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Abstract

We show that cr(G) < (2 ioczr (G)) settling an open problem of Pach
and Té6th [4, [1]. Moreover, iocr(G) = cr(G) if iocr(G) < 2.

1 Crossing Numbers

Pach and Téth point out in “Which Crossing Number is It Anyway?” that
there have been many different ideas on how to define a notion of crossing

number including—using current terminology—the following (see [5], [13]):

crossing number: cr(G), the smallest number of crossings in a drawing of

G,

pair crossing number?] per(G), the smallest number of pairs of edges
crossing in a drawing of G,

odd crossing number: ocr(G), the smallest number of pairs of edges cross-

ing oddly in a drawing of G.

*An extended abstract of this paper will appear in the proceedings of Graph Drawing
2009.

TPartially supported by NSA Grant H98230-08-1-0043.



We make the typical assumptions on drawings of a graph: there are only
finitely many crossings, no more than two edges cross in a point, edges do
not pass through vertices, and edges do not touch. (For a detailed discussion
see [I3].) One may consider relaxing some of these assumptions. For exam-
ple, allowing more than two edges to cross in a point leads to the notion
of degenerate crossing number introduced by Pach and Téth [6]. Relaxing
the touching condition has no effect on crossing number or pair crossing
number, but it would make odd crossing number identical to zero. There
are also conditions one might consider adding, such as requiring edges to
be straight-line segments, which leads to the notion of rectilinear crossing
number (for which the pair and odd versions coincide with the standard
version). Finally, there is the issue of whether adjacent edges are allowed to
cross or whether their crossings should count. Tutte [I7] wrote

“We are taking the view that crossings of adjacent edges are
trivial, and easily got rid of.”

While this is true for the standard crossing number, it is not at all obvi-
ous for other variants (or the particular variant that Tutte was studying).
Székely [13] comments “We interpret this sentence as a philosophical view
and not a mathematical claim.”

In [4], Pach and Té6th suggest a systematic study of this issue (see also [I]
Section 9.4]): they introduce two rules that can be applied to any notion
of crossing number. “Rule +” restricts the drawings to drawings in which
adjacent edges are not allowed to cross. “Rule —” allows crossings of adja-
cent edges, but does not count them towards the crossing number. Pairing
ocr, per, and cr with any of these two rules gives a total of eight possible
variants (since cry = cr as we mentioned above); one of them has its own
name: iocr := ocr_, the independent odd crossing number, introduced by
Tutte. The figure below is based on a similar figure from [I].

Rule + || ocry pery |
ocr per
Rule — || iocr = ocr_ | per_ | cr—

Very little is known about the relationships between these crossing num-
ber variants, apart from what immediately follows from the definitions: the
values in the display increase monotonically as one moves from the left to
the right and from the bottom to the top. Even the question cr = cr_

'Recently, the book by Tao and Vu [15] on additive combinatorics defined the crossing
number as pcr.



remains open. Pach and Téth did show that cr(G) < (2065(6)), and this
implies that five of the variants, namely ocry,ocr,pcr,,pcr, and cr can-
not be arbitrarily far apart, but the result does not cover the “Rule —”
variants. For cr versus ocr, the bound by Pach and Téth is still the best
known, though it is expected to be far from the truth. It implies that
cr(G) < (QPCE(G)), a bound that can be strengthened: Valtr [I8] showed
that cr(G) = O(per?(G)/log per(G)), which Téth [16] improved to cr(G) =
O(pcr?(G)/log? per(G)). Again, these bounds are not expected to be opti-
mal, and, indeed, cr = pcr has been conjectured. On the other hand, we do
know that ocr and per (and, therefore, ocr and cr) differ: the authors showed
that there is an infinite family of graphs with ocr(G) < 0.867 - per(G) [12].
This separation was improved by Téth to ocr(G) < 0.855 - per(G) [16]. The
upper bound per(G) < (2 OC;(G)) which follows from the bound by Pach and
Téth is still the best known in this case as well.

In this paper, we show that all eight crossing number variants are within
a square of each other:

Theorem 1.1. cr(G) < (2ioc2r(G)).

This answers an open problem from [4, Problem 13]; also see [I, Problem
9.4.7]. Pach and Téth asked whether there are functions f, g, h for which
cr(G) < f(er—(Q)), per(GQ) < g(per_(G)), and ocr(G) < h(iocr(G)) for all
graphs G. Theorem [[.T] implies that f = g = h = (2296) will do, but this is
probably not the optimal choice for f, g, and h, and quite possibly not for
bounding cr in terms of iocr either.

Theorem [[Tlimmediately implies that iocr(G) = cr(G) if iocr(G) < 1. In
Section [B] we strengthen this to iocr(G) = cr(G) if iocr(G) < 2. Previously
we showed that ocr(G) = cr(G) if ocr(G) < 3 [9], but the result for iocr
is harder, since a bound on iocr(G) does not imply any a priori bound
on the number of edges crossing some other edge oddly. Indeed, the new
result generalizes the Hanani-Tutte theorem, which states that iocr(G) =0
implies that cr(G) = 0. There are aspects of the Hanani-Tutte theorem
which are still not well understood, for example to what extent it relies on
the underlying surface: it has only recently been extended to the projective
plane, that is, we now know that iocry, (G) = cry, (G) if iocry, (G) = 0 [§].
However, it is not clear, how to extend this to the case that iocry, (G) < 1 or
how to prove the Hanani-Tutte theorem for surfaces beyond the projective
plane. We do know that ocrg(G) = crg(G) if ocrg(G) < 2 for arbitrary
surfaces S [10].

The independent odd crossing number is implicit in Tutte’s paper “To-
ward a Theory of Crossing Number” which attempts to build an algebraic



foundation for the study of the standard crossing number [I7]. From an
algebraic point of view, ocr and iocr are much more convenient parame-
ters than the standard crossing number; for example, as Pach and To6th
pointed out, ocr < k and iocr < k can be recast as problems over vector-
spaces [5]. Tutte’s algebraic approach has been continued by Székely [13] [14]
and, along different lines, Norine [2] and van der Holst [19]. Theorem [l
justifies the approach of studying standard crossing number via independent
odd crossing number, by showing that they are not too far apart; indeed, it
is tempting to conjecture that cr(G) = O(iocr(G)). And in spite of the fact
that determining the independent odd crossing number of a graph is NP-
complete [7], we feel that due to its algebraic nature it offers an intriguing
and underutilized alternative approach to algorithmic aspects of crossing
number problems.

2 Removing Even More Crossings

An edge in a drawing of a graph is odd if it is part of an odd pair, which is a
pair of edges that cross an odd number of  times.
Edges that are not odd are even, and they cross
every edge an even number of times (possibly odd
zero times). An edge in a drawing is indepen-
dently odd if it is part of an independently odd :><
pair, which is a pair of non-adjacent edges that
cross an odd number of times. Edges that are
not independently odd are independently even,
thus, an independently even edge crosses all even
non-adjacent edges evenly (possibly zero times), ﬂ<
while it may cross adjacent edges arbitrarily. For
convenience, we will usually write i-odd for in- l-even
dependently odd and i-even for independently
even. Throughout this paper graphs are simple, that is, they have no loops
or multiple edges, unless we say otherwise.

Pach and Téth showed that if E is the set of even edges in a drawing D
of G, then G can be redrawn so that all edges in F are crossing-free. As a
corollary, they obtained cr(G) < (2 OC;(G)) [5]. We strengthen the Pach-T6th
result to the case that F is the set of independently even edges. According
to Pach and Sharir [3], this has been conjectured.

Our redrawing has the additional property that for every crossing-free
cycle C, the edges and vertices of the graph in the interior (exterior) of
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C remain in the interior (exterior) of C after redrawing; we call such a
redrawing stable.

Lemma 2.1. If D is a drawing of a graph G in the plane, then G has a
stable redrawing in which the independently even edges of D are crossing-free
and every pair of edges crosses at most once.

With this lemma, the proof of Theorem [I.1lis immediate.

Proof of Theorem [Il Start with a drawing D of G that realizes iocr(G),
that is, iocr(D) = iocr(G). If F is the set of i-odd edges in D, then
|F| < 2iocr(D). By Lemma [21] there is a drawing of G with at most
('g‘) crossings. ]

To prove Lemma 2], we adapt the following result (a different strength-
ening of the Pach-T6th result) from odd edges to i-odd edges. The rotation
of a vertex is the cyclic order in which edges leave the vertex in a drawing,
read clockwise. The rotation system of a drawing is the collection of all
vertex rotations.

Lemma 2.2 (Pelsmajer, Schaefer, and Stefankovi¢ [9]). If D is a drawing
of G in the plane and F is the set of odd edges in D, then G has a redrawing
with the same rotation system, in which G — F is crossing-free and there are
no new pairs of edges that cross an odd number of times.

Remark 1. We may assume that the redrawing in Lemma[2.2]is stable; if G
is connected, this is a consequence of Lemma not changing the rotation:
a vertex v lying inside (or outside) a crossing-free cycle C' of G in D, remains
on the same side of the drawing, since a path from v to C' has to start on
the same side of C' after the redrawing (since the rotation system does not
change) and C' remains crossing-free (since it belongs to G — F'), so the path
cannot cross C'. If G is not connected, we can find a stable redrawing of each
connected component of G and combine them into a single stable redrawing,
using the method of the proof of Claim [l in Section Bl

Splitting a vertex means creating two copies of the vertex with an edge
between them so that any edge incident to the original vertex is incident to
exactly one of the two copies. (According to this definition, it makes sense
to talk about the edges of the original graph occurring in the graph after a
vertex split, even though the incidences of edges will change.)

Now we can state our analogue of Lemma for i-odd edges.



Lemma 2.3. If D is a drawing of G in the plane, and F is the set of i-odd
edges in D, then one can apply a sequence of vertex splits to obtain a graph
G’ with drawing D' and the set F' of i-odd edges in D', such that (1) there
are no new independent odd pairs (so F' C F), (2) every edge of G' — F’
that is not a cut-edge of G' — F' is crossing-free in D', and (3) if C is a
cycle of G' — F' and v € V(C), then v has at most one incident edge in the
interior of C, and at most one incident edge in the exterior of C'.

An edge is a cut-edge if and only if it belongs to no cycles, so Property (2)
can be restated as saying that the union of cycles in G’ — F’ is crossing-free
in D'. Also, if Y is the set of cut-edges of G’ — F', then G' — (F' UY) is
crossing-free in D’.

Proof of Lemma[2.3. Fix a drawing D of G = (V, E) and let F be the set of
i-odd edges in D. We establish the theorem by induction. We will modify G
during the proof by splitting vertices, namely a vertex of degree d is split into
two vertices of degrees dy,ds > 3. We have d; +dy = d+ 2, so di)’ + d%’ <d3
and thus we can use induction over the weight

w(G) =Y d(v)®

veV

of G where d(v) is the degree of v in G. For two graphs of the same weight,
we induct over the number of cycles that are not crossing-free.

Suppose that C' is a crossing-free cycle, with a vertex u that is incident
to more than one edge on the same side of C. We modify the graph by
splitting w into uy (replacing v on C') and uy (attached to the edges on the
side with more than one edge) and inserting an edge between w; and wus.
This operation results in a graph G’ with smaller weight and it does not
create new i-odd edges (since edges in the exterior of C' cannot cross edges
on the interior, as all edges along C' are crossing-free). We can now apply
induction to G’ to obtain the result. Thus, we may assume that for every
vertex u in a crossing-free cycle C, u is incident to at most one edge on the
interior of C' and at most one edge on the exterior of C. It follows that any
two edges incident to a vertex u in a crossing-free cycle do not cross.

Suppose that C' is a cycle made up of i-even edges only, and C' is not
crossing-free. At each vertex u of C' we can ensure that the two edges of
C incident at u (say, e and f) cross evenly by modifying the rotation at
u and redrawing G close to u (Figure [[l). The rotation of the remaining
edges at u can then be changed so that each of them crosses e and f evenly
(Figure 2)). After the redrawing, all the edges of C' are even and we can



apply Lemma to remove all crossings with edges of C' without changing
the rotation system or adding new pairs of edges that cross oddly. Now C is
crossing-free, and no new i-odd pairs have been added. Suppose that C’ is a
cycle that was crossing-free before the redrawing. If C' and C’ share a vertex
u, then the rotation at u is not modified when making C' crossing-free, so
the drawing of C’ near u is unchanged. C’ remains crossing-free under the
stable redrawing of Lemma [2.2] too. Thus we have decreased the number of
cycles that are not crossing-free.

Figure 1: If e and f form an odd pair, redraw near u.

VoL W L W
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Figure 2: If another edge incident to u crosses e oddly and f evenly (or
vice-versa), or if it crosses both e and f oddly, it can be redrawn so that it
crosses both e and f evenly.

We can therefore assume that any cycle consisting of i-even edges is
crossing-free. Any other i-even edge is a cut-edge in the graph restricted to
i-even edges. O

With Lemma 23] we can now prove Lemma 2.1l Note that Property (3)
is not needed for this proof; it is used in Section [3

Proof of Lemma (21l Fix a drawing D of G and let F' be the set of i-odd
edges in D. Apply Lemma 2.3 to obtain a graph G’ with drawing D', let F’
be the set of i-odd edges in D', and let Y be the set of cut-edges in G’ — F’.
Since F'UY contains all crossings in D', G’ — (F'UY) is crossing-free in D’
and we can let S be the set of its faces. Within each face of S, the edges of
Y contained in it can be redrawn one-by-one without creating any crossings,
since no edge of Y can complete a path that cuts a face in two (because then



it would be part of a cycle in G’ — F’, which contradicts it being a cut-edge
of G’ — F'). This yields a crossing-free drawing of G’ — F’, and each of its
faces corresponds to a face of S, with boundary formed from the boundary
of the face of S and the edges of Y in that face. Therefore, each edge of F’
still has both endpoints incident to a face. Within each face, all such edges
of F’ can be drawn so that every pair of edges crosses at most once

Since G’ was obtained from G by a sequence of vertex splits, G can
be obtained from G’ by a sequence of edge contractions. The edges in
E(G")— E(G) are crossing-free, so applying that sequence of contractions to
the current drawing of G’ yields a drawing of G in which G — F” is crossing-
free and each pair of edges in F” crosses at most once. Since F’' C F, it only
remains to show that the overall redrawing is stable.

Let C be any cycle in G — F' that is crossing-free in D. If a vertex u
of C is split by Lemma 2.3 the cycle is either lengthened by one as u is
replaced by an edge and its endpoints u; and we, or w’s position in C' is
merely replaced by uy or us. In this way, C is replaced by a crossing-free
cycle C'. Vertices and edges on the interior (exterior) of C' end up in the
interior (exterior) of C’, and if the split edge is contracted, they end up in the
interior (exterior) of C' again. This property also holds true when splitting
and contracting a vertex that is not in C'. Other redrawings performed
in the proof of Lemma 2.3 do not affect the drawing near C' except when
Lemma 2.2] is applied, and redrawings from Lemma [2.2] are stable. Finally,
when we redraw edges of F/ UY at the beginning of this proof, we do not
switch between the interior and exterior of C. So overall, our redrawing is
stable. O

3 Small Independent Odd Crossings Numbers
Theorem 3.1. Ifiocr(G) < 2, then cr(G) = iocr(G).

The proof is based on an analysis of the “odd configurations” that can
occur in a drawing; we performed such an analysis when we proved ocr(G) <
3 implies cr(G) = ocr(G) in [9]. The present situation is more difficult. In [9],
we used Lemma [2.2] and then contracted all crossing-free edges, reducing the
problem to a multigraph with fixed rotation in which every edge contributes
to ocr. Since ocr < 3, we then only had to analyze very small multigraphs.

2We will see this redrawing technique again in the next section: redrawing cut-edges
of G’ — F’, which preserves faces to the extent that each edge of F’ continues to have a
face that is incident to both its endpoints.



The same method will not work here because contractions affect iocr, and
ocr is unknown. Here, we only have Lemma 2.3

Proof. Fix a drawing D of G realizing iocr(G) and let FF C E(G) be the
set of i-odd edges in D. Let G’ with drawing D’ be as in Lemma 23] with
F’ C F the set of i-odd edges in D’. Then iocr(D’) < iocr(D) = iocr(G).

Suppose that G’ can be redrawn with at most iocr(D’) crossings, so
that G’ — F’ is crossing-free. We can then obtain a drawing of G' with at
most iocr(D’) crossings by contracting the edges of E(G') — E(G), which
are all crossing-free. Thus, cr(G) < iocr(D’). Since iocr(D’) < iocr(G) and
iocr(G) < cr(G) by their definitions, this yields cr(G) = iocr(G).

By the argument in the preceding paragraph we can prove the theorem
by establishing the following claim.

Main Claim Suppose that G is a graph with a drawing D for
which iocr(D) < 2. Let F be the set of i-odd edges in D. If it is
true that

(i) every cycle C in G — F is crossing-free in D, and

(i7) for each vertex v € V(C'), v is incident to at most one edge
on the interior of C' and v is incident to at most one edge
on the exterior of C,

then G has a stable redrawing with at most iocr(D) crossings,
in which G — F' is crossing-free.

The theorem follows from the main claim by applying it with G = G’,
D = D', F = F'. Figure Bl shows a drawing of a graph that fulfills the
conditions of the main claim.

We establish the main claim by induction on the number of vertices plus
the number of edges of G.

Let Y be the set of cut-edges of G — F. Then G — (F' UY") consists of
the union of cycles in G — F', together with any (isolated) vertices that are
incident only to edges in FUY. Thus G — (F UY') minus its isolated vertices
is the edge-disjoint union of the 2-connected blocks (maximal 2-connected
components) of G — F. Each face of G — (FUY') is bounded by a disjoint
union of cycles and isolated vertices. If Y is drawn (or redrawn) without
crossings, then the faces of G — I correspond to the faces of G — (FUY),
as described in the proof of Lemma 211

Claim 1. We may assume that G is 2-connected, that the interior of each
crossing-free cycle in D is empty in D, and that the outer face of G—(FUY)
contains FFUY.
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Figure 3: A graph G drawn such that F' consists of two pairs of i-odd edges
(dotted); cut-edges of G — F are dashed, 2-connected components cross-
hatched. Claim [ establishes that we can assume that the interiors of the
2-connected components are empty and the outer face of G—(FUY") contains
FUY, where Y is the set of cut-edges of G — F.

Proof. If C' is a crossing-free cycle with non-empty interior and exterior,
then apply induction to D minus the interior and to D minus the exterior.
The stable redrawings can be combined into a stable redrawing of G. Thus
we may assume that C' has either empty interior or empty exterior.

By considering the drawing on a sphere instead of a plane, we can con-
sider any face of G — (F'UY) to be the outer face of the drawing: let it be
a face that intersects F'UY . (This may change the meaning of interior and
exterior for a cycle C, but otherwise the redrawing is stable, and at the end
of the proof, the original meanings can be reobtained via the sphere again.)
The exterior of every cycle in G — (F UY) is non-empty, so every cycle in
G — (FUY) has empty interior. Hence every face of G — (F UY'), aside
from the outer face, is the interior of a single cycle (as opposed to having
more than one cycle in the face boundary). Therefore, the outer face of
G — (FUY) contains all of FUY'.

If G is not connected, let H be a component. H lies on the exterior
of each crossing-free cycle in G — H (i.e., the exterior of each cycle in G —
H — (FUY)). Obtain stable redrawings of H and G — H by induction. In

10



the redrawing of G — H, there must be an open disk in the outer face of
G — H — (FUY) that does not intersect G — H; insert the redrawing of H
into that disk to obtain a stable redrawing of G.

If G is connected but not 2-connected, let H be a leaf-block with cut-
vertex x. Redraw H and G — (V(H) — x) by induction, and insert the
first drawing into the exterior face of the second drawing restricted to (G —
(V(H) — z)) — F, with no additional crossings, so that both copies of x are
drawn at the same point. O

Claim 2. We may assume that F' contains exactly two disjoint i-odd pairs
in Dj; in particular, |F| = 4 and iocr(D) = 2.

Proof. 1f F contains two disjoint i-odd pairs in D, then |F'| > 4 and iocr(D) >
2; since |F| < 2iocr(G) = 4 and iocr(D) < 2, we have |F| = 4 and
iocr(D) = 2 in this case.

If ' does not contain exactly two disjoint i-odd pairs in D, then there
is some edge e € F' that is part of every edge pair contributing to iocr(D).
Let F' = F — e be the set of (one or two) edges that form i-odd pairs with
e.

Since no two non-adjacent edges in G — e cross oddly, we can apply
Lemma 2.T] which produces a stable redrawing D* of G — e that is crossing-
free. By Claim [Il the endpoints of e lie on the boundary of the outer face
of G— (FUY), and a stable redrawing will not change that. The boundary
of the outer face of G — F' in D* consists of the edges and vertices in the
boundary of the outer face of G—(FUY") plus the edges of Y, so the endpoints
of e belong to its boundary, too. Adding the edges of F’ to D* — F’ one-by-
one according to D*, each edge divides at most one face into two. Then e
can be drawn so that it does not cross D* — F’ and it crosses each edge of
F’ at most once. Since |F’| =iocr(D’), this suffices. O

Redrawings can result in edges with self-intersections; these can be eas-
ily removed by modifying the drawing of the edge locally near the self-
intersection (see [9], for example).

Claim 3. We may assume that G — F' has no isolated vertices, each leaf of
G — F is incident to exactly two edges of F', and G has minimum degree at
least 3.

Proof. If G has a vertex of degree one, then contract it to a neighbor and ap-
ply induction. We can then add the contracted edge to the drawing without
creating any crossings.

11



Suppose that G has a vertex v of degree two, with incident edges e and
f. If v is incident to an edge of F, let f € F. Contract v along e to
the other endpoint u of e, and remove any self-intersections. Any newly
created (independent) odd pair would involve f and an edge f’ that formed
an (independent) odd pair with e prior to the contraction (so f’ € F), so
F still contains all i-odd pairs. Apply induction to redraw. Reinsert v on
f close to u, letting e be uv. This yields a stable redrawing of G in which
G — F is crossing-free. Thus, we may assume that G has minimum degree
at least 3.

A vertex of G is incident to at most one edge from each i-odd pair, so it
is incident to at most two edges of F. Therefore, a leaf of G — F must be
incident to exactly two edges of F', and there can be no isolated vertices of
G-F. O

To complete the argument, we find it useful to extend the definition of
rotation from single vertices to crossing-free connected subgraphs. Suppose
that H is a component of G — F', and let D* be a drawing of G such that H
is crossing-free. The outer face boundary of H in D* — F is a closed facial
walk W, oriented clockwise. As we traverse the outer face alongside W, we
pass the ends of edges (or “half-edges”) of F' that are incident to H; let this
cyclic ordering of ends of edges be called the rotation at H in D*.

The rotation at H is determined by the full drawing of GG, but we also
need a way to talk about potential rotations at H just based on the incidence
of edges in F' with H. So consider any crossing-free drawing of H, and let
W be its outer face boundary. (We do not draw any edges not belonging to
H.) Note that cut-vertices of H appear more than once in W. If v is an
endpoint of e € F in H, and v appears multiple times in W, then let the
end of e at v be assigned to any one of the copies of v in W. Repeat this for
all ends of edges in F' that are incident to H. If more than one edge end is
assigned to the same element of W, then order them arbitrarily. This yields
a cyclic ordering of the ends of edges in F' incident to H, which we call an
abstract rotation at H.

A rotation can be represented by a cyclic permutation of edges in F,
with each edge appearing at most twice. If we wish to distinguish the two
ends of an edge e, we write them as e; and e,.

Remark 4. For use in upcoming proofs, we briefly consider the cyclic per-
mutations of edges of F' in which no edge appears twice: A set of size one
or two has only one cyclic permutation. There are two distinct cyclic per-
mutations of three elements a,b,c: abc and its reverse, acb. Since there

12



Figure 4: The rotation at H in the given drawing is the cyclic permuta-
tion (a,b,c,d,e); the abstract rotations at H are (a,b,c,e,d), (a,b,e,c,d),
(a,b,c,d,e), (a,b,e,d,c), (a,b,d,c,e) and (a,b,d, e, c).

are 4!/4 = 6 cyclic permutations of {a,b,c,d}, if we group each one with
its reverse, then there are 3 distinct pairs: {abcd, adeb}, {abde,acdb}, and
{acbd, adbc}. Observe that we can switch between these pairs if we are al-
lowed to swap consecutive elements: we can move from abed or adeb to the
second pair by swapping ¢ and d, move from the second pair to the third
pair by swapping b and d, and move from the third pair to the first pair by
swapping b and c.

Claim 5. We may assume that for any component H of G — F', there exists
an edge of F' with both endpoints in H.

Proof. Suppose that H is a component of G — F' and no edge of F' has both
endpoints in H. Then G — F has more than one component. By Claim [3]
H has more than one vertex.

Let F' C F be the set of i-odd edges incident to H. |F’| > 2 since G is
2-connected (by Claim [J).

Since H is connected, we may contract H within the plane to a vertex
vy by a sequence of n(H) — 1 edge contractions, deleting any loops created,
and removing any self-intersections. Let G/H and D/H be the resulting
(multi)graph and drawing, in which each edge of F’ now has vy as an
endpoint. Two edges of F’ can have the same endpoint in G — H, so G/H
may have multiple edges. Since each pair of i-odd edges in F' does not have
shared endpoints, G/H can have up to two pairs of multiple edges, where
each pair contains one edge from each pair of i-odd edges in F'.

Any crossings created by the contraction are between two edges of F’.
Since those edges all share the endpoint vy in D/H, no new i-odd pairs are
created, and any such pair that now shares the endpoint vy is no longer
i-odd. Therefore, iocr(D/H) = 0 if |F'| = 4, and iocr(D/H) = 1 if |F'| =
3. Remove one edge from each pair of multiple edges, apply induction to
redraw, and then add back each removed edge, drawn in parallel to its
multiple edge mate. Let D’/H be the resulting drawing of G/H.
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If D/H has no multiple edges, then cr(D'/H) < iocr(D'/H) < iocr(D/H).
If D/H has two pairs of multiple edges, then D’/H is crossing-free. Sup-
pose then that D/H has one pair of multiple edges. Since every edge in
F is part of an i-odd pair, removing one reduces iocr by 1, so immediately
after applying induction there is at most one crossing, and therefore adding
the edge back adds at most one crossing. So cr(D'/H) < iocr(D/H) in this
case, and in every case. Also, D'/H is a stable redrawing of D/H since F'
and vy are in the outer face of G — (F'UY) restricted to G — H.

Let D"[H] be a stable redrawing of D restricted to H obtained by ap-
plying Lemma 2.1 to the drawing of H in D. Since H contains no edges of
F, D"[H] is crossing-free, and each endpoint of F’ in H is on the boundary
of its outer face. Fix an abstract rotation at H in D”[H]. If it is the same
as the rotation at vy in D'/H, then we can replace vy in that drawing by
D"[H], obtaining a drawing of G whose only crossings are the crossings in
D’/H. This completes the proof. If the rotation at H in D”[H] is equal to
the rotation at vy reversed, then we can flip the drawing of H in the plane,
which reverses its rotation so that it equals the rotation at vy. Then we fin-
ish the proof as before. Otherwise, by Remark 4] vy must be incident to all
four edges in F (i.e., |F’| = 4). Recall that in this case D'/H was crossing-
free. Also, as observed in the remark, by swapping two consecutive elements
in the rotation at vy, and possibly reversing the rotation, we can obtain the
rotation at H. We make the swap by redrawing near vy, which adds one
crossing, and, if necessary, flip the drawing of H to reverse the rotation at
H. Then we can replace vy in D’'/H by D"[H] (possibly flipped) to get a
drawing of G with exactly one crossing, and so that G — F' is crossing-free.
In each case, we obtain a stable redrawing since flipping H will not switch
the contents of the interior (exterior) of any cycle in G — F'. U

Claim 6. We may assume that G — F' is connected.

Proof. By Claim Bl we can assume that for every component H of G — F,
there is some edge e € F with both endpoints in H. Suppose that H’ is
another component of G — F, and let ¢ € F have both endpoints in H'.
Let {f,f'} = F —{e,€'}. G is 2-connected by Claim [, so f and f’ must
each connect H to H', and G — F has no other components. G — F has a
stable redrawing with no crossings by Lemma 2.]] and the boundary of its
outer face (which has two components, the boundary of the outer face of H
and the boundary of the outer face of H') contains all endpoints of edges of
F. Fix abstract rotations at H and at H'. Then f and f’ can be added to
the outer face (dividing the outer face into two faces) so that G — {e, €'} is
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drawn crossing-free. If the ends f and f’ alternate with the ends of e in the
rotation at H, then e can be drawn near H so that it crosses only f, once;
otherwise e can be drawn near H with no crossings. Likewise for ¢/ near H’,
so we produce a drawing of G as desired. O

Let T be the block-cutpoint tree of G — F: In one partite set of T', each
vertex is a block of G — F' (a maximal 2-connected subgraph of G — F'), in
the other partite set, each vertex is a cut-vertex of G — F. Adjacency in T
is containment in G — F'. Since G — F' cannot be a single vertex by Claim [3]
each block is either a maximal 2-connected subgraph of G — F, or a cut-edge
of G — F with its endpoints. By the inductive assumption, each 2-connected
block is bounded by a crossing-free cycle in D.

Each leaf of T is a block in G — F', called a leaf-block of G — F'.

U1 V2 U3 V4

By Uiv2  U2U3 | U3V4 By

V3U5

Figure 5: A graph with two 2-connected blocks, and its block-cutpoint tree.

Claim 7. We may assume that G — F' has more than one block; equivalently,
|[V(T)| > 1. Also, if H is a leaf-block and v is the cut-vertex of G — F in H,
then no edge of F' has both endpoints in H — v.

Proof. We first show the claim about leaf-blocks. If H is a leaf-block with
only two vertices (a cut-edge with its endpoints), then an edge of F' with
both endpoints in H — v would be a loop, which is not possible, since G is
simple.

Suppose then that H is a 2-connected leaf-block. By Claim [I] and con-
dition (7i) of the main claim, no two edges of F' are incident to the same
vertex of H —v. Suppose that e € F' has endpoints u, ' in H — v, and let P
be the u,u/-path on the boundary of H that does not contain v. Choose e
so that P is minimal; then there is no edge of F' with both endpoints in P.

Suppose that there is an edge f € F with exactly one endpoint in P;
this endpoint, z, is in P — {u,u}. Since G — F is connected, f extends via
its other endpoint, through G — F', to an z,v-path @. Since v,z alternates
with u,u’ along the cycle bounding H, @Q crosses e oddly. Then ) contains
an edge that crosses e oddly, and since ) does not contain u or u/, this forms
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an i-odd pair; since () contains only one edge of F', namely f, this edge has
to be f. By Claim 2], there is at most one such edge.

By Lemma 2.1] or induction, G — e has a stable redrawing with at most
one crossing (between two other edges of F'). Since H is 2-connected it is
bounded by a cycle, so in the redrawing, the only edge incident to P—{u, '}
in the exterior of H is f (if such an edge exists). Therefore, e can be added
to the drawing so that e crosses no edge other than f, which it crosses once.
Hence, in this case, we have found a stable redrawing of G with at most two
crossings and we are done.

Finally, we have to show that we can assume that G — F' does not consist
of a single block. G — F' cannot be a two-vertex block, since then every edge
of I would be a multiple edge, which is impossible, since G is simple. Hence,
if G — F is a single block, it must be a 2-connected component and every
edge of F' has both endpoints on G — F. We can then apply the leaf-block
argument replacing v with an arbitrary vertex on the boundary of H; in this
case (Q is not needed to show that e and f cross oddly. O

Claim 8. If H is a 2-connected leaf-block of G — F' and v is the cut-vertex
of G — F in H, then we may assume that H — v is incident to all four edges
of F.

Proof. Let F’ be the set of edges in F' that are incident to H — v. Assume
that |F'| < 3.

By Claim [, no edge of F' has both endpoints in H — v. H is bounded
by a cycle, so by Claim [I]and condition (i) of the main claim, no two edges
of F' can be incident to the same vertex in H, and v is incident to exactly
one edge vu of G — F on the exterior of H (for some vertex u). Let R be
the clockwise cyclic ordering of all edge ends at H in D. (The rotation at
H in D only includes edges of F', so R is the usual rotation at H plus the
edge vu.)

Let G’ and D’ be obtained from G and D by contracting H — v within
the plane to a vertex vy. Then vy is a leaf in G’ — F. Temporarily ignoring
all but one copy of each multiple edge in G’, apply induction to get a stable
redrawing; then multiple edges can be drawn near their remaining copies
so that we obtain a stable redrawing D” of G’. By essentially the same
argument as in the proof of Claim [5 we have iocr(D”) < iocr(D’).

Consider the rotation at vy in G’, but with vgv replaced by vu: if this
is the same as R or its reverse, then we can put H back in the drawing,
possibly flipped, without adding crossings. Otherwise, by Remark [ we
must have |R| > 3, which implies that |F’| = 3. Thus we may assume that
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R is vu, e1, ey, e3. Since |F| = 4, two of the edges in {e1, es, e3} form an odd
pair, which is not independent after H — v is contracted, so iocr(D’) < 2,
and hence D” has less than two crossings. If the clockwise order around
vy in D" is vyv, eq, e9, €3 Or VY, €3, €2, €1, we can insert H without adding
crossings. Thus, by symmetry we may assume that the clockwise order
around vy in D" is vgv,es,e1,e3 or vyv,ea,e3,e1. In the former case we
can replace vvg by H, adding only one crossing between e; and es; in the
latter case we insert H with orientation reversed (so v,es,es2,e; appear in
that clockwise order around H) and add one crossing between ey and es.
Since iocr(D") < 2, the total number of crossings is at most 2 and all those
crossings are between edges of F'. O

Claim 9. If every isolated vertex of G — (FFUY) has degree at most 3 in
G, then we may assume that G — F is drawn with no crossings.

Proof. 1f a cut-edge e of G — F' crosses another edge f oddly, then e and f
share an endpoint v. Each vertex of a cycle is incident to at most one edge
with crossings, so v is not in any cycle of G — F. Then by assumption, v
has degree at most 3 in G. The edges incident to v can be made to cross
pairwise evenly by redrawing them near v (which may change the rotation
at v). Therefore, if we repeat this for all such vertices v, all cut-edges in
G — F are now even. Since G — (F'UY) remains crossing-free, with F' still on
the outer face of G — (F'UY"), applying Lemma [2.2] yields a stable redrawing
of GG such that G — F is crossing-free, with no new i-odd pairs. O

Let F = {a,b,c,d}. We use {ay,a2,b1,b2,c1,co,dy,ds2} to label the ends
of edges in F'.

Claim 10. We may assume that 7" is a path.

Proof. If T is not a path, there are at least 3 leaf-blocks. Claims [8] and [3]
imply that every 2-connected leaf-block H with cut-vertex v is incident to
four ends of F', and every other leaf-block has a leaf of G that is incident to
two ends of F. Since F' has 8 edge ends, G — F' has either one 2-connected
leaf-block and two leafs, or G — F' has no 2-connected leaf-blocks and three
or four leafs.

For any stable redrawing of G — F', the endpoints of F' will still be on
the boundary of the outer face. Suppose that G — F has a stable redrawing
which has an abstract rotation for which the ends of some edge a € F' are
consecutive in that rotation. Then the edges of F' can be drawn such that a
is crossing-free and every two edges in {b, ¢, d} cross at most once. This gives
less than three crossings unless the rotation is ajasbicidybacads (without loss
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of generality). That rotation can be avoided if there exists a leaf of G — F
that is not incident to a, since swapping the ends at that leaf gives another
rotation pattern. Otherwise, as and by are at one leaf of G — F', dy and aq
are at another leaf of G — F, and the other ends are at H — v, where H is
a 2-connected block of G — F' with cut-vertex v. But then we can flip the
drawing of H to get a new drawing of G — F' with rotation ajasbicobadicids.
Thus we may assume that no edge has consecutive ends in any abstract
rotation of any stable redrawing of G — F' (including the rotation in D).

Consider the case that G — F' has four leafs. Each leaf is incident to two
edges of F. By the previous paragraph we may assume the leafs of G — F'
are incident to edge pairs {a, b}, {c, d}, {a,b}, and {c,d}, in that order along
the outer face of G — F. Also, there is no good redrawing of G — F' that
would swap the positions of leafs incident to different edge pairs, so G — F'
cannot have a cut-vertex that separates the leafs.

We wish to apply Claim[d] so consider any isolated vertex v of G—(FUY").
If v is a leaf of G — F then it has degree 3 in G. Otherwise, v is not incident
to any edges of F, only edges in Y. Such an edge leads to a leaf-block of
G — F, which contains a leaf of G — F’; since v cannot separate the four leafs,
v must have degree less than 4. Thus we may apply Claim @ so G — F' is
crossing-free in . However, the rotation implies that each edge a,b must
cross each edge ¢, d oddly, giving four i-odd pairs in D, a contradiction.

Thus, we may assume that G — F' does not have four leafs. So G — F
has exactly 3 leaf-blocks.

Suppose that G — F has a 2-connected leaf-block H with cut-vertex wv.
Then by Claims [8land B, G — F' has two leafs, and each edge of F' has one
end at H — v and the other end at a leaf. Then Claim [0 applies, so D — F'
is crossing-free. If the rotation at H — v is abed, then to avoid consecutive
ends, the rotation must be abed(ab)(cd), where elements within parentheses
can be swapped because they are incident to the same leaf of G — F'. But
then {a,c}, {a,d}, and {b,d} are all i-odd pairs in D, a contradiction.

This means that G — F' has 3 leafs and no 2-connected leaf-blocks. Six
ends of edges in F' are at the leafs, and two ends are not. There must
be two edges a,b that have both ends at the leafs. Since a and b do not
have consecutive ends in any abstract rotation, the rotation at G — F is
(zay1)y(azby)z(bow), where elements in parentheses are incident to the same
leaf of G — F' (and can be swapped), and {z,y, z,w} = {c1, ca,d1,d2}. Also,
c and d may not have consecutive ends in any abstract rotation at D — F, so
the rotation is (c1aq)dy(agby)ca(bads) without loss of generality. If d; or co
is at a cut-vertex of G — F, then this drawing has another abstract rotation
which differs just in the position of di or cg; this, however, is a rotation
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pattern we already covered in an earlier case. Hence we may assume that
no cut-vertex of G — F' is incident to any ends of edges in F'. Since T has
maximum degree 3, any vertex of G — F not in a cycle has degree at most 3.
The previous two sentences mean that Claim [ applies, so G — F' was not
actually redrawn. But then {a,d}, {c,d}, and {b,c} are all i-odd pairs in
D, a contradiction. O

Claim 11. We may assume that G — F' is crossing-free in D.

Proof. 1f a cut-edge e of G — F' crosses another edge f oddly, then e and f
share an endpoint v. Each vertex of a cycle is incident to at most one edge
with crossings, so v is not in any cycle of G — F. Then by Claim [I0] v is
incident to exactly two edges of G — F', say e and f. We can redraw edges
near v so that e and f cross all edges incident to v evenly, using the method
in Lemma (Figures [l and [2)). These redrawing moves do not create any
i-odd pairs. Repeat for every vertex v that is not in any cycle of G — F.
Since every cut-edge of G — F' was i-even, they are now even, and G — F' is
now even. Now apply Lemma to get a stable redrawing of G such that
G — F crossing-free, with no new i-odd pairs. O

Claim 12. We may assume that F' has no stable redrawing with at most
two odd pairs such that G — F' remains crossing-free.

Proof. Consider the rotation at G — F' for such a drawing. Two edges of F’
form an odd pair if and only if their ends alternate in the rotation, since
G — F is connected.

It is easy to redraw F' with the same rotation in the outer face of G — F'
such that each pair of edges crosses at most once. Since two edges of F' that
cross at most once, cross if and only if their ends alternate in the rotation
at G — F, we have obtained a stable redrawing of G with at most two
crossings. ]

We can now complete the proof of Theorem [B.11

By Claim [ and [[0] G — F has exactly two leaf-blocks. If both are 2-
connected, then by Claim [§ the edges of F' have eight distinct endpoints
in G — F. Then each odd pair is actually an i-odd pair, which contradicts
Claim Suppose that H is a 2-connected leaf-block of G — F and v is
the cut-vertex of G — F in H. We may assume that the rotation at G — F
restricted to H is a1bicidy. G — F has a leaf v/ incident to distinct edges
z,y € F, and let {z,w} = F — {z,y} (with {z,y,z,w} = {a,b,c,d}). We
can redraw near v’ so that z,y is an even pair, without creating i-odd pairs.
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Figure 6: G — F, shown with a possible rotation.

Figure 7: G — F with all ends except by and cs.

If z9 and wy (the ends of z and w that are not in H — v) are at distinct
vertices, then there are exactly two odd pairs, contradicting Claim Thus
we may let u be the vertex shared by zo and ws. Then u is not in any cycle
of G—F, so the drawing has a rotation a1bycid; ((x2y2)z2ws), where the last
four ends can be reordered arbitrarily as long as xo and ys are consecutive
(Figure [6). No matter how a, b, c,d maps to z,y, z, w, we may draw x and
y without adding crossings: If {z,y} is {a,b}, {b,c}, or {c,d}, we can add
z and w to the drawing without crossings. If {z,y} is {a,c} or {b,d}, we
draw z and w with one crossing, and if {z,y} is {a,d}, then z and w can be
drawn with one crossing each, such that G — F' remains crossing-free.

Now we can assume that G — F has 2 leafs v, v, and no 2-connected leaf-
blocks. Suppose that a is incident to both leafs; then we may assume that
aj,by are incident to v and ag, ¢; are incident to v’. Then {a, d} must be an
i-odd pair, so the rotation at G — F' (Figure [ contains (a1b1)d;(azc1)ds as
a cyclic subsequence, where elements in each pair of parentheses might be
in reverse order. Since {b, c} is the other i-odd pair, the rotation at G — F' is
obtained from the above cyclic sequence by replacing di by cobady, codibo,
or djcaby, or by replacing de by baocads, badaca, or dabaco. In each case, either
b or ¢ will form an i-odd pair with d, a contradiction.

Thus we may assume that a; and b; are incident to v, and that ¢; and d;
are incident to v’. If the rotation at G—F has the form (a1by)zoys2(c1dy)zows,
then there is a drawing with no crossings if {z, y} equals {a, b} or {c,d}, and
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otherwise there is a drawing where there are no crossing pairs of edges except
x,y and z,w (which may or may not be crossing pairs). If the rotation at
G — F is (a1b1)zoy222(c1dy )we, then there is an abstract rotation where the
wy and wo are consecutive; assuming without loss of generality that w = d,
F — ¢ can be drawn without crossings, and then ¢ can be drawn with at
most two crossings.

So we may assume that the rotation has the form (a1b1)zoy2zows(c1dy).
By flipping the drawing of blocks of G — F' as needed, one can obtain a
drawing of G — F with a rotation of a different pattern (which was already
ruled out) unless there is a 2-connected block H with cut-vertices u,u’ such
that x2, Y2, 22, and wq are incident to (distinct) vertices of (one component
of) H—{u,u'}. By redrawing the edge ends near v and v, we can make a, b
and ¢, d even pairs. This contradicts Claim O

4 An Open Problem

While we now know that the independent odd crossing number is polynomi-
ally bounded within the crossing number of a graph, we do not know if every
graph has a drawing realizing the independent odd crossing number which
has a polynomial number of crossings. Indeed, it is not even clear whether
there is any bound on the number of crossings in an iocr-optimal drawing
that depends on the independent odd crossing number only, and not on the
size of the graph. For the odd crossing number we were able to show such
a result: every graph G has an ocr-optimal drawing with at most 9°(©)
many crossings [11]. We used this result to show that ocr is fixed-parameter
tractable (extending work of Grohe for crossing numbers).
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