
A FAST MULTIGRID ALGORITHM FOR ENERGY MINIMIZATION
UNDER PLANAR DENSITY CONSTRAINTS

DORIT RON ∗, ILYA SAFRO † , AND ACHI BRANDT ‡

Abstract. The two-dimensional layout optimization problem reinforced by the efficient space
utilization demand has a wide spectrum of practical applications. Formulating the problem as a
nonlinear minimization problem under planar equality and/or inequality density constraints, we
present a linear time multigrid algorithm for solving correction to this problem. The method is
demonstrated on various graph drawing (visualization) instances.

Key words. Multigrid methods; Optimization, Inequality constraints, Models, numerical meth-
ods; Layout problems

AMS subject classifications. 65M55, 80M50, 65C20

1. Introduction. The optimization problem addressed in this paper is to find
an optimal layout of a set of two-dimensional objects such that (a) the total length
of the given connections between these objects will be minimal, (b) the overlapping
between objects will be as little as possible, and, (c) the two-dimensional space will
be well used. This class of problems can be modelled by a graph in which every vertex
has a predefined shape and area and each edge has a predefined weight. While the
first two conditions are straightforward, the third requirement can be made concrete
in different ways. To see its usefulness, consider for example, the problem of drawing
the ”snake”-like graph shown in Figure 1(a). Most graph drawing algorithms would
draw it as a line or a chord. In that case, when the number of nodes is big, the space is
used very inefficiently, and the size of the nodes must decrease. One possible efficient
space utilization for the graph ”snake” is presented in Figure 1(b).

(a) (b)

Fig. 1.1. Possible ways to draw the ”snake”-like graph: (a) when the drawing area is not used,
the size of the nodes must decrease; and (b) a clearer picture is obtained when the space is used
efficiently.

In many theoretical and industrial fields, this class of problems is often addressed
and actually poses a computational bottleneck. In this work we present a multilevel
solver for a model that describes the core part of those applications, namely, the
problem of minimizing a quadratic energy functional under planar constraints that

∗The Weizmann Institute of Science, dorit.ron@weizmann.ac.il
†Argonne National Laboratory, safro@mcs.anl.gov
‡The Weizmann Institute of Science

1

ar
X

iv
:0

90
2.

32
08

v1
 [

cs
.D

S]
 1

8
Fe

b
20

09

2 D. Ron AND I. Safro AND A. Brandt

bound the allowed amount of material (total areas of objects) in various subdomains
of the entire domain under consideration.

Given an initial arrangement, the main contribution of this work is to enable a
fast rearrangement of the entities under consideration into a more evenly distributed
state over the entire defined domain. This process is done by introducing a sequence
of finer and finer grids over the domain and demanding at each scale equidensity,
that is, meeting equality or inequality constraints at each grid square, stating how
much material it may (at most) contain. Since many variables are involved and since
the needed updates may be large, we introduce a new set of displacement variables
attached to the introduced grid points, which enables collective moves of many orig-
inal variables at a time, at different scales including large displacements. The use of
such multiscale moves has two main purposes: to enable processing in various scales
and to efficiently solve the (large) system of equations of energy minimization under
equidensity demands. The system of equations of the finer scales, when many un-
knowns are involved, is solved by a combination of well-known multigrid techniques
(see [3, 4, 14]), namely, the Correction Scheme for the energy minimization part
and the Full Approximation Scheme for the inequality equidensity constraints defined
over the grid’s squares. We assume here that the minimization energy functional has
a quadratic form, but other functionals can be used via quadratization. The entire
algorithm solves the nonlinear minimization problem by applying successive steps of
corrections, each using a linearized system of equations.

Clearly, for each specific application, one has to tune the general algorithm to
respect the particular task at hand. We have chosen here to demonstrate the perfor-
mance of our solver on some instances of the graph visualization problem showing the
efficient use of the given domain. Let us review a few applications that have motivated
our research.

Graph visualization addresses the problem of constructing a geometric repre-
sentation of graphs and has important applications to many technologies. There are
many different demands for graph visualization problems, such as draw a graph with
a minimum number of edge crossings, or a minimum total edge length, or a predefined
angular resolution (for a complete survey, see [2]). The ability to achieve a compact
picture (without overlapping) is of great importance, since area-efficient drawings are
essential in practical visualization applications where screen space is one of the most
valuable commodities. One of the most popular strategies that does address these
questions is the force directed method [7] which has a quadratic running time if all
pairwise vertex forces are taken into account. There are several successful multilevel
algorithms [10] developed to improve the method’s complexity. However, reducing
the running time in these models usually means a loss of information regarding those
forces.

Representation of higraphs. Higraphs, a combination and extension of graphs
and Euler/Venn diagrams, were defined by Harel in [9]. Higraphs extend the basic
structure of graphs and hypergraphs to allow vertices to describe inclusion relation-
ships. Adjacency of such vertices is used to denote set-theoretic Cartesian products.
Higraphs have been shown to be useful for the expression of many different semantics
and underlie many visual languages, such as statecharts and object model diagrams.
The well-known force-directed method has been extended to enable handling the vi-
sualization of higraphs [8]. For small higraphs it has indeed yielded nice results; but
because of its high complexity, it poses efficiency challenges when used for larger
higraphs.

A multigrid approach for constrained optimization 3

Facility location problem. In this class of problems the goal is to locate a
number of facilities within a minimized distance from the clients. In many industrial
versions of the problem there exist additional demands such as the minimization of the
routing between the facilities and various space constraints (e.g., the factory planning
problem) while given a total area on which the facilities and clients could be located
(for a complete survey, see [6]).

Wireless networks and coverage problems have a broad range of applications
in the military, surveillance, environment monitoring, and healthcare fields. In these
problems, having a limited number of resources (like antenna or sensor), one has
to cover the area on which many demand points are distributed and have to be
serviced. In many practical applications there are predefined connections between
these resources that can be modeled as a graph [12, 5, 11].

The placement problem. The electronics industry has achieved a phenomenal
growth over the past two decades, mainly due to the rapid advances in integration
technologies and large-scale systems design - in short, due to the advent of VLSI.
The number of applications of integrated circuits in high-performance computing,
telecommunications, and consumer electronics has been rising steadily, and at a very
fast pace. Typically, the required computational power of these applications is the
driving force for the fast development of this field. The global placement is one
of the most challenging problems during VLSI layout synthesis. In this application
the modules must be placed in such a way that the chip can be processed at the
detailed placement stage and then routed efficiently under many different constraints.
This should be accomplished in a reasonable computation time even for circuits with
millions of modules since it is one of the bottlenecks of the design process. For a most
recent survey of the placement techniques see [13].

The paper is organized as follows. The problem definition is described in Section
2. The multilevel formulation and solver are presented in Section 3. Examples of
graph drawing layout corrections are demonstrated in Section 4.

2. Problem definition. Given a weighted undirected graph G = (V,E), let
v(i) > 0 be the (rectangular) area of vertex (node) i ∈ V , i = 1, ..., |V |, and wij the
non-negative weight of the edge ij between nodes i and j (wij = 0 if ij /∈ E). Also,
assume a twodimensional initial layout is given; that is, the center of mass of node i is
considered to be located at (x̃i, ỹi) within a given rectangular domain. The purpose
of the optimization problem we consider is to modify the initial assignment (x̃, ỹ) by
(δx, δy) so as to minimize the quadratic functional

E(δx, δy) =
1
2

∑
ij∈E

wij
(
(x̃i + δxi

− x̃j − δxj
)2 + (ỹi + δyi

− ỹj − δyj
)2
)
, (2.1)

subject to some equidensity demands on the area distribution of the nodes within the
given rectangle. To apply such constraints, we discretize the domain by a standard
grid G consisting of a set of squares S(G), where each square s ∈ S(G) is of area
A = hxhy and hx and hy are the mesh sizes of G in the x and y directions, respectively
(see Figure 2.1). Denote by Υ(s) the total area of the vertices overlapping with the
square s; that is, Υ(s) is the sum over all the nodes coinsiding with s, each contributing
the (possibly partial) area that overlaps with s (see Figure 2.2).

The planar constraints (i.e., the constraints that are distributed over the 2D
plane, where each constraint defines a demand regarding some bounded area) can
then simply state how much area is required to be in every square; that is, for each

4 D. Ron AND I. Safro AND A. Brandt

x

y

x

 p0
p1 p2

p3 p4

0 1 2 3

4 5 6

8 9 10 11

12 13 14 15

p5 p6
p7 p8 p9

p10
p11

p12
p13

p15 p16 p17 p18 p19

p20
p21

p22 p23 p24

p14

7

j

h

h

y

Fig. 2.1. Example of a grid G with 25 grid points and 16 squares. The grid points and squares
are labeled by pi and bold numbers, respectively.

5

0 1 2 3

4 6

8 9 10 11

12 13 14 15

7

Fig. 2.2. Example of Υ(s) for square 6. The total area of vertices overlapping with square 6 is
dashed.

square s ∈ S(G) the constraint is either Υ(s) = M(s), or Υ(s) ≤ M(s), where M(s)
is the amount of nodes area desired or allowed for square s.

The constrained optimization problem with equality or inequality formulation can
thus be summarized by the following

minimize E (given by (2.1))
subject to Υ(s) = (≤)M(s) , ∀s ∈ S(G). (2.2)

3. The multilevel formulation and solver. The aim of the current work is to
provide a fast first-order correction to the given approximate solution; that is, we are
looking for such a displacement that would in some optimal sense (to be defined below)
improve the planar equidensity demands and/or decrease E. (Note that unconstrained
minimization of E will bring all nodes to overlap at a single point, and thus we may
often observe an increase in E upon removing some of the initial overlap.)

To enable a direct use of the multigrid paradigm, and motivated by the need to

A multigrid approach for constrained optimization 5

perform collective moves of nodes (as explained in the introduction), we have actually
reformulated the problem (2.1) as described in Section 3.1. The multilevel solver of
the (reformulated) system (3.10) below is introduced in Section 3.2. This system of
equations actually has to be solved for a sequence of different grid sizes to enhance
the overall equidensity for a variety of scales as presented in Section 3.3.

3.1. Formulation of the correction problem. We have first introduced two
new sets of variables u and v that correspond to displacements in the horizontal and
vertical directions, respectively. These variables are located at the grid points P(G)
which are sequentially counted from 0 to |P(G)|−1 as shown in Figure 2.1. Each point
p ∈ P(G) is associated with two variables up and vp that influence the displacements
of all the nodes located in the (up to four) squares intersecting at p. For example,
the horizontal update of (the center of mass of) node j, depicted in Figure 2.1, is
obtained from points p12, p13, p17 and p18:

xj ← xj + α12,ju12 + α13,ju13 + α17,ju17 + α18,ju18,

where α12, α13, α17 and α18, are the standard bilinear interpolation coefficients (their
sum equals 1). The vertical coordinate yj is updated from the v variables using the
same coefficients.

For a node i denote the set of four closest points in P(G) (the corners of the
square its center of mass is located at) by c(i). The new quadratic energy functional
we would like to minimize for u and v given a current layout (x̃, ỹ) of G (i.e., the
coordinates of node i are initialized with (x̃i, ỹi)) is

E(u, v) =

1
2

∑
ij∈E

wij

[(
x̃i+

∑
p∈c(i)

αpiup−x̃j−
∑
p∈c(j)

αpjup

)2

+
(
ỹi+

∑
p∈c(i)

αpivp−ỹj−
∑
p∈c(j)

αpjvp

)2]
,

(3.1)

where αpi are the bilinear interpolation coefficients.
The reformulation of the equidensity constraint in terms of the displacement

variables relies on the rule of conservation of areas. The initial total amount of vertex
areas at each square equals the current actual amount of areas dictated by (x̃, ỹ). To
estimate the amount of areas flowing inside and outside a given square induced by
the u and v displacements, we assume the nodes are evenly distributed inside the
squares. Under this assumption it is easier to estimate the amount of area being
transferred between two adjacent squares as explained below. Consider, for example,
a square s. Denote by Υr(l,t,b)(s) the total area of nodes overlapping with its right
(left, top, bottom) neighbor square. Let urt(rb,lt,lb)(s) be the u values at the right-top
(right-bottom, left-top, left-bottom) corner of s as shown in Figure 3.1. To estimate
the amount of areas entering s from the right we first calculate the average area (per
squared unit) in both squares: (Υ(s) + Υr(s))/2A. We have to multiply this by the
actual entering area (of nodes), which is a rectangle of height hy, the length of the
border between the two squares, and width, which is the average of the u displacement
at the middle of that border, namely, (urt + urb)/2. Thus the overall contribution of
area from the right is approximated by

Υ(s) + Υr(s)
2A

· hy ·
urt(s) + urb(s)

2
.

6 D. Ron AND I. Safro AND A. Brandt

A similar term is calculated at the left, and with v instead of u also at the top and
bottom. Note that if the assumed direction of flow is wrong the resulting displacement
will just turn out to be negative.

The entire constraint for a square s stating that the net flow of areas into the
square should be equal to or be smaller than some demand M(s) minus the current
area in u, is given below:

eqd(s) =
Υ(s) + Υr(s)

2A
hy
urt(s) + urb(s)

2
− Υ(s) + Υl(s)

2A
hy
ult(s) + ulb(s)

2
+

Υ(s) + Υt(s)
2A

hx
vrt(s) + vlt(s)

2
− Υ(s) + Υb(s)

2A
hx
vrb(s) + vlb(s)

2
≤M(s)−Υ(s) .

(3.2)

Next, to enforce the natural boundary conditions on u and v, namely, to forbid flows
across the external boundaries, we simply nullify all corresponding up on the right and
left boundary points Bu(G), and vp on the bottom and top boundary points Bv(G).
Then the entire constrained optimization problem in terms of u and v and the initial
approximation (x̃, ỹ) is given by

minimize E(u, v) (given by (3.1)
subject to eqd(s) = (≤)M(s)−Υ(s) , ∀s ∈ S(G) ;

if p ∈ Bu(G) then up = 0 ;
if p ∈ Bv(G) then vp = 0 .

(3.3)

We will simplify the formulation of (3.3) by the concatenation of the two vectors u
and v into one u = [{ui}|P(G)|−1

i=0 | {vi}|P(G)|−1
i=0]. We will also omit the boundary

conditions by directly replacing all variables in Bu(G)∪Bv(G) by 0, and so, from now
on, we will refer to E as

E(u) =
1
2

∑
i,j

qijuiuj +
∑
i

liui + C , (3.4)

where i, j run over all the indices in u \ Bu(G) \ Bv(G), C is a constant and qij , li are
the coefficients calculated directly from the previous definition (3.1) of E. Similarly
rewrite each eqd(s) in (3.2) as

eqd(s) =
∑
i

asiui = (≤)bs, (3.5)

where bs = M(s)−Υ(s).
Denote by λs, s ∈ S(G) the Lagrange multiplier corresponding to the equiden-

sity constraint of square s. If all the constraints are equality ones, the Lagrangian
minimization functional is

L(u, λ) = E(u) +
∑

s∈S(G)

λs(eqd(s)− bs) . (3.6)

So, we are looking for a critical point of the Lagrangian function, which is expressed
by the system of linear equations

∇L(u, λ) =
[
∇uL(u, λ)
∇λL(u, λ)

]
= 0 . (3.7)

A multigrid approach for constrained optimization 7

There are at least two factors that may cause (3.7) to be singular. First, the rank
of ∇L(u, λ) is always less than its size by at least 1. This arises from the equations
of equidensity constraints in (3.7): their sum always equals zero. The reason is that
under the boundary constraints the total amount of in-flows is always equal to the
total amount of out-flows. In fact, the second summand in (3.6) can be replaced by

y

x

0 2 3

4 5 6

8 9 10 11

12 13 14 15

7

Urb

Urt
Ult

1

Ulb

ΥΥ Υ(s) (s)(s)l r

Fig. 3.1. The horizontal direction flows of area considered for the square s (colored by gray) in
the equidensity constraint (3.2).

∑
s∈S(G)

(λs + Z)(eqd(s)− bs)

for any Z without changing the minimization of L since

Z
∑

s∈S(G)

(eqd(s)− bs) = 0 .

Thus, important are not the values of λs but only their differences, and the singularity
can be treated by an additional constraint, say,

∑
s dsλs = 0, where ds = 1 ∀s ∈ S(G)

(the introduction of ds is necessary for the recursion of the multilevel solver; see
Section 3.2.1). The additional term in L(u, λ) is η

∑
s dsλs, where η is a “pseudo-

Lagrange” multiplier. The following proposition (with k = 1) motivates the non-
singularity of L with

∑
s dsλs = 0.

Proposition 3.1. Given a symmetric n×n matrix A, for which rank(A) = n−k,
let xi, i = 1, ..., k be an orthgonal basis of the null space of A, that is, Axi = 0. Then
the following block matrix B is nonsingular

B =
(

A X
XT 0

)
,

where X = (x1, ..., xk) is an n× k matrix of rank k.

Proof. Let y be any vector in Rn+k. Denote by y′ the first n components of y
and by y′′ the last k components, that is, y =

(
y′

y′′

)
. We will prove that if By = 0,

8 D. Ron AND I. Safro AND A. Brandt

then y = 0. The vector By can be written in the following block form:

By =
(
Ay′ +Xy′′

XT y′

)
.

Multiplying Ay′ + Xy′′ = 0 by XT from the left implies that y′′ = 0, and hence
Ay′ = 0 and y′ =

∑k
i=1 αixi. Substituting the last relation into each of the last k

rows of B implies xTj y
′ = xTj

∑k
i=1 αixi = αjx

T
j xj = 0 and thus αj = 0 for j = 1, ..., k

yielding y′ = 0. Since y′ = 0 and y′′ = 0 we may conclude that y = 0 as needed.
The second kind of singularity in (3.7) may appear from possible empty squares.

This can be treated by adding a summand to (3.6) that minimizes the total sum of all
corrections β

∑
i u

2
i , that is, adds a 2β-term to the diagonal of ∇uL, where β is small

enough to cause only negligible change in a solution. This will prevent the inclusion
of zero-rows in ∇uL, while possibly also bounding the size of each correction in the
solver below.

To summarize, the pseudo-Lagrangian functional L for our correction problem
with equality constraint is

L(u, λ, η) =
1
2

∑
i,j

qijuiuj+
∑
i

liui+β
∑
i

u2
i+

∑
s∈S(G)

λs(
∑
i

asiui−bs)+ η
∑

s∈S(G)

dsλs ,

(3.8)
leading to the following system of equations

1
2

∑
j qijuj + li + 2βui +

∑
s∈S(G) λsasi = 0 , ∀i s.t. ui ∈ u \ Bu(G) \ Bv(G)∑

i(asiui − bs) + ηds = 0 , ∀s ∈ S(G)∑
s∈S(G) dsλs = 0 .

(3.9)
Since in real world situations the total area is usually bigger than the total area

of all the vertices, the redefined minimization problem under inequality constraints
will generally have the form

minimize E(u) (given by (3.4))
subject to eqd(s) ≤ bs , ∀s ∈ S(G) (given by (3.5)) . (3.10)

3.2. Multilevel solver for problem (3.10). To solve the constrained mini-
mization problem (3.10), we use multigrid techniques: standard geometric coarsen-
ing, linear interpolation, Correction Scheme for the energy minimization and the Full
Approximation Scheme for the equidensity inequality constraints; all are presented in
Section 3.2.1. In addition, we have developed a fast window minimization relaxation
as explained in Section 3.2.2. The multilevel cycle is schematically summarized in
Section 3.2.3 in Algorithm 2D-layout-correction.

3.2.1. Coarsening scheme. When the geometry of the problem is known we
can choose a coarser grid by the usual elimination of every other line, as shown in
Figure 3.2. The correction computed at the coarse grid points will be interpolated
and added to the fine grid current approximation. Let us introduce the notation
distinguishing between fine and coarse level variables and functions. By lowercase and
uppercase letters we will refer to the variables, indexes, and coefficients of the fine
(ui, i, qj , etc.) and the coarse (UI , I, QJ , etc.) levels, respectively. The subscripts f
and c will be used to describe the energy Ef and Ec and pseudo-Lagrangian Lf and
Lc functions at the fine and the coarse levels, respectively.

A multigrid approach for constrained optimization 9

0 1 2 3

1

2

3

0 1

1

��������������������
������
������
������
���
������
���

������
������������
���

���������
���
������
���

	�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�		�	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������������
������ �������

�������
����������������������������
����������������������������

��������������

����������������������������������
����������������������������������

������������������������������
������������������������������

���
���
����������������

������

����������������������
������

�������
��������������
�������

�������
��������������
�������

 �
 �
!�!
!�! "�"

"�"
#�#
#�#

$�$
$�$
%�%
%�%

&�&
&�&
'�'
'�' 0

0

(�(�(�((�(�(�(
(�(�(�(
(�(�(�(

)�)�)�))�)�)�)
)�)�)�))�)�)�)

Fig. 3.2. Geometric coarsening. The equidensity constraints of every four similarly patterned
squares at the fine level form one equidensity constraint at the coarse level.

Thus, the minimization part of the pseudo-Lagrangian (3.8) at the fine level is

Ef =
1
2

∑
ij

qijuiuj +
∑
i

liui . (3.11)

(Note that we have omitted the β term from the following derivation since it is merely
an artificial added term.) Given a current approximation ũ of the fine level solution
u and a correction function U calculated at the coarse level variables U, ũ will be
corrected by

ũi ← ũi +
∑
I3i

αiIUI , (3.12)

where the notation
∑
I3i means that the sum is running over all coarse gridpoints pI

from which standard bilinear interpolation is made to the fine gridpoint pi.
Expressing the fine level energy functional Ef in terms of the coarse variables by

substituting (3.12) into (3.11) yields

Ef =
1
2

∑
ij

qij(ũi +
∑
I3i

αiIUI)(ũj +
∑
J3j

αjJUJ) +
∑
i

li(ũi +
∑
I3i

αiIUI) =

=
1
2

∑
IJ

QIJUIUJ +
∑
I

LIUI + C ,

where QIJ =
∑

i∈I
j∈J

qijαiIαjJ , LI =
∑

j
i∈I

qijũjαiI +
∑
i∈I liαiI and C is a constant.

Thus, the coarse level energy functional will be of the same structure as the fine level
one, namely,

Ec =
1
2

∑
IJ

QIJUIUJ +
∑
I

LIUI .

For each fine square s the equidensity constraint eqd(s) is given by (3.5). The
coarse equidensity constraints are constructed by merging 2× 2 fine squares into one
coarse square S. The expression ”s ∈ S” will refer to running over the four fine
squares s that form the coarse square S (see Figure 3.2). The S-th planar equidensity
constraint of the coarse level (in the case of equality constraints only) is obtained
again by the substitution of (3.12):∑

s∈S

∑
i

asiui −
∑
s∈S

bs =
∑
I

ASIUI −BS ,

10 D. Ron AND I. Safro AND A. Brandt

where ASI =
∑
i∈I
∑
s∈S asiαiI and BS =

∑
s∈S(bs −

∑
i asiũi). Similarly (in the

case of equality constraints), the additional η-constraint over all squares at the coarse
level as inherited from the fine level is

∑
S DSΛS = 0, where DS =

∑
s∈S ds.

To complete the description of the coarse equations, we still need to transfer the
equidensity inequality constraints. For this purpose we will use the Full Approximation
Scheme (FAS), which is the general multigrid strategy applied to nonlinear problems
(see [3, 4, 14]). In fact, there is no need for the FAS for the equality equidensity
constraints since it is a linear problem that can be solved by the regular Correction
Scheme (CS). The FAS-like coarsening rules are needed and applied only on the
set of equations derived from the equidensity inequalities. Thus, our scheme is a
combination of the correction scheme for the energy equations derived from (3.11)
and (3.12) and FAS-like rules for the equidensity equations.

To derive these equations we need to calculate the residuals for both the fine and
coarse grids. If Lf is the pseudo-Lagrangian of the fine level system defined by

Lf = Ef +
∑
s

λs(
∑
i

asiui − bs) + η
∑
s

dsλs , (3.13)

where Ef is given by (3.11), then the ui-th residual of ∇Lf , where λ̃s is the current
value of the Lagrange multiplier λs, is

rE
i = −li −

1
2

∑
j

qijũj −
∑
s

λ̃sasi.

Thus, the residual corresponding to the variable UI of ∇Lc (where ∇Lc is the coarse
level system of equations analogous to (3.13)) is

RE
I =

∑
i∈I

αiIr
E
i , (3.14)

where αiI are as in (3.12); that is, the fine-to-coarse transfer is the adjoint of our
coarse-to-fine interpolation. The residual of the s-th equidensity constraint is

reqd
s = bs −

∑
i

asiũi − η̃ds ,

where s runs over all fine squares and η̃ is the current value of η. Therefore, the coarse
equidensity residual of square S is

Reqd
S =

∑
s∈S

reqd
s . (3.15)

Finally the residual of the η-constraint is

rη = −
∑
s

dsλ̃s = RH .

Denote by LP (I) the linear part of the UI -th equation in the system ∇Lc

LP (I) =
1
2

∑
J

QIJUJ +
∑
S

ΛSASI .

A multigrid approach for constrained optimization 11

From the FAS rule for the I-th coarse equation stating that LP (I) = RE
I + the current

approximation of LP (I) , we can derive the I-th ∇Lc equation

1
2

∑
J

QIJUJ +
∑
S

ΛSASI −RE
I −

1
2

∑
J

QIJU0
J −

∑
S

Λ0
SASI = 0, (3.16)

where RE
I is given by (3.14), U0

J = 0 and Λ0
S = 1

4

∑
s∈S λ̃s. Similarly, the S-th square

coarse equation for the equality (inequality) constraint is∑
I

ASIUI +HDS −Reqd
S −

∑
I

ASIU0
I −H0DS = (≤)0 , (3.17)

where Reqd
S is given by (3.15). The last equation for the H-constraint is∑

S

DSΛS −RH −
∑
S

DSΛ0
S = 0. (3.18)

Note that equations (3.16) to (3.18) are the coarse grid equations analog to the system
(3.9). (A 2βUI term may be added to (3.16) for stability if needed.) The correction
received from the coarse level for the u variables is given by (3.12) and for the Lagrange
multipliers λ by

λ̃s ← λ̃s + ΛS3s − Λ0
S3s . (3.19)

3.2.2. Relaxation. In our multigrid solver, as usual, the relaxation process is
employed as the smoother of the error of the approximation, before the construction of
the coarse level system and immediately after interpolation from the coarse level. For
this purpose we have developed the Window relaxation procedure, which extracts from
the entire system small subproblems of m×m squares and solves each separately, as
explained below. The running time of the entire relaxation process strongly depends
on the algorithm for solving one window. There exist many versions of well-known
algorithms for the quadratic minimization problem under linear inequality constraints
(for a survey see [1]). However, since each window need be solved only to a first
approximation (because of the iterative nature of the overall algorithm), in order to
keep the running time low, we have implemented a simple algorithm for approximately
solving each single window, as presented in SingleWindowSolver.

Let W = {s ∈ S(G)| all squares within an m×m super-square} be a window of
squares. To solve the quadratic minimization problem in W, we fix at their current
position all u outside W, as well as all those that are on the boundary of W and
represent movement perpendicular to the boundary. The minimization is done under
the set of equidensity constraints for the squares s ∈ W. The solution process for each
single window is a simplified version of the active set method and is iterative. At each
iteration t, for a given ũ we first extract the set (denoted by St) of squares for which
the respective inequality equidensity constraints are violated or almost violated:

St = {s ∈ W | eqd(s) > bs − ε} ,

where ε is positive and sufficiently small but not too small to make St numerically
unstable (we have used ε = 0.0001∗(the square’s area)). Then the inequality con-
straints of St are set to equalities ignoring the other inequality constraints. Let PW
be the set of all displacement indexes inside W (including those on the boundary of

12 D. Ron AND I. Safro AND A. Brandt

W directing parallel to it). For every ui, i ∈ PW we associate a correction variable δi
and we reformulate the pseudo-Lagrangian for W as a functional of the δi variables
as follows:

LW(δ, λ) =
1
2

∑
i,j∈PW

qij(ũi + δi)(ũj + δj) +
1
2

∑
i∈PW , j 6∈PW

qij(ũi + δi)ũj+∑
i∈PW

li(ũi + δi) + β
∑
i∈PW

(ũi + δi)2 +
∑
s∈St

λs(
∑
i∈PW

asiũi − bs) , (3.20)

where ũi is the current value of ui and the β term is added for stability with β = 1.
Solving ∇LW(δ, λ) = 0 we obtain the corrections δi for ũi, i ∈ PW , which confine the
respective active set variables to the boundary of the equality constraints manifold.
However, while accepting this correction we may violate other inequality constraints
that were already satisfied at the previous iteration t − 1. Let us call this set of
new unsatisfied constraints St. One way to overcome this problem is to accept only
a partial correction θδi, i ∈ PW , where θ is the smallest number that brings some
constraint from St to equality. Accepting the correction θδi does not violate any
constraint from St. At this point we accept this partial correction and continue to
the next iteration t+1, excluding from the redefined St the set of satisfied (by equality)
constraints from St with negative Lagrange multipliers λs.

SingleWindowSolver(W, ũ)
begin
t = 0
Repeat until ”optimal enough” (explained at the end of Section 4)

If t = 0
St = {the violated equidensity constraints}

Else
St = {the violated equidensity constraints}\

{those from iteration t− 1 which satisfy equality and have λs < 0}
Solve ∇LW(δ, λ) = 0 and extract the smallest θ
Accept the correction ũ← ũ + θδ
t← t+ 1

end

To achieve corrections for all variables, we will cover by these windows the entire
area in red-black order [14]. For computational reasons we have chosen to apply this
relaxation for very small windows (of size 4 × 4 squares). To minimize the effects of
the boundary constraints in the windows and to enforce the equidensity constraints
over different super-squares, we scan the entire domain two more times: once with
half-window size shift in the horizontal direction and once in the vertical. Thus the
overall relaxation process covers the domain three times.

3.2.3. The multilevel cycle. Having defined the window relaxation, the inter-
polation, and the coarsening scheme, the multilevel cycle naturally follows. Starting
from the given approximation (x̃, ỹ), discretize the domain by a standard grid on
which the u variables are initially defined. Construct the system of equations (3.9),
and solve for the u variables as follows. After applying ν1 window relaxation sweeps,
define the coarser level equations for the coarser grid, apply ν1 window relaxation
sweeps there, and continue to a still coarser level. This process is recursively repeated

A multigrid approach for constrained optimization 13

until a small enough problem is obtained. Solve this coarsest problem directly, and
start the uncoarsening stage by interpolating the solution of the coarse level to the
finer levels followed by ν2 window relaxation sweeps on the finer level. Repeat until
the correction to the original problem is obtained. This entire multilevel cycle, usually
referred to as the V-cycle, is summarized in procedure V-cycle-correction below,
where the superscript index refers to the level number. (We have used ν1 = ν2 = 3).

V-cycle-correction(Gi, ui, Ci, λi, ∇Li)
begin

If Gi is a small enough grid
Solve the problem exactly

Else
Set ui = 0
Apply ν1 Window relaxation sweeps
Construct Gi+1 the coarse level grid
Define Ci+1 to be the set of equidensity constraints
Initialize the system of equations ∇Li+1 given by (3.16)-(3.18)
Initialize ui+1 and λi+1

V-cycle-correction(Gi+1, ui+1, Ci+1, λi+1, ∇Li+1)
Interpolate from level i+ 1 to level i using (3.12) and (3.19)
Apply ν2 Windows relaxation sweeps

Return ui

3.3. The Full MultiGrid external driving routine. The solution of (3.9)
is primarily dependent on the chosen grid size. To enforce equidensity at all scales,
it can be used within the Full MultiGrid (FMG) framework. This is done by using
a sequence of increasing grid sizes (progressively finer meshsizes), while employing a
small number of V-cycles for each grid size. We emphasize that the original problem
(2.2) is highly nonlinear, while the system of equations with corrections in term of
the displacement u is linearized around the current solution (x̃, ỹ). Therefore, only a
small correction should actually be taken from the u displacements when these (x̃, ỹ)
are being updated. Then, a new linear system can be formulated around the new
solution to obtain a new correction, and so forth. Thus, by small steps of corrections
we solve the original nonlinear problem via the corrections calculated from the linear
system of equidensity constraints. For instance, we have tried to employ grids of sizes:
2, 4, 8, ... up to a grid with number of squares comparable to the number of nodes
in the graph. For each grid size the corresponding set of equations (in terms of the
displacement u) is solved either directly (for small enough grids) or by employing
the V-cycles described in Section 3.2.3. In either cases the obtained solution u is
interpolated back to the (x, y) variables, introducing the desired correction to the
original variables of the problem. Various driving routines can be actually used: each
chosen grid size may be solved more than once (e.g., use grids 2, 2, 4, 4, 8,...); the
entire sequence of grids may be repeated (e.g., 2, 2, 4, 4, 8,... , 2, 2, 4, 4, 8,...), and
so on. (see Section 4 for examples). These parameters should in fact be optimized for
each application according to the concrete needs of the model.

The entire algorithm for the two-dimensional layout correction is summarized
below in Algorithm 2D-layout-correction, where the superscript 0 refers to the
current chosen grid size.

14 D. Ron AND I. Safro AND A. Brandt

2D-layout-correction(graph G, current layout (x̃, ỹ))
begin

Apply for a sequence of grid sizes
Construct and initialize G0, u0

Define C0 to be the set of equidensity constraints
Initialize the system of equations ∇L0

V-cycle-correction(G0, u0, C0, λ0, ∇L0)
Update (x̃, ỹ) from u0

Return (x̃, ỹ)

4. Examples of graph drawing layout correction. As previously mentioned,
the graph drawing problem is of interest for many applications. Therefore, we have
chosen to demonstrate the abilities of our algorithm for this problem. In this section
we will present several results of the two-dimensional layout correction algorithm using
inequality constraints. The set of examples is shown in Figures 4.1 and 4.5 to 4.8,
each organized in two columns. The initial and final layouts of the graph are shown
in the same row, in the left and the right columns, respectively. Note that finalizing
the ”nice graph” representation of these examples is beyond the scope of this work.
The various ”beautifying” procedures used by different applications may, of course,
be used at the end of our cycles to enhance the visualization results.

The first example consists of a mesh graph with three holes (Figure 4.1, row (a)).
It is intended to demonstrate that the empty space stays empty and the energy is
thus kept low. More complicated examples are shown in Figure 4.1, rows (b) and
(c). The initial optimal positions of the mesh’s vertices were randomly changed by
independent shifts in different directions within a distance d:

d ≤
{

2hx in example (b)
4hx in example (c) ,

where hx is the length of a square on the initially taken 32x32 grid, such that the mesh
size of the graph is actually 2hx. Let us call these meshes M1 and M2, respectively.
While the correction of M1 looks really nice, two switched vertices at the right-hand
side of M2 demonstrate a weak point in our algorithm that certainly must be improved
by a local ”beautifying” procedure, which in general depends on the real application.
The initial layout (c1) is more complicated than (b1), while the desired final layouts
are similar.

A typical example of the energy behavior is presented in Figures 4.2-4.4. These
figures refer to the mesh example in Figure 4.1-(c). The general energy minimization
progress is shown in Figure 4.2. In this example the driving routine alternates between
two grid size V-cycles: each odd V-cycle solves the correction problem for the 16x16
grid, while even V-cycles improve the previous iterations with the grid 32x32. Figures
4.3 and 4.4 show the energy behavior of the Window relaxations (without V-cycles)
for 16x16 grid iterations and alternately 16x16 and 32x32 grid sizes, respectively.
Clearly, the V-cycle algorithm is more powerful in minimizing the energy than just
employing the Window relaxations.

A more complicated example is shown in Figure 4.5 in which the 64x64 mesh
graph randomly perturbed by vertex shifts (up to 2hx of a 64x64 grid), compressed at
the left bottom corner and augmented by 50 randomly chosen edges (Figure 4.5-(a)).
The final result of the algorithm is presented in Figure 4.5-(b), where all vertices are
placed almost at their optimal locations (note the different scales of the two figures).

A multigrid approach for constrained optimization 15

We have used 2-FMG cycles with 2 V-cycles at each level as the main driving routine.
Such a driving routine works with the following grid sizes: 2, 2, 4, 4, 8, 8, ..., 128,
128, 2, 2, 4, 4, and so forth. After these 2-FMG cycles the total energy was very close
to its real minimum and additional iterations have only slightly corrected the layout.
The next experiment consists of the 64x64 compressed mesh with three holes. The
initial and final layouts are presented in Figures 4.6-(a) and 4.6-(b), respectively.

Two additional examples demonstrate the layout corrections for graphs whose
vertices have nonequal volumes (see Figures 4.7 and 4.8). In both cases the initial
layout of these graphs was random.

In spite of the promising results presented above, the algorithm has not yet been
optimized. However, it is already clear that several parameters must for efficiency be
kept very small. For example: (1) the number of Window relaxation iterations should
be fixed between 1 and 3; (2) ”optimal enough” in SingleWindowSolver means less
than 6 iterations and (3) the size ofW in SingleWindowSolver is very robust, that
is, the same results can be obtained with sizes 4x4, 8x8, and 16x16. We have used
only 4x4 as it runs the fastest.

5. Conclusions. We have presented a linear time multilevel algorithm for solv-
ing correction to the nonlinear minimization problem under planar (in)equality con-
straints. By introducing a sequence of grids over the domain and a new set of global
displacement variables defined at those grid points, we formulated the minimization
problem under planar equidensity constraints and solved the resulting system of equa-
tions by multigrid techniques. This approach enabled fast collective corrections for
the optimization objective components. We believe that this formulation can open
a new direction for the development of fast algorithms for efficient space utilization
goals. Among many possible motivating applications [2, 7, 9, 8, 6, 12, 5, 11, 13] we
focused on the demonstration of the method on the graph visualization problem with
efficient space utilization demand.

We recommend this multilevel method as a general practical tool in solving, pos-
sibly together with other tools, the nonlinear optimization problem under planar
(in)equality constraints.

6. Acknowledgments. This work was supported in part by the Office of Ad-
vanced Scientific Computing Research, Office of Science, U.S. Department of Energy,
under Contract DE-AC02-06CH11357.

REFERENCES

[1] M. Avriel. Nonlinear Programming: Analysis and Methods. Dover Publications, 2003.
[2] G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing: Algorithms for the

Visualization of Graphs. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1998.
[3] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp.,

31(138):333–390, April 1977.
[4] A. Brandt and D. Ron. Chapter 1 : Multigrid solvers and multilevel optimization strategies. In

J. Cong and J. R. Shinnerl, editors, Multilevel Optimization and VLSICAD, pages 1–69.
Kluwer, 2003.

[5] M. Cardei and J. Wu. Energy-efficient coverage problems in wireless ad hoc sensor networks.
[6] Zvi Drezner. Facility Location: A Survey of Applications and Methods. Springer, New York,

1995.
[7] P. A. Eades. A heuristic for graph drawing. In Congressus Numerantium, volume 42, pages

149–160, 1984.
[8] D. Harel and A. Inger. On the aesthetic layout of higraphs. submitted, 2006.
[9] David Harel. On visual formalisms. Commun. ACM, 31(5):514–530, 1988.

16 D. Ron AND I. Safro AND A. Brandt

(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 4.1. Examples of the 2D-layout of graphs with equal vertices.

0 100 200 300 400 500
20

22

24

26

28

30

32

V−cycles

En
er

gy

Fig. 4.2. Energy behavior of the mesh at Figure 4.1-(c), when employing complete V-cycles
with 16× 16 and 32× 32 alternately.

A multigrid approach for constrained optimization 17

0 100 200 300 400 500
20

22

24

26

28

30

32

Window relaxations

En
er

gy

Fig. 4.3. Energy behavior of Window relaxation iterations (16× 16 grid) of the mesh at Figure
4.1-(c).

0 100 200 300 400 500
20

22

24

26

28

30

32

Window relaxations

En
er

gy

Fig. 4.4. Energy behavior of Window relaxation iterations (16 × 16 and 32 × 32 grids) of the
mesh at Figure 4.1-(c).

2 4 6 8 10 12 14
2

4

6

8

10

12

14

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(a) (b)

Fig. 4.5. Example of the layout of the 64 × 64 mesh with additional random edges (note the
different scales of the two figures): (a) starting from a compressed and perturbed configuration at
the bottom-left corner, (b) the resulting picture using V-cycles.

18 D. Ron AND I. Safro AND A. Brandt

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10

11

0 10 20 30 40 50 60
0

10

20

30

40

50

60

(a) (b)

Fig. 4.6. Example of the 64× 64 mesh with three holes layout (note the different scales of the
two figures): (a) starting from a compressed and perturbed configuration at the bottom-left corner,
(b) the resulting picture using V-cycles.

Fig. 4.7. Example of the 2D-layout of a graph with nonequal volumes.

[10] Joe Marks, editor. Graph Drawing, 8th International Symposium, GD 2000, Colonial
Williamsburg, VA, USA, September 20-23, 2000, Proceedings, volume 1984 of Lecture
Notes in Computer Science. Springer, 2001.

[11] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Coverage problems in
wireless ad-hoc sensor networks. volume 3, pages 1380–1387, 2001.

[12] Seapahn Meguerdichian, Farinaz Koushanfar, Miodrag Potkonjak, and Mani B. Srivastava.
Coverage problems in wireless ad-hoc sensor networks. In INFOCOM, pages 1380–1387,
2001.

[13] G.-J. Nam and J. Cong. Modern Circuit Placement. Springer, New York, 2007.
[14] U. Trottenberg, C.W. Oosterlee, and A. Schuller. Multigrid. Academic Press, Orlando, FL,

2001.

A multigrid approach for constrained optimization 19

Fig. 4.8. An example of the 2D-layout of a 5-level binary tree with non-equal vertices.

The submitted manuscript has been created in
part by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (”Argonne”). Ar-
gonne, a U.S. Department of Energy Office of Sci-
ence laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government re-
tains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide li-
cense in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and
perform publicly and display publicly, by or on
behalf of the Government.

