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Abstract
Cardiac CT (CCT) is widely available and has been validated for detection of focal myocardial
scar using delayed enhancement technique. CCT however has not been previously evaluated for
quantification of diffuse myocardial fibrosis. In our investigation, we sought to evaluate the
potential of low dose CCT for the measurement of myocardial whole heart extracellular volume
(ECV) fraction. ECV is altered in conditions of increased myocardial fibrosis. A framework
consisting of three main steps was proposed for CCT whole heart ECV estimation. First, a shape
constrained graph cut (GC) method was proposed for myocardium and blood pool segmentation
on post-contrast image. Second, the symmetric Demons deformable registration method was
applied to register pre-contrast to post-contrast images. So the correspondences between the
voxels from pre-contrast to post-contrast images were established. Finally, the whole heart ECV
value was computed. The proposed method was tested on 20 clinical low dose CCT datasets with
pre-contrast and post-contrast images. The preliminary results demonstrated the feasibility and
efficiency of the proposed method.
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I. INTRODUCTION
Diffuse myocardial fibrosis is an increasingly recognized pathologic endpoint that is
observed in association with a variety of cardiomyopathies and heart failure. Myocardium
extracellular volume fraction (ECV) is increased in association with diffuse myocardial
fibrosis, a hallmark of pathologic remodeling [1]. Cardiac magnetic resonance imaging
(CMRI) has been well validated and allows quantification of myocardial fibrosis in
comparison to overall mass of the myocardium [2]. CMRI T1 mapping with ECV
determination [3, 4] is a novel method to quantify diffuse fibrosis non-invasive, and has
been validated in multiple conditions, including myocardial infarction, heart failure, aortic
regurgitation, and cardiomyopathy. Unfortunately, CMRI is relatively expensive, time
consuming and contraindicated in patients with intracardiac devices and irregular heart beat.
In addition, claustrophobia is present in about 5% or more of CMRI subjects [5]. Cardiac CT
(CCT) has emerged as a common and widespread technology and also has been validated
for detection of focal myocardial scar [6] and myocardial stress/rest perfusion [7]. CCT
acquisition is much faster but is less sensitive to contrast differences than CMRI. In this
paper, we sought to evaluate the potential of low dose CCT for the measurement of
myocardial 3D whole heart ECV fraction.
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There are several investigations related with ECV fraction computation [3-5,8]. In all of
these methods, the ECV fraction was computed based on multiple 2D regions of interest
(ROI). However, the diffuse fibrosis is a global process and a whole heart ECV estimation is
highly desirable for clinical application. In order to compute the 3D ECV fraction, pixel to
pixel correspondence between the pre-contrast and post-contrast images need to be
established. This can be accomplished by registration methods. Fig. 1 shows examples of
pre-contrast and post-contrast CCT images. As we can see from the figure, it is nearly
impossible to differentiate myocardium and blood pool in the pre-contrast image and the
segmentation of myocardium and blood pool in post-contrast image is also a challenging
task. For accurate 3D ECV fraction computation, advanced registration and segmentation
methods are highly desired. A brief review of the related segmentation and registration
methods is given below.

The segmentation of the cardiac images has been the motivation of many research works.
The cardiac image segmentation methods [9] may be classified into several types: image
based [9-15], model based [16-22], and hybrid methods [23-26]. Image based methods
perform segmentation based on the image information available in the image; these include
edge detection [10,11], active contours [12, 13], level set (LS) [14], fuzzy connectedness
[15] and graph cut (GC) [16]. These methods perform well on high quality images.
However, the results are not as good when the image quality is inferior or boundary
information is missing. In recent years, there has been an increasing interest in model-based
segmentation methods. One advantage of these methods is that, even when some boundary
information is missing, such gaps can be filled due to the introduced prior knowledge
present in the model. These models were based on different geometric and physical
representations, including spring-mass models [17], triangle-based finite element models
[18], simplex meshes [19], finite element models [20], 3D B-Spline deformation fields [21]
and statistical shape and appearance models [22, 23, 24]. The hybrid approaches are
rightfully attracting a great deal of attention at present. The synergy that exists between
these two approaches –image-based and model-based strategies – is clearly emerging in the
segmentation field. As such, hybrid methods that form a combination of two or more
approaches are emerging as powerful segmentation tools where their superior performances
and robustness over each of the components are beginning to be well demonstrated [ 25 ,
26 , 27 , 28 ]. In this paper, the cardiac segmentation is based on an advanced hybrid method
which effectively integrates the GC method with the shape information computed from the
LW method . There are several shape prior integrated segmentation methods have been
proposed, such as shape prior integrated LS methods [29, 30], shape prior integrated GC
methods [27, 28].The LS method has been widely used, however, it is not trivial to construct
appropriate velocities for advancing the LS function. We propose to apply the shape
integrated GC method to take advantage that the GC method can compute the global
optimum solution for the two-label segmentation and enforce piecewise smoothness [16].
The shape integrated GC methods further improve the GC by effectively combining the
shape priors information. In this paper, the shape prior information is computed via the LW
method, which is a user-steered 2-dimensional segmentation method. During the process of
LW segmentation, the user provides recognition help and the algorithm performs optimal
delineation based on dynamic programming.

Image registration is not a trivial task and cardiac image registration is a more complex
problem in particular because of the nonrigid and mixed motions of the heart and the thorax
structures. Moreover, as compared to other organ’s registration such as brain, the heart
exhibits fewer accurate anatomical landmarks. Also, cardiac images are usually acquired
with a lower resolution than brain images. The common used cardiac registration method
could be classified into two main categories: 1) those based on geometric image features
[27-29] and those based on voxel similarity measures [30-38]. The geometric image feature-
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based methods are divided into registration of a set of points [31] and edges or surfaces [32,
33]. Registration methods based on voxel similarity measures include moments and
principal-axes methods [34, 35], intensity difference and correlation methods [36, 37], atlas
based method [38] and methods based on mutual information [39, 40]. The Demons
algorithm [41] is a well-established technique for non-rigid registration. One of the most
efficient methods is the demons algorithm proposed by Thirion [42]. Several variants of the
algorithm have been proposed depending on how the forces are computed, such as an adhoc
symmetrization of the demons force [43], and symmetric forces [44]. Vercauteren et al. [45]
explained from a theoretical point of view that the symmetric forces demons algorithm is
more efficient in practice. In this paper, the symmetric demons deformable registration
method is applied for the registration due to its efficiency.

In this paper, we propose a novel framework for 3D whole heart ECV fraction estimation on
low dose CCT images. The proposed framework consists of three main steps. First, a hybrid
segmentation method is proposed for myocardium and blood pool segmentation on post-
contrast image. The hybrid method contains two steps: initialization and segmentation. A
pseudo-3D strategy is applied for the initialization based on the live wire (LW) method [39].
Then the shape information generated from the initialization step is integrated into the GC
cost function, and this shape prior integrated GC is applied for the finer segmentation.
Second, the symmetric Demons [Error! Bookmark not defined.37] deformable registration
method is applied to register pre-contrast to post-contrast images. So the correspondences
between the voxels from pre-contrast to post-contrast images were established. Finally, the
whole heart ECV value was computed. Our contributions in this paper are summarized as
follows,

1. To the best of our knowledge, we are the first one to propose a framework of 3D
whole heart ECV estimation using low dose cardiac CT Images.

2. For the myocardium and blood pool segmentation, we propose an advanced
segmentation method which integrates the shape prior information generated from
the LW method with the GC method.

3. For the registration of pre-contrast and post-contrast image, we apply the
symmetric Demons method.

The rest of the paper is organized as follows. In Section 2, we elaborate the complete
methodology of the 3D whole heart ECV fraction computation. In Section 3, we evaluate the
performance of the proposed method. In Section 4, we provide discussions and conclusions.

II. METHOD AND MATERIALS
A flowchart of the proposed method is shown in Fig. 2. The proposed framework consists of
three main steps: shape constrained GC based segmentation, symmetric Demons based
registration and ECV computation. Among these three steps, the segmentation and
registration are the core part of the proposed framework. The details are given in the each
sub-section as below.

2.1 Myocardium and Blood Pool Segmentation Based on a Shape Constrained GC Method
The proposed segmentation method consists of two main steps. First, the cardiac contour is
initialized by segmenting the top, middle and bottom slices via live wire method [46], and
then the contours in between are linearly interpolated. Second, the object shape information
generated from the initialization step is integrated into the GC cost computation, and then
this shape constrained GC is used for the myocardium and blood pool segmentation.
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2.1.1 Initialization—The objective of the initialization is to generate the shape constraints
for the latter GC segmentation. The initialization is consist of two steps: first, the cardiac
contour is initialized by segmenting the top, middle and bottom slices via LW method, and
then the contours in between are linearly interpolated so the 3D shape contour is generated.
The LW segmentation is conducted on only three slices due to two reasons: (1) the LW is a
user steered 2D segmentation method, i.e., it needs user input for the landmarks and is time
consuming. (2) three slices are sufficient to generate the rough shape, which will be refined
by the latter GC segmentation. During the process of LW segmenation, the user provides the
landmarks on the boundary then the LW method will do the delineation automatically [46].
The user usually only need to provide about 10 landmarks per slice.

An oriented boundary cost function is devised for myocardium contour as per the LW
method [46]. Following the original terminology and notation in [46], we define a boundary
element, bel for short, as an oriented edge between two pixels. For a given image slice I, a
bel will be represented as an ordered pair (p, q) of 4-adjacent pixels where p is inside the
object (pixel value 1) and q is outside (pixel value 0). We think of every pixel edge of I as
constituting two potential bels (p, q) and (q, p) and possibly assign different cost values to
them. To every bel of I, we assign a set of features depending on the orientation (p, q) or (q,
p). The features assigned to each bel are intended to express the likelihood of the bel
belonging to the boundary of a particular object of interest. In our particular case, the cost
c(l) associated with bel l is a linear combination of the costs assigned to its features

(1)

where nf is the number of features, wi is a positive constant indicating the emphasis given to
feature fi, and cf is the function to convert feature values fi(l) at l to cost values cf(fi(l)). In
LW [46], fi may represent features such as intensity on the immediate interior of the
boundary, intensity on the immediate exterior of the boundary, and gradient magnitude at
the center of the bel. Depending on the intensity characteristics of the object of interest,
different fi may be combined. As suggested in [46], cf is chosen as an inverted Gaussian
function, and all selected features are combined with weights wi. We utilize the feature of
LW to define the best-oriented path between any two-landmark points (xk and xk+1) as a
sequence of bels with minimum total cost:

(2)

where h represents the number of bels in the best-oriented path <l1, l2,.⌧,lh>. The total cost
structure Ƙ(x) associated with all the landmarks may now be defined as

(3)

where m is the number of landmarks for the object of interest and we assume that xm+1 = x1
(closed contour). In other words, Ƙ(x) is the sum of the costs associated with the best
oriented paths between all m pairs of successive landmarks of shape instance x. The
parameters of Ƙ(x) for each object shape x are estimated automatically as described in [46]
by using the training images.
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2.1.2 Shape Constrained GC Method—We propose a shape-constrained GC method
for the myocardium and blood pool segmentation. The proposed algorithm effectively
integrates the shape information from initialization step with the optimal 3D delineation
capability of the GC method.

GC segmentation can be formulated as an energy minimization problem such that for a set
of pixels P and a set of labels L, the goal is to find a labeling f: P → L that minimizes the
energy function En(f).

(6)

where Np is the set of pixels in the neighborhood of p, Rp(fp) is the cost of assigning label fp
∈ L to p, and Bp,q(fp,fq) is the cost of assigning labels fp,fq ∈ L to p and q. In two-class
labeling, L = {0, 1}, the problem can be solved efficiently with graph cuts in polynomial
time when Bp,q is a sub-modular function, i.e., Bp,q(0, 0) + Bp,q(1, 1) ≤ Bp,q(0, 1) + Bp, q(1,
0) [47].

In our framework, the unary cost Rp(fp) is the sum of a data penalty Dp(fp) and a shape
penalty Sp(fp) term. The data term is defined based on image intensity and can be considered
as a log likelihood of the image intensity for the target object. The shape prior term is
independent of image information, and the boundary term is based on the gradient of the
image intensity.

The proposed shape-integrated energy function is defined as follows:

(7)

where α,β,γ are the weights for the data term, shape term Sp, and boundary term,
respectively, satisfying α + β + γ = 1. These components are defined as follows:

(8)

(9)

and

(10)

where Ip is the intensity of pixel p; object label is the label of the object (foreground); P(Ip|
O) and P(Ip | B) are the probability of intensity of pixel p belonging to object and
background, respectively, which are estimated from object and background intensity
histograms during the training phase (details given below); d(p, q) is the Euclidian distance
between pixels p and q; and σ is the standard deviation of the intensity differences of
neighboring voxels along the boundary.
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(11)

where d(p, x0) is the distance from pixel p to the set of pixels which constitute the interior of
the current shape xo of object O (note that if p is in the interior of xo, then d(p, xo) = 0); rO is
the radius of a circle that just encloses xo. The linear time method of reference [48] was used
in this paper for computing this distance.

Minimizing En with Graph Cuts: The minimization of Eqn. (7) can be solved by GC
method. The graph is designed as follows. We take V = P ∪ L, i.e., V contains all the pixel
nodes and terminals corresponding to the labels in L which represent objects of interest plus
the background. A = AN ∪ AT, where AN is the n-links which connect pixels p and q(p ∈ P ,
q ∈ Np) and with a weight of wp,q. AT is the set of t-links which connect pixel p and
terminals L ∈ L and with a weight of wp,ℓ. The desired graph with cut cost ∣C∣ equaling En(f)
is constructed using the following weight assignments:

(12)

(13)

where K is constant that is large enough to make the weights wp,ℓ positive.

2.2 Deformable Registration by Symmetric Demons Algorithm
In order to compute the 3D ECV fraction, the pixel to pixel correspondence between the pre-
contrast and post-contrast images must be established. In this paper, the symmetric
deformable Demons registration method [] is applied. The Demons algorithm has been
widely used for images registration field and achieved good results. Demons method is a
non-parametric non-rigid image registration method. It alternates between computation of
the optical flow forces and regularization by a Gaussian smoothing.

The Demons algorithm could be seen as an optimization of a global energy. The main idea is
to introduce a hidden variable in the registration process: correspondences. We then consider
the regularization criterion as a prior on the smoothness of the transformation. Instead of
requiring that point correspondences between image pixels be exact realizations of the
transformation, one allows some error at each image point. For the symmetric force demon
registration, the modification was made to avoid large deformations when gradients have
small values [45]. Vercauteren et al. [45] explained from a theoretical point of view that the
symmetric force demon algorithm is more efficient in practice, which is the main reason to
choose this technique in our system. We use the implementation contributed by Corinne
Mattmann, ETH Zurich, Switzerland. The registration program was implemented using
components of the open source segmentation and registration toolkits [49], which are cross-
platform C++ software toolkits and are freely available from http://www.itk.org.

The influence of the standard deviation σ of the Gaussian kernel used during the demons
registration process to the deformation field is studied. This parameter is related to the
regularity of the estimated deformation field: the higher σ, the smoother the deformation
field. And the influence of the number of iterations on the convergence of the algorithm and
on the CPU time is also studied.
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2.3 ECV Fraction Computation
After registration, the correspondences of the voxels between the pre-contrast and post-
contrast images were established. Myocardial and blood pool Hounsfield unit attenuation
values at each voxel were recorded and extracellular volume fraction was computed as
follows,

(14)

where Hct is the hematocrit, and ΔHU is the change in Hounsfield unit attenuation (ΔHU =
HUpost iodine – HUpre iodine).

III. EXPERIMENTAL RESULTS
The proposed methods were tested on a clinical CCT data set. This data set contained
images of 20 subjects (10 heart failure subjects with 10 age and gender matched controls,
ages 60.9 ± 7.2 (mean ± st.dev.)), acquired from the pre-contrast and post-contrast phases of
320-MDCT scanner (Aquilion One, Toshiba Medical Systems, Tustin, CA). The slice
thickness is 3 mm and in-plane pixel size is 0.37*0.37 mm. The image size is 512*512*47.

3.1 Parameters Training
In this paper, the leave-one-out strategy is used for the evaluation. The parameters of LW
and shape integrated GC methods are optimized through the training. We have 10 post-
contrasted CCT images, i.e., when testing on one image, other 9 images will be used for
training. The parameters of live wire method, such as number of features, weight for each
feature are optimized through the training. For more details please see [46], and the
executable version can be downloaded from http://www.mipg.upenn.edu/cavass/. The
parameters of GC method are determined also through the training stage. The intensity
histograms for each object are estimated from the training images. Based on this, P(Ip | O)
and P(Ip | B) can be computed. As for parameters α, β and γ in Eqn. (7), since α + β + γ =
1 , we estimate only α and β by optimizing accuracy as a function of α and β and set γ = 1-
α-β. We use the gradient descent method for the optimization. Let Accu(α, β) represent the
algorithm’s accuracy (here we use the true positive volume fraction [50]), α and β are
initialized to 0.35 each, then Accu(α, β) is optimized over the training data set to determine
the best α and β.

3.2 Evaluation of the Segmentation Method
An expert in CCT imaging field manually segmented the post-contrast cardiac images and
the results were used as the references for the segmentation evaluation. Fig. 3 shows the
myocardium and blood pool segmentation results on three slices. From visual checking, we
can find the results are quite good.

The quantitative evaluation of the proposed approach results are presented in Table 1. The
accuracy in terms of true positive and false positive volume fractions (TPVF and FPVF)
[Error! Bookmark not defined.42], and average surface distance is shown. TPVF indicates
the fraction of the total amount of tissue in the true delineation; FPVF denotes the amount of
tissue falsely identified, which are defined as follows,

(15)
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(16)

Where, Ud is assumed to be a binary scene with all voxels in the scene domain set to have a
value 1, and Ctd is the set of voxels in the true delineation, ∣·∣ denotes volume. More details
can be seen in [Error! Bookmark not defined.42].

3.3 Evaluation of Registration
Fig. 4 shows the registration results by the proposed method on three slices. We can see
from it that our registration achieved very good results: the overlap is not good before the
registration due to the large deformations, while after registration, two images overlap
perfectly.

The alignment of regions of interests (ROIs) is a good indicator of how well two images are
registered [51]. In this paper, the average relative overlap accuracy (AROA) is used for the
quantitative evaluation of the registration method. The relative overlap of segmentations is a
measure of how well two corresponding segmented regions agree with each other. Twenty
ROIs have been selected by an imaging expert according to the following criteria: (i) wide
distribution of ROIs throughout the CCT image and (ii) simple and accurate identification of
all the ROIs. Fig. 5 shows some examples of selected ROIs. The AROA is computed based
on all the ROIs as follows,

(17)

where ROIx(i) and ROIy(i) being the ith corresponding ROI in the two images, and N is the
number of ROIs.

Table 2 shows the influence of the standard deviation σ of the Gaussian kernel used during
the demons registration process to the deformation field. Results showed that the best
performance was reached for σ = 3 and this value was adopted in this paper.

Table 3 shows the influence of the number of iterations on the landmark mapping and on the
CPU time. As expected, the CPU time increases linearly with the number of iterations.
Beyond 50 iterations, the improvement in the accuracy is not significant anymore. This
value was adopted for the experiments presented in this paper.

In terms of efficiency, the average computation time for the initialization, segmentation and
registration on an Intel Xeon E5440 workstation with 2.83GHz CPU, 8 GB of RAM was 1,
1 and 10 minutes, respectively. The time for the ECV map computation is very little so it is
neglected. The whole process is fast and acceptable for the clinical use.

3.4 Reproducibility Analysis of the Proposed Method
The proposed method consists of two steps: initialization and segmentation, in which the
segmentation is fully automatic, however initialization step needs user interaction. So the
reproducibility analysis was performed for the proposed method. User1 (XC) performed the
proposed method (3D whole heart) twice and User2 (MN) performed the proposed method
(3D whole heart) once. The same reproducibility analysis was performed to the manual
method and the results were compared to the proposed method. Fig. 6 shows the linear
regression analysis results of the proposed method vs manual on mean myocardium density.
We can see from that the proposed 3D whole heart ECV method has much higher
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reproducibility (R2 is 0.963 and 0.961 for intra and inter, respectively) than the manual
method (R2 is 0.917 and 0,900 for intra and inter, respectively).

3.5 Statistical Correlation Analysis of the ECV value between Manual and the Proposed
Method

In this section, we will focus on the ECV value comparison.In clinical settings, ECV is
typically measured using several 2D ROIs. CCT data was first reformatted to the short axis
plane to correspond to the CMRI acquisition, then myocardial and blood pool attenuation
values at the base, mid and apex were measured twice and the average value was used as
manual result for analysis. It is important to notice that, the manual result here is different
from the manual result which is 3D manual segmentation result and used for the
reproducibility analysis. Here the statistical correlation analysis between the proposed
method and manual was performed. The linear regression analysis and Pearson’s correlation
were used to examine the relationship between automated and manual results. The Bland-
Altman method was also used to calculate the bias and limits of agreement. P-values <0.05
were considered to be statistically significant.

Figs. 7 and 8 show the linear regression and Bland-Altman analysis results of mean
myocardium and blood pool density obtained by manual and the proposed method. We can
see the proposed method achieved high correlation with the manual results on myocardium
and blood pool density. As the ECV value is computed based on the myocardium and blood
pool intensity, it is nature to find that they are highly correlated. Fig. 9 shows the
differentiation between normal and heart failure groups using ECV value by manual and the
proposed method (3D whole heart). We can see from that similar to the manual analysis, the
proposed method can differentiate the normal and heart failure group. Fig. 10 shows the
visualization results of 3D ECV map on normal and heart failure subjects. We can find that
the heart failure subject has much higher ECV values for most voxels than normal subject.

IV. DISCUSSIONS AND CONCLUSIONS
In this paper, we proposed a framework for the 3D whole heart ECV estimation for low dose
CCT images. The proposed framework consists of three main steps: (1) myocardium and
blood pool segmentation based on shape constrained GC method; (2) pre and post-contrast
cardiac images registration based on symmetric Demons algorithm; and (3) ECV value
computation. The proposed method was tested on 20 clinical low dose CCT datasets with
pre-contrast and post-contrast images. The preliminary results show that: (1) The good
segmentation and registration performance demonstrated the feasibility and efficiency of the
proposed method. (2) The proposed method achieved high correlations with manual analysis
results. (3) The proposed method has much higher reproducibility than manual method.

Here we investigated a semi-automatic 3D ECV estimation method based on two CCT
phases: pre-contrast and post-contrast. Compared to the three phase (as shown in Fig. 11)
method, two CCT scans results in less radiation exposure for the patient. And another issue
is CT angiography image generally acquired at different phase compared with CCT pre- and
post-contrast phases. However, when the CT angiography scan is used, the blood pool can
be easily segmented by threshold method (see Fig. 11 (b)) and then this blood pool can be
used as a shape constraint for myocardium segmentation based on the shape constrained GC
method, which makes the whole framework fully automatic. The fully automatic framework
will be investigated in the near future.

In the clinical environment, CMRI has been validated for detection of myocardial fibrosis, in
which ECV fraction was used as an important factor. However, for CMRI, the ECV fraction
was usually computed based on several 2D ROIs. In this paper, we computed the 3D whole
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heart ECV fraction based on the low dose CCT images. The statistical analysis was
performed between the proposed method and manual ECV analysis results. We find from
the results that the proposed method achieved high correlation with the manual results.
However, the proposed method was tested on only 20 CCT images. The proposed method
will be tested on more data set in the near future.
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Fig. 1.
Examples of two phases of CCT: (a) pre-contrast; (b) post-contrast.
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Fig. 2.
The flowchart of the proposed method.
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Fig. 3.
Myocardium and blood pool segmentation results by the proposed shape constrained GC
method on one patient’s post contrast-enhanced image - three slices. (a) original image; (b)
blood pool segmentation result; (c) myocardium segmentation result.
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Fig. 4.
Symmetric Demons Registration Results on one patient’s three slices. The first column
shows the pre-contrast image; the second shows the post-contrast image; the third column
shows the overlap of the pre-contrast (cyan color) over the post-contrast image (orange
color); the fourth column shows the overlap of the registered pre-contrast (blue color) using
affine registration over the post-contrast image (orange color); and the last column shows
the overlap of registered pre-contrast (cyan color) by the symmetric forces demons over the
post-contrast image (orange color).
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Fig. 5.
Examples of selected ROIs.
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Fig. 6.
Reproducibility analysis results of the proposed method vs manual on mean myocardium
density (HU).
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Fig. 7.
Results of mean myocardium density obtained by manual and the proposed method (3D
whole heart). (a) Linear regression analysis and (b) Bland-Altman analysis.
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Fig. 8.
Results of mean blood pool density obtained by manual and the proposed method (3D whole
heart). (a) Linear regression analysis and (b) Bland-Altman analysis.
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Fig. 9.
Differentiation between normal and heart failure groups using ECV by manual and the
proposed method (3D whole heart).
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Fig. 10.
The visualization of 3D CCT ECV map on two subjects. (a) Normal subject; (b) Heart
failure subject. The heart failure subject has much higher ECV values for most voxels than
normal subject.
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Fig. 11.
Three phases cardiac CT images. (a) Pre-contrast image; (b) CT angiography image; (c)
Post-contrast Image.
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Table 1

Mean and standard deviation of TPVF, FPVF and Average Surface Distance for the proposed method on post-
contrast image.

TPVF (%) FPVF (%) Average Surface Dist
(mm)

Myocardium 92.2
±1.5

0.66
±0.12

0.72
±0.39

Blood Pool 93.2
±1.1

0.52
±0.09

0.66
±0.31
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Table 3

The influence of the number of iterations on the landmark mapping and on the CPU time (σ = 3).

Number of
iterations

AROA (%) CPU time
(min.)

10 84.1 2.2

20 87.9 3.8

50 90.3 10.0

80 90.4 14.5

100 90.5 18.2
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