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Abstract. This paper presents a review, analysis and comparison of numerical methods imple-
menting the curvature motion and the affine curvature motion for 2D images, shapes, and curves.
These curvature scale spaces allow, in principle, to compute an accurate multiscale curvature in
digital images. The fastest and most invariant of them can be used in a complete image processing
chain. This numerical chain simulates the accurate sub-pixel evolution of an image by mean cur-
vature motion or by affine invariant curvature motion. To do so, it lets all the level lines of the
image evolve by curvature shortening (of affine shortening), computes the image curvature directly
on the smoothed level lines, and reconstructs the evolved image and its curvatures in an intrinsic,
grid-independent representation. The paper describes a careful implementation of this chain, and
analyzes its effects on many examples. The microscopic visualization of an image curvature map
reveals after processing many image details. This image process improves graphic images, gets rid of
compression and aliasing effects. It also gives an accurate tool to explore the validity of Attneave’s
and Julesz theories on shape perception and texture discrimination. The “curvature microscope”
runs on line for any image at http://www.ipol.im/pub/algo/cmmm_image_curvature_microscope/.
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1. Introduction. Attneave’s founding 1954 paper [4] on image perception an-
ticipated the numerical analysis of digital pictures. He stated that in images: “in-
formation is concentrated along contours (i.e., regions where color changes abruptly),
and is further concentrated at those points on a contour at which its direction changes
most rapidly (i.e., at angles or peaks of curvature)”. Yet, because of noise and alias-
ing effects, the direct computation of curvatures on a raw image is impossible and
depends anyway on a smoothing scale.

(a). Attneave’s cat (b). Curvature map.

Fig. 1.1. Attneave’s figure illustrating the prominent role of curvature peaks in image
perception and its curvature map computed by level lines shortening.
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This explains why, in one of the first serious attempts to cope with this numerical
challenge, Asada and Brady [3] introduced the concept of multiscale curvature. They
suggested to approximate contours by splines and to smooth them by a 1D heat
equation. Their explicit goal was to implement Attneave’s idea that shapes must
be represented by curvature extrema. This paper led to increasingly sophisticated
attempts to analyze planar shapes by their curvatures. A first difficulty is that, at
fine scale, contours have high curvatures everywhere. Another problematic issue is
the extraction of the contours on which the curvature could be computed. Contours
obtained by “edge detection” are broken and plagued with spurious branches, which
hinder the computation of any reliable curvature.

Clarifying the subject has required a fairly elaborate series of mathematical contri-
butions. Grayson [18] proved that the intrinsic heat equation smooths Jordan curves
and preserves their topology. The Osher-Sethian level set method [39] implements
the motion by mean curvature of an embedded manifold by applying the mean cur-
vature PDE to its signed distance function. Evans-Spruck [15] and Chen-Giga-Goto
[11] elaborated a viscosity solution theory for the scalar mean curvature motion. A
mathematical link between the median filter and the motion by mean curvature was
conjectured by Merriman, Bence and Osher [32] and later proved by several authors
[6], [16], [21].

In parallel, Mackworth and Moktharian [29] proposed a fast numerical scheme to
smooth a curve by the intrinsic heat equation. But their shape extraction algorithm
was unconvincing. Caselles et al. realized the potential of using directly the image
level lines instead of its edges. They proposed to perform contrast invariant image
analysis directly on the set of level lines, or topographic map [9]. A fast algorithm
computing the topographic map was developed by Monasse and Guichard in [36].
Sapiro and Tannenbaum [41] discovered the affine curve shortening and Alvarez et al.
[1] the affine invariant and contrast invariant image smoothing. A remarkably fast
and simple geometric algorithm for affine shortening was given by Moisan in [35].

The present paper starts with a review of the main classes of curvature algo-
rithms, focusing on isotropic curvature equations and on the two curvature powers
that are relevant for image analysis, namely 1 and 1/3. Then, building on the above
mentioned contributions, it describes a complete image processing numerical chain.
The chain starts from a digital image, proceeds to the level lines extraction and to
their independent evolution by curve shortening or affine shortening. The chain ends
up with an accurate visualization tool of image curvatures computed on the smoothed
level lines. This, hopefully, advances Attneave’s program and yields what we shall
term a curvature image microscope. Indeed, the evolved level lines and image are not
defined on the initial grid. The level lines have floating coordinates and the image
can be reconstructed from them at any precision. The results herein were announced
in [12].

There is something slightly paradoxical in smoothing an image to see it better.
Nevertheless, noise, JPEG artifacts, and aliasing (pixelization effects) will be shown to
be nicely smoothed out by the subpixel curvature motion. As anticipated by Attneave,
the level line evolution eliminates the erratic curvatures and yields a curvature more
conform to our multiscale contour perception. Finally the level line visualization (after
smoothing) reveals many hidden image details which can be zoomed in, thanks to the
grid independent representation of the image by its level lines. The resulting algorithm
is fast and can be tested on line 1. The above described numerical chain was outlined

1http://www.ipol.im/pub/algo/cmmm image curvature microscope/
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in [25] and also in [28] where shape recognition algorithms were explored. The chain
will be completed here with a subpixel image reconstruction from an arbitrary tree of
level lines, which results in a powerful visualization tool.

There are several definitions of curvature and of multiscale curvature, and we shall
detail them before entering into the discussion of how to compute them. The next
two sections review and compare the various types of numerical analysis for curvature
motion, and clarify the links between them. Section §4 describes in detail the Level
Lines Shortening (LLS) and its variant the Level Lines Affine Shortening (LLAS).
The Image Curvature Microscope is described in section §5 where many numerical
comparisons are performed. Section §6 is devoted to illustrative experiments on a
choice of image parts containing contours, shapes and textures.

2. Curvature Scale Spaces.

2.1. Curvatures. Digital images are given in discrete sampled form on a rectan-
gle Ω but the underlying continuous substratum is assumed to be C∞ and interpolated
as such on Ω. By Sard’s theorem and by the implicit function theorem for almost ev-
ery level λ, the iso-level set u(−1)(λ) is a finite union of disjoint smooth Jordan curves.
These Jordan curves are called the level lines of u and coincide with the topological
boundaries of upper and lower level sets.

Assume in the following that u is at least C2 in a neighborhood of a point x0 ∈ Ω
and that its gradient is not null, Du(x0) 6= 0. Then the scalar curvature of u at x0,
denoted by curv(u)(x0), is the real number defined by

curv(u)(x0) =
uxxu

2
y − 2uxyuxuy + uyyu

2
x

(u2
x + u2

y)
3/2

(x0). (2.1)

This scalar curvature at x0 is linked to the vectorial curvature of the level line passing
by x0. The vectorial curvature of a C

2 curve x(s) parameterized by a length parameter
s (so that |x′(s)| = 1) is defined by

κ(x) := x′′(s).

The link between the vectorial curvature of an image level line κ(x) and the scalar
curvature curv(u)(x) at nonsingular points is given by the next formula. Denote by
x = x(s) the level line of u passing by x0. Then

κ(x0) = −curv(u)(x0).
Du

|Du|
(x0). (2.2)

This relation already suggests that the curvature can be computed in two quite
different ways: either as the curvature of a level line extracted from the image and
parameterized by length, or as a 2D differential operator. In both cases, a previous
smoothing (of the level line, of the level sets) is necessary, which introduces a new
parameter, the smoothing scale. Hence the notion of curvature scale space which will
be associated with curve or image evolutions.

2.2. Curve evolutions. Curve smoothing by the heat equation was one of
the first versions of curve analysis proposed by Mackworth and Mokhtarian in [29].
Smoothing a curve by separately smoothing the coordinate functions seems reason-
able, yet the evolved curve may develop self-crossings and singularities. This model
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error was corrected in [30] by the same authors. Instead of applying the heat equation
for relatively long times, they proposed an evolution by Curve Shortening (CS) (also
called intrinsic heat equation)

∂x

∂t
= κ(x).

By this (nonlinear) evolution a curve instantly becomes smooth, shrinks asymptoti-
cally to a circle and develops no singularities or self-crossings. The proofs of these
properties were given by Gage and Hamilton for convex Jordan curves [17] and later
extended to embedded curves by Grayson [18].

The Affine Shortening equation (AS)

∂x

∂t
= κ|κ|−

2

3 (x)

is a surprising variant of curve shortening introduced by Sapiro and Tannenbaum in
[41], [43]. Angenent, Sapiro and Tannenbaum [44] gave the existence and uniqueness
proofs for affine shortening and showed a result similar to Grayson’s theorem: a shape
eventually becomes convex and thereafter evolves towards an ellipse before collapsing.

In computer vision the above equations are referred to as curve scale spaces or
shape scale spaces. The term designates any process that smooths a Jordan curve and
depends on a real parameter t, the scale. A shape scale space associates with an initial
Jordan curve x(s, 0) = x0(s) a family of smooth curves x(s, t). Curve shortening and
affine shortening eliminate spurious details of the initial shape and retain simpler,
more reliable versions of the shape. These smoothed shapes have finite codes in the
sense of Attneave, since they have finitely many curvature extrema. A scale space is
causal in the terminology of vision theory if it does not introduce new features. (New
feature here means: a new extremum for some image differential operator). Thus,
curve shortening and affine curve shortening define causal scale spaces. Indeed, the
number of curvature extrema and inflexion points decreases by their application.

2.3. Image evolutions. Alvarez et al. [1] characterized axiomatically all image
multiscale theories, and gave explicit formulae for the partial differential equations
generated by scale spaces. They showed that causal, local scale spaces are governed
by PDEs and that under sound stability conditions for the scale space, the PDE’s
have unique viscosity solutions. In particular all causal, local, isometric and contrast
invariant scale spaces are given by curvature evolution equations:

∂u

∂t
= |Du|G(curv(u), t).

The mean curvature equation (MCM)

∂u

∂t
= |Du|curv(u)

is the simplest equation in this class for which existence, and uniqueness of viscosity
solutions can be proved [15], [11]. Planar shape recognition algorithms should ideally
be projective invariant, namely invariant to all planar homographies. The affine
curvature evolution (ACM)

∂u

∂t
= |Du|curv(u)1/3
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has a more restrictive form of projective invariance: it commutes with all planar affine
maps with determinant 1. It is therefore preferable to the scalar curvature motion, and
is definitely the most invariant image smoothing algorithm. Indeed, like the curvature
motion, it is invariant to any continuous increasing contrast change u→ g(u).

A consequence of the contrast invariance for both mentioned equations is that,
at least formally, an image evolves by scalar mean curvature motion (resp. affine
curvature motion) if and only if its level lines evolve by curvature shortening (resp.
affine shortening). This fact can be checked by elementary differential calculus under
the assumption that the scalar solution u(x, t) is smooth [20]. Yet, precisely, the
curvature evolution does not yield a C2 function in time and space. Thus, the above
equivalence is a bit trickier and is proved in [13].

3. Curvature algorithms. All sound shape smoothing algorithms in the com-
puter vision literature perform a curvature or an affine curvature shortening. But
the numerical variety of the underlying numerical algorithms is worth noticing. This
section discusses their history, implementation, advantages and drawbacks. There are
three kinds of initial data for the algorithm: digital curves, digital sets, or digital
images. We shall examine each in turn.

3.1. Algorithms on curves.

3.1.1. Dynamic curve evolution. As mentioned before, Mackworth andMokh-
tarian proposed an algorithm consistent with curve shortening (CS). Instead of apply-
ing the linear heat equation for relatively long times, it applies to a plane curve the
non-linear heat equation, by successively convolving the arc length parameterization
x(·, t) at time n with a Gaussian kernel Gh of standard deviation proportional to h

1

2 .

Algorithm 1: Discrete Curve Shortening (CS)

Input: Polygon Σ0, gaussian signal G
Output: Evolved polygon Σn, after n iterations

1 for all i = 0, n do

2 sample uniformly curve Σi ;
3 convolve curve Σi with G.

The consistency of Algorithm 1 with (CS) is given by the (easy) Theorem 3.1.

Theorem 3.1. Let x be a C2 curve parameterized by its length parameter s ∈
[0, L]. Then

Gh ∗ x(s)− x(s) = ch κ(x(s)) + o(h). (3.1)

where c is a positive constant.

3.1.2. Affine plane curve evolution. Several attempts to define an affine-
invariant analysis for polygons are described in [42]. The 1/3 power law of planar
motion perception and generation was related to affine invariance in [40]. Moisan
[35] discovered an extremely fast and fully affine invariant geometric curve evolution
consistent with affine shortening, which we summarize below. In the mathematical
morphology terminology, this algorithm is an alternate filter, alternating an affine
erosion and an affine dilation.
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Algorithm 2: Discrete Affine Shortening (AS)

Input: Polygon Σ0,
Output: Evolved polygon Σσ, at scale σ2/3

1 break the curve into convex and concave parts ;
2 for every convex/concave component do

3 replace each component by the sequence of the middle points of each
σ-chord such that one endpoint is a vertex of the polygonal curve;

4 concatenate the pieces of curves previously obtained.

The consistency of Algorithm 2 with affine shortening (AS) is given in Theorem 3.2.

Theorem 3.2. Let x be a C2 curve parameterized by its length parameter s ∈
[0, L] and σ > 0. To each point of x(s), we associate xσ(s), defined as the middle
point of the chord (x(s − δ),x(s + δ)), where δ > 0 is chosen in order that the area
of the region enclosed by this chord and the piece of curve x

∣

∣

(s−δ,s+δ)
is equal to σ.

Then

xσ(s)− x(s) = cσ2/3|κ|−2/3(x)κ(x) + o(σ2/3) as σ → 0

where c is a positive constant.

Lisani and al. [27] and later Musé and al. [37] have used the affine curve evolution
scheme for shape recognition and image comparison algorithms. We have limited
ourselves to numerical schemes that are extremely fast, being linear or, in the case of
Moisan’s scheme, super-linear in time and unconditionally stable.

Algorithm 3: Backward Euler Method for intrinsic heat equation

Input: Polygon Σ0,
Output: Evolved polygon Σσ, parametrized by xi at time ti = iτ

1 for each i = 0,n do

2 find xi+1 by a semi-implicit finite difference scheme of the type

xi+1 − xi

τ
= fi(ki, xi+1)

with fi a nonlinearity depending on the curvature ki of the curve xi and
the natural parameterization of the curve itself.

There is, however, a rich literature on numerical schemes for anisotropic curvature
motions occurring (e.g.) in crystalline formation. These motions can depend on other
powers of the curvature than the relevant ones for image processing (1 and 1/3) and
have a spatial anisotropy. Mikula and Ševčovič have given theoretical and numerical
methods for such more general curvature motions [33], [34]. They use implicit methods
for curve evolution, which are very accurate but too slow to be performed on all image
level lines. Their schemes are able to cope with almost arbitrarily high or low powers
of the curvature, and they display an accurate asymptotic behavior.

Cao and Moisan [8] have also proposed “morphological” schemes for the motion
of curves by arbitrary powers of the curvature. They are described in detail in the
book by Frédéric Cao [7], which also contains a thorough numerical and mathematical
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analysis. For more general image PDE’s performing nonlinear diffusion, finite volume
methods have been proposed with remarkable results in [26].

3.2. Algorithms on sets. Koenderink and van Doorn defined a shape in RN

as any closed subset X of RN [24]. They proposed to simulate the shape multiscale
perception by applying the heat equation to the characteristic function of the shape,
or, in other terms, to convolve it with Gaussians with increasing variance. Of course,
the solution Gt ∗1X is not a characteristic function and therefore the authors defined
the evolved shape at scale t to be

Xt = {x | u(x, t) ≥ 1/2}.

The very same process was suggested in Attneave [4]: “The perceived contour of a cat
(...) is the resultant of an orthogonal averaging process in which texture is eliminated
or smoothed out almost entirely, somewhat as if a photograph of the object were
blurred and then printed on high-contrast paper (...)” Similar to the heat equation
for curve evolution, the method presents two inconveniences: the possible fusion of
shapes which are too close, and the development of new singularities, which occur
precisely at the times where two disjoint shapes coalesce.

The improvement of dynamic shape analysis is due to Merriman, Bence, and Osher
who discovered and heuristically argued in [32] that the convolution of the indicator
function of a shape with a Gaussian followed by a threshold at 1/2 simulated the
mean-curvature motion.

Algorithm 4: Merriman-Bence-Osher Algorithm (threshold dynamic shape)

Input: initial shape X0

Output: Evolved shape Xn at scale nh
1 for i=0,n-1 do

2 convolve the characteristic function of the shape Xi with Gh, where h is
small;

3 define Xi+1 = {x | Gh ∗ 1Xi
≥ 1/2}.

The consistency of their arguments was checked by Barles and Georgelin [6] and
Evans [16]. In addition they showed that iterated median filters converge asymptoti-
cally to the Mean Curvature Motion

ut = |Du|curv(u).

An extension of this result to all iterated weighted median filters was given by Ishii
in [21]. Algorithm 4 of Merriman, Bence and Osher is nothing but an iterated median
filter applied to a binary image. The main problem of discrete median filters is their
grid dependence which make them blind to small curvatures. For instance a black
disk with radius 9 does not move if the discrete gaussian has a 2 pixels standard
deviation. It is observed that the iterated process stops after a few iterations, making
it an inaccurate scheme for MCM.

3.3. Algorithms on images.

3.3.1. Median filters and threshold dynamics. Weighted median filters are
defined by

Medku(x) = inf
B∈B

sup
y∈x+B

u(y). (3.2)
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where k is a radial density distribution and B = {B |
∫

B
k(x)dx = 1/2

∫

k(x)dx}, B
being formed of measurable sets. The discrete implementation of the median filter is
almost trivial.

Algorithm 5: Iterated Median Filter Algorithm

Input: initial image u(x)
Output: evolved image Medku(x)

1 for every point x do

2 consider the points y in a discrete neighborhood of x;
3 compute the weight of y as the integral of k over the pixel of center y;
4 take the weighted median value of the discrete neighborhood.

Algorithm 5 is fast but, like the dynamic shape, it is blind to small curvatures.
Indeed, this algorithm applied on binary images is nothing but the dynamic shape,
with the kernel k instead of a Gaussian [20]. The link with the curvature motion is
obtained by scaling the convolution, exactly as in the Merriman-Bence-Osher dynamic
shape algorithm. Define the scaled median by (Medk)h = Medkh

, where kh(x) :=
1
h2 k(

x
h ). Then:

Theorem 3.3. [20] If u : R2 → R is C2, then there is a constant ck depending
only on the kernel k such that

1. on every compact set K ⊂ {x | Du(x) 6= 0},

Medkh
u(x)− u(x) = ck|Du(x)|curv(u)(x)h2 +O(x, h3),

where |O(x, h3)| ≤ CKh3 for some constant CK that depends only on u, k
and K;

2. on every compact set K in R
2,

|Medkh
u(x)− u(x)| ≤ CKh2

where the constant CK depends only on u, k and K.

In short, by the above theorem the iterated median filter is in theory an implemen-
tation of the mean curvature motion but, when applied on a digital image, it stops
prematurely because of the blindness of the grid to small curvatures. Adam Ober-
man’s work [38] is intimately related to median filters and to the threshold dynamics.
The novelty of his paper consists in the radial lattice displacement of the neighbor-
hood points, as well as its 3D variant. Accordingly, he gives a clever consistency proof.
The scheme is obviously monotone and therefore the convergence is guaranteed by the
general approximation results for viscosity solutions given by Barles and Souganidis
in [5].

3.3.2. Finite difference schemes. There are antecedent papers proposing clever
schemes for the mean curvature motion or (more rarely) for the affine curvature mo-
tion. But, to the best of our knowledge, these papers do not attempt to compute
the curvatures of the image. The present paper defends the thesis that the curvature
is a 1D operator, computable only on the level lines themselves, and only after the
adequate smoothing has been applied to each level line.

FDSs either create oscillations or, if they are adequately regularized to avoid oscil-
lations, cause a strong and spurious diffusion. As illustrated later on (see Figure 5.5)



9

even the tiniest diffusion or oscillation created by an FDS brings up spurious curva-
tures with erratic value and sign. To emphasize this diffusion-sharpness dilemma, we
shall make a comparison between Guichard’s scheme, which attempts to be the least
diffusive and the most isotropic, the Crandall-Lions scheme [14], which is monotone
but diffusive, and subsequently the standard finite difference scheme that discretizes
formula (1).

An efficient finite difference scheme (FDS) implementation of the scalar curvature
motions was proposed by Alvarez and Guichard and is described in [19] and [2]. The
3 × 3 scheme takes advantage of the diffusive interpretation of the mean curvature,
which can be expressed as the second derivative of u in the direction orthogonal to
the gradient

|Du|curv(u) = uξξ,

where ξ = Du⊥/|Du|. A straightforward variant of the FDS applies to the affine
curvature motion. The FDS is optimized to be as isotropic as possible and as close
as possible to satisfy the maximum principle. It improves on the dynamic shape
by computing correctly small curvatures, but it cannot properly handle the contrast
invariance of the curvature equation. It creates new grey levels and blurs edges.
Spurious diffusions occur around image extrema.

The finite difference scheme described by Crandall and Lions in [14] is monotone,
consistent and stable; therefore its convergence is guaranteed by general approxima-
tion results (Barles and Souganidis [5]). Denote by un the discrete approximation
of the solution at iteration n. Then the Crandall-Lions discrete curvature flow V is
defined by

V un+1(ρz) = un(x) +

dt

N
∑

i=1

un(ρz + ha(Dun(ρz))ei) + un(ρz − ha(Dun(ρz))ei)− 2un(ρz)

h2

for all z ∈ ZN , where {ei}i=1,N is the standard basis of RN and

a(p) = I −
p⊗ p

|p|2
.

There are for this scheme three delicate issues.
1. The above formula does not fully discretize on a fixed grid Gρ because the term

a((Dun)(ρz))ei is not a displacement on the grid. Thus, this is an adaptive
stencil. One must involve for every grid function un its continuous piecewise
linear interpolation ũn. Hence, the previous formula must be updated as

V un+1(ρz) = ũn(x) +

dt
N
∑

i=1

ũn(ρz + ha(Dun(ρz))ei) + ũn(ρz − ha(Dun(ρz))ei)− 2un(ρz)

h2

Note that in a second part of the paper the authors show that the compari-
son principle cannot be guaranteed for finite difference schemes with a fixed
stencil, even for the linear case, when the matrix a has constant coefficients.
This means that a centered differences approximation dealing with fixed sten-
cils can create spurious oscillations and therefore parasitic curvatures. The



10

scheme introduced by Guichard is a sort of intermediate solution: it estimates
the gradient direction ξ by evaluating numerically uξξ = curv(u)|Du| with
a quasi-linear scheme, based on a 3 × 3 stencil. The scheme is quasi-linear
because the coefficients of the linear combination are functions of the angle θ
that the gradient direction makes with the horizontal axis.

2. The (updated) discretization scheme is not monotone. To ensure monotonic-
ity one has to add a diffusion term. Thus the discretization scheme becomes

Tun = V un + α∆un,

where

∆un = dt

N
∑

i=1

un(ρz + ρei) + un(ρz + ρei)− 2un(ρz)

ρ2

Even though asymptotically we still have consistency of this monotone scheme,
numerically this scheme introduces a 2D diffusion.

3. The projection a(p) has two unpleasant features: it is degenerate (in the
sense that aaT has zero eigenvalues) and has a singularity at p = 0. The
first drawback can be easily handled by the choice of parameters such that
the approximation scheme produces bounds on the perimeter. For the second
one, one should replace a(p) by

aε(p) = I −
p⊗ p

|p|2 + ε
.

However, when the gradient is small, its direction becomes substantially ran-
dom, being driven by rounding errors and noise. This is why Guichard et
al. suggest to replace in this case the mean curvature diffusion by a half
Laplacian, instead of using aε(p).

Accordingly, several relations must be satisfied among the parameters to ensure
convergence of the scheme to the continuous solution when dt → 0. There is no
convergence result for Guichard’s scheme. Again, a small perturbation with a linear
diffusion term should handle the problem, but would also render the scheme very
diffusive in practice.

One can devise an FDS for the curvature motion which is monotone and consis-
tent. However, all such schemes cause, even after few iterations, a non asked diffusion
that creates new levels and spurious curvatures. As illustrated by Figures 5.4 and 5.5
and their comments, computing a curvature by FDS is simply disastrous, even on an
image smoothed by LLS.

A different approach was given by Peter Smereka introduced in [46], where he uses
semi-implicit methods to derive fast implementation of the level set evolution PDEs
for curvature motions. The semi-implicit algorithm for the mean curvature flow is
based on the formula

curv(u)|Du| = ∆u−N(u)

where u is parameterized so that it remains close to the distance function (thus N(u)
is small and |Du| ≈ 1). The discretization takes one step of forward Euler on the
nonlinear term followed by one step of backward Euler on the linear term.
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3.3.3. Level set extension, superposition principle, stack filters. FDSs
for image curvature motions do not commute with increasing contrast changes. Yet,
a full contrast invariance can be restored on any numerical scheme by coupling two
techniques: the superposition principle, and the Osher-Sethian level set extension.
The idea of the level set extension [39] is to treat a given curve as the zero level line
of a signed distance to the curve. More generally a set, understood as a shape, is
identified with its characteristic function. After applying the FDS to this function
the evolved set can be obtained as the 1/2 upper level set of the evolved function.
Thus, the level set extension is a generalization of the threshold dynamic.

By the level set extension, a curve evolution is made in two steps:
(1). apply a finite difference scheme to the characteristic function of the shape

bounded by the curve;
(2). take the level line of the result corresponding to the level 1/2 .
Since the image level lines are boundaries of the image upper level sets, it is

natural to apply directly the level set extension to all upper level sets. This processes
implicitly all level lines of each level. After evolution of all upper level sets, an image
is reconstructed by superposition principle. The superposition principle and its link to
the contrast invariance property come from mathematical morphology [45], [31]. If all
upper level sets of a given image have been processed independently by an inclusion
preserving scheme, then there is a single image having for level sets the evolved level
sets.

Any process that decomposes the image into the stack of its level sets and then
reconstructs the processed image from the stack of its processed level sets is called a
stack filter. The only requirement to make a stack filter with any numerical scheme
is its monotonicity. Indeed, the inclusion of upper level sets in each other must be
preserved. Every stack filter is contrast invariant: the upper (resp. lower) level sets
Xλu0 := {x, u0(x) ≥ λ} (resp. ≤ λ) of an image u0 are invariant to increasing contrast
changes.

In short a stack filter consists of:
(a). extracting all image upper level sets,
(b). processing each of them by a (monotonic) set operator (e.g. the FDS) and
(c). reconstructing the evolved image by “superposition”.

Thus Algorithm 6 is a contrast invariant curvature evolution. For example (see [19])
the image median filter is the stack filter of the threshold dynamics. It makes sense
to apply the superposition principle strategy to FDSs because they are not contrast
invariant, being diffusive and creating spurious level lines.

Algorithm 6: Stack Filter

Input: initial image u(x)
Output: evolved image u(x, t)

1 for each λ ∈ [0, 255], in increasing order do

2 let vλ(x) be the characteristic function of Xλu0 := {x, u0(x) ≥ λ};
3 apply to vλ an FDS-scheme until scale t; this yields the images wλ(t, .);
4 set u(x, t) = max{λ | wλ(t,x) ≥ 1/2} at each point (t,x).

3.4. Discussion. One can devise an FDS for the curvature motion which is
monotone and consistent. However, all such schemes cause, even after few iterations,
a non asked diffusion that creates new levels and spurious curvatures. As illustrated
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by Figures 5.4 and 5.5 and their comments, computing a curvature by FDS is sim-
ply disastrous, even on an image smoothed by LLS. On the other hand, FDSs lack
invariance and structural properties that curvature motions possess, namely:

• monotonicity: they lead to slightly oscillatory solutions, unless adequately
regularized;
• contrast invariance: FDSs create new grey levels and blurs edges, leading to
spurious diffusions around image extrema.
• Euclidean or affine invariance: FDSs are grid dependent.

We have just seen that the full contrast invariance can be restored by the stack filters.
But are stack filters based on FDS a sufficient solution? We will see that they are
not. By evolving sets sampled on a fixed grid, boundaries either jump by a positive
integer number of pixels, or they don’t move at all. If follows that these numerical
motions are quantized, and in particular blind to small curvatures. As we shall see
in the experiments, they fall short of matching the human perception precision. The
experiments will show that human fine perception of curvatures is better explained
by sampling all image level lines at fine sub-pixel resolution and by smoothing them
very accurately.

4. Level Lines Shortening. In this section, we set forth a continuous, grid
independent evolution of a digital image by curvature motion, that will jump over all
hurdles listed above. Yet to do so the process must be almost ludicrously sophisticated.
The last sections will have to prove that the effort was worth it.

This image processing algorithm, that we shall call Level Lines Shortening (LLS)
or Level Lines Affine Shortening (LLAS), first extracts all level lines of a digital
image, with a number of levels sufficient to grant an exact reconstruction of the initial
image. Then the algorithm simulates an image evolution by moving independently
and simultaneously all of its level lines by curve shortening (CS) (resp. affine curve
shortening (AS)). The evolved image is eventually reconstructed from its evolved level
lines. Thus the algorithm realizes the commutative diagram:

u0(·)

MCM/ACM=LLS/LLAS

��

level lines extraction // {Σλ,i
0 }λ,i

CS/AS

��

u(·, t) {Σλ,i
t }λ,i

reconstructionoo

We prove in a companion paper [13] that the image reconstructed from the evolved
level lines is a viscosity solution of the mean curvature motion (MCM) (resp. affine
curvature motion (ACM)) provided that the level lines at almost all levels evolve by
curve shortening (resp. affine shortening). The initial image will be considered as an
element of the space BL(Ω) of the digital images on a rectangle Ω interpolated by
bilinear interpolation. We state the theorem in this exact numerical framework, used
in the algorithm.

Theorem 4.1. Let u0 ∈ BL(Ω). Then the Level Lines Shortening evolution of
the function u0,

u(x, t) = LLS(t)u0(x), ∀x ∈ R
2, ∀t ∈ [0,∞)
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is a viscosity solution for the mean curvature PDE, with the initial data u0

{

ut = curv(u)|Du|, in R
2 × [0,∞)

u(·, 0) = u0, on R
2.

A similar result holds for LLAS and the affine curvature PDE, (ACM) with initial
condition u0.

The level lines (affine) shortening chain LL(A)S, described in Algorithm 7, is based
on a topological structure, the inclusion tree of level lines as a full and non-redundant
representation of an image, and on a topological property, the monotonicity of curve
shortening with respect to inclusion. The hierarchy of the level lines is therefore
maintained while performing the smoothing. Thus, the reconstruction can start with
the largest level line, namely the frame of the image, and continue by filling from top
to bottom in this inclusion the interior of each level line. At each step the lamina
bounded by the current level line is filled in with its own level, and these levels are
updated when passing to its descendants.

Algorithm 7: Level Lines Shortening (LL(A)S) Algorithm

Input: Original Image u0.
Output: The LL(A)S evolution of u0 at scale t: u(·, t).

1 Extract the tree of level lines {Σλ,i
0 }i∈Fλ,λ;

2 for Level line Σλ,i
0 do

3 Σλ,i
t = Discrete Curve/Affine Shortening of (Σλ,i

0 );

4 for Evolved Level line Σλ,i
t do

5 fill the interior of level line Σλ,i
t .

LL(A)S is illustrated in Figure 4.1. We perform and display each step of the
numerical chain. The level lines were extracted at half-integer gray values and were
chosen with a quantization step q = 4. The Moisan affine plane curve evolution [35]
is then applied independently to all level lines, at renormalized scale s = 4. This scale
is chosen so that a circle with radius r = 4 (where the unit is given by the length of a
pixel edge) disappears at scale s = 4. This normalization by the result is numerically
important for comparing numerical schemes with very different settings. A new image
which has exactly these curves as level lines is finally reconstructed. The result is by
Theorem 4.1 an affine invariant curvature motion (ACM) of the original image. The
rest of this section is devoted to several crucial details of LL(A)S regarding the level
lines extraction, their evolution, and the reconstruction algorithm.

4.1. Level Lines extraction. The simplest image interpolation that preserves
its continuity is the bilinear interpolation on the dual pixels. (A dual pixel is any
square whose vertices are centers of contiguous pixels). The bilinear interpolation in
the dual pixel is written in the form

u0(x, y) = axy + bx+ cy + d

where the parameters a, b, c, d are computed from the values taken at the four vertices
of the dual pixel, which are normal pixel values. The bilinear interpolated image is
the concatenation of the bilinear interpolations on all dual pixels; it is continuous,
but its gradient may present discontinuities.
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(a) (b)

(c) (d)

Fig. 4.1. Illustration of the LL(A)S numerical chain. (a) Original image. (b) Bilinear
level lines extraction. (d) Simultaneous and independent smoothing of level lines by affine
shortening. (c) Image reconstructed from shortened level lines.

4.1.1. Bilinear level lines. The equation for a level line at level λ of the bilinear
interpolated image inside a dual pixel can be written either

a(x− xs)(y − ys) + (λs − λ) = 0

or

bx+ cy + (d− λ) = 0.

In the first case, level lines are pieces of hyperbola, of asymptotes x = xs, y = ys.
When λ = λs the level line consists of two orthogonal straight lines crossing at the
saddle point (xs, ys), provided this point is inside the dual pixel. In the second case,
level lines are straight lines. This may lead to visual pixelization effects, for instance
when level lines pass through the center of a pixel and follow a dual-edge (see Figure
4.2). This phenomenon will be attenuated by taking for λ only half-integer values
(given that the digital image has integer values).
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Fig. 4.2. Gray levels for a piecewise bilinearly interpolated image. Three different sets of level
lines were computed. Left: gray levels from 10 to 100 with step 10. Observe how some of the
level lines (the ones at gray level 70) follow the Qedgels, producing an effect similar to pixelization.
Middle: level lines were computed at gray levels different from those of the original image but we get
90o crossings between level lines due to the presence of a saddle point. Nevertheless, these saddle
points will always appear inside the Qpixels and the curves never go along the grid of the digital
image. Right: gray level 11 to gray level 91 with quantization step 10. Pixelization effect no longer
arises since level lines are computed at gray levels different from those of the original image.

4.1.2. The inclusion tree. One can decompose an interpolated image into its
level lines at predefined levels. A fast algorithm, the Fast Level Set Transform (FLST)
performing the decomposition into a tree of shapes, is described in [10] and [36]. The
image is parsed into a set of parametric Jordan curves. This set is ordered in a tree
structure, induced by the geometrical inclusion. We say that a curve Σλ1 is a child
of the curve Σλ2 and we denote Σλ1 ≺ Σλ2 if its interior is included in the interior of
the latter. In addition, each curve has an assigned tag ±1 according to whether it is
the boundary of a connected component of a lower level set (sgn(Σλ) = −1) or upper
level set (sgn(Σλ) = +1).

Fig. 4.3. Tree of bilinear level lines.

For each gray level λ ∈ N + 1/2 there corresponds a finite set Fλ of level lines

{Σλ,i
0 }i∈Fλ . Each level line Σλ,i

0 is stored as a set of ordered points leaving the level
line interior on the left hand side. Thus, the tree of level lines is given by a finite set
of tagged polygonal lines, indexed by half-integer gray values

T0 = {Σλ,i
0 ; i ∈ Fλ, λ ∈ N+ 1/2}. (4.1)

An inclusion tree of bilinear level lines is displayed in Figure 4.3.
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4.2. Independent evolution of all level lines. As already described, the
affine shortening is numerically defined as an alternate filter of affine erosion and
affine dilation. Up to re-sampling issues, the scheme is monotonous with respect to
geometrical inclusion and therefore the tree structure of the level lines is preserved.
It consists of a finite set of Jordan curves, denoted by

Tn = {Σλ,i
n ; i ∈ Fλ, λ ∈ N+ 1/2}. (4.2)

Figure 4.1.(d) displays the affine evolution of the level lines appearing in Figure 4.1.(b).
As can be observed, the curves become smoother, oscillations due to the grid reduce,
and curves with small perimeter vanish. The inclusion tree structure is clearly pre-
served under the affine shortening evolution. The same chain applies to the curve
shortening by the Mackworth-Mokhtarian scheme. With a fine enough curve sampling
it is consistent with the curve shortening and therefore also numerically monotone.

Fig. 4.4. Fattening effect. From top to botom: the original image and its extracted
level lines with quantization step s = 16, their independent evolution by affine shortening at
renormalized scale l = 8 and the image reconstructed from the evolved level lines. Observe
that distinct, touching level lines tear apart and non-empty interiors appear at the saddle
points. At these points four squares, two black, two white, meet initially by their corners.
After evolution, fattened grey regions are liberated by the retraction of the square level lines
surrounding the black and the white squares.
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4.2.1. The fattening effect. Bilinear level lines can present self-intersections
at image saddle points. In that case, LLS develops a non-empty interior, meaning
that two distinct touching curves instantly tear apart, and that the space liberated
becomes a flat region with a grey level equal to the level line value. Thus the level
line “fattens”. This effect is easily explained by considering the classic evolution of
the level curves just above and just below the saddle curve. Let Σµ be a level line
passing through a saddle point (see Figure 4.4). Assume that the curve is the limit of
level lines from above and from below. More precisely, suppose (e.g.) that for slightly
higher levels λ the interiors of level lines Σλ include the interior of Σµ and that for
smaller levels each connected component of the interior of Σµ contains the interiors
of Σλ (this is always the case if u0 is a bilinear interpolation). Then the exterior
curve will evolve as the limit of the level lines surrounding it from the outside and
simultaneously all interior (touching) Jordan curves will evolve as the monotone limits
of interior level lines. Consequently, they will tear apart from the exterior curves, thus
liberating a flat region.

4.3. Image Reconstruction from a set of level lines. The algorithm de-
scribed in this section performs an exact image reconstruction from a topographic
map, i.e. from an arbitrary family of Jordan curves organized in a tree structure with
respect to geometrical inclusion.

The reconstruction starts from a topographic map, namely a family of discrete
level lines (typically obtained after (affine) curve shortening) {Σλ,i}i∈Fλ,λ∈Λ organized
in an inclusion tree structure. This tree is walked down (parent before children) and
the interior of the current level line is filled in with its level λ. Using that order, each
level line interior is painted before its descendants, ensuring that its private pixels
are at the correct level while non-private pixels get painted over by the children.
This yields an exact reconstruction for any digital image ud from its level lines at
half-integer levels:

Theorem 4.2. Let T = {Σλ,i; i ∈ Fλ, λ ∈ N + 1/2} be the tree of bilinear level

lines associated to ud. For every x let λ be such that x ∈ Int(Σλ) and ∀Σλ̃ ≺ Σλ,

x 6∈ Int(Σλ̃) and define

ũd(x) =

{

λ− 1/2, if sgn(Σλ) = −1
λ+ 1/2, if sgn(Σλ) = +1

Then ud ≡ ũd.

A closed curve Σ is stored as a set of ordered points {Pk(xk, yk)}1≤k≤N with N
depending on Σ. The real numbers xk and yk are the floating point coordinates of the
vertex number k of the polygon Σ. We need to fill in all pixels with integral coordinates
(j, i) inside the polygon. To avoid any ambiguity, the algorithm secures that yk is
never an integer by translating when necessary Σ by a tiny amount ε vertically or
horizontally, at the price of a minor numerical uncertainty in the reconstructed image.
The filling in of each curve is performed by a fast ray casting algorithm described
below.

4.3.1. Polygon intersections with the grid. The goal of Algorithm 8, which
is a preliminary to the filling algorithm, is to find the intersections of the polygonal
level line with all horizontal lines y = i. For any given i the intersection is in fact
the intersection of a segment [PkPk+1] of the polygon with the line y = i. These
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intersections are ordered by their abscissas so that xi
1 ≤ xi

2 ≤ · · · ≤ xi
p, where p

is even because Σ is a closed curve. This gives a simple and fast decision rule: a
pixel (j, i) is surrounded by the polygon if and only if j is within an odd interval
[xi

2k+1, x
i
2k+2].

Algorithm 8: Intersections of a polygon Σ with the grid

Input: Vertices Pk(xk, yk) of polygon Σ
Output: For each i, the ordered list Li of points of Σ on the line of equation

y = i
1 for all i do Li ← ∅;
2 for all segments [PkPk+1] do
3 for i ∈ [yk, yk+1] ∩ N do

4 (x, i)← [PkPk+1] ∩ {y = i};
5 Insert x in Li.

6 for all i do sort list Li.

4.3.2. Filling the interior. Line by line all odd intervals on Li are enumerated
and filled in with level λ ± 1/2 at all pixels with ordinate i whose abscissa is inside
such an interval, as shown in Algorithm 9.

Algorithm 9: Filling polygon Σ

Input: Sorted lists Li of intersections of Σ with lines {y = i}, level λ
Output: Pixels inside polygon Σ are at level λ± 1/2, pixels outside

unchanged
1 for all i do
2 for all xi

2k+1 ∈ Li do

3 for j ∈ N ∩ [xi
2k+1, x

i
2k+2] do

4 pixel (j, i)← λ± 1/2

Fig. 4.5. The level line 2D inclusion topology is reflected in the 1D ordering of their
intersections with the dual edges.

Due to the inclusion principle it is possible to go from the 2D topology of the level
lines to the 1D topology on a dual edge and conversely. Suppose that two or more
level lines belonging to different gray levels intersect a dual edge, leaving the same
data points outside and inside: denote them Pin and Pout (Figure 4.5(a)). Then the
restored gray value at Pout is the gray value associated to the largest shape ordered
by inclusion which leaves the pixel outside, whereas Pin belongs to the smallest shape
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that includes the pixel. If curves with different orientation cross the same dual edge
it is enough to update the gray value at Pin. This conforms to our choice of filling
the interiors of the lines in the order given by the level line inclusion tree.

Numerical examples of image reconstruction from the tree of evolved level lines
are displayed in Figure 4.1 and Figure 4.4.

4.4. Numerical properties of the LLS numerical chain.

4.4.1. Fixed point property. The filling algorithm itself is a stand alone image
reconstruction method, working for every family of curves endowed with levels and
a tree inclusion structure. To check its consistency, it is enough to take any digital
image u0, to extract its level lines at quantized gray levels, with quantization step
s = 1 but without applying any evolution. Then the digital image is reconstructed
exactly from its level line tree by the filling algorithm.

4.4.2. Local comparison principle and regularity. The order preserving
property or inclusion principle is the main structural requirement of a level line evo-
lution algorithm. It basically prevents the crossing of two different level curves and
therefore permits the construction of a unique image having a prescribed set of level
lines. Some level lines may present multiple crossings at saddle points, in which case
the level lines shortening develops a non-empty interior. The phenomenon is due to
an instantaneous tearing apart of two distinct, touching curves.

Any level curve with self-contact points develops a non-empty interior by CS
(curve shortening), which implies the formation of a flat area (see Figure 4.6.) We
compare in the following the LLS algorithms with the FDSs for mean curvature given
by Guichard et al. in [19]. The finite difference schemes (FDS) tested here have
been optimized by its authors to ensure a maximal rotation invariance and stability.
Nonetheless, they ensure neither monotonicity nor full contrast invariance. They
create new grey levels and blurs out the edges. It is true that the full contrast
invariance of an FDS is restored by its stack filter. Nevertheless, spurious diffusions
occur around the image extrema and at T-junctions or X-junctions. At saddle points
both algorithms create new extrema, and therefore spurious level lines. LLS solves
this issue, by separately evolving the level lines and then reconstructing the image.

Figure 4.6 compares various implementations of the mean curvature motion on
a checkerboard image (a) with calibration of the numerical scales. The left images
of each pair show the evolutions of the image by the various implementations of
mean curvature motion, while the right ones display a zoom at the X-junction and
the corresponding level lines. The iterated median filter (a) instantaneously stops
and leaves the checkerboard invariant. This may look fine, but it is not consistent
with curvature motion. LLS (b) is performed with a 1D gaussian kernel of standard
deviation σ = 2. The level lines are encoded with a p = 5 points per pixel precision
and displayed with a s = 4 quantization step, starting at an offset o = 96 . The figure
next shows the effect of FDS (c) at normalized scale l = 3, the FDS stack filter (d)
at normalized scale l = 3, and finally the LLS evolution with the same normalized
scale. At X−junctions, both FDS and the FDS stack filter create spurious diffusions,
while LLS doesn’t. With LLS a grey region develops at the junction, because level
lines corresponding to different gray levels instantly tear apart. This is not necessarily
gratifying perceptually, but it is mathematically consistent.

Figures 4.7 and 4.8 put in evidence the failures of FDSs on a binary fingerprint. Up
to some critical scale, FDS stack filters restore the correct topology, but in case of fast



20

(a)

(b)

(c)

(d)

Fig. 4.6. The four pairs present various implementations of the mean curvature motion
on a checkerboard image (left column) and zooms at an X-junction, with its level lines over-
printed on the image (right column). From top to bottom : (a). original image (the zoom
is by bilinear interpolation), (b). Level lines shortening, (c). Finite difference scheme, (d)
FDS stack filter. Only LLS does not create new extrema.
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Fig. 4.7. Various implementations of the affine curvature motion. the original image
is displayed alone in the left column. In the other columns, from left to right: LLAS, FDS
and FDS-stack filter at renormalized scales l = 4 (top) and l = 8 (bottom). In the case of
the affine curvature scale space, the gradient amplitude keeps down ridge diffusion, unlike
the mean curvature scale space. In general the affine smoothing performs better than the
curvature motion (compare with Figure 4.8).

Fig. 4.8. Various implementations of the mean curvature motion. Are compared (from
left to right): LLS, FDS, the FDS-stack filter and the median filter at renormalized scales
l = 4 (top) and l = 8 (bottom). Up to some critical scale, the stack filters restore the correct
topology, but in case of fast diffusions they break off as well. Observe that spurious diffusion
mixing the ridges occurs in all cases except LLS, which tears apart ridges and emphasizes
crossovers. A comparison with Figure 4.7 shows that the affine curvature schemes perform
all better than their analogous curvature schemes.

diffusions they break off as well. Oscillating ridges with high gradient amplitudes make
it difficult to keep separated the various connected components during the smoothing
process. A visual comparison of these two figures proves abundantly that the affine
curvature is a much better shape preserver than the curvature motion.

4.5. JPEG artifacts reduction on color images. The prevailing JPEG 1992
image coding format aims at compressing images while maintaining acceptable image
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quality. This is achieved by dividing the image in 8×8 pixels blocs and applying a
discrete cosine transform (DCT) on the partitioned image. The resulting coefficients
are quantized. In particular the less significant coefficients are set to zero. This
process causes several types of artifacts such as Gibbs oscillations, staircase noise along
curving edges, and checkerboard patterns (which are nothing but cosine functions).
The phenomenon is illustrated in Figure 4.9.

LL(A)S seems to be a useful postprocessing technique for JPEG artifact reduction.
In color images LLS is applied independently to each color channels.

(a) (b)

Fig. 4.9. (a). Original image, suffering of JPEG artifacts such as Gibbs oscillations,
staircase noise along curving edges and checkerboarding. (b). LLAS is applied separately to
each RGB channel. Although diffusions occur at junctions, LLAS considerably reduces these
artifacts.

4.5.1. Accurate mean curvature evolution. The main goal of the imple-
mentation is to obtain and move level lines with arbitrarily high sub-pixel precision.
Indeed, level lines are encoded as polygons whose vertices have double precision co-
ordinates. Moving simultaneously level lines extracted with high sample precision
allows straight level lines with high gradient to stand still with LLS, whereas they are
diffused by FDS, even in its stack variant.

The phenomenon is shown in Figure 4.10 on a photograph of one of Botticelli’s
paintings. We display the original image and three different zooms of different parts of
the image: the window frames (b) the trees in the background (c) and finely textured
bricks (d). We illustrate the original details (left column) and the differences in
absolute value between the original and its evolutions by LLS (middle column) and
by the FDS stack filter (right column). The FDS stack filter was applied at normalized
scale l = 2 and the LLS evolution at an equivalent normalized scale. For LLS the
level lines were quantized at half integer levels with a step s = 1 and extracted with a
precision of p = 5 points per pixel. Even though the curvature is zero, the FDS stack
filter lets level lines with high gradient evolve, while with LLS straight lines stand
still.

5. The Curvature Microscope. Whenever we talk about curvatures in a dig-
ital image, we actually refer to the curvatures of the level lines associated to the
image. Yet, most curvature computation algorithms are based on finite difference
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(a)

(b)

(c)

(d)

Fig. 4.10. Zooms on three highlighted details in the painting “Three miracles of St. Zenobius”
by Sandro Botticelli (Left). Middle column: the differences in absolute value between the original
image and the evolutions by level line shortening. Right: same result, after applying the FDS stack
filter. Even though the curvature is zero, the FDS stack filter lets level lines with high gradient
evolve, while with LLS straight lines stand still.
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schemes (FDS) with formula (2.1). But with FDSs, the curvature depends on the
gray values of a whole neighborhood. Consequently, high oscillations along transverse
level lines do appear.

For the sake of precision, curvatures should be computed directly on level lines and
not on a discrete grid. A polygonal line approximation followed by uniform and fine
sampling allows one to compute reliable curvatures, but only after level line smoothing.
This smoothing is necessary because the initial level lines present oscillations due to
the initial aliasing and to the interpolation itself. Thus curvatures wouldn’t correspond
to our visual perception. But, more fundamentally, the perception of curvature is and
must be multiscale. The striking difference between an FDS result and an LLS result
is displayed in Figure 5.1.

(a) (b) (c)

Fig. 5.1. The curvature color display rule. Zero curvatures are displayed in yellow,
positive curvatures are shown in a gradation from yellow to red, and negatives from yellow to
green. The initial image (a) had its curvatures computed in two different ways: by an FDS
by formula (2.1) (b), and by LLS (c). In the first case the curvature presents oscillations,
whereas the second result is coherent with our perception.

With LLS, the curvature is computed at each vertex of each level line. A curvature
image is then created by associating to each dual pixel an average of all curvatures
computed in it.

5.1. Discrete curvature for a polygonal line.. We recall that each level line
is stored as a set of ordered points

Σ = {Pi(xi, yi)}i=0..n, with P0 = Pn.

The simplest discrete scalar curvature ki computed at each vertex Pi is obtained by
taking the triple (Pi−1, Pi, Pi+1) and computing ki as the inverse of the circumscribed

radius Ri of this triangle. Set −→ui = (u1
i , u

2
i ) =

−−−−→
Pi−1Pi and its length ui = |

−−−−→
Pi−1Pi|,

respectively −→vi = (v1i , v
2
i ) =

−−−−−−→
Pi−1Pi+1, with the corresponding length vi = |

−−−−−−→
Pi−1Pi+1|.

Then

Lemma 5.1. The curvature at vertex Pi is given by

ki = 2
u1
iu

2
i+1 − u2

iu
1
i+1

uiui+1vi
. (5.1)
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(a) (b) (c) (d)

Fig. 5.2. The curvature map numerical chain: (a) original image, (b) level lines, uni-
formly sampled, (c) evolved level lines, (d) curvature image.

5.2. Curvature map. The algorithm computing the curvature map of any dig-
ital image is based on LLS. The image level lines at given quantization levels are first
extracted, then uniformly sampled with fine sub-pixel step, and smoothed by affine
or curve shortening. Curvatures are then computed at each vertex of each level curve
and associated to the dual pixels containing the vertex. A curvature image is eventu-
ally created by attributing to each dual pixel the average of all curvatures computed
in it.

Algorithm 10: Curvature map

Input: Original Image u0.
Output: Curvatures u0 at scale t: u(·, t).

1 Extract the tree of level lines {Σλ,i
0 }i∈Fλ;λ;

2 Sample uniformly each level line Σλ,i
0

3 for Level line Σλ,i
0 do

4 Σλ,i
t = Curve Shortening Flow (Σλ,i

0 );

5 for Σλ,i
t = {Pi(xi, yi)}i=0..n do

6 ki = 1/Ri;

7 for each dual pixel do
8 k = mean(ki1 , ki2 , ..., kim).

Topological curvatures and scalar curvatures can be computed as well. Indeed,
the information encoded in the tree enables the computation of signed curvatures,
where the sign is either given by the gradient ascent, or by the topological orienta-
tion of the curve. In the first case, the curvature changes sign when the grey scale is
reverted. Indeed, curv(−u) = −curv(u). Thus, a black disk and a white disk on grey
background have opposite curvatures. The topological curvature is instead invariant
to contrast changes. But it is nonlocal, since its sign depends on the global curve
topology and not on the local curve shape. Figure 5.3 illustrates the difference on a
famous Julesz texture discrimination experiment. On the left image, a pre-attentively
undiscriminate texture pair. The “10” in random orientations surround a square
made of “S”. The middle image shows the scalar curvature defined by formula (2.1).
This curvature is identical for both shapes. The topological curvature (right) changes
because the “0” have an interior circle missing in the “S”. This proves that our per-
ception does not compute the topological curvature. If it did, we would discriminate
the two textures.
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(a) (b) (c)

Fig. 5.3. (a) Original image, Julesz pair of undiscriminate textures (b). Signed curva-
tures, no discrimination (c). Topological curvatures: probably not computed in our percep-
tion, it would discriminate the texture pair.

5.3. Comparison with FDSes. One could object that the above shortcomings
of FDSs can be fixed by interpolating the image on a very thin grid. All schemes
being consistent eventually should give similar results. The comparison would be
fair because the LLS method actually starts with a subpixel level line description,
equivalent to sampling on a finer grid. Nevertheless, curvature computation by FDS
wouldn’t work satisfactorily, even after a finer interpolation, and even if the smoothing
has been done by LLS, which has the advantage of being less diffusive.

To prove this, we run an FDS and LLS on a very simple geometric image, as
displayed in Figure 5.4. The FDS was the scheme implemented in [17], which creates
minimal smoothing. The LLS was the affine level line motion, whose algorithm can
now be tested online. The Level Lines Affine Shortening Algorithm was applied to
the original image at the normalized scale l = 2. In Figure 5.4 the curvature map
is estimated by a direct computation on the shortened level lines and compared to
the curvature map computed on the smoothed image by the FDS (approximating the
directional derivative uξξ with a 3× 3 scheme).

Fig. 5.4. From left to right: the original image, the curvature map estimated by a direct
computation on the shortened level lines, the curvature map computed by FDS on the LLAS
image at normalized scale l = 2 .

On the other hand an FDS with grid refinement was tested in Figure 5.5. The
image was zoomed in by a factor Z = 2 using bilinear interpolation. The finite
difference scheme for the affine curvature motion was run and the curvatures computed
by FDS, before and after smoothing.
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Fig. 5.5. From left to right: the original image sampled on a thinner grid using a bilinear
zoom by a factor Z = 2, the curvature map before and after FDS filtering at renormalized
scale l = 4, computed with a 3× 3 stencil.

As can be seen by comparing Figures 5.4 and 5.5, the difference between both
smoothed images can be perceived by the human eye as a slight blur with the FDS,
due to the diffusion term in the FDS. Note however (by comparing the lower -right
images in both figures) that a large diffusion occurs after several iterations of the
finite differences scheme. Of more concern, however, is the fact that wrong curva-
tures appear everywhere with the FDS: see how red and green color alternate on all
boundaries. With LLS, in contrast, the computed curvatures are coherent with the
geometry.

5.4. Curvature Microscope. By performing a scaled zoom on the considered
image one can expect to have one level line passing through each dual pixel, and
thus to observe more and more exactly the curvatures at microscopic scale. The fact
that all level lines are polygons with real coordinates allows one to zoom in the image
at an arbitrary resolution. This is necessary to explore visually the intricacy of the
local image structure. Hence the name of curvature microscope given to the final
visualization.

Since the curve shortening is only defined for closed curves, a rule is needed for
the level lines finishing on the image border. One could close these lines by joining
their endpoints by (e.g.) a geodesic on the image boundary. But such junctions
would create strong curvatures at the meeting points of the level lines with the image
frame. To avoid this phenomenon a standard extrapolation is performed by flipping
the image left and right, up and down and extending it in that way by a wide band.

For better rendering, the curvature map is printed over the smoothed image and
the latter is attenuated (its gray values are concentrated around 128). Curvature
values shade from red to green as follows: positive curvatures scale from red down
to yellow; negative ones go down from yellow to green. Thus yellow means a small
curvature. The image curvature microscope is a complex visualization tool dealing
with three scale space parameters

1. the zooming factor;
2. the quantization step of the level lines;
3. the renormalized smoothing scale (the scale l at which a circle of radius r = l

vanishes).
These parameters vary according to the total variation and the gradient amplitude of
the image and therefore cannot be a priori fixed for any type of image. However, the
zooming factor is proportional to the renormalized smoothing scale. The quantization
step can be fixed once for all.
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(a)

(b)

(c)

Fig. 5.6. Image curvature microscope. (a) the original image, 2X zoom and 4X zoom of the
up-right corner; (b) curvature map computed on the original level lines with a quantization step
s = 36; (c) curvature map computed on shortened level lines at normalized scales l = 1, l = 2, and
l = 4 (the zoom factor must be equal to the normalized smoothing scale). The left column permits to
observe the curvature densities. A zoom is necessary to observe the single curvatures. The middle
column and right column focus more and more on shape and texture details.

6. The curvature Gallery. After processing the pixelized level lines become
accurate curves with sub-pixel control points, whose curvature can be faithfully com-
puted. Thus the whole chain can be viewed as a numerical preprocessing before
further numerical analysis and feature extraction. But there is also a strong interest
in the direct visualization of the level lines and of the microscopic curvature map of
an image. The following gallery on a variety of image details illustrates the recovery
of shapes freed from their aliasing, JPEG, and noise artifacts.
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6.1. Attneave’s cat. Short time smoothing reveals useful invariant features
(curvature extrema, inflection points, angles and junctions). Therefore, as pointed
out by Attneave, objects are represented with great economy and striking fidelity by
marking the points at which their contours change direction maximally. In Figure
6.1, the head of the Attneave cat is scanned and processed by LLAS. Before filtering,
the curvature values reflect essentially the pixel staircases: positive and negative
curvatures in red and green alternate along contours. A visual inspection shows that,
after LLAS, the level curves can be easily segmented into concave and convex parts,
separated by flat parts (in yellow).

Fig. 6.1. Part of Attneave cat, its corresponding level lines and curvatures. LLAS evo-
lution, smoothed level lines and curvature map after filtering.

6.2. Geometric shapes. The same improvements can be demonstrated on the
geometric drawings of Figures 6.2, 6.3 and 6.4. A straight oblique line appears serrated
because of its pixel representation. Thus the right angle that it forms with another
line is simply lost in clutter: there are locally right angles everywhere.

Fig. 6.2. Image and corresponding curvatures before and after LLAS filtering.

When a curve stops onto another curve, T-junctions or Y-junctions are created.
In such cases, our perception tends to interpret the interrupted curve as the boundary
of some object undergoing occlusion. In the image on the left of Figure 6.3, which
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is a typical Kanizsa experiment demonstrating our layered perception, one tends to
see a grey rectangle on top of a black polygon. The T-junctions creating this layered
illusion can be detected by their adjacent positive and negative curvatures. Note that
a short time smoothing is necessary to extract these meaningful curvatures from the
clutter of oscillating curvatures due to the staircase effect.

Fig. 6.3. Original image, non-filtered curvatures, smoothed level lines by LLAS and
curvature map after filtering.

Another series of typical experiments was dedicated by Kanizsa to the trans-
parency illusion, by which, in presence of X-junctions, our perceptions infers the
presence of two objects on top of each other, the upper one being transparent. For
instance the left image of Figure 6.4 is spontaneously described by viewers as a grey
transparent disk in front of a black wedge. Kanizsa [23] pointed out the paradox of
such a description, which sees two objects where there are in fact four regions with
different grey levels. The local configuration responsible for the transparency illusion
is the X-junction, seen as the apparent crossing of the boundaries of the disk and
of the black wedge. As illustrated after applying LLAS to the figure, X junctions
can be detected as a particular configuration of adjacent negative, positive, and zero
curvatures.

Fig. 6.4. Top: original image, extracted bilinear level lines, non-filtered curvatures. Bot-
tom: LLAS image, smoothed level lines and curvature map.
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6.3. Graphics and aliasing. Aliasing due to pixelization is common in scanned
documents. As illustrated by all experiments, LLAS can be used for a graphic quality
improvement smoothing contours. This is actually done at the cost of smoothing out
corners and junctions, but this smoothing is necessary to single them out as the stable
peaks of curvature. All in all, in most zoomed-in figures the improvement is manifest,
starting with the laughing mouse of Figure 6.5.

Fig. 6.5. Top: original image, its corresponding level lines and curvatures. Bottom:
LLAS evolution, smoothed level lines and curvature map after filtering.

A decent recovery is possible even with badly pixelized shapes such as the one
reproduced in Figure 6.6. This drawing is not perfectly restored because of the fat-
tening effect at junctions, but it definitely improves on the original, and opens the
way to a geometric analysis that would be impossible on the original.

Fig. 6.6. Top: original image, its corresponding level lines and curvatures. Bottom:
LLAS evolution, smoothed level lines and curvature map after filtering.

But the example in Figure 6.7 demands the impossible. Although some undulating
curves still may be figured out by an intelligent viewer, the figure locally is nothing
but a checkerboard at pixel size. Thus the curvature motion removes all squares,
black and white, and creates a huge fattening effect.
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Fig. 6.7. Top: original image, its corresponding bilinear level lines and curvatures. Bot-
tom: LLAS evolution, smoothed level lines and curvature map after filtering.

6.4. Pre-attentively undiscriminable textons. Julesz conjectured in his sec-
ond texture perception theory [22] that two different textures cannot be pre-attentively
discriminated if they have the same texton density. For instance the Julesz patterns
in Figure 6.8 are different, but have the same “texton densities”, namely the same
number of bars, corners, and terminators. After filtering, the microscopic curvature
map will permit to compute a density of positive, negative and zero curvatures.

Fig. 6.8. Top: original image, its corresponding level lines and curvatures. Bottom:
LLAS evolution, smoothed level lines and curvature map after filtering.
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6.5. Bacteria morphologies. Bacteria shapes are determined by the bacterial
cell wall and cytoskeleton. The curvature is an intrinsic geometrical descriptor, useful
for shape discrimination. In Figure 6.9 we display bacterial morphologies and the
corresponding curvature map. Bacteria porosities are characterized by strong curva-
ture oscillations, whereas the borders of bacterial shapes present smooth curvature
variations. In microbiology, many tasks involve the counting of geometrically simple
objets. An accurate curvature filter permits to make curvature statistics.

(a)

(b)

Fig. 6.9. (a). Original image (b). Curvature Map

6.6. Topography. Digital elevation models represent ground surface topogra-
phy. Gray levels indicate ground elevation (lightest shades for highest elevations) and
therefore the image level lines are true level lines. As can be seen in Figure 6.10, the
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set of level lines of a digital image is a natural representation of the shape contents,
because it provides topological information invariant to contrast changes. The bilin-
ear interpolation is the most local of continuous interpolations preserving the order
between the gray levels of the image. Because the interpolation is continuous, level
lines with different gray levels never touch. However, they are concatenations of pieces
of hyperbolae and straight segments and hence present oscillations along transverse
contours. A short time smoothing reduces the oscillations and straightens up the
edges. The remaining curvature extrema after filtering become relevant as geometric
shape descriptors.

Fig. 6.10. Digital elevation map, its corresponding level lines (for once a real topographic
map), the affine smoothed level lines and their curvature map.

The fragment of scanned map in Figure 6.11 is exemplary, in its amount of ringing,
aliasing, and JPEG artifacts. Such graphic images are satisfactorily restored with
short time affine smoothing. The essential ingredient in restoring graphic image, is
to remove the lines distortion without creating new level lines. This requirement is
respected to the letter by LL(A)S, which only smooths out existing level lines.
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Fig. 6.11. Top: Piece of map with roads, its corresponding level lines and curvature map
before filtering; smoothed image, shortened level lines and curvature map after filtering.

6.7. Textures. The experiments of Figures 6.12 and 6.13 illustrate the potential
use of LLAS to restore the image micro-geometry and to facilitate the identification
of smoothly varying shapes in a texture.

Fig. 6.12. Original image, extracted level lines, smoothed level lines and curvature map.

Fig. 6.13. Original image and its curvature map, filterd image and its curvature map.
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6.8. Paintings. Even on details of paintings, this geometric analysis can be
relevant. As already mentioned, the LLAS evolution can be used for noise reduction
and picture restoration. In Figure 6.14 the desaliasing successfully restores the paint
strokes and improves for example the perception of the pearls and of their shadows.

Fig. 6.14. Original photo-painting, LLAS evolution and curvature map after filtering.

Leonardo’s portrait of Mona Lisa is remarkable for its sfumato technique of
soft shaded modeling. The stylistic motifs are reflected in the fact that level lines
fall widely apart like if it were a very blurry image. The experiment of Figure 6.15
demonstrates the amazing sparsity of visual information in the Mona Lisa. It is only
by a few level lines, falling widely apart, and with very smooth corners, that all
nuances of the Mona Lisa face are suggested.

Fig. 6.15. Extraction with zoom of Mona Lisa photograph, its corresponding level lines
and curvatures. LLAS evolution, affine smoothed level lines and curvature map after filtering.

6.9. Text processing. The same good effects are observable with pixelized writ-
ten text. After the application of LLAS the image in Figure ?? retrieve a curvature sig-
nature that is obviously usable for handwriting recognition. To that aim the causality
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of the process is essential: no creation of new levels and no creation of new curvatures.

Fig. 6.16. Original image and its corresponding LLAS evolution, smoothed level lines
and curvature map after filtering.

6.10. Fingerprints restoration and discrimination. Minutiae such as cores,
bifurcations and ridge endings characterize uniquely fingerprints. Their detection
requires a careful smoothing, particularly to avoid a spurious diffusion mixing the
ridges. The main objective of smoothing is to sieve the curvature extrema. Indeed,
many are present everywhere on the ridge borders before smoothing. LLAS removes
these ridge border oscillations and provides a smooth version of the fingerprint on
which the curvature map locates its characteristic points. Observe in Figure 6.17 that
by performing pixel evolutions, the ridge endings shrink fast, and the islands and
crossovers diffuse. The subpixel smoothing instead tears apart ridges and emphasizes
crossovers.

Fig. 6.17. Original fingerprint, Level Lines Affine Shortening and its Curvature map.

7. Conclusion. Full contrast invariance can be restored by the stack filters
based on finite difference schemes but they are not sufficient at any scale. Numerical
motions based on pixel approximation are quantized, and in particular blind to small
curvatures. This drawback was overcome by evolving independently the level curves
of the image and by reconstructing from them a new image which has exactly these
level lines.

The first outcome of the Level lines Shortening algorithm is the evolved image,
which presents some sort of denoising, simplification, and desaliasing. But the main
outcome is an accurate curvature estimate on all level lines. As a visualization tool,
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the fact that all level lines are polygons with real coordinates allows to zoom in the
image at an arbitrary resolution. This is necessary to explore visually the intricacy of
the local image structure. Hence the name of curvature microscope given to the final
visualization.

There is no chance whatsoever of extending the approach proposed here to 3D
images. In 3D the level surfaces evolving by curvature motion can generate singular-
ities. They cannot be efficiently parameterized. The state of the art is therefore to
use the Osher-Sethian level set method. Thanks to Grayson’s theorem, the 2D case
has a very peculiar structure which has been taken advantage of.
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