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Stronger 3SUM-Indexing Lower Bounds

Eldon Chung∗ Kasper Green Larsen†

Abstract

The 3SUM-Indexing problem was introduced as a data structure version of the 3SUM problem, with the goal

of proving strong conditional lower bounds for static data structures via reductions. Ideally, the conjectured

hardness of 3SUM-Indexing should be replaced by an unconditional lower bound. Unfortunately, we are far from

proving this, with the strongest current lower bound being a logarithmic query time lower bound by Golovnev et

al. from STOC’20. Moreover, their lower bound holds only for non-adaptive data structures and they explicitly

asked for a lower bound for adaptive data structures. Our main contribution is precisely such a lower bound

against adaptive data structures. As a secondary result, we also strengthen the non-adaptive lower bound of

Golovnev et al. and prove strong lower bounds for 2-bit-probe non-adaptive 3SUM-Indexing data structures via

a completely new approach that we find interesting in its own right.

1 Introduction

In the 3SUM Problem, we are given a set S of n group elements from an abelian group (G,+) and the goal is to
determine whether there is a triple a, b, c ∈ S such that a + b = c. The 3SUM Problem was originally introduced
by Gajentaan and Overmars [13] as a means of establishing hardness of geometric problems. Concretely, it was
conjectured that 3SUM requires Ω(n2) time when the underlying group is the set of reals and we use the Real-
RAM computational model. By reductions, this conjecture implies similar lower bounds for a wealth of geometric
problems, see e.g. [5, 27].

While originally being restricted mostly to geometric problems, the seminal work by Pǎtraşcu [23] showed that
a suitable integer version of 3SUM (e.g. G is the integers modulo n3), may be used to prove hardness of numerous
fundamental algorithmic problems (see e.g. [18, 4, 1, 23]) in the more realistic word-RAM model. These lower
bounds are based on the so-called 3SUM Conjecture, asserting that no n2−δ time 3SUM algorithm exists for any
constant δ > 0. To date, the fastest 3SUM algorithm runs in time O(n2(lg lg n)O(1)/ lg2 n) [9], which is far from
refuting the conjecture. The 3SUM Conjecture is now one of the pillars in fine-grained complexity and much effort
has gone into understanding its implications for algorithm lower bounds.

Highly related to algorithm lower bounds is lower bounds for data structures. While more progress has been
made on proving unconditional lower bounds for data structures compared to algorithms, current state-of-the-art
lower bounds are still only polylogarithmic [19, 22, 20]. This lack of progress motivates fine-grained conditional
lower bounds also for data structures. The first approach in this direction, is via the Online Matrix-Vector Problem
by Henzinger et al. [17]. Their framework yields polynomial conditional lower bounds for dynamic data structures
via reductions from multiplication of a boolean matrix and a boolean vector, with addition replaced by OR and
multiplication replaced by AND. However, their framework is inherently tied to dynamic data structure problems,
where a data set is to be maintained under update operations. As a means to addressing static data structure
problems, Goldstein, Kopelowitz, Lewenstein, and Porat in [14] introduced the 3SUM-Indexing Problem.

3SUM-Indexing. The 3SUM-Indexing problem was first defined by Demaine and Vadhan in an unpublished
manuscript [10] and then by Goldstein, Kopelowitz, Lewenstein, and Porat in [14] and is as follows:

Definition 1 (3SUM-Indexing). Let (G,+) be a finite abelian group. Preprocess two sets of group elements
A1, A2 ⊆ G each of size n into a data structure of S memory cells of w bits so that given any query group element
z, deciding whether there exists a1 ∈ A1 and a2 ∈ A2 such that a1 + a2 = z is done by accessing at most T memory
cells.
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A number of hardness conjectures were provided together with the definition of the 3SUM-Indexing Prob-
lem. Combined with reductions, these conjectures allow establishment of conditional lower bounds for static data
structures. To be consistent with the terminology used for unconditional data structure lower bounds, which are
typically proved in the cell probe model [29], we refer to accessing a memory cell as probing the cell. The following
conjectures were made regarding the hardness of 3SUM-Indexing:

Conjecture 1 ([14]). Any data structure for 3SUM-Indexing with space S and T = O(1) probes must have S =
Ω̃(n2).

Conjecture 2 ([10]). Any data structure for 3SUM-Indexing with space S and T probes must have ST = Ω̃(n2).

Conjecture 3 ([14]). Any data structure for 3SUM-Indexing with space S and T = O(n1−δ) probes must have
S = Ω̃(n2).

Clearly the last conjecture is the strongest, and in general, we have the following implications:

Conjecture 3 ⇒ Conjecture 2 ⇒ Conjecture 1

These conjectures have been successfully used to prove fine-grained hardness of several natural static data structure
problems ranging from Set Disjointness, Set Intersection, Histogram Indexing to Forbidden Pattern Document
Retrieval [14].

Very surprisingly, Golovnev et al. [15] showed that the strongest of these conjectures, Conjecture 3, is false.
Concretely, they gave a data structure for 3SUM-Indexing with T = Õ(n3δ) and S = Õ(n2−δ) for any constant
δ > 0. This refutes Conjecture 3, but not the remaining two conjectures. Their data structure is based on an
elegant use of Fiat and Naor’s [12] general time-space tradeoff for function inversion.

The refutation of Conjecture 3 only makes it more urgent that we replace these conjectured lower bounds by
unconditional ones. However, depressingly little is still known in terms of unconditional hardness of 3SUM-Indexing.
First, [10] proved Conjecture 1 in the special case of T = 1. Secondly, in the recent work by Golovnev et al. [15],
the following was proved for non-adaptive data structures:

Theorem 1 ([15]). Any non-adaptive cell probe data structure answering 3SUM-Indexing queries for input sets of
size n from an abelian group G of size O(n2) using S words of w bits must have query time T = Ω(lg n/ lg(Sw/n)).

A non-adaptive data structure is one in which the cells to probe are chosen beforehand as a function only of
the query element z. That is, the data structure is not allowed to choose which memory cells to probe based
on the contents of previously probed cells. Proving lower bounds for non-adaptive data structures is often easier
than allowing adaptivity, see e.g. [8, 6, 25], and Golovnev et al. remark: ”It is crucial for our proof that the
input is chosen at random after the subset of data structure cells, yielding a lower bound only for non-adaptive
algorithms.” [15]. Golovnev et al. explicitly raised it as an interesting open problem (Open Question 3 in [15])
whether a similar lower bound can be proved also for adaptive data structures.

1.1 Our Contributions

Our main contribution is a lower bound for 3SUM-Indexing that holds also for adaptive data structures:

Theorem 2. Any cell probe data structure answering 3SUM-Indexing queries for input sets of size n for abelian
groups ([m],+ mod m) with m = O(n2) and ({0, 1}2 lg(n)+O(1),⊕) using S words of w = Ω(lg n) bits must have
query time T = Ω(lgn/ lg(Sw/n)).

Our lower bound matches the previous bound from [15], this time however allowing adaptivity. Moreover, it
(essentially) matches the strongest known lower bounds for static data structures (the strongest lower bounds peak
at T = Ω(lgn/ lg(Sw/n)) [20]), thus ruling out further progress without a major breakthrough (also in circuit
complexity [28, 11]).

Our proof is based on a novel reduction from Pǎtraşcu’s Reachability Oracles in the Butterfly graph problem [24].
This problem, while rather abstract, has been shown to capture the hardness of a wealth of static data structure
problems such as 2D Range Counting, 2D Rectangle Stabbing, 2D Skyline Counting and Range Mode Queries,
see e.g. [26, 7, 16] as well as for dynamic data structure problems, including Range Selection and Median [22] and
recently also all dynamic problems that the Marked Ancestor Problem reduces to [21, 3], which includes 2d Range
Emptiness, Partial Sums and Worst-Case Union-Find. Our work adds 3SUM-Indexing and all problems it reduces
to, to the list.
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Even Smaller Universes. The reduction from Reachability Oracles in the Butterfly Graph problem gives lower
bounds for abelian groups of size Ω(n2), leaving open the possibility of more efficient data structures for smaller
groups. Indeed, Ω(n2) cardinality of the groups seems like a natural requirement for hardness, as there are n2 pairs
of elements a1 ∈ A1 and a2 ∈ A2 and thus for smaller groups, one might start to exploit structures in the sumset
A1 +A2 to obtain more efficient data structures. We therefore investigate whether the lower bound in Theorem 2
can be generalized to smaller groups. Quite surprisingly, we show that:

Theorem 3. Any cell probe data structure answering 3SUM-Indexing queries for input sets of size n for abelian
groups ([m],+ mod m), with m = O(n1+δ) and ({0, 1}(1+δ) lg(n)+O(1),⊕) for a constant δ > 0, using S words of
w = Ω(lg n) bits must have query time T = Ω(lg n/ lg(Sw/n)).

Thus we get logarithmic lower bounds for linear space data structures, even when the group has size only n1+δ.
To prove Theorem 3, we revisit Pǎtraşcu’s Lopsided Set Disjointness (LSD) communication game, which he also

used to prove his lower bound for Reachability Oracles in the Butterfly graph problem. We give a careful reduction
from LSD to 3SUM-Indexing on small universes, thereby establishing Theorem 3.

Non-Adaptive Data Structures. As another contribution, we revisit the non-adaptive setting considered by
Golovnev et al. [15]. Here we present a significantly shorter proof of their lower bound and also improve it from
T = Ω(lg n/ lg(Sw/n)) to T = Ω(lg |G|/ lg(Sw/n)). Concretely, we prove the following theorem:

Theorem 4. Any non-adaptive cell probe data structure answering 3SUM-Indexing queries for input sets of
size n for an abelian group G of size ω(n2), using S words of w = Ω(lg n) bits must have query time T =
Ω(min{lg |G|/ lg(Sw/n), n/w}).

We remark that the proof of Golovnev et al. [15] cannot be extended to a lg |G| (technically, they require |G|/n
queries to survive a cell sampling, whereas we only require n queries to survive).

Our improvement has a subtle, but interesting consequence. Concretely, if the size of the group grows to sub-
exponential in n, say |G| = 2

√
n, then the lower bound becomes T = Ω(min{√n/ lg(Sw

n ), n/w}). Since it is most
natural to assume the cell size is large enough to store a group element, i.e. w = Ω(lg |G|) = Ω(

√
n), the lower

bound is still at least T = Ω(
√
n/ lgS). While such large groups are perhaps unrealistic, one can also interpret the

result as saying that if we are non-adaptive and attempt to design a data structure that does not exploit the size
of the underlying group, then we are doomed to have a slow query time.

Non-Adaptive 2-Bit-Probe Data Structures. Finally, we consider non-adaptive data structures restricted
to T = 2 probes in the bit probe model, meaning that each memory cell has w = 1 bits. The lower bound from
Theorem 1 by [15] in this case is S = Ω̃(n3/2) (see the paper [15] for the general formulation S = Ω̃(n1+1/T ))
and our lower bound from Theorem 4 is S = Ω̃(n(|G|/n)1/T ) = Ω̃(

√

n|G|). We significantly strengthen this result
by proving an S = Ω(|G|) lower bound for an abelian group (G,+), completely ruling out any non-trivial data
structure with 2 non-adaptive bit probes (with |G| space, we can trivially store a bit vector representing the sumset
A1 +A2 and have T = 1 while being non-adaptive):

Theorem 5. Any non-adaptive data structure for 3SUM-Indexing such that T = 2 and w = 1 requires S = Ω(|G|)
for an abelian group (G,+).

Our proof takes an interesting new approach to data structure lower bounds and we find that the proof itself
is a valuable contribution to data structure lower bounds. The basic idea is to view the memory cells of the data
structure as a graph with one node per cell. The queries then become edges corresponding to the T = 2 memory
cells probed. If the number of memory cells is o(|G|), then the graph has a super-linear number of edges. This
implies that its girth is at most logarithmic and hence we can find a short cycle in the graph. A cycle is a set
of m queries being answered by m memory cells. The standard cell sampling lower bounds (often used in data
structure lower bounds) cannot derive a contradiction from this, as the m memory bits intuitively are sufficient to
encode the m query answers. However, our novel contribution is to examine the different types of possible query
algorithms (i.e. which function of the two bits probed does it compute) and argue that in all cases, such a short
cycle is impossible. Directly examining the types of query algorithms has not been done before in data structure
lower bounds and we find this a valuable contribution that we hope may prove useful in future work.
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2 Reduction from Reachability Oracles in the Butterfly Graph

In this section, we give a reduction from the problem of Reachability Oracles in the Butterfly Graph to 3SUM-
Indexing with the cyclic group and the XOR group, proving Theorem 2. In both cases, the size of the group is at
most quadratic with respect to the input set sizes.

Definition 2 (Butterfly Graphs). A Butterfly graph of degree B and depth d is a directed graph with d+1 layers,
each comprising of Bd nodes. For each layer, the ith node can be associated with a d-digit number in base B which
we will refer to as its label vi where vi[0] denotes the least significant digit. Then there is an edge from node i on
the kth layer to node j on the (k + 1)th layer if and only if vi[h] = vj [h] for all h 6= k. That is to say, that there
is an edge if and only if i and j may differ only on the kth digit of their labels. We will denote such an edge by
ek(i, j).

Nodes in the layer 0 of the graph are called source nodes, whereas nodes in layer d of the graph are called sink
nodes.

Definition 3 (Reachability Oracles in the Butterfly Graph). The problem of Reachability Oracles in the Butterfly
Graph is that one has to pre-process into a data structure a subset of the edges E of the butterfly graph of degree B
and depth d. Queries come in the form of (s, t) and the goal is decide if there exists a path from source node s to
sink node t using the subset of edges E.

Pǎtraşcu proved the following lower bound for the problem in the cell probe model:

Lemma 1 (Section 5 of [24]). Any cell probe data structure answering reachability queries in subgraphs of the
butterfly graph with degree B and depth d, using S words of w bits must have query time t = Ω(d), assuming that
B = Ω(w2) and lg(B) = Ω(lg(Sd/N)) where N = dBd.

A few remarks about reachability in the Butterfly graph are in order. Firstly, note that for any source-sink
pair (s, t), there exists a unique path from source s to sink t in the Butterfly graph. Namely, the path uses exactly
edges of the form ek(i, j) such that for k ∈ [d], ek(i, j) is the edge from node i on layer k to node j on layer k + 1
such that:

1. vs[h] = vi[h] for all h ≥ k. That is to say that the d− k most significant digits of the labels of nodes s and i
are the same.

2. vt[h] = vj [h] for all h ≤ k. That is to say that the k + 1 least significant digits of the labels of nodes t and j
are the same.

Conversely, we can also say that the edge ek(i, j) connects all pairs of nodes s, t such that the label for s shares the
most significant d− k digits with i and the label for t shares the least significant k + 1 digits with t.

Intuitively, this is because the traversing from node i in the kth layer to node j in the (k + 1)th layer can be
seen as “setting” the kth digit of the label for node i into the kth digit of the label for node j while leaving the rest
of the digits unaltered.

The general idea of the reduction to 3SUM-Indexing is to test whether all the required edges are present when
querying for s and t. This should be done by asking one 3SUM-Indexing query. We will design it such that a sum
z = a1 + a2 exists for our query z if and only if there is at least one edge missing on the path from s to t.

Constructing A1. Our basic idea is to take every edge ek(i, j) in the Butterfly graph and encode it into a group
element g in A1. We construct g such that its digits can be broken up into 5 blocks so that conceptually the:

1. first block encodes the layer the edge is from;

2. second block encodes the presence of edge ek(i, j) in E;

3. third block encodes the d− k most significant bits of i followed by k zeroes;

4. fourth block holds d− k − 1 zeroes followed by the k + 1 least significant digits of j;

5. fifth block holds 2 zeroes.

In short, for every edge ek(i, j), we add group element to A1 whose digits are in the following form:

(k,1{ek(i, j) ∈ E}, vi[d− 1], . . . , vi[k], 0, . . . , 0
︸ ︷︷ ︸

d - 1

, vj [k], . . . , vj [0], 0, 0)

where 1{ek(i, j) ∈ E} is 1 if ek(i, j) ∈ E and 0 otherwise. Note that the Butterfly graph has dBd nodes with degree
B, hence a total of n = dBd+1 edges. Since A1 has one element for each such edge, we have |A1| = n.
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Constructing A2. Next, we construct the set A2 of group elements such that for every k, it “helps” any group
element g in A1, originating from an edge ek(i, j), to sum to any value where the third block shares the d− k most
significant bits with i and the fourth block shares the k+1 least significant digits of j. This can be done by adding
into set A2 every group element such that the:

1. first block holds some value −k;

2. second block is zero;

3. third block is d− k zeroes followed by any possible k digit value;

4. fourth block holds any possible d− k − 1 digit value followed by k + 1 zeroes;

5. fifth block holds any possible digit value from [0, B − 1].

Thus for k ∈ [0, d− 1], we add any number of the following form into A2:

(−k, 0, 0, . . . , 0
︸ ︷︷ ︸

d−k

, ⋆, . . . , ⋆
︸ ︷︷ ︸

d−1

, 0, . . . , 0
︸ ︷︷ ︸

k+1

, ⋆, ⋆)

where ⋆ denotes wildcard. Note that the least significant digits is not strictly necessary but is included to enforce
that the size of the sets A1 and A2 are the same. Observe that |A2| = dBd+1 = n = |A1|.

Different Groups. For the reduction to 3SUM-indexing in the cyclic group, we will consider the set of integers
in [(dBd+1)2]. To that end, the encoding works by understanding the 2(d + 2) digits as specifying a mixed-radix
number, where the most significant digit is in base 4d, the second most significant digit is in base 3 and the
remaining digits are in base B. In which case, we can take −k to be 4d− k.

On the other hand, for the XOR group, assuming that d and B are powers of 2, we can then also naturally
transform each digit into their binary representation with the exception of the most significant digit whose bit
representation should be based on the number’s complement and the second most significant digit may be in base
2.

Translating a Query. What remains is to explain how we answer a reachability query (s, t). We will first
consider the reduction for the group ([(dBd+1)2],+ mod (dBd+1)2) and subsequently argue that the same reduction
basically holds for the XOR group assuming that d and B are powers of 2. We claim that there exists a1 ∈ A1 and
a2 ∈ A2 whose sum is

z(s,t) = (0, 0, vs[d− 1], . . . , vs[0], vt[d− 1], . . . , vt[0], 0, 0)

if and only if there does not exist a path from s to t in the Butterfly graph.
To see this, we first argue that for a pair a1 + a2 that could potentially sum to z(s,t), we need not worry about

carries amongst the digits of the numbers. To see this, we start by observing that a1 + a2 must have its most
significant digit equal to 0. We claim this is only possible if a1’s most significant digit is k and a2’s is 4d− k = −k.
To see this, observe that the second most significant digit of a1 is at most 1 and the second most significant of a2
is always 0. Since the second most significant digit is in base 3, this means that we cannot get a carry from these
digits. Now that we have established this, we observe that for all remaining digits of any valid pair a1 and a2 (pairs
where the most significant digit in the sum is 0), there is at most one of the elements that has a non-zero digit,
hence we will not see any carries.

Now assume there does not exists a path from some source node s to some sink node t. This must mean that
there exists a k ∈ [0, d− 1] and an edge ek(i, j) not in E where:

vi = (vs[d− 1], . . . , vs[k], vt[k − 1], . . . , vt[0])

vj = (vs[d− 1], . . . , vs[k + 1], vt[k], . . . , vt[0])

By construction, this implies that the following group element exists in the set A1:

(k, 0, vs[d− 1], . . . , vs[k], 0, . . . , 0
︸ ︷︷ ︸

d - 1

, vt[k], . . . , vt[0], 0, 0)

Furthermore, the following group element always exists in A2:

(−k, 0, 0, . . . , 0, vt[k − 1], . . . , vt[0], vs[d− 1], . . . , vs[k + 1], 0, . . . , 0, 0)
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This means that the value (0, 0, vs[d − 1], . . . , vs[0], vt[d − 1], . . . , vt[0], 0) is obtainable as a sum a1 + a2. If on the
other hand there is a path between s and t, then all elements in A1 of the form

(k, ⋆, vs[d− 1], . . . , vs[k], 0, . . . , 0
︸ ︷︷ ︸

d - 1

, vt[k], . . . , vt[0], 0)

must have ⋆ = 1 and thus it is not possible to write z(s,t) as a1 + a2.

The XOR Group. For a reduction to the XOR group setting, we consider each element coordinate-wise using
their binary representations with the exception that in the first coordinate the value is represented using the
number’s complement representation. Using the previous remark we also assert that for any pair a1 ∈ A1, a2 ∈ A2,
the only common digit that is both non-zero is the most significant digit and thus the addition being done digit-wise.
For that reason, the sum behaves exactly the same way over the XOR group as it does over the cyclic group that
we have defined. Thus the size of the universe and input sets A1, A2 remain unchanged and the reduction holds in
the XOR group as well.

Analysis. Now by setting B = Sw2

n , note that B = Ω(w2) and:

lg(Sd/N) ≤ lg

(
SB lg(n)

n

)

≤ lg(SBw/n) ≤ lg(B2) = O(lgB)

Furthermore, it holds that

lg(Sw/n) =
1

2
lg((Sw/n)2) ≥ 1

2
lg(Sw2/n) ≥ 1

2
lgB

Using Lemma 1, it then follows that for any cell-probe solution for 3SUM-Indexing for the cyclic group ([m],+
mod m) where m = O(n2) and XOR group ({0, 1}2 lg(n)+O(1),⊕) any static data structure that uses S ≥ n cells of
w ≥ lg(n) bits has query time T = Ω(d) = Ω(lgB n) = Ω(lg n/ lg(Sw/n)).

3 Reduction from Lopsided Set Disjointness

In this section, we prove Theorem 3, establishing hardness of 3SUM-Indexing also for abelian groups of size
∆ = n1+δ. For the proof, we focus on the integers modulo ∆, but remark that the proof readily adapts to the XOR
group as well.

For the proof, we use Pǎtraşcu’s Blocked Lopsided Set Disjointness (Blocked LSD) problem. In this problem,
there are two players, Alice and Bob. Bob receives as input a set X , which is an arbitrary subset of a universe
[N ]× [B]. Alice receives a set Y ⊂ [N ]× [B] with the restriction that Y contains exactly one element (i, bi) for every
i = 0, . . . , N − 1. The goal for Alice and Bob is to determine whether X ∩Y = ∅ while minimizing communication.
The following is known regarding the communication complexity of Blocked LSD:

Lemma 2 (Theorem 4 of [24]). Fix δ > 0. Any communication protocol for Blocked LSD requires either Alice
sending at least δN lgB bits, or Bob sending at least NB1−O(δ) bits.

The basic idea in the reduction, is to have Bob interpret his set X as two input sets A1, A2 of n = NB group
elements to 3SUM-Indexing (we may have |A1| and |A2| smaller than NB, but we can always pad with dummy
elements, so we assume n = NB). Given a data structure D for 3SUM-Indexing, Bob then builds D on this input.
Alice on the other hand interprets her set Y (which has cardinality N) as a set of N/ℓ queries to 3SUM-Indexing,
where ℓ is a parameter to be determined. The key property of the reduction, is that the answers to all N/ℓ queries
of Alice on D, determines whether X ∩ Y = ∅.

Communication Protocol. Assume for now that we can give such a reduction. Alice and Bob then obtains
a communication protocol for Blocked LSD as follows: Let T be the query time of D. For i = 1, . . . , T , Alice
simulates the i’th step of the query algorithm for each of her N/ℓ queries, in parallel. This is done by asking Bob
for the set of at most N/ℓ cells that they probe in the i’th step. This costs O(lg

(
S

N/ℓ

)
) = O((N/ℓ) lg(Sℓ/N)) bits

of communication by specifying the required cells as a subset of the S memory cells of D. Bob replies with the
contents of the cells, costing ((N/ℓ)w) bits. This is done for T rounds, resulting in a communication protocol where
Alice sends O((N/ℓ)T lg(Sℓ/N)) bits and Bob sends O((N/ℓ)Tw) bits. If we fix B = w4 and δ as a small enough
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constant, then Lemma 2 says that either Alice sends Ω(N lgw) bits or Bob sends Ω(N
√
B) = Ω(Nw2) bits. In our

protocol, Bob’s communication is O((N/ℓ)Tw) = O(NTw) bits. We assume w = Ω(lg n), thus we conclude that
either NTw = Ω(Nw2) ⇒ T = Ω(lgn), or Alice’s communication must be Ω(N lgB) = Ω(N lgw) bits. In the first
case, we are done with the proof, hence we examine the latter case. Alice’s communication is O((N/ℓ)T lg(Sℓ/N))
bits, which implies T = Ω(ℓ lgw/ lg(Sℓ/N)). Thus to derive our lower bound, we have to argue that it suffices for
Alice to answer N/ℓ queries for a large enough ℓ.

Asking Few Queries. We will show that it suffices for Alice to ask N/ℓ queries with ℓ = ε lgn/ lgw. Here
ε > 0 is a small constant depending on δ in the group size ∆ = n1+δ. Thus we get a lower bound of T =
Ω(lg n/ lg((S lgn)/(N lgw))). Since N = n/B = n/w4, this simplifies to T = Ω(lg n/ lg(Sw/n)) as claimed in
Theorem 3.

Thus what remains is to show how Alice and Bob computes the input and queries. For this, they conceptually
partition the universe [N ]× [B] into groups {iℓ, . . . , (i+ 1)ℓ− 1} × [B] for i = 0, . . . , N/ℓ. Alice will ask precisely
one query for each such group. Denote by Yi the subset of Y that falls in the i’th group and denote by Xi the
subset of X that falls in the i’th group. Clearly X ∩ Y = ∅ if and only if Xi ∩ Yi = ∅ for all i. Thus Alice will use
her i’th query to determine whether Xi ∩ Yi = ∅.

Constructing A1 and A2. To support this, Bob first constructs the set A1 based on his elementsX . He examines
each group Xi, and for every (j, b) ∈ Xi, he adds the integer i(2B + 1)ℓ+1 + (b + 1)(2B + 1)j−iℓ to A1. Next, he
constructs the set A2. For this, he considers all vectors Z = (b0, . . . , bℓ−1) for which the numbers are all between
0 and B and precisely one of them is 0. He adds the integer

∑

j∈[ℓ] bj(2B + 1)j to A2. This completes Bob’s

construction of the input sets A1 and A2. We have |A1| ≤ NB = n and |A2| ≤ (2B + 1)ℓ.

Asking the Queries. We next describe how Alice translates her set Y into queries. For each Yi, she needs to
construct one query zi whose answer determines whether Xi ∩ Yi = ∅. Recall that Yi is of the form {(iℓ, b0), (iℓ+
1, b1), . . . , ((i + 1)ℓ − 1, bℓ−1)}. She starts by subtracting off iℓ from the first index in each pair, obtaining the set

{(0, b0), (1, b1), . . . , (ℓ− 1, bℓ−1)}. Alice now asks the query zi = i(2B + 1)ℓ+1 +
∑ℓ−1

j=0(bj + 1)(2B + 1)j .

Correctness. We claim that zi is part of a 3SUM if and only if Xi∩Yi 6= ∅. To see this, observe first that to write
zi as a1 + a2, it must be the case that a1 was constructed from Xi as otherwise we cannot obtain the i(2B +1)ℓ+1

parts of zi. Next, observe that if we write the integers in base 2B + 1, then A2 contains precisely every integer of
the form where there is a single digit j ∈ [ℓ] that is zero and all remaining are non-zero. Also, the numbers obtained
from (j, b) ∈ Xi are of the form i(2B+1)ℓ+1+(b+1)(2B+1)j−iℓ and thus have exactly one non-zero digit among the

first ℓ. Since zi has exclusive non-zero digits in the first ℓ, it follows that zi = i(2B+1)ℓ+1+
∑ℓ−1

j=0(bj +1)(2B+1)j

can be written as a1 + a2 if and only if a1 was obtained from a (j, b) ∈ Xi for which b is equal to bj−iℓ. This is the
case if and only if Xi and Yi intersect in (j, b).

Analysis. We now determine ℓ. Recall that B = w4 and observe that all possible integers are bounded by
N(2B + 1)ℓ+2 ≤ n(2B + 1)ℓ+2. If we insist on a group of size ∆ = n1+δ, this means we can set ℓ = δ lg n/ lg(2B +
1)− 2 ≥ ε lgn/ lgw for a sufficiently small constant ε > 0. This also implies that |A2| ≤ nδ ≤ n and thus completes
the proof of Theorem 3.

4 Lower Bound for Non-Adaptive Data Structures

In this section, we prove an Ω(min{lg |G|/ lg(Sw/n), n/w}) lower bound for non-adaptive 3SUM-Indexing data
structures when |G| = ω(n2). Similarly to the previous approach by Golovnev et al. [15], we use a cell sampling
approach.

Consider a data structure using S memory cells of w bits and answering queries non-adaptively in T probes.
Consider all subsets of ∆ = n/(2w) memory cells. There are

(
S
∆

)
such subsets. We say that a query z is answered

by a set of cells C, if all the (non-adaptively chosen) cells it probes are contained in C. Any query z is answered
by at least

(
S−T
∆−T

)
sets of ∆ cells, namely all those containing the T cells probed on z. It follows by averaging over

the |G| queries that there is a set of cells C∗ answering at least

|G|
(
S − T

∆− T

)

/

(
S

∆

)

= |G|∆(∆− 1) · · · (∆− T + 1)

S(S − 1) · · · (S − T + 1)
≥ |G|

(
∆− T + 1

S

)T
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queries.
If T ≥ ∆/2, we are already done as we have proven T = Ω(n/w). Otherwise, T ≤ ∆/2 and thus the above is at

least |G|(∆/(2S))T = |G|(n/(4Sw))T . If we assume for contradiction that T = o(lg |G|/ lg(Sw/n)), this is at least
|G|1−o(1) > n. Let Q be the group elements corresponding to an arbitrary subset of n of those queries. We argue
that we can construct a distribution over inputs A1, A2 such that the queries Q cannot be answered from few cells,
contradicting that we have answered them from C∗. More precisely, we show:

Lemma 3. Let (G,+) be an abelian group with ω(n2) elements. Given any subset Q ⊆ G of at most n elements,
there exists an input distribution D of A1, A2 such that, all the events of the form q ∈ (A1 + A2) (defined as
{a1 + a2 : a1 ∈ A1, a2 ∈ A2}) for all q in Q is fully independent. That is, for any subset S = {s1, s2 . . . , sr}
of Q of r elements, and any sequence of r events E1, E2, . . . , Er either of the form si ∈ (A1 + A2) or the form
si /∈ (A1 + A2), it holds that Pr[

∧r
i=1 Ei] =

∏r
i=1 Pr[Ei] . Furthermore, for any q ∈ Q, it is the case that

Pr(A1,A2)∼D[q ∈ (A1 +A2)] =
1
2 .

The proof is deferred to the end of the section.
We now use Lemma 3 to derive a contradiction to the assumption that T = o(lg |G|/ lg(Sw/n)). Concretely,

we invoke the lemma with the Q defined above. This implies that the answers to the queries in Q has entropy n
bits. However, they are being answered from a fixed set of n/2w cells. These cells together have n/2 bits. Since
their addresses are fixed, their contents must uniquely determine the n query answers, yielding the contradiction
and hence T = Ω(min{lg |G|/ lg(Sw/n), n/w}). This completes the proof of Theorem 4. What remains is to prove
Lemma 3:

Proof of Lemma 3. We prove the lemma by first showing that given Q ⊆ G of n elements, for any P ⊆ Q there
exists an input pair AP

1 and AP
2 such that P ⊆ (AP

1 +AP
2 ) and (Q \ P ) ∩ (AP

1 + AP
2 ) = ∅. That is to say that for

every possible subset P of Q, there exists a pair of sets (AP
1 , A

P
2 ) such that (AP

1 +AP
2 ) contains all the pair sums

of P and none of the pair sums outside of P and in Q. Then D is the distribution that is uniform over all possible
pairs of sets (AP

1 , A
P
2 ) with P ranging over all subsets of Q. Another way to view D is the distribution that first

randomly samples P ⊆ Q before deterministically outputing pairs of sets (AP
1 , A

P
2 ).

Given any P , we build the sets AP
1 and AP

2 iteratively, where they are both initially empty. Let p1, p2, . . .
enumerate the elements of P . At each iteration, let pi be the first value not in (AP

1 + AP
2 ). There are |G| ordered

pairs of elements (a1, a2) such that a1 + a2 = pi. To see this, note that letting a1 = pi + (−t) and a2 = t for any
t ∈ G yields us a distinct pair of elements for which the sum holds. We want to show that we can add n pairs of
elements (thus enumerating all of the elements in P and beyond) without ever having any pair sum to an element
in (Q \ P ). For each element q ∈ (Q \ P ), and each element in a ∈ A1, there is exactly one element b ∈ G such
that a+ b = q (likewise for each element a ∈ A2). Therefore, for any given q, there are |A1| elements b ∈ G that if
added into set A2, would imply that q ∈ (A1 +A2) (likewise for set A2). Since |Q \ P | ≤ n, and at every iteration
|A1| = |A2| ≤ n, we have that there are at most 2n2 elements that cannot be added into either set A1 or set A2

(otherwise sets (Q \ P ) and (A1 +A2) are no longer disjoint).
Therefore there must still exist a pair (a1, a2) such that a1+a2 = pi and ({a1}∪AP

1 + {a2}∪AP
2 )∩ (Q\P ) = ∅,

assuming that |G| = ω(n2). In the case that every element in P is enumerated before we have added n pairs, we
can still pad with more arbitrary pairs of elements from G whilst avoiding creating any element in (Q \ P ) for the
same reason as laid out above.

It remains to show that our distribution D indeed witnesses full independence and that each individual event
occurs with probability 1

2 . Let S be an arbitrary subset of Q of size r ≤ n. Further, let Ei be either the event
that si ∈ (A1 + A2) or si /∈ (A1 + A2), and let S′ ⊆ S contain the elements si such that Ei is the event that
si ∈ (A1 + A2) (so S \ S′ is precisely the set of elements si for which there is the event si /∈ (A1 + A2)). In the
support of D, there are exactly 2n pairs of sets (AP

1 , A
P
2 ), each realising a distinct subset P ⊆ Q of elements such

that P ⊆ (A1 + A2) and (Q \ P ) ∩ (A1 + A2) = ∅. Thus, given any set S′ ⊆ S ⊆ Q, there are 2n−r pairs of sets
(AP

1 , A
P
2 ) each with for set P such that S′ ⊆ P and (S \ S′) ⊆ (Q \ P ). Thus we argue that

Pr

[
r∧

i=1

Ei

]

=
2n−r

2n
= 2−r.

Note that for individual events, we can take the subset S to contain only a single element q from Q and the
above argument would imply that Pr[q ∈ (A1, A2)] =

1
2 and that Pr[q /∈ (A1, A2)] =

1
2 . Thus the conclusion readily

follows from the fact that
r∏

i=1

Pr [Ei] = 2−r.
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5 Bit Probe Lower Bound for 3SUM-Indexing

In this section we give the bit probe lower bound for 3SUM-Indexing stated in Theorem 5.
The proof idea is based on an incompressibility argument. We will inspect the way the queries are structured

and construct a specific input distribution that the data structure algorithm end up using too few bits for and
therefore derive a contradiction. For this, we will again use Lemma 3 from the previous section. The key difference
between this proof and the proof in the previous section, lies in how we find a set of queries answered by too
few cells. Moreover, in this proof, we will derive a contradiction even with m queries being answered by m cells,
and thus intuitively the cells actually have enough information, but yet cannot answer the queries. We start by
introducing some graph theory that we need:

Lemma 4. [Theorem 1 of [2]] Let (V,E) be a graph with n nodes, average degree d > 2 and girth r. Then
n ≥ 2(d− 2)r/2−2.

From Lemma 4 we conclude that for a graph with o(|G|) nodes and |G| edges, it is the case that the graph has
a girth of O(lg(n)). To see this, note that the average degree d of such a graph is ω(1) and thus it follows that for
some constant c > 1:

o(|G|) ≥ 2(d− 2)r/2−2 ⇒
o(|G|) ≫ 2(c)r/2 ⇒

r ∈ O(lgc(n))

Given any non-adaptive pre-processing algorithm with T = 2, S = o(|G|), and w = 1, define V to be the set
of S nodes each representing a memory cell and let E be the set of edges such that an edge eg = (u, v) is in the
edge set if and only there exists some group element g ∈ G such that the querying algorithm on input g accesses
both memory cell u and v. Furthermore, associate with each edge eg a function fg : {0, 1}2 → {0, 1} that defines
the output behaviour of the querying algorithm upon reading the bits at node u and v. We broadly categorise the
possible functions fg into 4 types:

1. Copy type functions. The type of functions fg that depend only one of its two inputs. There are 4 of such
functions.

2. Constant type functions. The type of functions fg that are completely independent of its two inputs.
There are 2 such functions.

3. AND type functions. The type of functions fg whose truth table is such that exactly 3 of the 4 possible
inputs leads to the same output where the last input differs. There are 8 such functions.

4. XOR type functions. The type of functions fg that are either the XOR of its 2 inputs or the negation of
the XOR of its 2 inputs. There are 2 such functions.

Note that none of the edges can be the constant type, since this means that the querying algorithm’s answer
is independent of the input set. Also, by an averaging argument there is at least one type of function that Ω(|G|)
edges are associated with. Furthermore, Lemma 3 asserts that there can be at most 2 edges that are parallel to
each other, otherwise we can construct an input distribution D such that the data structure manages to use 2 bits
to encode the outcome of a random variable that has Shannon entropy at least 3, which is a contradiction. Thus
there are Ω(|G|) many edges that are not parallel to each other and are all of the same type. We analyse the
different types separately. We start with the simplest COPY type:

(COPY type) Assuming that there are Ω(|G|) edges that are associated with the copy type function, there
must exist at least one node u such that ω(1) edges eg are such that the associated function fg depend only on
the bit at this node. Letting Q contain two such group elements, this yields a contradiction using Lemma 3 to
construct a distribution over A1 and A2 such that the entropy of the two query answers in Q is 2 bits.

For the remaining types, we look for a short cycle. Using Lemma 4, we get that there is a cycle of O(lg n)
length using only edges associated with functions of the same type. Denote by Y the set of group elements g such
that eg is in the cycle and y1, . . . , yt enumerates the elements of Y based on a traversal of the cycle. That is, the
edge corresponding to yi shares endpoints with edges corresponding to yi−1 and yi+1, where yt+1 = y1 and y0 = yt.
We use Lemma 3 with Q = Y to get a distribution D over (A1, A2) such that the answers to queries in Y are
independent and they are all uniform random. We now handle the two remaining types separately.
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(AND type) Let b be the output of fy1
that is only obtainable by exactly 1 of the 4 possible inputs. Consider

the distribution D conditioned on the event that 1{y1 ∈ (A1 +A2)} = b. Since only 1 of the 4 inputs to fy1
is

consistent with this output, this fixes the two input bits to fy1
. Therefore, there are t− 2 bits left to encode t− 1

independent and fully random outputs (namely, whether y2, . . . , yt are in A1 + A2), which yields us the desired
contradiction.

(XOR type) Let (A1, A2) ∼ D be drawn from the input distribution constructed using Lemma 3 with Q = Y .
Let the endpoints of yi be ui, vi, such that vt = u1. Note for all i, it is necessarily the case that 1{yi ∈ (A1 +A2)} =
ui ⊕ vi or 1{yi ∈ (A1 +A2)} = 1 ⊕ ui ⊕ vi. Then

⊕t
2 1{yi ∈ (A1 +A2)} is either u1 ⊕ v1 or 1 ⊕ u1 ⊕ v1 which

means that 1{y1 ∈ (A1 +A2)} is either
⊕t

2 1{yi ∈ (A1 +A2)} or its negation. Then Lemma 3 yields the desired
contradiction.
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