N

N

Homogenization approach to the dispersion theory for
reactive transport through porous media
Grégoire Allaire, Andro Mikelic, Andrey Piatnitski

» To cite this version:

Grégoire Allaire, Andro Mikelic, Andrey Piatnitski. Homogenization approach to the dispersion theory
for reactive transport through porous media. STAM Journal on Mathematical Analysis, 2010, 42 (1),
pp-125-144. hal-00784056

HAL Id: hal-00784056
https://inria.hal.science/hal-00784056v1
Submitted on 4 Aug 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-00784056v1
https://hal.archives-ouvertes.fr

ECOLE POLYTECHNIQUE

CENTRE DE MATHEMATIQUES APPLIQUEES
UMR CNRS 761

91128 PALAISEAU CEDEX (FRANCE). Tél: 01 69 33 46 00. Fax: 01 69 33 46 46
http://www.cmap.polytechnique.fr/

Homogenization approach to the
dispersion theory for reactive
transport through porous media

Grégoire Allaire, Andro Mikeli¢,
Andrey Piatnitski

R.I. 671 February 2010






HOMOGENIZATION APPROACH TO THE DISPERSION THEORY
FOR REACTIVE TRANSPORT THROUGH POROUS MEDIA*

GREGOIRE ALLAIRE'T, ANDRO MIKELIC!, AND ANDREY PIATNITSKI$

Abstract. We study the homogenization problem for a convection-diffusion equation in a peri-
odic porous medium in the presence of chemical reaction on the pores surface. Mathematically this
model is described in terms of a solution to a system of convection-diffusion equation in the medium
and ordinary differential equation defined on the pores surface. These equations are coupled through
the boundary condition for the convection-diffusion problem.

Under an appropriate choice of scaling factors (large Péclet and Damkohler numbers), we obtain
the homogenized problem in a moving frame whose effective velocity does actually depend on the
chemical reaction.

1. Introduction. We consider saturated flow through a porous medium. The
flow domain contains a certain mass of solute, usually called tracer. Experimental
works show that the tracer gradually spreads with flow, but its spreading is not well
described by the simply averaged advection-diffusion equations for the concentration.
This spreading phenomenon is called hydrodynamic dispersion.

Following [10], the hydrodynamic dispersion is the averaged macroscopic picture
of the motion of the tracer particles through the pore structure and of the chemical
reactions of the solute with the solid walls and with other particles. It is caused by
two basic transport phenomena involved: convection and molecular diffusion. Their
simultaneous presence in the pore structure leads to a complex spreading of the tracer.
The interaction between the solid pore interfaces and the fluid is related to the ad-
sorption or deposition of tracer particles on the solid surface. Eventually, radioactive
decay and chemical reactions within the fluid may also cause concentration changes.

Due to the complexity of the problem, many results in the literature are concerned
with simple models of porous media being either bundles of capillary tubes, or arrays
of cells and so on. Such simplifications allow explicit calculations. Taylor’s dispersion
is one of the most well-known examples of the role of transport in dispersing a flow
carrying a dissolved solute. The simplest setting for observing it, is the injection of
a solute into a slit channel. The solute is transported by Poiseuille’s flow. In this
situation Taylor found in [36] an explicit expression for the dispersion.

Actually the hydrodynamic dispersion could be studied in three distinct regimes:
a) diffusion-dominated mizing, b) Taylor dispersion-mediated mizing and c) chaotic
advection. In the first regime, the velocity is small and the Péclet’s number Pe is of
order one or smaller. Molecular diffusion plays the dominant role in solute dispersion.
This case is well-understood even for reactive flows (see e.g. the papers [16], [18],
[20], [21], [22], [17]). If the flow rate is increased so that the Péclet’s number Pe
is much larger than one, then there is a time scale at which transversal molecular
diffusion smears the contact discontinuity into a plug. This is the regime under
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study in the present paper. In addition to dominant Péclet’s number we also consider
dominant non-dimensional numbers linked to the chemistry, like Damkohler’s number.
Eventually the third regime, corresponding to turbulent mixing, is much more delicate
and is not considered here.

Our main contribution (see Theorem 3.3) is to give a rigorous derivation of a
macroscopic homogenized model explaining Taylor dispersion for a tracer in an in-
compressible saturated flow through a periodic porous medium, undergoing linear
adsorption/desorption chemical reactions on the solid boundaries of the pores. Our
main technical tool is the notion of two-scale convergence with drift introduced in
[23] and applied to convection-diffusion problems in [8] and [14]. With respect to
these two previous works the new feature in the present work is the coupling of a
convection-diffusion for the bulk solute with an ordinary differential equation for sur-
face concentration.

For the derivation of Taylor’s dispersion in porous media using formal two-scale
expansions, we refer to [9], [24], [35] and references therein. Volume averaging ap-
proach to the effective dispersion for reactive flows through porous media requires an
ad hoc closure hypothesis, as in [29].

Rigorous mathematical justification of Taylor’s dispersion in capillary tubes, for
classical Taylor’s case and for reactive flows, was undertaken in [25] and [12]. In
the case of oscillating coefficients (a mesoscopic porous medium), with no chemical
reactions, the rigorous study of dispersion for dominant Péclet’s number, is in [34] and
in [11]. The approach from [11] is based on an expansion around the regular solutions
for the underlying linear transport equation. This approach requires compatible data
but also gives an error estimate. In this paper we deal with the pore geometry
and dominant Péclet’s and Damkohler’s numbers and we think that the two-scale
convergence with drift is the right tool to address problems of such level of difficulty.

The contents of the paper is the following. In Section 2 we describe our model
and its scaling in terms of various geometrical and physical quantities. Section 3 is
devoted to the precise statement of our result, to some uniform a priori estimates
and several definitions of two-scale convergence with drift. Section 4 is devoted to a
weak convergence proof of our result based on passing to the limit in the variational
formulation of the problem with adequate test functions. Finally Section 5 concludes
the proof of our main theorem by showing that the two-scale convergence is actually
strong. It relies on a I'-convergence type result, namely on the convergence of the
associated energy. Let us finish this introduction by referring the less mathematically
inclined reader to another paper of us [4] where the rigorous two-scale convergence
with drift is replaced by simpler two-scale asymptotic expansions with drift and which
features some numerical computations of homogenized dispersion tensors.

2. Statement of the problem and its non-dimensional form. We consider
diffusive transport of the solute particles transported by a stationary incompressible
viscous flow through an idealized infinite porous medium. The flow regime is assumed
to be laminar through the fluid part 2y of this porous medium, which is supposed
to be a network of interconnected channels (in other words, we suppose that Qy is
a connected domain in R™, n > 2; usually in the applications n = 2,3). The flow
satisfies a slip (non penetrating) condition on the fluid/solid interfaces and Qy is
saturated by the fluid. Solute particles are participants in a chemical reaction with
the solid boundaries of the pores. For simplicity we suppose that they do not interact
between them.

Reactive transport of a single solute is described by the following model for the
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solute concentration c*:

oc*
ot*

+ v (x*,t") - Vac" — D*Ag-c® =0 in Qf x (0,77), (2.1)

where v* is the fluid velocity, and D* the molecular diffusion (a positive constant).
At the solid/fluid boundary 0€); takes place an assumed linear adsorption process,
described by the following equations:

oc* c*

_D* . * — :A* *
Ve -n e k*(c 7o

) ondQy x (0,T7), (2.2)

where ¢* is the adsorbed concentration on the pore surface 0y, k* represents the rate
constant for adsorption, K* the linear adsorption equilibrium constant and n is the
unit normal at 0§y oriented outwards with respect to 2y. For more on mathematical
modeling of adsorption/desorption and references from the chemical engineering we
refer to [15].

This system is generic and appears in numerous situations (see e.g. the reference
books [19], [30], or [32]). In the modeling variant [4] of this paper, oriented to the
chemical engineering readership, we explain in detail how to reduce the linearized
models for binary ion exchange, and linearized reactive flow systems with m species
to the system (2.1)-(2.2).

To make an asymptotic analysis of this problem we must first introduce appropri-
ate scales deduced from characteristic parameters such as the characteristic concentra-
tion cp, the characteristic length Ly, the characteristic velocity Vz, the characteristic
diffusivity Dg, the characteristic time Tr, and other characteristic quantities denoted
by a R-index (meaning "reference"). Scaling in homogenization is an important issue
(see e.g. [31], [33]). The characteristic length Lg coincides in fact with the "observa-
tion distance". We assume that the typical heterogeneities in Q¢ have a characteristic

L
size ! << Lp. Weset e = I << 1 and the rescaled flow domain is now Q. = Q/Lg,

R
with notation reminding us that it contains pores of characteristic non-dimensional
size €. Setting

c* x* t* 1 D*
ur ACR7 T LR7 TRv V(xa ) VRV (J? ) )7 DR’
k* Ak K*
k:_avszf_vK: )
/fR CR KR

we obtain the dimensionless equations

ou VRT, DRrT, .
8—tf + IzRRv(x,t) Vatf — %DA,TW =0 in Q. x (0,7T) (2.3)
and
DD ¢r Ovg CRVs
— LRRCRVme -n = T_ZE = /CR]C(CRU,f — KRK_R) on 9. x (0,7). (24)

This problem involves the following time scales:
T;, = characteristic global advection time scale =Ly /Vy
Tp = characteristic global diffusion time scale :L%/DR
Tpr = Kgr/kr (characteristic desorption time)
Ts = ¢ér/(crkr) (characteristic adsorption time)
Treact = superficial chemical reaction time scale =Ly /kg
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and the following characteristic non-dimensional numbers

LRV, T
Pe = gRR = T—i (Péclet number);
L T
Da = rkr _ _Tp (Damkohler number)
DR Treact

We choose to study a regime for which Tr = Tp. Due to the complex geom-
etry and in presence of dominant Péclet and Damkohler numbers, solving the full
problem for arbitrary values of coefficients is costly and practically impossible. Con-
sequently, one would like to find the effective (or averaged or homogenized) values of
the dispersion coefficient and the transport velocity and an effective corresponding
parabolic equation for the effective concentration, valid in an infinite homogeneous
porous media.

Let us be a little more precise on the definition of €2.. From now on we assume
that €. is an e-periodic unbounded open subset of R™. It is built from R™ by removing
a periodic distributions of solid obstacles which, after rescaling, are all similar to the
unit obstacle X°. More precisely, the unit periodicity cell is identified with the flat
unit torus T™ on which we consider a smooth partition X°UY? where X° is the solid
part and Y© is the fluid part. The fluid part is assumed to be a smooth connected
open subset (no assumption is made on the solid part). We define Y7 = (Y + j),
$=e(X047), 8 =05 +5), %= U Yand S. =9Q. = | 57

jezr jezn

The equations for u. = uy and v. = v, in their non-dimensional form read (with

the velocity v. = v)

85:56 +Pev.(z,t)  Vyue = DAzu:. in Q. x (0,7) (2.5)
ue(r,0) = u’(z), =€, (2.6)
Tas Ov, Tp Ta ve
—DV,u. -n= = e — ——— — Q. , T 2.
v“u " Treact ot Treact (u TDE K) on 9 x (0 ) ( 7)
(2.8)

ve(2,0) =0%(x), x € IN..

In Section 3.1 we shall make some further assumptions on the scaling of the above
adimensional system in terms of the geometrical small parameter ¢.

3. Main results.

3.1. Assumptions and main convergence theorem. In the present work we
make the following two hypothesis.
(H1)

1 T 1 T T
Pe=-, Da= D = -, A =g, 4 . (3.1)
€ Treact € Treact TDE

(H2) The velocity field is periodic and incompressible, i.e.

ve(z,t) = b(f)

€
with a periodic divergence—free vector field b(y) satisfying

| b(y) | € L>®(R™), div,b(y) =0 in Y°, b(y) -n(y) =0 on 9x°.
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The initial data are chosen such that v’(z) € L?*(R") and v°(z) € H'(R").
Taking into account (3.1), we rewrite problem (2.5)-(2.8) as follows

Opue + éb(g) -Vue — DAu. =0  in Q. x (0,7), (3.2)
D Ou, k Ve

——op = e = 6—2(% — E) on 90 x (0,T), (3.3)

0, 0) = u0(@),  ve(a,0) = o°(a), (3.4)

where we recall that K and k are positive constants. The variational formulation of
(3.2)-(3.3) is: find wc(t,z) € L2((0,T); HY(Q:)) N C°([0,T]; L3()) and v.(t,x) €
CO([0,T); L%(09.)) such that, for any test functions ¢(x) € H*(Q.), ¥(x) € L?(09.),
and a.e. in time,

d 1 x k
E QEU5¢+E/QEb(g)vueﬁﬁ‘f’/QEDquVQb"'g/BQE (UE_E)¢:O,

together with the initial condition (3.4).

REMARK 3.1. If the velocity field b(y) is not divergence-free and/or does not
satisfy the no-penetration condition b(y) - n(y) = 0 on 9X°, it is still possible to
homogenize (3.2)-(3.4) by using first a factorization principle in the spirit of [8].

REMARK 3.2. We do not know how to extend our analysis to the case of a macro-
scopically modulated velocity field b(z,y). Actually we believe the asymptotic behavior
could be completely different, according to the precise assumptions on b(x,y). For
example, in [6] (for a convection-diffusion equation) and [7] (for a self-adjoint diffu-
sion equation) it was shown, under specific geometric assumptions on the macroscopic
dependence of the coefficients, that a localization effect can take place at a lengthscale
of \/e. However the general case is still open and it is very likely that localization does
not always happen.

To simplify the presentation we use an extension operator from the perforated
domain . into R™ (although it is not necessary). As was proved in [1], there exists
such an extension operator T¢ from H'(£.) in H'(R") satisfying T*¢|o, = 1 and
the inequalities

IT*YlL2@ny < Clldlla.y, IV 2@ny < CIVYlL2 (0.

with a constant C' independent of €, for any ¢ € H'(.). We keep for the extended
function 7%t the same notation . Our main result is the following strong conver-

gence.
THEOREM 3.3. The sequence {ue,v:} of solutions to (3.2)-(3.4) satisfies

b b
ue(t,x) =u (t,x - g?f) +ri(t,z), ve(t,x) = Ku (t,x - g?f) +ri(t,x)  (3.5)

with

T T
lim / / Ire(t,z)|>dtde =0 and lim 6/ / Ir(t, ) dt dz = 0,
e=0Jo Jrn s 0 Jo Jea.



where b is the so-called effective drift (a constant vector) given by
b= (V) [95"]18) ™ [ by
Yo
and u(x,t) is the unique solution of the homogenized problem
(IY°] + K(0%°)n—1)0u = div, (A*V,u) in R™ x (0,T),
_ YOl (@) + [0%°]—10°(2) (3.6)

= n R™
wz,0) Yol Koo, "N
where the effective diffusion tensor A* is defined by
. K% o o= T
A* = T|8Z ln—1b®b+ D o I+ Vyx(w) X+ Vyx(y)) dy. (3.7)

The vector-valued periodic function x has components x; € H*(Y°) which are solu-
tions of the following cell problem, 1 <1i < n,

b(y) - Vxi(y) — DAiv(V(xi(y) +%:)) = bi — bi(y)  in Y°,

3.8
DV(xi(y) +yi) - n=Kb on9dx°. 8
Here |Y9| stands for the volume of Y, |9%°],,_; for the (n — 1)-dimensional
measure of the boundary %% and n(y) is the external unit normal on 9%°.
REMARK 3.4. Convection is not seen in the homogenized equation (3.6) because
the solution u is defined in moving coordinates when compared to ue. and ve in (3.5).
However, (3.6) is equivalent to a convection diffusion equation by a simple change of

reference frame. Indeed, introducing uc(t,z) = u (t, T — gt), it is a solution of

ue 1o : _ :
881; + gb Vi —div (A*Vie) =0 in R™ x (0,7T)
*|,,0 0
du(t = 0,7) = L1 @) +[00ln-107(@) oo

|Y*| + K|00],-1

Theorem 3.3 is valid only for an unbounded domain Q.. It is clear from the large drift
in (3.5) or in the above equation that there is a serious difficulty to deal with the case
of a bounded domain for time much larger than ¢.

REMARK 3.5. The adsorption rate k appears only in the first term of the right
hand side of (3.7), so it is easy to check that A* varies monotonically with k and
blows up when k goes to 0. Since in the original problem (3.2)-(3.4) the limit case
k = 0 is perfectly legitimate and means no chemical reaction at all, this shows that
the homogenization limit does not commute with the limit as k goes to 0. When k
goes to +oo, the first term of the right hand side of (3.7) cancels out, a situation
which corresponds to fixzing ve = Ku. on the pore boundaries. The dependence of
A* upon the equilibrium constant K is implicit. At least formally, when K goes to
0, one recover the usual cell problem, drift and homogenized tensor corresponding
to homogeneous Neumann boundary condition on the pore boundaries (i.e. without
chemistry). On the other hand when K goes to +o0o, we obtain that b = 0 and the
product Kb, as well as A*, have a non-zero limit, corresponding to the case of Fourier
or Robin boundary condition for u..



REMARK 3.6. The proof of Theorem 3.3 is the focus of the last two sections and
relies on the notion of two-scale convergence with drift. For the mathematically less
inclined reader, a formal method for guessing the correct homogenized problem (3.6)
is the method of two-scale asymptotic expansions with drift (see [4] and [28]). More
precisely, one assumes that

Zeul<tx bt E),

with u;(t,x,y) a function of the macroscopic variable x and of the periodic microscopic
variable y € Y = (0,1)", and similarly

gy b

:E ewv; | t,x — —t,—
‘ e €
=0

Plugging these ansatz in the equation (3.2) yields after some standard algebra the
desired result, at least formally.

3.2. Uniform a priori estimates. We now derive a priori estimates based on
the energy equality. As usual, they imply existence of a unique solution to problem
(3.2)-(3.4). Depending on the assumed regularity of the initial data, we could prove
arbitrary high regularity of the solution.

LEMMA 3.7. There exists a constant C, which does not depend on €, such that
the solution of (3.2)-(3.4) satisfies

luellLos(0,1):L2(00)) + VEllvell Lo (0,1):22(000)) + IVuellL2((0.1) %020
< C (|u’llz2@ny + 10°] 1 ey - (3.9)

Proof. The energy estimate for (3.2)-(3.4) reads

1d €
57 |uellBaga) + vl Fon.) | +
ek 2
/ DVuc(t) - Vue(t)de + = / (ue— %) do =0, (3.10)
O

from which we easily deduce the desired result since [[v°[|7:y.) < Cllv°[[31 @ny- To
obtain (3.10) we multiply equation (3.2) by u. and integrate by parts over Q.. The
convective term cancels out since the velocity is divergence-free and has a zero normal
component on the boundary

1

r _1 i it 2 - 2 (LY. =
/st(g).Vueusda:— 2/diw(b(g)|u5| )dm— 2/805 el b(g) ndo = 0.

It yields

N =

d 9 k 9 Ve _
EHuEHLz(QE) +/Q DVu,(t) - Vuc(t)dz + - / (u6 - Eus)da =0.
© 7 Q.



k

Multiplying then the equation d;v. = —Q(U,E — %) by ev./K and integrating the
€

result over 08, yields

e d k UV v2
EEH%H%%BQE)‘FE / (— ;(e +K—€2>da:0.
09,

N =

Summing up the last two relations, we obtain (3.10). O

Next we estimate v, using u.. Without loss of generality we can assume that the

k v
function v, is defined by the equation dyv. = 2 (us — }6) everywhere in ). and not
solely on 0f)..

LEMMA 3.8. There exists a constant C, which does not depend on €, such that

lvell 20,1 (9.)) < Clluel| 2o,y (000)) + V0|l a1 ) (3.11)

Proof. Solving explicitly the ODE (3.3), we get

ve(t,x) = /ﬁz exp (KLEQ(S - t))ue(s, x)ds +v°(z) exp ( - Kk—;>
0

k k
Since — exp{—%}xOSTgt is bounded in L!(0,T) independently of e, Young’s in-
equality yields

Vel 20,1501 (0.)) < Cllluell 2o,y i 00y) + €l @ny),
0 (3.12)
vellz2 0,7y x00) < ClllucllL2o,ryx00)) + vl L2@ny)-

The next a priori estimate is again a consequence of the energy equality (3.10).
LEMMA 3.9. There ezists another constant C, which does not depend on e, such
that

1

Ve — UeHLz((o,T)xQe) =

Proof. The desired estimate is a consequence of the following Poincaré type
inequality

”w”QL?(QE) < 0(52||Vw||%2(95) +5||w||2L2(aQE))

This inequality is derived in [13]. Combining it with the energy estimate (3.10), we
obtain the statement of lemma. O

REMARK 3.10. All the previous a priori estimates are not uniform with respect
to k and K. This is one reason why taking the homogenization limit ¢ — 0 and taking
the zero-adsorption limit k — 0 do not commute.

3.3. Two-scale convergence with drift. For the reader’s convenience we re-
call here the definition of two-scale convergence in moving coordinates (or with drift)
introduced in [23] (see [3] for a pedagogical presentation including detailed proofs).
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DEFINITION 3.11. Let V be a constant vector in R™. We say that a sequence of
functions U.(t,z) € L*((0,T) x R™) two-scale converges in moving coordinates (or,
equivalently, with drift) (z,t) — (x—2Xt,t) to a function Uy(t,z,y) € L*((0,T) x R x
™) if

Ucll2(0,yxrmy < C

and for any ¢(t,z,y) € C§°((0,T) x R™ x T™)

hm// (t,2)¢ —gt,g)da:dt:/T//Uo(t,x,y)(b(t,x,y)da:dydt. (3.13)

0 R» 0 R» T
. 2— dT’Lft
The convergence (3.13) is denoted by U, Uy.

In analogy with the classic two-scale convergence results (see [2] and [26]), we
have:

PROPOSITION 3.12. ([23]) Let V be a constant vector in R™ and let the sequence
U. be uniformly bounded in L*((0,T); H'(R™)). Then there erists a subsequence, still
denoted by ¢, and functions Uy(t,z) € L?((0,T); HX(R™)) and Uy (t,z,y) € L*((0,T)x
R™; HY(T")) such that

2— dT’Lft 2— drzft

U U() and VU V U() + VyUl (314)
Let W be a sequence uniformly bounded in L*((0,T) x R™) such that eVW. is also
uniformly bounded in L?((0,T) x R™)". Then there exists a subsequence, still denoted

by €, and a function Wy(t,z,y) € L*((0,T) x R®; H*(T™)) such that

2— dT’Lft 2— drzft

W, Wy and eVW. v, Wo. (3.15)

Thanks to estimate (3.10) and Lemmata 3.7, 3.8 and 3.9 and Proposition 3.12,
we have the following compactness result.

COROLLARY 3.13. Let {uc,v:} be the solution of problem (3.2)-(3.4), extended to
the whole space. Take the drift V =b. Then there exists a subsequence (still denoted
by £) and {u,w, q} € L2((0,T); H-(R™)) x L2((0,T) x R™; H(T™)) x L2((0, T') x R" x
T™) such that

Ue Qﬂftu(t,x), Y, 2 Vu(t, z) + Vyw(t, z,y),
2—drift 1/v 2—drift (3.16)
Vg Zdrif Ku(t, z), —(? —ue) —drif q(t,x,y).
€

The fact that {u.} and {v./K} have the same (two-scale with drift) limits follows
from Lemma 3.9.

Next we show that the last convergence in (3.16) holds true even for integrals on
the boundary 0. instead of Q.. This result is reminiscent of the notion of two-scale
convergence on periodic surfaces developed in [5] and [27] and we could develop the
same convergence but with drift.



COROLLARY 3.14. Let {u.,v.} be as in Corollary 3.13. Then, for the same
two-scale limit with drift q, as defined in (3.16), we have

T _
. 1 bt z _
hme/ / g(ue—vs/K)qé(t,x—?,—) dodt =

e—0 g
0 99
T
/ / /q(t,x,y)¢(t,x,y) dzdoydt, (3.17)
0 o%0 Rn

for any test function ¢(t,x,y) € C5°((0,T) x R™ x T"),
Proof. Let a € C'(Y?;R") be a solution for

0
a-n=1 on 9%’ diva= % in Y% ais Y — periodic. (3.18)
Then we have
r b
Ve B
/ / (e — F)qb(x _2 —,t) dodt =
0 90,
f b
T Ve t T _
// div a(g)(ue - E)¢(x - —,t)) dxdt =
0 Q.
I | o3 | b
Ve t
//(g“‘s—%) V0] o(e-=2200)
0 .
1 =z Ve bt
+-a(2) - (e = 2)Vy0(r = =yt |y
T Ve bt
+a(D) V(e — 310 (s = Lotz ) dede +0(0) —
T
/// divy (q(z,y,t)¢(z,y,t)a(y)) dzdydt, as € — 0, (3.19)
0 YOR"

where we used the bounds

1
Hg(“e - UE/K)||L2(Q€><(O,T)) <O, V(ue = ve/E)ll2.x01) < C

and the convergence result (3.15) for the sequence e¢™!(u. — v./K). The surface
two-scale limit result (3.17) follows from (3.19). O

4. Proof of weak two-scale convergence. Before proving our main result,
Theorem 3.3, we state and prove a weaker version which relies on the notion of two-
scale convergence with drift.

THEOREM 4.1. The sequence {u.,v.} two-scale converges with drift (r,t) —

b
(z — Et’t)’ as € — 0, to the couple (u(z,t), Ku(x,t)) where u(x,t) is the unique
solution of the homogenized problem (3.6).
10



The proof of Theorem 4.1 is divided in five steps, in the spirit of [2].

1. STEP| (compactness and choice of the drift)

By virtue of the a priori estimates of section 3.2, Proposition 3.12 and Corol-
lary 3.14 imply the existence of a subsequence (still denoted by &) and of limits
{u,w,q,v} € L2((0,T); H*(R™)) x L2((0, T) x R™; H*(T™))? x L?((0,T); H'(R")) such
that

2—drift 2—drift

v — u(z,t), Vu. — Vu(z,t)+ Vyw(z,y,t);
2—drift 1/ve 2—drift (4.1)
Ve — KU(Z‘,IJ)), —(E_Us) I Q(xayvt)
€

At this moment the choice of the drift velocity is arbitrary. Nevertheless we now make
a choice which will turn out, in the third step, to be the only possible one.
In the absence of chemical reactions (i.e. with homogeneous Neumann boundary

condition for u, instead of (3.3)), the drift velocity would be simply b, = [Y°|~* / b(y) dy
0

(see e.g. [8]). The chemistry term leads to a non-trivial drift which is now defined in
agreement with periodic gradient oscillations.
LEMMA 4.2. Let the effective drift b (a constant vector) be given by

b= (VO] + 1051 K) " [ by, (42)

YO

There exists a periodic solution x;(y) € H*(Y?) of the following cell problem, 1 < i <
n’

b(y) - Vxi(y) — Ddiv(V(xi(y) + 1)) =b; —bi(y) in V",

B (4.3)
DV(xi(y) +yi) -n=Kb; ondx°,
where n(y) is the external unit normal on 0X°. This solution is unique up to an
additive constant.
Proof. We check that b is defined precisely so that the compatibility condition
(or Fredholm alternative) in (4.3) is satisfied. We obtain

/b(y)dy —[Y9%b — / K do, b =0, (4.4)
Yo %0

where do,, is an element of (n — 1)-dimensional volume on 9%°. 00

2. STEP | (determination of the limit function q)

In order to characterize the limit function g(x,y,t), we multiply the equation
k bt
Opve = —Q(us - %) by ap(x - —, E,t), where p(z,y,t) € C§°(R™ x T" x (0,T)),
€ e’ e
and integrate the resulting expression over Q. x (0,7). An integration by parts with
respect to time yields

/T/(vgb-vmga(a:— %,g,t) —g(ue—%)w(m—%,%,t))dwdt:(’)(e),
0 0.



bt bt
where we used the notation nga(x— —, E, t) =V.p(z——,y, t)|
_ _ €€ €
bt =z bt
?7 gvt) = vy@(x - ?a yvt)|y:a:/€'
bearing in mind that the two-scale limit of v, is equal to Ku(z,t), we obtain

and Vyap(x—

y=z/e

Passing to the two-scale limit with drift and

T
/// (Ku(z,t)b - Vap(z,y,t) — kq(z,y, t)o(z, y,t))dedydt = 0

0 R YO
Therefore,

dl,9.1) = (1) = ~ 2B - Vou, 1) (45)

3. STEP | (determination of the limit function w)

In order to characterize the limit function w(zx,y,t), we choose again a test func-
tion as before:

( l_)txt)
. =cpla— =, = t).
® ® c '

Substituting it in problem (3.2)-(3.4) yields

T _ _
o 5ol 220 () sl 2.2

DVUEVygo(x— %,g,t)}dxdt—F&/T / é(ue — %)(p(m— %,g,t)dadt

0 09,

= 0(e). (4.6)

Passing to the two-scale limit with drift gives us the cell problem

T
[ ][ {uw0b - Voot + ) - (Vautant) &yt )t 0+
0

R™ Y0

D(V u(z,t) + Vyw(z, y,t)) - Vyp(,y, t)}dxdydt—i—

/T//kQ(xvyat)W(ﬂf,y,t)dxdaydt:O. (4.7)

0 R® 930

As in classical two-scale convergence, problem (4.7) leads to the following differential
problem for w, valid a.e. on (0,7) x R™:
—D divy(Vzu(z,t) + Vyw(z,y,t)) + b(y) - (Vau(z,t) + Vyw(z, y,t)) =
b-V,u(z,t) in Y°, (4.8)
w is Y — periodic in y (4.9)
~D(Vyu(z,t) + Vyw(z,y,t) -n = kq(z,t) = —KV,u(z,t) on 0%°. (4.10)

12



At this point it is crucial to have chosen the drift b defined by (4.2), otherwise (4.10)
would have no solution but the trivial one. Finally, we conclude that the function
w(z,y,t) is given by the following separation of fast and slow variables formula:

w(xvy’t) = X(y) : vﬂﬂu(xvt)a (411)

with x(y) of components x; solving problem (4.3).

4. STEP | (determination of the homogenized equation)

. bt
In this step we test problem (3.2)-(3.4) by ¢(z,t) = qS(x — ?,t), with ¢ €

C(R™ x [0,T)), implying that ¢(z,T) = 0. Also, we use the symbol 9 for
9:#(2,1)| .~y —pe-- Note that

8té(xat) = @(xat) - g ' vmé(xat)
We get,
[ [ B-b( i
//{u%(_) Vb — uE@}dxdt +/ / ve (2, )b - Vyddodt—
0 Q. 0 99,
T
u®(x)é(z,0) dx + D Ve - Vi dedt—
/ I
T
€ / v (z,t)Oppdodt — ¢ / () (z,0)do = 0. (4.12)
0 99, 00

Next we introduce the auxiliary vector function 1 by

Ai(y) = bi(y) —b; on Y

OVt _ Kb on 05" (4.13)
on

¥; is 1 — periodic.

Then for ¢°(x) = ¢(z/e) we have

e2AYE () :bi(g) — b in Q.

e (4.14)
on

€

= Kb; qp 99.;



Furthermore, we have the following integral identity

T b— b
[ [
0

‘“IH

) Vo dxdt+/T/ve(x,t)b-qu£dodt=

O, 0 80,
T n T

_ / / S AGED, du. dudt + / / ve(@, )b - Vyddodt —
0 =1 0 90,

T T n
K// e ) -Vmédadt+//aszf-V(&Tiqﬁue) dedt.  (4.15)
0 0. =1

Inserting (4.15) into (4.12) gives

Ke/T/ i(“—f—ue) V. ¢dadt+// Zws (O, pue) dadt—

0 09,

T

O//u55t¢ dzdt —Q/uo( x)o(z,0) dm—i—D//Vu6 Voo dedt—
/ / ve (2, ) 8t¢dadt —¢ / %(2)p(x,0)do = 0. (4.16)
0 09,

Passing to the two-scale limit with drift (z,¢) — (z — bt/e,t) in the last relation is
now straightforward. For the comfort of the reader, we do it term by term:

hm//ueﬁtgé dxdt = |Y0|// u(z,t)0pp(2,t) dudt, (4.17)

0 R~

e—0

0 09, 0 R»

T
Jim & / / v, ) Prdodt = 050, / / Kulz,)0b(x,1) dedt,  (4.18)

11mD//Vu5 V. dedt = D//Z Y00, u(z, t)+

O]R”Zl

£) / a’g—;’ dy)am(x,t) dudt, (4.19)
yo )
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1, v, N
thé‘// U——ug b - V,¢dodt =

0 990
T K2
/ / |620|n,176®6vmuvx¢ dxdt, (4.20)
0 R™
T n
lim / / swa- (8, puc) dadt =
0. =1
T
// 2": i u(x, t)( 3% )dxdt—|—
0 R HI=1
T
- 31/%( ) Ixe(y)
. e 4.21
///Z oy, (87u+8528yj)dddt (4.21)
0 Rnyo i,7=1 (=1

It is now time to introduce the homogenized matrix which for simplicity we decom-
pose as a sum of elementary matrices. The first one linked to adsorption/desorption
reactions, transported by the drift velocity, is calculated in (4.20) and given by

- _ K? -
Ay =—|620|n ®b= T|azo|n,1bibj : (4.22)

The second one, related to advection-diffusion and chemistry, is calculated in (4.19)-
(4.21) and given by

(4], _D/ 5+ 8 ) dy +Z/8Xj ) ay. (4.23)

0ye 8yg

Remark that only the symmetric part of the homogenized matrix appears in the
homogenized equation: A; is already symmetric but A, is not and should be sym-
metrized. The effective or homogenized matrix is thus defined by

A=A+ - (Az +A7).

Then after inserting the limits (4.17)-(4.21) into the variational equation (4.16) we
conclude that the limit function u(x,t) solves the problem

(Y| + K|02°-1)0iu = divy(A*Veu)  in R™ x (0,7), (4.24)

YV Olul(x) + |05°]n—10°(x)

u(z,0) = TSI

in R". (4.25)

It remains to prove that the matrix A* is positive definite and establish uniqueness
of the limit function.

5. STEP | (properties of the effective matrices and uniqueness)

Clearly, the matrix A, given by (4.22), is symmetric and non-negative, i.e. A;¢-
& > 0 for any £ € R™. Furthermore, we have

15



LEMMA 4.3. The matriz Ay, given by (4.23), is positive definite and satisfies

2], = D (@it + ) (T + ) dy+ [ b) V() dy. (420
Yo Yo

Finally, A* is also positive definite, equivalently defined by

K2 _
A = - |0X°],,_1b®b+ D / 0(I + Vyx W)X+ Vyx(y) 7 dy. (4.27)
Y

Proof. First we test problem (4.13) for ¢; by x;. The second term on the right-
hand side of (4.23) becomes

n

3 8)(;;(@2/) 81;;(5/) dy:/(gi_bi(y))xj(y)dy+K/l_)ixj(y)da. (4.28)
Y o330

=1y

Next we multiply the equation (4.3) for x; by x,(y) and integrate the resulting relation
over Y. This yields a formula for the first term on the right-hand side of (4.23)

Jo=b@nwin+ K [ b= [ b Vxmnodrs
Y 9%0

D [ (et Vi) Vs o)y = D Y/ (5, + 200

0y,

) dy+
[, B0 Vot win+ D [Ty e (T +e) v (429)
yo

Identities (4.28)-(4.29) imply (4.26). Since b(y) is solenoidal and its normal compo-
nent is equal to zero at 9X°, we find easily that the matrix { [, b(y)-Vyxi(y)x;(y)dy}
is skew-symmetric:

—/ b(y)-Vny‘(y)xi(y)dy=/ b(y) - Vyxi(y)x;(w)dy, i,5=1,...,n
Yo° Yo

The remaining part of Lemma (4.3) follows immediately. O As a consequence, the
uniqueness of the homogenized solution u(t¢, x) is obvious. Thus the entire sequence
{ue,v:} is converging.

5. Strong convergence (proof of Theorem 3.3). This section is devoted to
the proof of Theorem 3.3, i.e. it improves on Theorem 4.1 by replacing the weak
two-scale convergence (with drift) with a strong convergence result. Namely, we are
going to show that in the moving coordinates (z,t) — (z — (b/e)t,t) the functions u.
and v, converge strongly to the limit functions u(x,t) and Ku(x,t), respectively, or
equivalently that

bt

?’t)HLQ(QEX(O,T)) =0. (5.1)

ghg(l) l|ue(z,t) — u(z —

We start with the case of well-prepared initial data, i.e. the initial data are at
the equilibrium isotherm. Our first result is the following

16



PROPOSITION 5.1. Let v%(z) = Ku®(z) € HY(R") (i.e. initial data at the
isotherm). Then u.(x,t)xq. strongly two-scale converges with drift (z,t) — (z —

bt

—,t) in R™ x (0,T) towards xyo(y)u(z,t). Similarly, v.(z,t)xq. strongly two-scale
€

converges with drift towards K xyo(y)u(z,t). In particular,

/I

Proof. We start by integrating the energy equality (3.10) in time variable over
the interval (0,¢). This yields

b 2
ue(x,t) — u(x = —t,t)‘ dxdt — 0.
3 e—0

1 2 € 2 t/
5 [ 2 7 11Ve 2 D £ : [
> @0 + 20Ol 00, + / | DVucls) - Vue(s)duds

t
5)) 02 € 11,0112
ue(s) = dods = 3 [Ilu I + =] :
/0 / ol L2(@e) T 10 Iz 00

Since we expect the family {u., v.} to be compact only in the product space L2((0,T)x
Q.), it is out of reach to claim convergence of these functions for a fixed value of ¢. To
circumvent this difficulty, we integrate formula (5.2) in temporal variable once again.
The resulting formula reads

(5.2)

T

1

3 [ Ol + 0O aqany ]t + / / [ DVucts) - V() dndsdr+
0

00 Q.

t

O/T / / 5)) dodsdt =

0 09,

o |
NIH

3
(1413 @) + 101200 -

(5.3)
Using the two-scale convergence results of the previous section and taking into account
the lower semicontinuity of the corresponding norms with respect to the two-scale and
weak convergence (see [2] if necessary), we have

T
.. g
timigt [ [,y + g [0 ony |t 2 YO0l aqansom+
0
050 |1 K [ull 72 mn 0,79y = (Y] + 10Z° 1 K) [l 2 e 0,7 (5.4)

By the same arguments,

hmmf /// DVue(z,s) - Vue(z, s)dxdsdt >

////D|V u(z, s) + Vyx(y)Vau(z, s)|*dydedsdt (5.5)
0 Rnyo0
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and

ve(, 8)
_ >
llgl_}élf // / ue x,s) ) dodsdt >

0 0 90,

k|0x°,_ 1///’ —b - V,u(z, s)‘ dxdsdt. (5.6)

0 Rn

Passing to the limit on the right hand side of (5.3), we get
. T € T T
tim = 1320 + =10 0n,] = g1V MO + 521051003 e

Our next aim is to compute the energy of the limit equation. Multiplying equation
(4.24) by u(z, s) and integrating over R™ x (0,¢) and then once again in variable ¢
over the interval (0,7, after straightforward transformations we obtain

(|Y0| +10%°|,,— 1K)||u||L2(RnX(O ™) —|—///A Vu(z,s) - Vu(zx, s)drdsdt =
0 Rn

T
IOl + 0= [ (5.7)

2(]Y°) + K030,

Due to (4.27) the second integral on the left hand side can be rearranged as follows

/// A*Vu(x,s) - Vu(z, s)dzdsdt

0 R"
////D|V u(z, s) + Vyx(y)Veu(z, s)|?dydrdsdt
0 Rnyo©
///7|820|n 1(b - Vyu(x,t))?dedsdt.
0 R"

Because of the energy equality (5.7) for the homogenized problem and the lower
semicontinuity of the terms in the energy equality (5.3) for the microscopic problem,
we conclude that the norm convergence is valid if and only if we have

_ 2
(|YO| + K|820|n—1) ! || (|YO|U'O + |820|n—1vo) HLZ(]R'/L) =
(YOl 22 ny + K~ HOZ 1[0 22 ggen))- (5.8)

After a simple calculation, we find out that (5.8) is equivalent to ||u’v K —v°/VK| |%2(Rn) =
0. Hence under our assumptions on well prepared initial data, we have

lim [fue[Z2 0, w0y = Y MullEa @ xo,my) = Ixyo @)ul@, Iz xrnx 0.1
lim e[ vel|72 a0, x (0,7y) = EZIO% In-1 [ ull2 (& x 0,7)
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which is equivalent to the desired strong two-scale convergence (see [2]). O

In order to prove the strong convergence result for u. in the case of arbitrary initial
conditions u® € L%(R") and v € H*(R"), and thus to finish the proof of Theorem
3.3, we consider problem (3.2)-(3.4) on subintervals ¢ € (4,7) with small positive §.
For non-consistent initial conditions the solution (uc,v:) contains an initial layer term
which makes a nontrivial contribution to the energy. By restricting problem (3.2) on
subinterval (4,7, we make this contribution negligible for small §.

We proceed with rigorous arguments. Assume that for a subsequence (still de-
noted by €) there is a lack of energy continuity, i.e.,

Ehj% ||Ue||%2(ﬂgx(o,T)) > |YO|||U||2L2(Rnx(o,T))~ (5.9)

Then, since |Jue (t)”%?(ﬂg < C uniformly in time by Lemma 3.7, there is §yp > 0 such
that for any 4, 0 < § < &g, we have

lim inf l[uelZe (. x sy > 1Yl Ze@nxo,1))- (5.10)

It follows from (3.10) and Lemmata 3.8 and 3.9 that there exist a constant ¢ (depend-
ing on the initial data but not on dp) and a sequence . such that dp/2 < d. < Jy,
and

2
6'552 <£ 5'552 <£ K6'55—5'552 <£.
llue (5 0e) 15 (0. < 5 l[ve (5 02) 171 () < 5 [Kue (s, 0e)=ve (-5 0e )| 22y < 5

Taking, if necessary, a subsequence, one can assume that . converges to some d,
90/2 < < dp. Consider two auxiliary problems

Oru e + %b(g) -Vure —Auy . =0 in Q. x (0:,7),

1 8'Ll,176

_ _k _ Ve (5.11)
~on Opv1,e = .~ (ULE % ) on 99, x (6.,T),
ul,e(xade) :us(xa(se); 'Ul,g(x,(sg) :Kue(x,de);
and

1
Oyuune + glo(g) Ve —Auge =0 in Q. x (6., T),

(5.12)

)

k v
—S TR = e = 55 (e = 2E) on 9% x (6 T),
U2 6(55756) =0, UZ,E(xa(SE) :Us(xvée)_Kue(xa6€)~
By construction, ue(z,t) = u1e(z,t) + ug (2, t) and ve(x,t) = vio(x,t) + v (2, 1)

for all ¢ > d.. It is easy to show that the solution of (5.12) tends to zero as € — 0.
Indeed, applying the estimate

&
19117200, < g||9||%2(95) +cel|Vgl 2.

which is valid for any g € H'(£2.), we conclude that

HKUE(-,(Se) - ’Ue("ég)H%Q(aQE) < C€/(50.
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Therefore, by the a priori estimate (3.10) applied to (5.12), we get
luz,e ()220, +ellvze ()2, < /80 (5.13)

for all t > d.. Under our choice of J., using the standard extension operator [1],
we can assume, without loss of generality, that u.(z,d.) is defined in the whole R™,
satisfies the bound ||u€(x,5€)||ip(Rn) < ¢/dy and that u.(z — (b/e)de, 0.) converges,
as € — 0, to a function u°(x), such that ||120||§11(Rn) < ¢/dp.

In exactly the same way as in the case of consistent initial conditions one can
show that on the set R™ x (J,7') the function u; . strongly two-scale converges with
drift (z,t) — (v — (b/e)t,t) towards a solution to the following problem

(YO + K[0%°|,,—1)0¢it = div(A*Va)  in R"™ x (6,T),

= YO

o 950
:0) = TR Ko, )

-0
) IV T K195, )

a(z).  (5.14)

In particular,

. 2 01115112
lim flur ellz2 0. x 6.1 = Y12 z2 @ x 57y

Combining this with (5.13), we deduce that u. two-scale converges with drift (z,t) —
(z—(b/e)t,t) on the set R™x (d,T") to the function . This implies that @(z,t) = u(x,t)

for t > ¢, and

. 2 Or11-112

gl_{% ||Ue||L2(QE><(tE,T)) =Y |||u||L2(]Rﬂ><(5,T))’
then

. 2 _ 0 2

B fluellze . x ey = YV Nl 2@ x5m))-

The last relation contradicts our assumption (5.10). Thus, we have proved Theorem
3.3.
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