
Available on-line at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Analyzing and enhancing OSKI for sparse matrix-vector

multiplication 1

Kadir Akbudaka, Enver Kayaaslana, Cevdet Aykanata,∗

aComputer Engineering Department, Bilkent University, Ankara, Turkey

Abstract

Sparse matrix-vector multiplication (SpMxV) is a kernel operation widely used in iterative linear solvers. The same
sparse matrix is multiplied by a dense vector repeatedly in these solvers. Matrices with irregular sparsity patterns
make it difficult to utilize cache locality effectively in SpMxV computations. In this work, we investigate single- and
multiple-SpMxV frameworks for exploiting cache locality in SpMxV computations. For the single-SpMxV framework, we
propose two cache-size-aware top-down row/column-reordering methods based on 1D and 2D sparse matrix partitioning
by utilizing the column-net and enhancing the row-column-net hypergraph models of sparse matrices. The multiple-
SpMxV framework depends on splitting a given matrix into a sum of multiple nonzero-disjoint matrices so that the
SpMxV operation is performed as a sequence of multiple input- and output-dependent SpMxV operations. For an
effective matrix splitting required in this framework, we propose a cache-size-aware top-down approach based on 2D
sparse matrix partitioning by utilizing the row-column-net hypergraph model. The primary objective in all of the three
methods is to maximize the exploitation of temporal locality. We evaluate the validity of our models and methods on a
wide range of sparse matrices by performing actual runs through using OSKI. Experimental results show that proposed
methods and models outperform state-of-the-art schemes.

1. Introduction

Sparse matrix-vector multiplication (SpMxV) is an important kernel operation in iterative linear solvers used
for the solution of large, sparse, linear systems of equations. In these iterative solvers, the SpMxV operation
y←Ax is repeatedly performed with the same large, irregularly sparse matrix A . Irregular access pattern
during these repeated SpMxV operations causes poor usage of CPU caches in today’s deep memory hierarchy
technology. However, SpMxV operation has a potential to exhibit very high performance gains if temporal and
spatial localities are respected and exploited properly. Here, temporal locality refers to the reuse of data words
(e.g., x -vector entries) within relatively small time durations, whereas spatial locality refers to the use of data
words (e.g., matrix nonzeros) within relatively close storage locations (e.g., in the same lines).

In this work, we investigate two distinct frameworks for the SpMxV operation: single-SpMxV and multiple-
SpMxV frameworks. In the single-SpMxV framework, the y -vector results are computed by performing a
single SpMxV operation y ←Ax . In the multiple-SpMxV framework, y ←Ax operation is computed as a
sequence of multiple input- and output-dependent SpMxV operations, y← y + Akx for k = 1, . . . ,K , where
A = A1 + · · ·+AK . For the single-SpMxV framework, we propose two cache-size-aware row/column reordering
methods based on top-down 1D and 2D partitioning of a given sparse matrix. The 1D-partitioning-based method
relies on transforming a sparse matrix into a singly-bordered block-diagonal (SB) form by utilizing the column-
net hypergraph model [4–6]. The 2D-partitioning-based method relies on transforming a sparse matrix into a
doubly-bordered block-diagonal (DB) form by utilizing the row-column-net hypergraph model [4,8]. We provide
upper bounds on the number of cache misses based on these transformations, and show that the objectives in the
transformations based on partitioning the respective hypergraph models correspond to minimizing these upper
bounds. In the 1D-partitioning-based method, the column-net hypergraph model correctly encapsulates the
minimization of the respective upper bound. For the 2D-partitioning-based method, we propose an enhancement
to the row-column-net hypergraph model to encapsulate the minimization of the respective upper bound on
the number of cache misses. The primary objective in both methods is to maximize the exploitation of the
temporal locality due to the access of x -vector entries, whereas exploitation of the spatial locality due to the
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access of x -vector entries is a secondary objective. In this paper, we claim that exploiting temporal locality
is more important than exploiting spatial locality (for practical line sizes) in SpMxV operations that involve
irregularly sparse matrices.

The multiple-SpMxV framework depends on splitting a given matrix into a sum of multiple nonzero-disjoint
matrices so that the SpMxV operation is computed as a sequence of multiple SpMxV operations. For an
effective matrix splitting required in this framework, we propose a cache-size-aware top-down approach based
on 2D sparse matrix partitioning by utilizing the row-column-net hypergraph model [4, 8]. We provide an
upper bound on the number of cache misses based on this matrix-splitting, and show that the objective in the
hypergraph-partitioning (HP) based matrix partitioning exactly corresponds to minimizing this upper bound.
The primary objective in this method is to maximize the exploitation of the temporal locality due to the access
of both x -vector and y -vector entries.

We evaluate the validity of our models and methods on a wide range of sparse matrices. The experiments
are carried out by performing actual runs through using OSKI (BeBOP Optimized Sparse Kernel Interface
Library) [17]. Experimental results show that the proposed methods and models outperform state-of-the-art
schemes and also these results conform to our expectation that temporal locality is more important than spatial
locality in SpMxV operations that involve irregularly sparse matrices.

The rest of the paper is organized as follows: Background material is introduced in Section 2. The two
frameworks along with our contributed models and methods are described in Sections 3 and 4. We present the
experimental results in Section 5. Finally, the paper is concluded in Section 6.

2. Background

2.1. Sparse-matrix storage schemes

There are two standard sparse-matrix storage schemes for the SpMxV operation: Compressed Storage by
Rows (CSR) and Compressed Storage by Columns (CSC) [10, 13]. In this paper, we restrict our focus on
the SpMxV operation using the CSR storage scheme without loss of generality, whereas cache aware techniques
such as prefetching, blocking, etc. are out of the scope of this paper. In the following paragraphs, we review
the standard CSR scheme and a CSR variant.

The CSR scheme contains three 1D arrays: nonzero, colIndex and rowStart. The values and the column
indices of nonzeros are respectively stored in row-major order in the nonzero and colIndex arrays in a one-to-
one manner. The rowStart array stores the index of the first nonzero of each row in the nonzero and colIndex
arrays.

The Incremental Compressed Storage by Rows (ICSR) scheme [12] is reported to decrease instruction over-
head by using pointer arithmetic. In ICSR, the colIndex array is replaced with the colDiff array, which stores
the increments in the column indices of the successive nonzeros stored in the nonzero array. The rowStart
array is replaced with the rowJump array which stores the increments in the row indices of the successive
nonzero rows. The ICSR scheme has the advantage of handling zero rows efficiently since it avoids the use
of the rowStart array. This feature of ICSR is exploited in our multiple-SpMxV framework since this scheme
introduces many zero rows in the individual sparse matrices. Details of the SpMxV algorithms utilizing CSR
and ICSR are described in our technical report [1].

2.2. Data locality in CSR-based SpMxV

In accessing matrix nonzeros, temporal locality is not feasible since the elements of each of the nonzero ,
colIndex (colDiff in ICSR) and rowStart (rowJump in ICSR) arrays are accessed only once. Spatial locality
is feasible and it is achieved automatically by nature of the CSR scheme since the elements of each of these
three arrays are accessed consecutively.

In accessing y -vector entries, temporal locality is not feasible since each y -vector result is written only once
to the memory. As a different view, temporal locality can be considered as feasible but automatically achieved
especially at the register level because of the summation of scalar nonzero and x -vector entry product results
to the temporary variable. Spatial locality is feasible and it is achieved automatically since the y -vector entry
results are stored consecutively.

In accessing x -vector entries, both temporal and spatial localities are feasible. Temporal locality is feasible
since each x -vector entry may be accessed multiple times. However, exploiting the temporal and spatial
localities for the x -vector is the major concern in the CSR scheme since x -vector entries are accessed through
a colIndex array (colDiff in ICSR) in a non-contiguous and irregular manner.

3. Single-SpMxV framework

In this framework, the y -vector results are computed by performing a single SpMxV operation, i.e., y←Ax .
The objective in this scheme is to reorder the columns and rows of matrix A for maximizing the exploitation
of temporal and spatial locality in accessing x -vector entries. That is, the objective is to find row and column
permutation matrices Pr and Pc so that y←Ax is computed as ŷ←Âx̂ , where Â = PrAPc , x̂ = xPc and
ŷ = Pr y . For the sake of simplicity of presentation, reordered input and output vectors x̂ and ŷ will be referred
to as x and y in the rest of the paper.
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Recall that temporal locality in accessing y -vector entries is not feasible, whereas spatial locality is achieved
automatically because y -vector results are stored and processed consecutively. Reordering the rows with similar
sparsity pattern nearby increases the possibility of exploiting temporal locality in accessing x -vector entries.
Reordering the columns with similar sparsity pattern nearby increases the possibility of exploiting spatial locality
in accessing x -vector entries. This row/column reordering problem can also be considered as a row/column
clustering problem and this clustering process can be achieved in two distinct ways: top-down and bottom-up.
In this section, we propose and discuss cache-size-aware top-down approaches based on 1D and 2D partitioning
of a given matrix. Although a bottom-up approach based on hierarchical clustering of rows/columns with
similar patterns is feasible, such a scheme is not discussed in this work.

In Sections 3.1 and 3.2, we present two theorems that give the guidelines for a “good” cache-size-aware
row/column reordering based on 1D and 2D matrix partitioning. These theorems provide upper bounds on
the number of cache misses due to the access of x -vector entries in the SpMxV operation performed on sparse
matrices in two special forms, namely SB and DB forms. In these theorems, Φx(A) denotes the number of cache
misses due to the access of x -vector entries in a CSR-based SpMxV operation to be performed on matrix A .

In the theorems given in Sections 3 and 4, fully associative cache is assumed, since misses in a fully associative
cache are capacity misses and are not conflict misses. In these theorems, a matrix/submatrix is said to fit
into the cache if the size of the CSR storage of the matrix/submatrix together with the associated x and y
vectors/subvectors is smaller than the size of the cache. The proofs of these theorems are provided in our
technical report [1].

3.1. Row/column reordering based on 1D matrix partitioning

We consider a row/column reordering which permutes a given matrix A into a K -way columnwise SB form

Â = ASB = PrAPc =




A11 A1B

A22 A2B

. . .
...

AKK AKB


 =




R1

R2

...
RK




= [ C1 C2 . . . CK CB ] . (1)

Here, Akk denotes the k th diagonal block of ASB . Rk = [0 . . . 0 Akk 0 . . . 0 AkB ] denotes the k th row slice of

ASB , for k = 1, . . . ,K . Ck =
�
0 . . . 0 AT

kk 0 . . . 0
�T

denotes the k th column slice of ASB , for k = 1, . . . ,K ,
and CB denotes the column border as follows

CB =




A1B

A2B

...
AKB


 . (2)

Each column in the border CB is called a row-coupling column or simply a coupling column. Let λ(cj) denote
the number of Rk submatrices that contain at least one nonzero of column cj of matrix ASB , i.e.,

λ(cj) = |{Rk ∈ ASB : cj ∈ Rk}|. (3)

In this notation, a column cj is a coupling column if λ(cj) > 1. Here and hereafter, a submatrix notation is
interchangeably used to denote both a submatrix and the set of non-empty rows/columns that belong to that
matrix. For example, in (3), Rk denotes both the k th row slice of ASB and the set of columns that belong to
submatrix Rk .

The individual y←Ax can be equivalently represented as K output-independent but input-dependent Sp-
MxV operations, i.e., yk ← Rk x for k = 1, . . . ,K , where each submatrix Rk is assumed to be stored in CSR
scheme. These SpMxV operations are input dependent because of the x -vector entries corresponding to the
coupling columns.

Theorem 1 Given a K -way SB form ASB of matrix A such that every submatrix Rk fits into the cache, then
we have

Φx(ASB) ≤
�

cj∈ASB

λ(cj) (4)

Theorem 1 leads us to a cache-size-aware top-down row/column reordering through an A -to-ASB transfor-
mation that minimizes the upper bound given in (4) for Φx(ASB) . Minimizing this sum relates to minimizing
the number of cache misses due to the loss of temporal locality.

As discussed in [2], this A -to-ASB transformation problem can be formulated as an HP problem using
the column-net model of matrixA with the part size constraint of cache size and the partitioning objective
of minimizing cutsize according to the connectivity metric definition given in [1]. In this way, minimizing the
cutsize corresponds to minimizing the upper bound given in Theorem 1 for the number of cache misses due to
the access of x -vector entries. This reordering method will be referred to as “sHPCN ”, where the small letter
“s” is used to indicate the single-SpMxV framework.
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3.2. Row/column reordering based on 2D matrix partitioning

We consider a row/column reordering which permutes a given matrix A into a K -way DB form

Â = ADB = PrAPc =




A11 A1B

A22 A2B

. . .
...

AKK AKB

AB1 AB2 . . . ABK ABB




=




R1

R2

...
RK

RB




=

�
A�

SB
RB

�

= [ C1 C2 . . . CK CB ] . (5)

Here, RB = [AB1 AB2 . . . ABK ABB ] denotes the row border. Each row in RB is called a column-coupling
row or simply a coupling row. A�

SB denotes the columnwise SB part of ADB excluding the row border RB .
Rk denotes the k th row slice of both A�

SB and ADB . λ�(cj) denotes the connectivity of column cj in A�
SB .

C �
B denotes the column border of A�

SB , whereas CB = [C �T
B AT

BB ]T denotes the column border of ADB .

Ck =
�
0 . . . 0 AT

kk 0 . . . 0 AT
Bk

�T
denotes the k th column slice of ADB .

Theorem 2 Given a K-way DB form ADB of matrix A such that every submatrix Rk of A
�
SB fits into the

cache, then we have

Φx(ADB) ≤
�

cj∈A�
SB

λ�(cj) +
�

ri∈RB

nnz(ri). (6)

Theorem 2 leads us to a cache-size-aware top-down row/column reordering through an A -to-ADB trans-
formation that minimizes the upper bound given in (6) for Φx(ADB) . Here, minimizing this sum relates to
minimizing the number of cache misses due to the loss of temporal locality.

Here we propose to formulate the above-mentioned A -to-ADB transformation problem as an HP problem
using the row-column-net model of matrix A with a part size constraint of cache size. In the proposed formu-
lation, column nets are associated with unit cost (i.e., cost(ncj) = 1 for each column cj and the cost of each
row net is set to the number of nonzeros in the respective row (i.e., cost(nri ) = nnz(ri)). However, existing HP
tools do not handle a cutsize definition that encapsulates the right-hand side of (6), because the connectivity
metric should be enforced for column nets, whereas the cut-net metric should be enforced for row nets. In order
to encapsulate this different cutsize definition, we adapt and enhance the cut-net removal and cut-net splitting
techniques adopted in RB algorithms utilized in HP tools. The details of the enhanced row-column-net model
can be found in our technical report [1].

4. Multiple-SpMxV framework

Let Π = {A1, A2, . . . , AK} denote a splitting of matrix A into K Ak matrices, where A = A1 +A2 + · · ·+AK .
In Π, Ak matrices are mutually nonzero-disjoint, however they are not necessarily row disjoint or column
disjoint. Note that every splitting Π defines an access order on the matrix non-zeros, and every access order
can define Π that causes it.

In this framework, y←Ax operation is computed as a sequence of K input- and output-dependent SpMxV
operations, y← y +Akx for k = 1, . . . ,K . Individual SpMxV results are accumulated in the output vector y
on the fly in order to avoid additional write operations. The individual SpMxV operations are input dependent
because of the shared columns among the Ak matrices, whereas they are output dependent because of the
shared rows among the Ak matrices. Note that Ak matrices are likely to contain empty rows and columns.
The splitting of matrix A should be done in such a way that the temporal and spatial localities of individual
SpMxVs are exploited in order to minimize the number of cache misses.

In Section 4.1, we present a theorem that gives the guidelines for a “good” cache-size-aware matrix splitting
based on 2D matrix partitioning. This theorem provides an upper bound on the total number of cache misses
due to the access of x -vector and y -vector entries in all y← y +Akx operations.

4.1. Splitting A into Ak matrices based on 2D matrix partitioning

Given a splitting Π of matrix A , let Φx(A,Π) and Φy(A,Π) respectively denote the number of cache misses
due to the access of x -vector and y -vector entries during y ← y + Akx operations for k = 1, . . . ,K . Here,
the total number of cache misses can be expressed as Φ(A,Π) = Φx(A,Π) + Φy(A,Π). Let λ(ri) and λ(cj)
respectively denote the number of Ak matrices that contain at least one nonzero of row ri and one nonzero of
column cj of matrix A , i.e., λ(ri) = |{Ak ∈ Π : ri ∈ Ak}| and λ(cj) = |{Ak ∈ Π : cj ∈ Ak}| .

Theorem 3 Given a splitting Π = {A1, A2, . . . , AK} of matrix A , then we have
a) Φx(A,Π) ≤ �

cj∈A λ(cj) , if each Ak matrix fits into the cache;

b) Φy(A,Π) ≤ �
ri∈A λ(ri) .
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Corollary 4 If each Ak in Π fits into the cache, then we have

Φ(A,Π) ≤
�

ri∈A

λ(ri) +
�

cj∈A

λ(cj). (7)

Corollary 4 leads us to a cache-size-aware top-down matrix splitting that minimizes the upper bound given
in (7) for Φ(A,Π). Here, minimizing this sum relates to minimizing the number of cache misses due to the loss
of temporal locality.

The matrix splitting problem can be formulated as an HP-based 2D matrix parititioning using the row-
column-net model [4, 8] of matrix A with a part size constraint of cache size and partitioning objective of
minimizing cutsize according to the connectivity metric definition given in [1]. In this way, minimizing the
cutsize corresponds to minimizing the upper bound given in Theorem 3 for the total number of cache misses
due to the access of x -vector and y -vector entries. This reordering method will be referred to as “mHPRCN ”,
where the small letter “m” is used to indicate the multiple-SpMxV framework.

5. Experimental results

5.1. Experimental setup

We tested the performance of the proposed methods against three state-of-the-art methods: sBFS [14], sRCM [9,
11,16] and sHPRN [18] all of which belong to the single-SpMxV framework. Here, sBFS refers to our adaptation
of BFS-based simultaneous data and iteration reordering method of Strout et al. [14] to matrix row and column
reordering. Strout et al.’s method depends on implementing breadth-first search on both temporal and spatial
locality hypergraphs simultaneously. In our adaptation, we apply BFS on the bipartite graph representation
of the matrix, so that the resulting BFS orders on the row and column vertices determine row and column
reorderings, respectively. sRCM refers to applying the RCM method, which is widely used for envelope reduction
of symmetric matrices, on the bipartite graph representation of the given sparse matrix. Application of the
RCM method to bipartite graphs has also been used by Berry et al. [3] to reorder rectangular term-by-document
matrices for envelope minimization. sHPRN refers to the work by Yzelman and Bisseling [18] which utilizes HP
using the row-net model for CSR-based SpMxV.

The HP-based top-down reordering methods sHPRN , sHPCN , sHPeRCN and mHPRCN are implemented
using the state-of-the-art HP tool PaToH [7]. In these implementations, PaToH is used as a 2-way HP tool
within the RB paradigm. The hypergraphs representing sparse matrices according to the respective models
are recursively bipartitioned into parts until the CSR-storage size of the submatrix (together with the x and
y vectors) corresponding to a part drops below the cache size. PaToH is used with default parameters except
the use of heavy connectivity clustering ( PATOH CRS HCC=9) in the sHPRN , sHPCN and sHPeRCN methods that
belong to the single-SpMxV framework, and the use of absorption clustering using nets (PATOH CRS ABSHCC=11)
in the mHPRCN method that belong to the multiple-SpMxV framework. Since PaToH contains randomized
algorithms, the reordering results are reported by averaging the values obtained in 10 different runs, each
randomly seeded.

Performance evaluations are carried out in two different settings: cache-miss simulations and actual running
times by using OSKI (BeBOP Optimized Sparse Kernel Interface Library) [17]. We provide only the discussion
on the OSKI experiments here, whereas we refer the reader to our technical report [1] for the discussion on
cache-miss simulations. In OSKI runs, double precision arithmetic is used. OSKI runs are performed on 17
matrices all of which are obtained from the University of Florida Sparse Matrix Collection [15]. CSR-storage
sizes of these matrices vary between 13 MB to 94 MB. Properties of these matrices are presented in Table 1. As
seen in the table, the test matrices are categorized into three groups as symmetric, square nonsymmetric and
rectangular. In each group, the test matrices are listed in the order of increasing number of nonzeros (“nnz”).
In the table, “avg” and “max” denote the average and the maximum number of nonzeros per row/column.
“cov” denotes the coefficient of variation of number of nonzeros per row/column. The “cov” value of a matrix
can be considered as an indication of the level of irregularity in the number of nonzeros per row and column.

5.2. OSKI experiments

OSKI experiments are performed by running OSKI version 1.0.1h (compiled with gcc) on a machine with 2.66
GHz Intel Q8400 and 4 GB of RAM, where each core pair shares 2 MB 8-way set-associative L2 cache. The
Generalized Compressed Sparse Row (GCSR) format available in OSKI is used for all reordering methods.
GCSR handles empty rows by augmenting the traditional CSR with an optional list of non-empty row indices
thus enabling the multiple-SpMxV framework. For each reordering instance, an SpMxV workload contains 100
calls to oski MatMult() with the same matrix after 3 calls as a warm-up.

Table 2 displays the performance comparison of the existing and proposed methods for the test matri-
ces. In the table, the first column shows OSKI running times without tuning for original matrices. The
second column shows the normalized OSKI running times obtained through the full tuning enforced by the
ALWAYS TUNE AGGRESSIVELY parameter for original matrices. The other columns show the normalized running
times obtained through the reordering methods. Each normalized value is calculated by dividing the OSKI time
of the respective method by untuned OSKI running time for original matrices. As seen in the first two columns
of the table, optimizations provided through the OSKI package do not improve the performance of the SpMxV
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Table 1. Properties of test matrices

number of nnz’s in a row nnz’s in a column
Name rows cols nonzeros avg max cov avg max cov

Symmetric Matrices
c-73 169,422 169,422 1,279,274 8 39,937 20.1 8 39,937 20.1
c-73b 169,422 169,422 1,279,274 8 39,937 20.1 8 39,937 20.1
rgg n 2 17 s0 131,072 131,072 1,457,506 11 96 0.3 11 28 0.3
boyd2 466,316 466,316 1,500,397 3 93,262 60.6 3 93,262 60.6
ins2 309,412 309,412 2,751,484 9 303,879 65.3 9 309,412 66.4
rgg n 2 18 s0 262,144 262,144 3,094,566 12 62 0.3 12 31 0.3

Square Nonsymmetric Matrices
Raj1 263,743 263,743 1,302,464 5 40,468 17.9 5 40,468 17.9
rajat21 411,676 411,676 1,893,370 5 118,689 41.0 5 100,470 34.8
rajat24 358,172 358,172 1,948,235 5 105,296 33.1 5 105,296 33.1
ASIC 320k 321,821 321,821 2,635,364 8 203,800 61.4 8 203,800 61.4
Stanford Berkeley 683,446 683,446 7,583,376 11 76,162 25.0 11 249 1.5

Rectangular Matrices
kneser 10 4 1 349,651 330,751 992,252 3 51,751 31.9 3 3 0.0
neos 479,119 515,905 1,526,794 3 29 0.2 3 16,220 15.6
wheel 601 902,103 723,605 2,170,814 2 442,477 193.9 3 3 0.0
LargeRegFile 2,111,154 801,374 4,944,201 2 4 0.3 6 655,876 145.9
cont1 l 1,918,399 1,921,596 7,031,999 4 5 0.3 4 1,279,998 252.3
degme 185,501 659,415 8,127,528 44 624,079 33.1 12 18 0.1

operation performed on the original matrices. This experimental finding can be attributed to the irregularly
sparse nature of the test matrices. We should mention that optimizations provided through the OSKI package
do not improve the performance of the SpMxV operation performed on the reordered matrices.

As seen in Table 2, on the overall average, the 2D methods sHPeRCN and mHPRCN perform better than
the 1D methods sHPRN and sHPCN , where mHPRCN (adopting the multiple-SpMxV framework) is the clear
winner. Furthermore, for the relative performance comparison of the 1D methods, the proposed sHPCN method
performs better than the existing sHPRN method. On the overall average, sHPCN , sHPeRCN and mHPRCN

achieve significant speedup by reducing the SpMxV times by 11%, 14% and 18%, respectively, compared to the
unordered matrices; thus confirming the success of the proposed reordering methods.

Table 3 is introduced to evaluate the preprocessing overhead of the reordering methods. For each test
matrix, the reordering times of all methods are normalized with respect to the OSKI time of the SpMxV
operation using the unordered matrix and geometric averages of these normalized values are displayed in the
“overhead” column of the table. In the table, the “amortization” column denotes the average number of SpMxV
operations required to amortize the reordering overhead. Each “amortization value” is obtained by dividing
the average normalized reordering overhead by the overall average OSKI time improvement taken from Table 2.
Overhead and amortization values are not given for the sRCM method since sRCM does not improve the OSKI
running time at all.

As seen in Table 3, top-down HP-based methods are significantly slower than the bottom-up sBFS method.
The running times of two 1D methods sHPRN and sHPCN are comparable as expected. As also seen in the
table, the 2D methods are considerably slower than the 1D methods as expected. In the column-net hypergraph
model used in 1D method sHPCN , the number of vertices and the number of nets are equal to the number of
rows and the number of columns, respectively, and the number of pins is equal to the number of nonzeros. In the
hypergraph model used in 2D methods, the number of vertices and the number of nets are equal to the number
of nonzeros and the number of rows plus the number of columns, respectively, and the number of pins is equal
to two times the number of nonzeros. That is, the hypergraphs used in 2D methods are considerably larger than
the hypergraphs used in 1D methods. So partitioning the hypergraphs used in 2D methods takes considerably
longer time than partitioning the hypergraphs used in 1D methods, and the running time difference becomes
higher with increasing matrix density in favour of 1D methods. There exists a considerable difference in the
running times of two 2D methods sHPeRCN and mHPRCN in favour of sHPeRCN . This is because of the removal
of the vertices connected by the cut row-nets in the enhanced row-column-net model used in sHPeRCN .

As seen in Table 3, the top-down HP methods amortize for larger number of SpMxV computations compared
to the bottom-up sBFS method. For example, the use of sHPCN instead of sBFS amortizes after 276% more
SpMxV computations on the overall average. As also seen in the table, 2D methods amortize for larger number
of SpMxV computations compared to the 1D methods. For example, the use of mHPRCN instead of sHPCN

amortizes after 178% more SpMxV computations.

6. Conclusion

Single- and multiple-SpMxV frameworks were investigated for exploiting cache locality in SpMxV computations
that involve irregularly sparse matrices. For the single-SpMxV framework, two cache-size-aware top-down
row/column-reordering methods based on 1D and 2D sparse matrix partitioning were proposed by utilizing the
column-net and enhancing the row-column-net hypergraph models of sparse matrices. The multiple-SpMxV
framework requires splitting a given matrix into a sum of multiple nonzero-disjoint matrices so that the SpMxV
operation is computed as a sequence of multiple input- and output-dependent SpMxV operations. For this
framework, a cache-size aware top-down matrix splitting method based on 2D matrix partitioning was proposed
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Table 2. OSKI running times for the test matrices (cache size = part-weight threshold = 2 MB)

Actual Normalized w.r.t. Actual Times on Original Order
Original Existing Methods Proposed Methods
Order Single SpMxV Mult. SpMxVs

not tuned OSKI sBFS [14] sRCM [11] sHPRN [18] sHPCN sHPeRCN mHPRCN

(ms) tuned Modified (1D Part.) (1D Part.) (2D Part.) (2D Part.)
Symmetric Matrices

c-73 0.454 1.00 1.02 1.06 0.93 0.92 0.92 0.90
c-73b 0.456 1.00 1.01 1.07 0.93 0.92 0.91 0.89
rgg n 2 17 s0 0.503 0.95 0.92 1.07 0.89 0.82 0.76 0.91
boyd2 0.726 1.19 1.00 1.14 0.95 0.92 0.89 0.85
ins2 1.207 1.00 0.96 2.32 0.97 1.06 0.97 0.67
rgg n 2 18 s0 1.051 0.96 0.90 1.07 0.99 0.99 0.75 0.81

Square Nonsymmetric Matrices

Raj1 0.629 1.04 0.88 0.96 0.86 0.82 0.83 0.84
rajat21 0.953 1.07 1.01 1.16 1.00 0.95 0.96 0.90
rajat24 0.963 1.02 1.04 1.16 0.99 0.94 0.96 0.91
ASIC 320k 1.436 0.99 1.09 1.44 0.97 0.92 0.73 0.64
Stanford Berkeley 2.325 1.04 1.01 1.05 1.10 1.01 0.89 0.98

Rectangular Matrices
kneser 10 4 1 0.694 1.02 0.70 0.87 0.81 0.67 0.89 0.68
neos 0.697 1.26 1.14 1.19 1.00 0.95 0.95 0.96
wheel 601 1.377 1.27 0.82 0.75 0.69 0.69 0.66 0.52
LargeRegFile 2.643 1.55 1.19 1.30 1.04 0.95 0.95 0.96
cont1 l 2.939 1.14 1.04 1.19 1.05 0.93 0.93 0.95
degme 2.770 1.04 0.77 1.26 0.87 0.77 0.78 0.74

Geometric Means
Symmetric - 1.01 0.97 1.23 0.94 0.94 0.86 0.84
Nonsymmetric - 1.03 1.00 1.14 0.98 0.93 0.87 0.84
Rectangular - 1.20 0.93 1.07 0.90 0.82 0.85 0.78

Overall - 1.08 0.96 1.15 0.94 0.89 0.86 0.82

Table 3. Average normalized reordering overhead and average number of SpMxV operations required to
amortize the reordering overhead

Existing Methods Proposed Methods
Single SpMxV Multiple SpMxVs

sBFS [14] sHPRN [18] sHPCN sHPeRCN mHPRCN

(1D Part.) (1D Part.) (2D Part.) (2D Partioning)
Over- Amor- Over- Amor- Over- Amor- Over- Amor- Over- Amor-
head tization head tization head tization head tization head tization

Symmetric 17 465 194 3135 190 1716 514 3732 920 5097
Nonsymmetric 26 700 314 5078 304 2740 664 4822 1198 6640
Rectangular 23 621 383 6197 254 2292 620 4503 1240 6870

Overall 22 587 286 4620 245 2209 596 4327 1110 6149

by utilizing the row-column-net hypergraph model of sparse matrices. The proposed hypergraph-partitioning
(HP) based methods in the single-SpMxV framework primarily aim at exploiting temporal locality in accessing
input-vector entries and the proposed HP-based method in the multiple-SpMxV framework primarily aims at
exploiting temporal locality in accessing both input- and output-vector entries.

The performance of the proposed models and methods were evaluated on a wide range of sparse matrices
by performing actual runs. Experimental results, which were obtained by performing actual runs through
using OSKI, showed that the proposed methods and models outperform the state-of-the-art schemes and also
these results conformed to our expectation that temporal locality is more important than spatial locality (for
practical line sizes) in SpMxV operations that involve irregularly sparse matrices. The two proposed methods
that are based on 2D matrix partitioning were found to perform better than the proposed method based on 1D
partitioning at the expense of higher reordering overhead, where the 2D method within the multiple-SpMxV
framework was the clear winner.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. RI-211528 and FP7-261557. The work is achieved using
the PRACE Research Infrastructure resources. We acknowledge that the results in this paper have been achieved
using the PRACE Research Infrastructure resource the Gauss Center for Supercomputing IBM Blue Gene/P
system JUGENE (Jueliche Blue Gene/P) at Forschungzentrum Juelich (FZJ), Germany.

References

1. K. Akbudak, E. Kayaslan, and C. Aykanat, Hypergraph-partitioning-based models and methods for
exploiting cache locality in sparse-matrix vector multiplication, Technical report BU-CE-1201, Bilkent

7



University Computer Engineering Department, Feb. 2012. Also available as http://www.cs.bilkent.
edu.tr/tech-reports/2012/BU-CE-1201.pdf.
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