γ . (3)

Therefore, it must be that|B| ≤ 1/γ, and there are at most|U |1/γ such sets over|U | elements. �
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Item 1 is shown next.

Claim 3.3 (Lipschitz). For every gB ∈ G, gB is submodular and supx∈V(B),S⊆V(B) ∂xg
B(S ) ≤ γ.

Proof. Submodularity follows from the fact thatgB is a “shifted” version off . Specifically, ifT ⊆ S , then
∂xg

B(S ) = ∂x f (B ∪ S ) ≤ ∂x f (B ∪ T ) = ∂xg
B(T ), where the inequality is by submodularity off .

To establish the Lipschitz property, we note that by the definition of V, ∂x f (B) ≤ γ for everyx ∈ V(B).
Also, by the submodularity off , we have∂xg

B(S ) = ∂x f (B ∪ S ) ≤ ∂x f (B) ≤ γ. �

Definition of F and proof of Item 2. Now we turn to constructing the promised mappingsF andT in
order to Properties2 and3. Roughly, we wantF(S ) to choose a maximal set inI such thatF(S ) ⊆ S , in
order to assure thatS ⊆ V(F(S )). This task is complicated by the fact that there could be many such sets.
We want to be able to choose a unique such set, and moreover, given any such setB, determine efficiently if
F(S ) = B. To achieve the former task, we define a specific, deterministic mappingF(S ) and to achieve the
latter we will carefully define the mappingT .

We defineF(S ) as follows:

let j← 0, B j ← ∅
for x ∈ U (in ascending order under≺) do

if x < V(B j) andx ∈ S then B j+1← B j ∪ {x}, j← j + 1
return F(S ) = B j.

Note that this procedure is similar to the procedure we use toconstructI. To constructI, we gradually
constructed a tree of sets, where each setB ∈ I had a child for every setB∪{x} such thatx has high influence
on B (x < V(B).. The procedureF(S ) differs in that it only constructs a single root-leaf path in thistree,
where for eachB j in the path, the next set in the path isB j ∪ {x} wherex is theminimal x ∈ S that has high
influence onB j (and has not already been considered byF(S ). We will useP(S ) = (B0 ⊂ B1 ⊂ · · · ⊂ F(S ))
to denote this path, which is the sequence of intermediate sets B j in the execution ofF(S ). Given these
observations, we can state the following useful facts aboutF.

Fact 3.1. If F(S ) = B, then P(S ) = P(B). Moreover, for every S ∈ U, P(S ) ⊆ I.

We can now establish Property2 by the following claim.

Claim 3.4 (Completeness). For every S ⊆ U, F(S ) ⊆ S ⊆ V(F(S )), and gF(S )(S ) = f (S ).

Proof. Let P(S ) = B0 ⊂ B1 ⊂ · · · ⊂ F(S ). F(S ) always checks thatx ∈ S before including an elementx,
so F(S ) ⊆ S . To see thatS ⊆ V(F(S )), assume there existsx ∈ S \ V(F(S )). By submodularity we have
∂x f (B j) ≥ ∂x f (F(S )) > γ for every setB j. But if ∂x f (B j) > γ for every B j and x ∈ S , it must be that
x ∈ F(S ). But then∂x f (F(S )) = 0, contradicting the fact thatx < V(F(S )).

Finally, we note that sinceS ⊆ V(F(S )), gF(S )(S ) is defined (S is in the domain ofgF(S )) and since
F(S ) ⊆ S , gF(S )(S ) = f (F(S ) ∪ S ) = f (S ). �

Definition of T and proof of Item 3. We will now define the mappingT . The idea is to consider a set
B ∈ I andP(B) and consider all the elements we had to “reject” on the way from the root toB. We say that
an elementx ∈ U is “rejected” if, whenx is considered byF(S ), it has high influence on the current set, but
is not inB. Since any setS such thatB = F(S ) satisfiesP(S ) = P(B) (Fact3.1), and any setS that contains
a rejected element would have taken a different path, we will get that the elementsx ∈ T (B) “witness” the
fact thatB , F(S ). We define the mapT (B) as follows:

let j← 0, B j ← ∅, R← ∅
for x ∈ U (in ascending order under≺) do

if x < V(B j) andx < B then R← R ∪ {x}
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else if x < VB j
andx ∈ B then B j+1← B j ∪ {x}, j← j + 1

return T (B) = R.

We’ll establish Property3 via the following two claims.

Claim 3.5. If B = F(S ), then B ⊆ S ⊆ V(B) and S ∩ T (B) = ∅.

Proof. We have already demonstrated the first part of the claim in Claim 3.4, so we focus on the claim that
S ∩T (B) = ∅. By Fact3.1, every setS s.t. B = F(S ) satisfiesP(S ) = P(B). Let (B0 ⊂ B1 ⊂ · · · ⊂ B) = P(B).
Suppose there is an elementx ∈ S ∩ T (B). Then there is a setB j such thatx < V(B j) andx < B. But since
x < V(B j) andx ∈ S , it must be thatx ∈ B j+1, contradicting the fact thatB j+1 ⊆ B. �

Now we establish the converse.

Claim 3.6. If B ⊆ S ⊆ V(B), S ∩ T (B) = ∅, then B = F(S ).

Proof. Suppose for the sake of contradiction that there a setB′ , B such thatB′ = F(S ). There exists an
elementx ∈ B△B′, and we consider the minimal suchx under≺. Let P(B) = (B0 ⊂ B1 ⊂ · · · ⊂ B) and
P(S ) = P(B′) = (B′0 ⊂ B′1 ⊂ · · · ⊂ B′). Sincex is minimal inB△B′, there must bej be such thatBi = B′

i
for

all i ≤ j, but x ∈ B j+1△B′
j+1. Consider two cases:

1. B ⊃ B′. Thus x ∈ B \ B′ Moreover, sincex ∈ B ⊆ S , it must be that whenx was considered in
the execution ofF(S ), andB′

j
was the current set, it was the case thatx ∈ V(B′

j
). But B j = B′

j
, so

x ∈ V(B j), contradicting the fact thatx ∈ B j+1.

2. B 2 B′. Thusx ∈ B′ \ B. Sincex ∈ B′ = F(S ) ⊆ S (Claim 3.4), we havex ∈ S . Moreover, since
x ∈ B′

j+1 we must havex < V(B′
j
) = V(B j). Thus we havex < V(B j) and x < B, which implies

x ∈ T (B), by construction. ThusS ∩ T (B) , ∅, a contradiction.

�

The previous two claims establish Item3.
Finally we observe that the enumeration ofI requires time at most|U | · |I| = |U |O(1/γ), since we iterate

over each element ofU and then iterate over each set currently inI. We also note that we can compute
the mappingsF andT in time linear in|I| = |U |O(1/γ) and can computeV(B) in time linear in|U |. These
observations establish Property4 and complete the proof of Lemma3.1. �

Lemma 3.7 (Lemma3.1 with tolerance). Given any submodular function f : 2U → [0, 1] and γ > 0,
Algorithm 2 makes the following guarantee. There are maps F, T : 2U → 2U satisfying properties 1-4 of

Lemma 3.1 and moreover, can be computed using tolerant queries to f with tolerance γ/12.

Proof. Throughout the proof, we will assume that the oracle always gives the same answer to each query.
Thus the functionf̃ defined in Algorithm2 is well defined. Note that̃f (S ) need not be submodular even iff

is, however, we can assume that we have exact oracle access tof̃ (S ). Also note that, since we can compute
∂x f (S ) using two queries tof , we are guaranteed that for everyS ⊆ U, andx ∈ U,

|∂x f̃ (S ) − ∂x f (S )| ≤ γ/6. (4)

Observe that Algorithm2 differs from Algorithm1 only in the choice of parameters. The analysis
required to establish the Lemma is also a natural modification of the analysis of Lemma3.1, so we will refer
the reader to the proof of that Lemma for several details and only call attention to the steps of the proof that
require modification.
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Algorithm 2 Decomposition for monotone submodular functions from tolerant queries

Input: Tolerant oracle access to a submodular functionf : 2U → [0, 1] with tolerance at mostγ/12 and
parameterγ > 0.

Let f̃ denote the function specified by tolerant oracle queries tof such that for everyS ⊆ U

| f (S ) − f̃ (S )| ≤ γ/12.

Let ≺ denote an arbitrary ordering ofU.
Let I ← {∅}
for x ∈ U (in ascending order under≺) do

I′ ← ∅
for B ∈ I do

if ∂x f̃ (B) > γ/3 then I′ ← I′ ∪ {B ∪ {x}}
I ← I ∪ I′

Let V(S ) = {x ∈ U | ∂x f̃ (S ) ≤ 2γ/3} denote the set of elements that have small marginal value with
respect toS ⊆ U.

Output: the collection of functionsG = {gB | B ∈ I}, where forB ∈ I we define the functiongB : 2V(B) →
[0, 1] asgB(S ) = f (S ∪ B).

We will proceed by running through the construction of Lemma3.1 on f̃ (S ) using γ/3 as the error
parameter. Since the argument is a fairly straightforward modification to Lemma3.1, we will refer the
reader to the proof of that Lemma for several details, and only call attention to the steps of the proof that
require modification.

First, we establish a bound on the size ofI
Claim 3.8. |I| ≤ |U |6/γ

Proof. Let B ∈ I be a set,B = {x1, . . . , x|B|}. Let B0 = ∅ andBi = {x1, . . . , xi} for i = 1, . . . , |B| − 1. Then

1 ≥ f (B) =
|B|−1
∑

i=0

∂xi+1 f (Bi) ≥
|B|−1
∑

i=0

(

∂xi+1 f̃ (Bi) − γ/6
)

> |B| · (γ/3− γ/6) = |B| · γ/6 . (5)

Therefore, it must be that|B| ≤ 6/γ, and there are at most|U |6/γ such sets over|U | elements. �

Item 1 is shown next.

Claim 3.9 (Lipschitz). For every gB ∈ G, gB is submodular and supx∈V(B),S⊆V(B) ∂xg
B(S ) ≤ γ.

Proof. The proof of submodularity is identical to Claim3.3
To establish the Lipschitz property, observe that for everyB ⊆ U, and everyx ∈ V(B), ∂x f (B) ≤

∂x f̃ (B) + γ/6 ≤ γ. �

Definition of F and proof of Item 2. In addition to the setsV(B) = {x ∈ U | ∂x f̃ (B) ≤ 2γ/3}, we will
define the setsV ′(B) = {x ∈ U | ∂x f̃ (B) ≤ γ/3}, note that for everyB ⊆ U, V ′(B) ⊆ V(B). We define the
promised mappingF(S ) in the the same manner as in the proof of Lemma3.1, but we useV ′ in place ofV
to decide whether or not we select an elementx for inclusion in the setF(S ).

Now we establish Property2 via the following claim, analogous to Claim3.4in the proof of Lemma3.1
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Claim 3.10 (Completeness). For every S ⊆ U, F(S ) ⊆ S ⊆ V(F(S )). Moreover, gF(S )(S ) = f (S ).

Proof. Let P(S ) = B0 ⊂ B1 ⊂ · · · ⊂ F(S ). The fact thatF(S ) ⊆ S follows as in Claim3.4. To see that
S ⊆ V(F(S )), assume there existsx ∈ S \ V(F(S )). By submodularity off , and (4), we have

∂x f̃ (B j) ≥ ∂x f (B j) − γ/6 ≥ ∂x f (F(S )) − γ/6 > ∂x f̃ (F(S )) − γ/3 > γ/3.

Thus,∂x f̃ (B j) > γ/3 for every setB j. But if ∂x f (B j) > γ/3 for everyB j and x ∈ S , thenx < V ′(B j) for
everyB j, and it must be thatx ∈ F(S ). But then∂x f (F(S )) = 0, contradicting the fact thatx < V(F(S )).

The fact thatgF(S )(S ) = f (S ) follows as in the proof of Claim3.4. �

Definition of T and proof of Item 3. We also define the promised mappingT (S ) in the same manner as
in the proof of Lemma3.1, but usingV ′ in place ofV to decide whether or not we select an elementx for
inclusion in the setF(S ).

To establish Property3, we note that the proofs of Claims3.5 and3.6 do not rely on the submodular-
ity of f , therefore they apply as-is to the case where we compute onf̃ , even thoughf̃ is not necessarily
submodular.

Property4 also follows as in the proof of Lemma3.1. This completes the proof of the Lemma. �

We now present our algorithm for learning monotone submodular functions over product distributions.
For a subset of the universeV ⊆ U, letDV denote the distributionD restricted to the variables inV. Note
that ifD is a product distribution, thenDV remains a product distribution and is easy to sample from.

Algorithm 3 Approximating a monotone submodular function from tolerant queries
Learn( f , α, β,D)

Let γ = α2

6 log(2/β) .

Construct the collection of functionsG returned by Algorithm2 and letF,V, T be the associated map-
pings given by Lemma3.7with parameterγ.
Estimate the valueµgB = �S∼DV(B)\T (B)[g

B(S )] for eachgB ∈ G.
Output the data structureh that consists of the valuesµgB for everygB ∈ G as well as the mappingF.

Theorem 3.11. For any α, β ∈ (0, 1], Algorithm 5 (α, β)-approximates any submodular function f : 2U →
[0, 1] under any product distribution D in time |U |O(α−2 log(1/β)) using oracle queries to f of tolerance

α2/72 log(2/β).

Proof. For a setS ⊆ U, we letB = F(S ) andgB be the corresponding submodular function as in Lemma3.7.
Note that since the queries have toleranceα2/72 log(1/β) ≤ γ/12, the lemma applies. We will analyze the
error probability as if the estimatesµgB were computed using exact oracle queries tof , and will note that
using tolerant queries tof can only introduce an additional error ofα2/72 log(1/β) ≤ α/6. We claim that,
under this condition

�r
S∼D
{| f (S ) − h(S )| > 5α/6} = �r

S∼D

{∣

∣

∣gF(S )(S ) − µgF(S )

∣

∣

∣ > 5α/6
}

=
∑

gB∈G
�r

S∼D
{B = F(S )} · �r

S∼D

{∣

∣

∣gB(S ) − µgB

∣

∣

∣ > 5α/6 | B = F(S )
}

. (6)

To see this, recall that for everyS ⊆ U, gF(S )(S ) = f (S ). By Property3 of Lemma3.1, the condition that
B = F(S ) is equivalent to the conditions thatB ⊆ S ⊆ V(B) andS ∩ T (B) = ∅. Hence,

�r
S∼D

{∣

∣

∣gB(S ) − µgB

∣

∣

∣ > 5α/6 | B = F(S )
}

= �r
S∼DV(B)\T (B)

{∣

∣

∣gB(S ) − µgB

∣

∣

∣ > 5α/6
}

.
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Now, applying the concentration inequality for submodularfunctions stated as Corollary2.2, we get

�r
S∼DVB\TB

{∣

∣

∣gB(S ) − µgB

∣

∣

∣ ≥ γt
}

≤ 2 exp

(

− t2

2(1/γ + 5/6t)

)

. (7)

Plugging int = 5α/6γ = 5 log(2/β)
α

and simplifying we get�rS∼DV(B)\T (B)

{∣

∣

∣gB(S ) − µgB

∣

∣

∣ > α
}

≤ β . Combining
this with (6), the claim follows. �

3.2 Non-monotone Submodular Functions

For non-monotone functions, we need a more refined argument.Our main structure theorem replaces Prop-
erty 1 in Lemma3.1 by the stronger guarantee that|∂xg(S )| ≤ α for all g ∈ G, even for non-monotone
submodular functions. Observe that for a submodular function f : 2V → �, the function f : 2V → �
defined asf (S ) = f (V\S ) is also submodular; moreover

inf
x∈V,S⊆V

∂x f (S ) = − sup
x∈V,S⊆V

∂x f (S ) . (8)

Given these two facts, we can now prove our main structure theorem.

Algorithm 4 Decomposition for submodular functions from tolerant queries

Input: Tolerant oracle access to a submodular functionf : 2U → [0, 1] with tolerance at mostγ/12 and
parameterγ > 0.

Let f̃ denote the function specified by tolerant oracle queries tof such that for everyS ⊆ U

| f (S ) − f̃ (S )| ≤ γ/12.

Let ≺ denote an arbitrary ordering ofU.
Let G( f ) denote the collection of functions returned by Algorithm2 with oracle f and parameterγ, and
let F f ,V f , T f be the associated mappings promised by Lemma3.7.
for gB ∈ G( f ) do

Let G(B) be the collection of functions returned by Algorithm2 with oraclegB and parameterγ, and
let FB,VB, TB be the associated mappings promised by Lemma3.7.

Let V(S , T ) = V f (S ) ∩ VS (T ) denote the set of elements that have small marginal absolute value with
respect toS , T ⊆ U.

Output: the collection of functionsG = ⋃

gB∈G( f ){gB,C = gC | gC ∈ G(B)} wheregB,C : 2V(B,C) → [0, 1].

Theorem 3.12. Given any submodular function f : 2U → [0, 1] and γ > 0, Algorithm 4 makes the following

guarantee. There are maps F : 2U → 2U × 2U and T : 2U × 2U → 2U such that:

1. (Lipschitz)For every gB,C ∈ G, gB,C is submodular and satisfies supx∈V(B,C),S⊆V(B,C) |∂xg
B,C(S )| ≤ γ.

2. (Completeness)For every S ⊆ U, F(S ) ⊆ S ⊆ V(F(S )) and gF(S )(S ) = f (S ).

3. (Uniqueness)For every gB,C ∈ G, F(S ) = (B,C) if and only if B,C ⊆ S ⊆ V(B,C) and S∩T (B,C) = ∅.

4. (Size) The size of G is at most |G| = |U |O(1/γ). Moreover, given tolerant oracle access to f with

tolerance γ/12, we compute F,V, T in time |U |O(1/γ).

Proof. First we show Item1
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Claim 3.13 (Lipschitz). For every gB,C ∈ G, gB,C is submodular and supx∈V(B,C),S⊆V(B,C) |∂xg
B,C(S )| ≤ γ.

Proof. Submodularity follows directly from Property1 of Lemma3.7. The same property of the lemma
guarantees that for everygB ∈ G( f ) andgC ∈ G(B), supx∈VB(C),S⊆VB(C) ∂xg

C(S ) ≤ γ. Moreover, by (8),
inf x∈V f (B),S⊆V f (B) ∂xg

B(S ) ≥ −γ. Taken together, we obtain supx∈V(B,C),S⊆V(B,C) |∂xg
B,C(S )| ≤ γ. �

Definition of F and proof of Item 2. Item2 will follow from the analogous property in Lemma3.7almost
directly. To construct the mappingF(S ), we want to first compute the appropriate functiongB ∈ G( f ),
using F f (S ) and then find the appropriate functiongC ∈ G(B) using FB(S ). Thus we can takeF(S ) =
(F f (S ), FF f (S )(S )). By Lemma3.7, Item 2 we haveB ⊆ S ⊆ V f (B) andC ⊆ S ⊆ VB(C), so we conclude
B,C ⊆ S ⊆ V(B,C).

Definition of T and proof of Item 3. Item ?? will also follow from the analogous property in Lemma3.7.
By Lemma3.7, Item 3, we have thatF f (S ) = B if and only if B ⊆ S ⊆ V f (B) andS ∩ T f (B) = ∅. By the
same Lemma, we also have thatFB(S ) = C if and only if C ⊆ S ⊆ VB(C) andS ∩ TB(C) = ∅. So if we
defineT (B,C) = T f (B) ∪ TB(C), we can conclude thatF(S ) = (B,C) if and only if B,C ⊆ S ⊆ V(B,C) and
S ∩ T (B,C) = ∅.

Now it is clear thatF(S ) = (B,C) if F f (S ) = B andFB(S ) = C, which by Property3 of Lemma3.7
necessitates thatB ⊆ S ⊆ V f (B), S ∩ T f (B) = ∅, C ⊆ S ⊆ VB(S ), andS ∩ TB(C) = ∅. We have already
definedV(B,C) and now we defineT (B,C) = T f (B) ∪ TB(C). It is clear now thatF(S ) = (B,C) if and only
if B,C ⊆ S ⊆ V(B,C) andS ∩ T (B,C) = ∅.

The size ofG and running time bounds in Property?? also follow directly from the analogous property
of Lemma3.1. The fact that we can compute the familyG and the associated mappingsF,V, T using oracle
access tof with toleranceγ/12 follows from the fact that each invocation of Lemma3.1 can be computed
using queries with toleranceγ/12 and from the fact that Algorithm4 only queries f in order to invoke
Lemma3.7. This completes the proof of the Theorem. �

We now present our algorithm for learning arbitrary submodular functions over product distributions.
For a subset of the universeV ⊆ C, letDV denote the distributionD restricted to the variables inV. Note
that ifD is a product distribution, thenDV remains a product distribution and is easy to sample from. To

Algorithm 5 Approximating a non-monotone submodular function
Learn( f , α, β,D)

Let γ = α2

6 log(2/β) .

Construct the collection of functionsG and the associated mappingsF,V, T given by Theorem3.12with
parameterγ.
Estimate the valueµgB,C = �S∼DV(B,C)\T (B,C) [g

B,C(S )] for eachgB,C ∈ G.
Output the data structureh that consists of the valuesµgB,C for everygB,C ∈ G as well as the mappingF.

avoid notational clutter, throughout this section we will not consider the details of how we construct our
estimateµg. However, it is an easy observation that this quantity can beestimated to a sufficiently high
degree of accuracy using a small number of random samples.

Theorem 3.14. For any α, β ∈ (0, 1], Algorithm 5 (α, β)-approximates any submodular function f : 2U →
[0, 1] under any product distribution in time |U |O(α−2 log(1/β)) using oracle queries to f of tolerance α2/72 log(1/β)

Proof. For a setS ⊆ U, we let (B,C) = F(S ) andgB,C be the corresponding submodular function as in
Theorem3.12. Note that since the queries have toleranceα2/72 log(1/β) ≤ γ/12, the lemma applies. We
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will analyze the error probability as if the estimatesµgB were computed using exact oracle queries tof , and
will note that using tolerant queries tof can only introduce an additional error ofα2/72 log(1/β) ≤ α/6. We
claim that, under this condition We claim that

�r
S∼D
{| f (S ) − h(S )| > 5α/6} = �r

S∼D

{∣

∣

∣gF(S )(S ) − µgF(S )

∣

∣

∣ > 5α/6
}

=
∑

gB,C∈G
�r

S∼D
{(B,C) = F(S )} · �r

S∼D

{∣

∣

∣gB,C(S ) − µgB,C

∣

∣

∣ > 5α/6 | (B,C) = F(S )
}

.

(9)

To see this, recall that for everyS ⊆ U, gF(S )(S ) = f (S ). By Property3 of Lemma3.1, the condition that
B = F(S ) is equivalent to the conditions thatB,C ⊆ S ⊆ V(B,C) andS ∩ T (B,C) = ∅. Hence,

�r
S∼D

{∣

∣

∣gB,C(S ) − µgB,C

∣

∣

∣ > 5α/6 | (B,C) = F(S )
}

= �r
S∼DV(B,C)\T (B,C)

{∣

∣

∣gB(S ) − µgB

∣

∣

∣ > 5α/6
}

.

Now, applying the concentration inequality for submodularfunctions stated as Corollary2.2, we get

�r
S∼DV(B,C)\T (B,C)

{∣

∣

∣gB,C(S ) − µgB,C

∣

∣

∣ ≥ γt
}

≤ 2 exp

(

− t2

2(1/γ + 5t/6)

)

. (10)

Plugging in t = 5α/6γ = 5 log(2/β)
α

and simplifying we get�rS∼DV(B,C)\T (B,C)

{∣

∣

∣gB,C(S ) − µgB,C

∣

∣

∣ > α
}

≤ β .
Combining this with Equation (9), the claim follows. �

4 Applications to privacy-preserving query release

In this section, we show how to apply our algorithm from Section 3 to the problem of releasing monotone
conjunctions over a boolean database. In Section4.1, we also show how our mechanism can be applied to
release thecut function of an arbitrary graph.

Let us now begin with the monotone disjunctions. We will thenextend the result to monotone conjunc-
tions. Given our previous results, we only need to argue thatmonotone disjunctions can be described by
a submodular function. Indeed, every elementS ∈ {0, 1}d naturally corresponds to a monotone Boolean
disjunctiondS : {0, 1}d → {0, 1} by putting

dS (x)
def
=

∨

i : S (i)=1

xi .

Note that in contrast to Section3 here we usex to denote an element of{0, 1}d. Let FDisj : {0, 1}d → [0, 1] be
the function such thatFDisj(S ) = dS (D). It is easy to show thatFDisj(S ) is a monotone submodular function.

Lemma 4.1. FDisj is a monotone submodular function.

Proof. Let X+
i

denote the set of elementsx ∈ D such thatxi = 1, and letX−
i

denote the set of elements
x ∈ D such thatxi = 0. Consider the set systemU = {X+

i
, X−

i
}d
i=1 over the universe of elementsx ∈ D. Then

there is a natural bijection betweenFDisj(D) and the set coverage function Cov : 2U → [0, |D|] defined to be
Cov(S ) = |⋃X∈U X|, which is a monotone submodular function. �

We therefore obtain the following corollary directly by combining Theorem3.11with Proposition2.1.

Corollary 4.2. Let α, β, ε > 0. There is an ε-differentially private algorithm that (α, β)-releases the set of

monotone Boolean disjunctions over any product distribution in time dt(α,β) for any data set of size |D| ≥
dt(α,β)/ε where t(α, β) = O(α−2 log(1/β)).
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Algorithm 6 Privately Releasing Monotone Disjunctions
Release(D, α, β, ε,D)

Simulate the oracle queriesFDis j(S ) by answering withdS (D) + Lap(t(α, β)/ε|D|).
Let γ = α2

6 log(2/β) .

Construct the collection of functionsG and the associated mappingsF,V, T given by Lemma3.7on the
function FDis j with parameterγ.
Estimate the valueµgB = �S∼DV(B)\T (B)[g

B(S )] for eachgB ∈ G.
Output the data structureh that consists of the estimated valuesµgB for everygB ∈ G as well as the
mappingF. To evaluate any monotone disjunction querydS (D), computeµgF(S ) .

For completeness, we will present the algorithm for privately releasing monotone disjunctions over a
product distributionD for a data setD, though we will rely on Corollary4.2for the formal analysis.

We will next see that this corollary directly transfers to monotone conjunctions. A monotone Boolean
conjunctioncS : {0, 1}d → {0, 1} is defined as

cS (x)
def
=

∧

i∈S
xi = 1−

∨

i∈S
(1− xi) .

Given the last equation, it is clear that in order to release conjunctions over some distribution, it is sufficient
to release disjunctions over the same distribution after replacing every data itemx ∈ D by its negation ¯x, i.e.,
x̄i = 1− xi. Hence, Corollary4.2extends directly to monotone conjunctions.

Extension to width w. Note that the uniform distribution on disjunctions of widthw is not a product
distribution, which is what we require to apply Theorem3.14directly. However, in Lemma4.3 we show
that for monotone submodular functions (such asFD

Disj) the concentration of measure property required in
the proof Theorem3.14is still satisfied. Of course, we can instantiate the theoremfor everyw ∈ {1, . . . , k}
to obtain a statement for conjunctions of any width.

Indeed, given a monotone submodular functionf : 2U → �, let S ∈ 2U be the random variable where
for everyx ∈ U, independentlyx ∈ S with probabilityw/d andx < S with probability 1− w/d. On the other
hand, letT ∈ 2U denote the uniform distribution over strings in 2U of weightw. The following lemma is due
to Balcan and Harvey [BH10].

Lemma 4.3. Assume f : 2U → � is monotone function, and S and T are chosen at random as above. Then,

�r[ f (T ) ≥ τ] ≤ 2�r[ f (S ) ≥ τ] (11)

�r[ f (T ) ≤ τ] ≤ 2�r[ f (S ) ≤ τ] (12)

Remark 4.1. Throughout this section we focus on the case of monotonedisjunctions and conjunctions.

Our algorithm can be extended to non-monotone conjunctions/disjunctions as well. However, this turns out

to be less interesting than the monotone case. Indeed, a random non-monotone conjunction of width w is

false on any fixed data item with probability 2−w, thus when w ≥ log(1/α), the constant function 0 is a

good approximation to FDis j on a random non-monotone conjunction of width w. We therefore omit the

non-monotone case from our presentation.

4.1 Releasing the cut function of a graph

Consider a graphG = (V, E) in which the edge-set represents the private database (We assume here that each
individual is associated with a single edge inG. The following discussion generalizes to the case in which
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individuals may be associated with multiple edges, with a corresponding increase in sensitivity). Thecut

function associated withG is fG : 2V → [0, 1], defined as:

fG(S ) =
1

|V |2 · |{(u, v) ∈ E : u ∈ S , v < S }|

We observe that the graph cut function encodes a collection of counting queries over the databaseE and so
has sensitivity 1/|V |2.

Fact 4.1. For any graph G, fG is submodular.

Lemma 4.4. The decomposition from Theorem 3.12 constructs a collection of functions G of size |G| ≤ 22/α.

Proof. Let u ∈ V, andS ⊂ V such that|∂u fG(S )| ≥ α. It must be that the degree ofu in G is at least
α · |E|. But there can be at most 2/α such high-influence vertices, and therefore at most 22/α subsets of high
influence vertices. �

Corollary 4.5. Algorithm 5 can be used to privately (α, β)-release the cut function on any graph over any

product distribution in time t(α, β, ε) for any database of size |D| ≥ t(α, β, ε), while preserving ε-differential

privacy, where:

t(α, β, ε) =
2O(α−2 log(1/β))

ε

Proof. This follows directly from a simple modification of Theorem3.14, by applying Lemma4.4 and
plugging in the size of the decompositionG. The algorithm can then be made privacy preserving by applying
proposition2.1. �

5 Equivalence between agnostic learning and query release

In this section we show an information-theoretic equivalence betweenagnostic learning andquery release

in the statistical queries model. In particular, given an agnostic learning algorithm for a specific concept
class we construct a query release algorithm for the same concept class.

Consider a distributionA over X × {0, 1} and a concept classC. An agnostic learning algorithm (in
the strong sense) finds the conceptq ∈ C that approximately maximizes�r(x,b)∼A {q(x) = b} to within an
additive error ofα. Our reduction from query release to agnostic learning actually holds even forweak

agnostic learning. A weak agnostic learner is not required to maximize�r(x,b)∼A {q(x) = b}, but only to find
a sufficiently good predicateq provided that one exists.

We use STATτ(A) to denote thestatistical query oracle for distribution A that takes as input a predicate
q : X → {0, 1} and returns a valuev such that|v − �x∼A[q(x)]|

Definition 5.1 (Weak Agnostic SQ-Learning). Let C be a concept class andγ, τ > 0 and 0< β < α ≤ 1/2.
An algorithmA with oracle access to STATτ(A) is an (α, β, γ, τ)-weak agnostic learner for C if for every
distributionA such that there existsq∗ ∈ C satisfying�r(x,b)∼A {q∗(x) = b} ≥ 1/2+α ,A(A) outputs a predicate
q : X → {0, 1} such that�r(x,b)∼A {q(x) = b} ≥ 1/2+ β , with probability at least 1− γ.

Note that if we can agnostically learnC in the strong sense from queries of toleranceτ to within additive
errorα − β with probability 1− γ, then there is also an (α, β, γ, τ)-weak agnostic learner.

We are now ready to state the main result of this section, which shows that a weak agnostic SQ-learner
for any concept class is sufficient to release the same concept class in the SQ model.

Theorem 5.1. Let C be a concept class. LetA be an algorithm that (α/2, β, γ, τ) weak agnostic-SQ learns

C with τ ≤ β/8. Then there exists an algorithm B that invokes A at most T = 8 log |X|/β2 times and

(α, 0)-releases C with probability at least 1− Tγ.
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Algorithm 7 Multiplicative weights update
Let D0 denote the uniform distribution overX.

For t = 1, ..., T = ⌈8 log |X|/β2⌉ + 1:

Consider the distributions

A+t = 1/2(D, 1)+ 1/2(Dt−1, 0) A−t = 1/2(D, 0)+ 1/2(Dt−1, 1) .

Let q+t = A(A+t ) andq−t = A(A−t ). Let v+t be the value returned by STATτ(A+t ) on the queryq+t andv−t be
the value returned by STATτ(A−t ) on the queryq−t . Let vt = max{v+t , v−t } − 1/2 andqt be the corresponding
query.
If:

vt ≤
β

2
− τ , (13)

proceed to “output” step.
Update: Let Dt be the distribution obtained fromDt−1 using a multiplicative weights update step with
penalty function induced byqt and penalty parameterη = β/2 as follows:

D′t(x) = exp(ηqt(x)) · Dt−1(x)

Dt(x) =
D′t

∑

x∈X D′t(x)

Output ac = �x∼DT
c(x) for eachc ∈ C.

The proof strategy is as follows. We will start fromD0 being the uniform distribution overX.We will
then construct a short sequence of distributionsD1,D2, . . . ,DT such that no concept inC can distinguish
betweenD andDT up to biasα. Each distributionDt is obtained from the previous one using a multiplicative
weights approach as in [HR10] and with the help of the learning algorithm that’s given in the assumption
of the theorem. Intuitively, at every step we use the agnostic learner to give us the predicateqt ∈ C which
distinguishes betweenDt andD. In order to accomplish this we feed the agnostic learner withthe distribution
At that labels elements sampled fromD by 1 and elements sampled fromDt by 0. For a technical reason we
also need to consider the distribution with 0 and 1 flipped. Once we obtainedqt we can use it as a penalty
function in the update rule of the multiplicative weights method. This has the effect of bringingD andDt

closer in relative entropy. A typical potential argument then bounds the number of update steps that can
occur before we reach a distributionDt for which no good distinguisher inC exists.

5.1 Proof of Theorem 5.1

Proof. We start by relating the probability thatqt predictsb from x on the distributionA+t to the difference
in expectation ofqt on D andDt−1.

Lemma 5.2. For any q : X → {0, 1},

�r
(x,b)∼A+t

{q(x) = b} − 1
2
=

1
2

(

�
x∼D

q(x) − �
x∼Dt−1

q(x)

)

(14)
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Proof. If qt = q+t then

�r
(x,b)∼A+t

{q(x) = b} = 1
2
�r
x∼D
{q(x) = 1} + 1

2
�r

x∼Dt−1
{q(x) = 0}

=
1
2
�

x∼D

[

q(x)
]

+
1
2
�

x∼Dt−1

[

1− q(x)
]

=
1
2
+

1
2

(

�
x∼D

q(x) − �
x∼Dt−1

q(x)

)

Note that�r(x,b)∼A−t
{q(x) = b} = 1− �r(x,b)∼A−t

{q(x) = (1− b)} = 1− �r(x,b)∼A+t
{q(x) = b}, so if qt = q−t then

�r
(x,b)∼A+t

{q(x) = b} = 1− �r
(x,b)∼A−t

{q(x) = b} = 1−
(

1
2
− 1

2

(

�
x∼D

q(x) − �
x∼Dt−1

q(x)

))

=
1
2
+

1
2

(

�
x∼D

q(x) − �
x∼Dt−1

q(x)

)

�

The rest of the proof closely follows [HR10]. For two distributionsP,Q on a universeX we define the
relative entropy to be RE(P||Q) =

∑

x∈X P(x) log(P(x)/Q(x)). We consider the potential

Ψt = RE(D||Dt) .

Fact 5.1. Ψt ≥ 0

Fact 5.2. Ψ0 ≤ log |X|

We will argue that in every step the potential drops by at least β2/4 Hence, we know that there can be at
most 4 log|X|/α2 steps before we reach a distribution that satisfies (13).

The next lemma gives a lower bound on the potential drop in terms of the concept,qt, returned by the
learning algorithm at timet. Recall, thatη (used below) is the penalty parameter used in the multiplicative
weights update rule.

Lemma 5.3 ([HR10]).

Ψt−1 − Ψt ≥ η
∣

∣

∣

∣

∣

�
x∼D

qt(x) − �
x∼Dt−1

qt(x)
∣

∣

∣

∣

∣

− η2 (15)

Let

optt = sup
q∈C

∣

∣

∣

∣

∣

∣

�r
(x,b)∼A+t

{q(x) = b} − 1
2

∣

∣

∣

∣

∣

∣

.

Note that�r(x,b)∼A−t
{q(x) = b} = 1− �r(x,b)∼A+t

{¬q(x) = b}. For the remainder of the proof we treat the two
cases symmetrically and only look at how far from 1/2 these probabilities are. The next lemma shows that
either optt is large or else we are done in the sense thatDt is indistinguishable fromD for any concept from
C.

Lemma 5.4. Let α > 0. Suppose

optt ≤
α

2
.

Then, for all q ∈ C,
∣

∣

∣

∣

∣

�
x∼D

q(x) − �
x∼Dt

qt(x)
∣

∣

∣

∣

∣

≤ α (16)
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Proof. From Lemma5.2we have that for everyq ∈ C

α

2
≥ optt ≥ �r

(x,b)∼A+t

{q(x) = b} − 1
2
=

1
2

(

�
x∼D

q(x) − �
x∼Dt

qt(x)

)

Thusα ≥ (

�x∼D q(x) − �x∼Dt
qt(x)

)

. Similarly,

α

2
≥ optt ≥ �r

(x,b)∼A−t
{q(x) = b} − 1

2
=

1
2

(

�
x∼Dt

q(x) − �
x∼D

qt(x)

)

Thus−α ≤ (

�x∼D q(x) − �x∼Dt
qt(x)

)

. So we concludeα ≥
∣

∣

∣�x∼D q(x) − �x∼Dt
qt(x)

∣

∣

∣ . �

We can now finish the proof of Theorem5.1. By our assumption, we have that so long as optt ≥ α/2 the
algorithmA produces a conceptqt such that with probability 1− γ

∣

∣

∣

∣

∣

∣

�r
(x,b)∼A+t

{qt(x) = b} − 1
2

∣

∣

∣

∣

∣

∣

≥ β . (17)

For the remainder of the proof we assume that our algorithm returns a concept satisfying Equation (17) in
every stage for which optt ≥ α/2. By a union bound over the stages of the algorithm, this event occurs with
probability at least 1− Tγ.

Assuming Equation (13) is not satisfied we have that

β

4
≤ β

2
− 2τ ≤ vt − τ ≤

∣

∣

∣

∣

∣

∣

�r
A+t

{qt(x) = b}
∣

∣

∣

∣

∣

∣

.

The leftmost inequality follows becauseτ ≤ β/8. We then get

Ψt−1 − Ψt ≥ η
∣

∣

∣

∣

∣

�
D

qt(x) − �
Dt−1

qt(x)
∣

∣

∣

∣

∣

− η2 (Lemma5.3)

≥ η
∣

∣

∣

∣

∣

4�r
At

{qt(x) = b} − 2
∣

∣

∣

∣

∣

− η2 (Lemma5.2)

≥ η · β − η2 (Equation13 not satisfied)

≥ β
2

2
− β

2

4
(η = β/2)

=
β2

4

Hence, if we putT ≥ 4 log|X|/β2, we must reach a distribution that satisfies (13). But at that point, call
it t, the subroutineA outputs a conceptqt such that

∣

∣

∣

∣

∣

∣

�r
(x,b)∼A+t

(qt(x) = b) − 1
2

∣

∣

∣

∣

∣

∣

≤ vt + τ <
β

2
+ τ < β

In this case, by our assumption that Equation17 is satisfied whenever optt ≥ 1/2 + α/2, we conclude that
optt < 1/2+ α/2. By Lemma5.4, we get

sup
q∈C

∣

∣

∣

∣

∣

�
x∼D

q(x) − �
x∼Dt

qt(x)
∣

∣

∣

∣

∣

≤ α .

But this is what we wanted to show, since it means that our output on all concepts inC will be accurate up
to errorα. �
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We remark that for clarity, we let the failure probability ofthe release algorithm grow linearly in the
number of calls we made to the learning algorithm (by the union bound). However, this is not necessary:
we could have driven down the probability of error in each stage by independent repetition of the agnostic
learner.

This equivalence between release and agnostic learning also can easily be seen to hold in the reverse
direction as well.

Theorem 5.5. Let C be a concept class. If there exists an algorithm B that (α, 0)-releases C with probability

1 − γ and accesses the database using at most k oracle accesses to STATτ(A), then there is an algorithm

that makes 2k queries to STATτ(A) and agnostically learns C in the strong sense with accuracy 2α with

probability at least 1− 2γ.

Proof. Let Y denote the set of examples with label 1, and letN denote the set of examples with label 0. We
use STATτ(A) to simulate oracles STATτ(Y) and STATτ(N) that condition the queried concept on the label.
That is, STATτ(Y), when invoked on conceptq, returns an approximation to�rx∼A{q(x) = 1∧ (x ∈ Y)} and
STATτ(N) returns an approximation to�rx∼A{q(x) = 1∧ (x ∈ Y)]. We can simulate a query to either oracle
using only one query to STATτ(A).

RunB(Y) to obtain answersaY
1 , . . . , a

Y
|C|, and runB(N) to obtain answersaN

1 , . . . , a
N
|C|. Note that this

takes at most 2k oracle queries, using the simulation described above, by our assumption onB. By the union
bound, except with probability 2γ, we have for allqi ∈ C: |qi(Y) − aY

i
| ≤ α and |qi(B) − aN

i
| ≤ α. Let

q∗ = arg maxqi∈C(aY
i
− aN

i
). Observe thatq∗(D) ≥ maxq∈C q(D) − 2α, and so we have agnostically learnedC

up to error 2α. �

Feldman proves that even monotone conjunctions cannot be agnostically learned to subconstant error
with polynomially many SQ queries:

Theorem 5.6 ([Fel10]). Let C be the class of monotone conjunctions. Let k(d) be any polynomial in d, the

dimension of the data space. There is no algorithm A which agnostically learns C to error o(1) using k(D)
queries to STAT1/k(d).

Corollary 5.7. For any polynomial in d, k(d), no algorithm that makes k(d) statistical queries to a database

of size k(d) can release the class of monotone conjunctions to error o(1).

Note that formally, Corollary5.7 only precludes algorithms which release the approximatelycorrect
answers toevery monotone conjunction, whereas our algorithm is allowed to make arbitrary errors on a
small fraction of conjunctions.

Remark 5.1. It can be shown that the lower bound from Corollary 5.7 in fact does not hold when the accu-

racy requirement is relaxed so that the algorithm may err arbitrarily on 1% of all the conjunctions. Indeed,

there is an inefficient algorithm (runtime poly(2d)) that makes poly(d) statistical queries and releases ran-

dom conjunctions up to a small additive error. The algorithm roughly proceeds by running multiplicative

weights privately (as in [HR10] or above) while sampling, say, 1000 random conjunctions at every step

and checking if any of them have large error. If so, an update occurs. We omit the formal description and

analysis of the algorithm.

We also remark that the proofs of Theorems5.1and5.5are not particular to the statistical queries model:
we showed generically that it is possible to solve the query release problem using a small number of black-
box calls to a learning algorithm,without accessing the database except through the learning algorithm.
This has interesting implications for any class of algorithms that may make only restricted access to the
database. For example, this also proves that if it is possible to agnostically learn some concept classC while
preservingε-differential privacy (even using algorithms that do not fit into the SQ model), then it is possible
to release the same class while preservingTε ≈ log |X|ε-differential privacy.
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