

GPU Based Real-time Trinocular Stereovision

by

Yuanbin Yao

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

Aug 15, 2012

APPROVED:

________________________________ ________________________________

Prof. Taskin Padir, Thesis Advisor Prof. Michael Gennert, Thesis Committee

Prof. Xinming Huang, Thesis Committee

 I

GPU Based Real-Time Trinocular Stereovision

Abstract

Stereovision has been applied in many fields including UGV (Unmanned Ground

Vehicle) navigation and surgical robotics. Traditionally most stereovision applications are

binocular which uses information from a horizontal 2-camera array to perform stereo

matching and compute the depth image. Trinocular stereovision with a 3-camera array has

been proved to provide higher accuracy in stereo matching which could benefit application

like distance finding, object recognition and detection. However, as a result of an extra

camera, additional information to be processed would increase computational burden and

hence not practical in many time critical applications like robotic navigation and surgical

robot. Due to the nature of GPU’s highly parallelized SIMD (Single Instruction Multiple Data)

architecture, GPGPU (General Purpose GPU) computing can effectively be used to parallelize

the large data processing and greatly accelerate the computation of algorithms used in

trinocular stereovision. So the combination of trinocular stereovision and GPGPU would be

an innovative and effective method for the development of stereovision application [18].

This work focuses on designing and implementing a real-time trinocular stereovision

algorithm with GPU (Graphics Processing Unit). The goal involves the use of Open Source

Computer Vision Library (OpenCV) in C++ and NVidia CUDA GPGPU Solution. Algorithms

were developed with many different basic image processing methods and a winner-take-all

method is applied to perform fusion of disparities in different directions. The results are

compared in accuracy and speed to verify the improvement.

 II

Acknowledgement

First of all I would like to express the most gratitude to my advisor, Prof. Taskin Padir. I

really appreciate his instruction in both technical knowledge and research method during the

past two years, also the opportunity to conduct my research in RIVeR Lab. My experience in

RIVeR Lab is a precious property in my life as I benefited a lot from others there.

I am grateful to my thesis committee members, Prof. Michael Gennert and Prof.

Xinming Huang, for their time, effort and invaluable advices.

I also need to thank my family who has supported during the past two years. Without my

parents, my uncle’s family and my girlfriend, I would not be able to get through my most

difficult time.

 III

Content

List of Figures ...IV

List of Tables ...VI

1 Introduction .. 1

1.1 Stereovision .. 2

1.1.1 Comparison between Trinocular and Binocular .. 4

1.2 GPU Architecture and GPGPU .. 4

1.3 OpenCV Library ... 6

2 System Overview ... 8

2.1 System Architecture ... 8

2.2 Image Processing Section ... 10

2.2.1 Grayscale Transformation ... 11

2.2.2 Sobel Filter for Different Matching Directions ... 12

2.3 Stereo Computation .. 16

2.3.1 Stereo Matching .. 18

2.3.2 Fusion of Disparities in two Orientations .. 25

3 Implementation with OpenCV and CUDA ... 28

3.1 Code Hierarchy of OpenCV Source Code .. 28

3.2 CUDA Programming Model .. 30

3.3 Implementation of Vertical Matching .. 36

3.4 Optimization and Implementation of Disparities Fusion ... 43

4 Result Analysis and Conclusions .. 49

4.1 Accuracy Results .. 49

4.2 Speed Results .. 62

4.3 Future Development ... 65

Bibliography.. 67

 IV

List of Figures

1.1 Stereovision Mathematical Principle .. 3

1.2 GPU Architecture ... 4

1.3 Comparison between CPU Architecture and GPU Architecture .. 5

2.1 A typical L-shape camera array setting .. 8

2.2 Algorithm Architecture Overview .. 10

2.3 Center Image of Tsukuba Dataset and Its Fourier Transform .. 13

2.4 Sobel Filtering Comparison with Tsukuba Center Image .. 15

2.5 SIFT feature key points extraction on Tsukuba dataset .. 17

2.6 SURF feature key points extraction on Tsukuba dataset .. 17
2.7 Horizontal matching result ... 20

2.8 Result analyses for horizontal matching result on Middlebury Stereo Page 21

2.9 Vertical matching result. .. 21

2.10 Result analyses for vertical matching result on Middlebury Stereo Page 22

2.11 Comparison of horizontal and vertical matching results .. 23

3.1 Automatic Scalability of CUDA .. 30

3.2 Organization of 2-D Grid ... 31

3.3 Organization of 3-D Grid ... 32

4.1 Result with sliding window size 8 .. 49

4.2 Result with sliding window size 12 .. 49

4.3 Result with sliding window size 16 .. 50

4.4 Result Analysis with sliding window size 8 ... 50

4.5 Result Analysis with sliding window size 12 .. 51

4.6 Result Analysis with sliding window size 16 .. 51

4.7 Result with disparity distance 9 .. 53

4.8 Result with disparity distance 12.. 53

4.9 Result with disparity distance 15.. 54

4.10 Result Analysis with disparity distance 9 .. 54

 V

4.11 Result Analysis with disparity distance 12 .. 55

4.12 Result Analysis with disparity distance 15 .. 55

4.13 Result with fusion ratio 0.6 ... 56

4.14 Result with fusion ratio 0.7 ... 57

4.15 Result with fusion ratio 0.8 ... 57

4.16 Result Analysis with fusion ratio 0.6 ... 58

4.17 Result Analysis with fusion ratio 0.7 ... 58

4.18 Result Analysis with fusion ratio 0.8 ... 59

4.19 Improvement from Single match to Fusion ... 60

4.20 640480 Tsukuba Result ... 62

4.21 800600 Tsukuba Result ... 63

4.22 1280960 Tsukuba Result... 63

 VI

List of Tables

4.1 Accuracy Result for various sliding window size. ... 53

4.2 Accuracy Result for various approximate disparity distance 57

4.3 Accuracy Result for various approximate disparity distance 60

4.4 Fusion Accuracy Improvement .. 61

4.5 Accuracy Comparison with Other Stereo Algorithm Implementations 62

4.6 4.6 Times per Frame for Different Size Image ... 63

1

Chapter 1

Introduction

A way to refine desired information from data acquired by visual sensor has been long

pursued by both academic and industry. This kind of method could help many application and

research like traffic control, ISR (Intelligence, Surveillance and Reconnaissance) and robots.

For example, this method could help to construct 3-D information around for an UGV

(Unmanned Ground Vehicle) in unknown environment from its visual sensor, track a certain

object automatically during UAV (Unmanned Aerial Vehicle) flight or build a surgical robot

to determine focus accurately during surgical operation.

Computer Vision is just the way to extract information and data from images by

processing, understanding and analyzing with computer. Compared to image processing

which uses image for both input and output and computer graphic which uses data as input

and image as output, computer vision applies image as input and data as output [19].

Traditional image processing technologies apply computation on the image in order to obtain

better image quality (e.g. use image filter to get a clearer and higher signal noise ratio (SNR)

image) in 2-D space. A lot of work involving intelligence was still needed to be done by

human. Limited to hardware technology, image processing used to be the best way to balance

between processing quality and economic efficiency. With the development of

microprocessor and computational technology, complex computation with large data which

would help to solve difficult graphical problem becomes feasible. Hence the topic of

advanced processing based on traditional image processing to acquire data in 3-D world raises

and attracts interests of many researchers. The evolution of computer vision involves

technologies from many fields including image and signal processing, computer graphics and

pattern recognition. It is one of fastest and most popular field of research and development in

recent years.

2

1.1 Stereovision

Stereovision is the view of depth for a certain scene based on information captured by

multiple cameras focus on this scene [20]. Though applied very early, this topic was first

raised formally in late 1970s and now it is one of most popular and efficient methods to

transform image of 2-D space to 3-D world compared to many other methods (like laser

scanner etc.) today. The application of stereovision includes but not limited to robot

navigation, surgical robot, stereo display and 3-D modeling.

For most of computer vision systems, they could be descripted in three levels [1]. This

paper will also discuss the approach of stereovision system done by this work in these three

levels

• Computational theory: Describe the basic requirements (settings and environments,

etc.) and principles (mathematical and physical theory) of the problem. For stereovision as an

example, the method is based on the theory of vision disparity.

• Representations and algorithms: Define the input, output and the detail algorithm

solution for a certain problem. For stereovision, input is a pair (or pairs) of image with

disparity and output is depth image. The key for the problem is the stereovision algorithm.

Different algorithms various in performance of stereo matching accuracy and processing

speed.

• Hardware implementation: Provide the system which combines algorithm and actual

hardware optimally to apply in the real world. Normally the hardware of a stereovision

system includes two or more cameras and a computing system (CPU, GPU and FPGA

etc.).Axes of cameras are parallel in most cases though some researches have started to reach

unparalleled axes case. Also in this project the GPU is employed.

The basic method of stereovision is the bionics of human eyes. Human eyes could

perceive real 3-D scene as the arrangement of human eyes are horizontally aligned and the

position difference of same objects in left and right eyes would determine the disparity of the

scene. In a similar way, stereovision means acquiring a depth grayscale image of a scene

based on the images of the scene from two or more cameras. Figure 1.1 shows the principle of

stereovision.

3

Figure 1.1: Stereovision Mathematical Principle

P is an object point in the scene. P1 and P2 are corresponding pixel of P in the left and

right image. We assume the two cameras are parallel and in the same horizontal plane.

Normally we use epipolar to describe the connection line of P1 and P2. As the cameras are in

horizontal lines, the epipolar of P1 and P2 should also be in same height level. This constraint

is called epipolar constraint. According to the basic similar triangle principles in geometry,

we could have equation

We define disparity of the image as d which d = d1+d2, baseline length of two cameras

as b, then we could get the following conclusion

As baseline length and focus length are pre-set and known, we could determine the

distance of different objects in the same scene from their disparity in two images. This is the

mathematical principle of stereovision and the physical meaning of the disparity image as the

output of stereovision.

4

From the description above we could conclude that in stereovision, the most important

problem is to have an algorithm which could find the corresponding pixel pairs in two images

with high accuracy and efficiency. There are many approaches for this problem and most

research work on stereovision focus on this topic.

1.1.1 Comparison between Trinocular and Binocular Vision

The stereovision algorithm discussed above is binocular stereovision which employed a

pair of horizontal camera array. It is the most common type of stereovision application today.

However, the information from two cameras is limited to solve all challenges in stereovision

problems like objects occlusion and light condition differences. The algorithms become

slower and slower as accuracy goes higher and higher. To break through the limits, adding

more cameras in stereovision has been explored in the past [2], [3]. Previous research on

trinocular stereovision has provided the following results

• Based on different settings and environments (like baseline length, camera

resolution and light condition), trinocular stereo match accuracy would improve 7% - 54%

• Computational cost for the processing of the third camera would increase the overall

computational cost around 25%

From this conclusion we would know that trinocular is superior to the binocular on

stereovision accuracy. But twenty years ago, computational ability was not as powerful as it

today. 25% more computational cost would influence processing speed performance a lot

hence stop applying trinocular stereovision in many time critical applications.

There is already some previous work try to approach real-time trinocular stereovision [4],

[5], [6] which achieve inspired results. The algorithm could run in almost real-time with an

acceptable accuracy. However these works were implemented with CPU or FPGA. The

resolution of camera was also restricted to a basic level in order to achieve real-time.

1.2 GPU Architecture and GPGPU

Graphics Processing Unit (GPU) is the device specialized to process image data and

graphical computing. The task of GPU determines its architecture significantly differs from

5

Central Processing Unit (CPU).

The reason behind the discrepancy in floating-point capability between the CPU and the

GPU is that the GPU is specialized for compute-intensive, highly parallel computation –

exactly what graphics rendering is about – and therefore designed such that more transistors

are devoted to data processing rather than data caching and flow control [14]. CPU needs to

execute all kinds of instructions to maintain the operation of the entire system. As a result,

though multi-core CPU is well developed to meet the requirement of high parallelized

computation, its architecture is Multi-Instruction-Multi-Data (MIMD) which means different

cores would execute different instructions and different data at the same time. So each core

needs an independent set of complex logic component to support it. This restricted the

number of cores in a CPU. GPU is solely for processing large scale data with same operation;

therefore, GPU architecture is Single-Instruction-Multi-Data (SIMD). The cores in GPU may

be in several groups and cores in each group share same set of logic component. In this way,

each group execute different instructions while cores in one group would execute the same

instruction but with different input data. The concepts of ‘core’ in CPU and GPU are different

hence number of cores in a GPU normally would be dozens of times than the number of cores

in a CPU. Based on different architectures, it is clearly that GPU would be better fit for image

processing and computer vision computation than CPU. The Figure1.2 shows GPU

architecture. A logic component controls same operation of the cores in its group. Also Figure

1.3 shows a comparison between CPU architecture and GPU architecture. It is obviously from

the figure that GPU could support more cores based on its structure.

Figure 1.2: GPU Architecture

6

Figure 1.3: Comparison between CPU Architecture and GPU Architecture [14]

GPU was long considered as merely a toy for entertainment industry like video games

and movies since it was introduced. This situation changes a lot now as General Purpose

Computing on GPU (GPGPU) is widely applied in large scale computing. GPGPU takes

advantage of GPU architecture to speed up large scale computing in many fields.

At the beginning, GPGPU was difficult to use for many reasons. GPU programming

model is different from CPU, GPU programming environment is tightly constrained and code

from CPU cannot be easily transferred to use on GPU. Also it needs to design parallelism

well in order to maximize performance [7]. However, many libraries have been released to

make GPGPU easy, including NVidia’s Compute Unified Device Architecture (CUDA) and

Open Computing Language (OpenCL).

1.3 OpenCV Library

OpenCV stands for Open Source Computer Vision Library which includes functions

mainly for development of real-time computer vision algorithms for research and applications.

According to open accessible documentation online, “it was initially an Intel Research

initiative to advance CPU-intensive applications, part of a series of projects including

real-time ray tracing and 3D display walls” and first launched in 1999. After five beta

7

versions during five years of 2001-2005, its first formal version 1.0 was released in 2006.

Since then the change log of OpenCV is available on its website [21]. In the early version of

OpenCV, the only support programming language was C. A significant feature of version 2.0

released in 2009 was introduction of C++ interface together with many new functions. Later

versions also add support for Python scripting language. The latest version of OpenCV is

2.3.1 which released August 17, 2011 (a newer version 2.4.0 was released on May 7, 2012 at

the writing of this manuscript). OpenCV supports GPGPU (General Purpose GPU) as a

CUDA based GPU module was introduced since December 2010 (version 2.2).

This work is implemented based on OpenCV 2.3.1 with the integrated CUDA module.

Necessary modifications have been done to the source code of OpenCV. Results will be

evaluated from speed and accuracy and expected to reach real-time speed with a

8

Chapter 2

System Overview

 This chapter describes the whole architecture including camera setting and hardware

implementation and algorithm applied in this project which corresponds to the second level

(representations and algorithms) according to the description of levels in computer vision

system [1].

2.1 System Architecture

Figure 2.1 A typical L-shape camera array setting [6]

The goal for this project is to obtain real-time high accuracy stereo disparity image with

trinocular system as Figure 2.1.

There are different and multiple definitions for real-time. Generally based on persistence

of human vision and practical application needs, an accepted processing speed for real-time is

9

25Hz-30Hz frames per second (fps). This is the definition of real-time goal for this project

though in some cases like high speed photography, real-time requires higher frequency. To

reach the goal of real-time within this definition, for a single still image (function as one

frame), the processing time is limited to 33ms-40ms. From the experience of previous

research [6] [8], traditional hardware method like CPU and FPGA can hardly reach real-time

or have to restrict camera resolution to reach real-time. So GPU Programming is a vital

method to solve the problem.

The most novel point of this project compared to traditional binocular stereovision is the

combination of GPU computation and introduction of the third camera [25][26]. Therefore,

one important problem rises is how to determine the position of the third camera. Three

methods of camera arrangement were considered for the project: inline arrangement that all

three cameras are set in a line with parallel focus line; right triangular arrangement that all

three cameras are set in three vertexes positions of a right triangular and L-shape arrangement

that one camera locates in the center while one in its left (right) and one in its top. In all cases,

the configurations of three cameras are same and the axes of three cameras are all parallel.

This setting could make all image planes parallel hence avoid unnecessary image

transformation to eliminate images distortion caused by angles between camera axes which

would slow processing speed a lot [6].

Among the three arrangements, inline arrangement provides a longer epipolar line which

could benefit the accuracy. However there is less common overlap area among three input

images hence the fusion result will be impaired. The right triangular arrangement would

provide a good vertical view and the biggest common overlap area. But as the epipolar line of

the vertical pair is neither vertical nor horizontal, as a result, additional image transformation

is needed and speed performance would be influenced. Based on the analysis, the

arrangement of cameras in this project is in L-shape style.

The algorithm for this project takes four major steps to reach the final goal: grayscale

transformation from colorful images, features enhancement filtering to fit different orientation

matching with two types of Sobel Filter, horizontal and vertical block matching with Sum of

Squared Difference (SSD) algorithm and finally fuse horizontal and vertical disparity image

together based on probabilistic to get the final result image. All steps, except first step which

10

is a long existed general method in image processing, involve changes to OpenCV source

code.

The basic design architecture of system is shown in the Figure 2.1. Tsukuba Stereo

Dataset is used as an example to demonstrate the general outline [22].

The system is tested in Middlebury Stereovision (vision.middlebury.edu/stereo) which is

the authoritative site in evaluation of stereovision algorithm. The evaluation will cover

accuracy based on and speed performance.

2.2 Image Processing

From the description of system in Section 2.2, we could divide the whole work to two parts:

image processing and stereo computation. Image processing section employs basic traditional

image processing measure like grayscale transformation and image filtering on the input

images. The purpose of this section is to do preprocess on the input images before applied to

stereo computation. This preprocess would extract useful features and information such as

spots and lines in certain location and direction from input images which would help to

improve stereo computation performance as stronger features extracted would be more

distinct to match.

\

Figure 2.2: Algorithm Architecture Overview

http://vision.middlebury.edu/stereo/

11

As generally known, the digital images are stored in matrix form in computer. Also

image data could be viewed as a 2-dimension signal data. Based on these features, traditional

image processing methods mostly function like matrix computation or 2-D signal processing.

For example, image filtering with 2-D filter is widely applied to reduce noise in the images.

2.2.1 Grayscale Transformation

Color model or color space is an important concept in image processing. Generally it is a

mathematical model to present all colors. There are many different color models in digital

images to interpret colors from different aspects. As normally there would be several different

types of values in a color model, colorful image generally are multi-channels rather than

single channel grayscale image. Different color models are based on different perspectives of

color. One common color model, RGB color model, is based on additive color. For an image

employs RGB color model, a pixel contains three values which stand for red value, green

value and blue value. Another color model, HSV color model, is based on human vision color

organization [1].

Though colorful stereo disparity image is already applied in some products like

Microsoft Kinect, grayscale disparity image is still a fundamental and useful evaluating

measure in research and development as it is the simplest image format. For this matching

algorithm, transforming input images to grayscale is the very first step.

The test dataset (PPM format) are stored in RGB color space. The conversion from RGB

color space to grayscale follows the Equation 2.1.

 (Equation 2.1)

Where x stands for grayscale value; R, G and B stand for red, blue and green values of

the pixel. WeightR，WeightG，WeightB are the weights values for R, G, B in the conversion

and gamma is the gamma value for gamma correction. There would be minor difference for

these four parameters between different RGB color spaces like sRGB, Adobe RGB and Apple

RGB.

12

For example, for Adobe RGB, the four parameters are

 0 973 0 6 74 0 0753

While for Apple RGB, the four parameters are

 0 446 0 67 0 0 0 33

In this project, the grayscale transformation is done with OpenCV function cvtColor.

2.2.1 Sobel Filter for Different Matching Directions

As discussed in Section 2.1, 2-D filter and image filtering are widely applied in image

processing. Besides reducing noise in the images, some other important applications of image

filtering including extracting specific information and achieving certain effect of the images

could build a good foundation for further advanced process.

Images, which can be viewed as 2-D signal, could also be transformed to frequency

domain for analysis just like 1-D signal. Generally in images, high frequency area represents

details and edges while low frequency area represents area with few details or consist plain

color [1]. Therefore, frequency domain analysis could distinguish different area in an image.

Based on this point, also reference from 1-D filter design, we could design 2-D filter for

specific needs like enhance the feature in a certain direction. Figure 2.3 shows the center

image of Tsukuba dataset and its 2-D Fourier Transform result.

In this project, stereo matching is in horizontal and vertical directions. The epipolar

constrains are different for the two directions. For traditional horizontal matching, the

epipolar line is in horizontal direction and matching block also moves along this direction.

With this circumstance, features in vertical direction are easier to recognize and compute.

Similarly for vertical matching, as the epipolar line is vertical, hence features in horizontal

direction would be more helpful for stereo matching. We could illustrate this point by an

example.

13

Figure 2.3: Center Image of Tsukuba Dataset and Its Fourier Transform

We want to determine a line-shape feature, F, in the depth image. We could consider the

same feature in horizontal and vertical circumstances to find the difference. The grayscale

values for this feature is

 [
40 40 40
 0 0 0

40 40
 0 0

40 40 40 40 40
] (Equation 2.2)

In Equation 2.2 each value stands for a grayscale value of a pixel. Then we put F into a

pair of horizontal disparity images I1 and I2 following the horizontal epipolar constraint.

[

0 0 0
40 40 40
 0 0 0

0 0 0
40 40 0
 0 0 0

40 40 40
0 0 0

40 40 0
0 0 0]

[

0 0 0
0 40 40
0 0 0

0 0 0
40 40 40
 0 0 0

0 40 40
0 0 0

40 40 40
0 0 0]

 (Equation

2.3)

Normally matching block size is set to an odd number in order to locate a center pixel.

For this case if using a 33 window, there would be 3 exact match for the pixel F (2, 2) as the

14

block moves horizontally. If the length of F is much larger than block window size (consider

F is 3100), this would lead to a bad matching result. However, for F

[

40
40
40

 0 40
 0 40
 0 40

40
40

 0 40
 0 40]

 (Equation 2.4)

While F embedded in a pair of horizontal disparity images I3 and I4 following the

horizontal epipolar constraint, for each pixel in F , there is only one exact match in the

disparity image pair.

[

40 0 40
40 0 40
40 0 40

0 0
0 0
0 0

40 0 40
40 0 40

0 0
0 0]

[

0 0 40 0 40
0 0 40 0 40
0 0 40
0 0 40
0 0 40

 0
 0
 0

40
40
40]

 (Equation 2.5)

Similar result can be found in vertical matching. We could conclude that vertical features

would be more helpful for horizontal match while horizontal features would benefit vertical

match more. Therefore, we should design image filter to enhance features in different

orientations for two match directions.

In frequency domain of images, high frequency area presents details and edges. To

design a 2-D filter for horizontal matching which enhance features in vertical direction, the

filter should be high-pass in vertical direction and low-pass in horizontal direction.

Comparatively, the filter for vertical matching would be low-pass in vertical direction and

high-pass in horizontal direction.

Sobel filter is a discrete differentiation filter computing an approximation of the opposite

of the gradient of the image intensity [9]. Typically a Sobel filter for horizontal matching is a

33 template matrix as

 [

0
0

 0
] (Equation 2.6)

It is easy to conclude from the filter that the center pixel value of a block window from

convolution result presents horizontal derivative and vertical smoothing as features in vertical

direction are enhanced. With these characteristic, Sobel Filter is a very suitable method for

edge detection and feature enhancement. Similarly we could have the filter for vertical

15

matching.

 [

 0

 0 0

] (Equation 2.7)

In the project, Sh is convoluted with center image and horizontal image for horizontal

matching optimization and Sv is applied with center image and vertical image. To filter the

input image with specific filter, follow the Equation 2.8.

 ∑ ∑



 0 (Equation 2.8)

Figure 2.4 Sobel Filtering Comparison with Tsukuba Center Image

In a sub window, each pixel multiply with its corresponding factor and the sum of all

elements would be the new pixel value for the center coordinate. The result samples for both

filters with center image are shown in Figure 2.4. The left one is the image filtered with

16

Equation 2.7 while the right one is the image filtered with Equation 2.6

In OpenCV source code, horizontal Sobel filtering already exists. However, the

pre-filtering function with Sv for vertical matching is needs to be implemented. The details of

this implementation will be discussed in Chapter 3.

2.3 Stereo Computation

As mentioned in Chapter 1, the most difficult and important problem of stereovision is

finding the matching pixel in both images. Most current stereovision research work focus on

this topic [6], [8]. Briefly, stereo computation can be categorized into feature based matching

and density matching.

Feature based matching is a kind of extended application from image feature descriptor.

The concept of feature descriptor in image processing and computer vision is used to describe

information related to the certain pixels or the structure of the image. For a feature descriptor,

extracting algorithm would find the points of interest and mark it as feature key points.

Though new feature descriptors are continuously being developed and researched, most

popular and widely used feature descriptors today are SIFT (Scale-Invariant Feature

Transform) [10], SURF (Speeded Up Robust Feature) [11], FAST [23] and ORB (Oriented

FAST and Rotated BRIEF) [24]. The examples of SIFT and SURF features extraction is

shown in Figure 2.5 and Figure 2.6 where blue circles represent feature key points.

Two vectors are composed as collection of feature key points extracted from two images.

The basic method for feature based stereo matching is comparing two feature key point

vectors to find corresponding key points. The disparity distance of corresponding key points

would be found hence depth could be calculated. The depth of other pixels in the image is

calculated based on constraints like continuity and epipolar.

17

Figure 2.5 SIFT feature key points extraction on Tsukuba dataset

Figure 2.6 SURF feature key points extraction on Tsukuba dataset

18

As another approach to stereovision, density stereo matching is based on the density

value of each pixel and its surrounding pixels. Density stereo matching algorithm would find

the corresponding pixel for each pixel in original image from reference image. According to

the depth value of each pixel, the depth image is constructed. Also, some researches try to

make new methods to combine the two approaches [12].

There are advantages and disadvantages for both methods. For feature based stereo

matching, as method of feature descriptor and matching between feature key points is well

developed, the accuracy of depth image is higher. However, as computation for feature key

points is a complex task and consumes a lot of time, the speed performance of most

implementations based on this method is disappointing [8]. For density stereo matching, due

to the fact that density value is influenced by many factors like brightness, color, lighting

condition and texture, the accuracy of density stereo matching is not as high as feature based

method. However, as computation of most density matching algorithm is simple (mostly

addition ad multiplication computation) and independent by each sub window, the algorithm

can be highly parallelized. With help of hardware with specific architecture, the speed

performance is satisfying. Therefore, density stereo matching is a suitable choice for time

critical stereovision task like robot application.

Considering real-time requirement and the help of additional camera, traditional density

matching is selected for this project.

2.3.1 Stereo Matching

The computation of density stereo matching focuses on density value of each pixel and

the numerical relation with its surrounding pixels. In [1], all stereo algorithms are divided into

four major steps:

1. Matching cost computation;

2. Cost (support) aggregation;

3. Disparity computation and optimization;

4. Disparity refinement.

Within this manner, Sum of Squared Difference (SSD) algorithm could be described as

below

19

1. The matching cost is the squared difference of intensity values at a given disparity.

2. Cost aggregation is done by summing the matching cost over square windows with

constant disparity.

3. Disparities are computed by selecting the minimal (winning) aggregated value at each

pixel.

There is a similar approach applying absolute value of pixel difference instead of

squared value of pixel difference is called Sum of Absolute Difference (SAD) algorithm.

Assume I1 and I2 are input images pair, the equation is

 ∑ ∑

 (Equation 2.8)

 ∑ ∑ | |

 (Equation 2.9)

In Equation 2.8 and Equation 2.9, (x, y) stands for the coordinate of most up-left pixel of

the sliding window and r stands for radius of sliding window.

A widely applied method of SSD algorithm is implemented with sliding window. A

certain size window fixes the elements within it in the reference image, and a same size

window moves in the contrasting image along the disparity direction within a distance

comparable to known camera baseline length. The direction depends on the epipolar restraints.

For example, in the horizontal case and left image is set to reference image, the direction of

sliding window move for contrasting image is rightward as based on epipolar restraints the

pixel shows in reference image normally appears in the right of corresponding position in

contrasting image. The elements in the windows of reference image and contrasting image

will compute SSD accordingly and find the minimum one. The corresponding position of

minimum SSD will composite disparity image and the minimum SSD value will also be

recorded. To describe the algorithm based on horizontal matching case in pseudo code

for i [1, height-2r], j [1+d,width-2r]

for t [0,d]

if q-t [1,width]

 ∑ ∑

 ;

end for

minSSD(i, j) = min(SSD); disparity(i, j) = find(SSD==min(SSD));

20

end for

where d stands for an approximately possible disparity range.

Consider the example below where I1 stands for left image as reference image while I2

stands for right image as contrasting image.

[

 3 50 5
54 6 6
64 6 5

75 4 3
46 54
 6 5 76

 37 5 45
 46 4
3 97

34 9 4
57 79
3 97]

[

 7 4
 67 4 56
 7 4 6

30 3 73
76 59 49
77 9

49 9 7
 5 60
96 33 0

 4 35
75 5 56
99 96 36]

For the fixed window in reference image I1, we could mark the position of each window

in contrasting image I2 as p1, p2, p3 and p4. The SSD for each position respectively is 58979,

36306, 71 and 62611. With the SSD data is could easily determine the corresponding position

in contrasting image to the reference image is p3 as the SSD minimum vale is at p3. Normally

the edge pixels would be padding with zero.

In the system, both horizontal and vertical matching pairs need to set a same reference

image in order to make all objects in the scene are in same reference coordinate. The object

position coordinate in the final disparity image is related to the position appear in reference

image. It is essential to make objects in two disparity images in same position coordinate as it

is a prerequisite to implement fusion of two disparities.

As a result of same reference image, the sliding window of vertical matching moves

along a different direction. According to the epipolar restraints of vertical matching, a certain

pixel in low image would appear at a lower position in high image. Base on the horizontal

matching algorithm, we could describe the algorithm for vertical matching case in pseudo

code

for i [1, height-2r-d], j [1,width-2r]

for t [0,d]

if q-t [1,width]

 ∑ ∑

 ;

end for

minSSD(i, j) = min(SSD); disparity(i, j) = find(SSD==min(SSD));

end for

21

where d stands for an approximately possible disparity range.

Consider another example with same I1 as reference low image and I3 stands for a high

image as contrasting image.

[

 3 50 5
54 6 6
64 6 5

75 4 3
46 54
 6 5 76

 37 5 45
 46 4
3 97

34 9 4
57 79
3 97]

[

 4 54 49
 5 7 96
 6 53 9

 5 56 3
67 35 7
7 6 34

56 3 64
6 9 6
 4 53 49

4 56 6
 54 79
3 94 7]

Similarly to the horizontal case, we set a fixed window in reference image I1, mark the

position of each window in contrasting image I3 as p1, p2, p3 and p4. The SSD for each

position respectively is 18940, 155330, 77 and 24309. It could conclude that p3 is the fit

position.

In this project, horizontal match already exists in OpenCV and vertical match is

implemented by the author. Both horizontal and vertical matching functions are provided

independently. The result of horizontal and vertical matching is shown in Figure 2.7-11.

Black area in analyses images stands for bad matching

Figure 2.7 Horizontal matching result

.

22

Figure 2.8 Result analyses for horizontal matching result on Middlebury Stereo Page.

Figure 2.9 Vertical matching result.

23

Figure 2.10 Result analyses for vertical matching result on Middlebury Stereo Page.

24

Figure 2.11 Comparison of horizontal and vertical matching results.

25

2.3.2 Fusion of Disparities in two Orientations

It is obvious that neither horizontal nor vertical could provide a satisfying matching

accuracy with merely min SSD algorithm. It is important to combine the information from

two disparity images together effectively. To combine the two disparity images, following

ways were considered

1. Numerical computation with two disparity images in pixel. For instance, compute the

average value of two disparity images in each pixel to composite final disparity image.

However, most bad matching pixels of horizontal and disparity cannot be totally eliminated in

this way. In most occasions, average value algorithm cannot improve result accuracy and

even get it worse. This point is proved in practical experiments

2. Applying advanced computation model involves computation principles like

Winner-Take-All. Basic method is to compare a standard value of two disparity images with a

certain criteria and threshold. The one with more outstanding performance in this value is

considered as the winner and the result it represents for will occupy the final result.

This project employs the second way to conduct fusion work and applies it in pixel level

comparison. As mentioned before, the position of minimum SSD value composite disparity

image and also minimum SSD value itself is also recorded into a matrix. To compare the

minimum SSD matrix in corresponding coordinate and the one lower than k times of another

one is considered as winner which k is called adjustable ratio parameter normally a float

range between 0 and 1. The pixel in corresponding coordinate of winner disparity image will

occupy the corresponding coordinate pixel of final disparity image. To describe the algorithm

based on horizontal matching case in pseudo code

26

for i [1, height], j [1,width]

if minSSDh(i, j)<kminSSDv(i, j)

 minSSD(i, j) = minSSDh(i, j);

 disparity(i, j) = disparityh(i, j);

else

 minSSD(i, j) = minSSDv(i, j);

disparity(i, j) = disparityv(i, j);

end

where minSSDh stands for minimum SSD collection from horizontal matching, minSSDv

stands for minimum SSD collection from vertical matching, minSSD stands for final

minimum SSD collection, k stands for the adjustable ratio parameter, diparityh stands for

disparity value from horizontal matching, diparityv stands for disparity value from vertical

matching and disparity stands for final fusion disparity.

The practical experiment has proved that this method could improve matching accuracy

effectively. However it cannot reach the most ideal case which eliminates all bad matching

pixels appear in a signal disparity image and leave only bad matching pixels appear in both

disparity images. The reason for this problem is there are many bad matching pixels station in

the area where not cover by all three images. That is to say, for some bad matching pixels in

one disparity, as there is no information about this area in another disparity image, their

corresponding minimum SSD are even lower though their matching results are not good. A

good example is in Tsukuba dataset, there is less information in higher image of vertical pair

27

for the area under the table. As a result the minimum SSD values in this area would be very

big. However, for horizontal pair though SSD values in this area are not as big as vertical pair,

there would be bad matching pixels. So in the final disparity result there would be bad

matching pixels. It is possible to apply more complex and accurate fusion model to improve

fusion result accuracy more.

The discussion of detail implementation of fusion will be discussed in next chapter and

the result and analyses of final fusion disparity image is shown in the fourth chapter.

28

Chapter 3

Implementation with OpenCV and

CUDA

This chapter will discuss the implementation to realize the algorithm in last chapter with

OpenCV library and the CUDA module within it. According to the description of three levels

in computer vision system, this chapter mainly discusses the third level: hardware

implementation.

There is a lot of connection between software and hardware in this project as GPU

programming is involved. Therefore, a good knowledge, skills and techniques are needed to

handle it in order to maximize the performance in both speed and accuracy.

3.1 Code Hierarchy of OpenCV Source Code

As the project is based on OpenCV library, the most basic issue for implementation is to

understand the architecture and source code of OpenCV [13]. The source code of OpenCV is

composed by several function modules. Source code in each function module realizes a

certain area of computer vision application. Major modules in current OpenCV version (The

project is done with version 2.3.1. However newer versions were released while this

manuscript was writing) cover almost all applied areas of computer vision applications,

including image segmentation, image filtering, object detection and tracking. For example,

object detection provides many functions for object detection like pyramid algorithm and

stereo matching is realized in camera calibration module. Each module is independent but

could call and apply functions from other modules; also in one project the source file could

employ several different modules. A good example is core module which providing most

29

basic objects and functions for image/video loading, reading, writing and saving, it could be

called in project file and also applied by any other module however no module attaches to it.

In folder of each module, there are header file and source code. The header file provides

objects and interface functions and source file implements functions for applications. In a

project employing OpenCV, project source code would include and call interface functions in

certain module, and then the interface functions will run the code in source file. Generally to

apply OpenCV in own project, developers just need to know how to handle the specific

function module, its objects and interfaces. As the work on this project needs to modify

OpenCV source code to realize some functions not existed in camera calibration module

before, reading and understanding source code of involved modules is the very first step for

implementation work of this project.

There is a GPU module for applying GPU programming on computer vision since

version 2.0. This GPU module employs NVidia CUDA architecture; hence it could only

support NVidia GPU to run this module. While compiling OpenCV source code, developer

could switch whether to enable compiling GPU module. Another important issue is the GPU

module in OpenCV is implemented with 32-bit CUDA so currently it could only work well

under 32-bit operating system.

GPU module just functions like a small copy of OpenCV. In the GPU module folder it

includes many different functions which cover areas of computer vision applications run in

host-level. Also in the folder there is CUDA source code which called by object interface

functions of the module to run in device-level. Compare to the CPU implementation, there are

plenty of differences in the GPU implementation to fit features of GPU. For example, the

object to store image in CPU implementation is Mat while the corresponding one in GPU

version is GpuMat. To fit GPU memory, GpuMat can only support 2-dimenson and no

reference return to data. Another good example to demonstrate this kind of difference is in

block matching stereovision algorithm. CPU implementation employs SAD algorithm while

GPU implementation applies SSD algorithm as demand for unified operation to accelerate on

GPU.

To build the developing environment of OpenCV, download the source code and binaries

from its website (http://opencv.willowgarage.com/wiki/). The library requires to be compiled

http://opencv.willowgarage.com/wiki/)

30

by CMake. Developers could choose whether compiling with several modules like CUDA,

Intel Integrated Performance Primitives (Intel IPP, is a multi-threaded software library of

functions for multimedia and data processing applications) and Nokia Qt (A cross-platform

application framework for GUI development) by switching the corresponding options. More

settings are needed to be done depends on the operating system and integrated development

environment (IDE) work with. Developer should set environment variables in Windows

system and add the path in Linux system. The instruction is easy and open accessible online.

For this project the operating system is Linux (Ubuntu 10.10) and the IDE is Eclipse.

3.2 CUDA Programming Model

As mentioned in the beginning chapter, performance of GPGPU is superior in area like

computer vision and scientific computation for the unique hardware architecture of GPU. This

point attracts a lot of companies’ attention. Driven by the insatiable market demand, also as a

leading company in GPU industry, NVidia certainly would have own GPGPU solution. It is a

general purpose parallel computing architecture named CUDA.

NVidia introduced CUDA in November 2006 with a new parallel programming model

and instruction set architecture [14]. Also CUDA came with a software development kit (SDK)

that developer could use a C-like CUDA language to write program. This CUDA language

which the source files are in format with a suffix ‘cu’ is just like a supplement to C language.

There are new data types and functions to help with programming on GPU in device-level.

Besides these features, CUDA also supports many different API and libraries like OpenCL

(Open Computing Language, an open framework for writing programs which could execute

across different kinds of platform like CPU, GPU and FPGA) and DirectCompute (A

Microsoft API to support GPGPU on Windows operating system, specifically Windows Vista

and Windows 7). As CUDA is owned by NVidia rather than an open architecture, the

discussion below will only involve how to handle CUDA rather than its detailed

implementation inside.

As architecture of CUDA is so novel and the parallel level is so high, traditional parallel

method no longer works under this circumstance. Therefore NVidia designs a new system for

31

CUDA. In CUDA architecture, the most basic computing process unit is thread. Just like the

general understanding of thread in operating system, normally it is simple and straight

forward operation like addition or multiplication. As in GPGPU there would be too many

threads in a program, a new unit in CUDA called warp is used to describe collection of large

amount threads which 1 warp equals 32 parallel threads. Also for managing so many threads

in a single program, a hierarchy system is introduced. Thread is also the lowest unit in this

system. In a program, equal amount of parallel threads compose blocks. Block is the smallest

unit to be processed by a computation core. The CUDA programming model is automatic

scalable. That means the more cores on a GPU, the less computation task distributed to a

single core. Hence the more advanced GPU would have a better performance. Figure 3.1

demonstrates this feature.

Figure 3.1 Automatic Scalability of CUDA [14]

32

Another new concept in CUDA is grid. A grid consists of multiple blocks. The whole

computation resource for a certain piece of code or a function would be considered as a grid.

Before running into the code or call the function, it is necessary to schedule the computation

resource. With normal CUDA practice, a grid is divided into many same size blocks, each

block includes same amount threads. The size of grid could be 1-to 3 dimensional. Figure 3.2

and Figure 3.3 demonstrate the 2 and 3 dimensional resource schedule, respectively.

Figure 3.2

Organization of 2-D Grid [14]

33

Figure 3.3 Organization of 3-D Grid

To schedule the computation resource, NVidia designs a new data type for CUDA named

‘dim3’. It is an n1 integer vector and used to describe the size division of grid and block

which n<=3. The integers indicate the amount of blocks or threads in each dimension

respectively. When calling a kernel function running involves thread-level parallel operation

on device, it is required to point out the resource schedule with dim3 type variables. A piece

of sample code for matrix addition would demonstrate how it works.[14]

// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N],

float C[N][N])

{

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

if (i < N && j < N)

C[i][j] = A[i][j] + B[i][j];

34

}

int main() // Host code

{

... // Assign value for A, B and C

// Kernel invocation

dim3 threadsPerBlock(16, 16);

// Each block contains 1616=256 threads

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

// Divide number of elements in each dimension by number of

// threads in each dimension to know how many blocks needed

// in each dimension

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

// Call the kernel function with grid and block parameters.

}

From this piece of code we could basically understand how this hierarchy system works.

While implementing kernel function, developer should know how many threads needed.

When calling the kernel function developer must clearly define dim3 type variable to declare

how many blocks in each dimension of grid and how many threads in each dimension of

block by the way of <<<grid, block, …>>>. A restriction due to current GPU technology is

there can be maximum 1024 threads in one block.

A general pattern for CUDA function is divided into three levels. The kernel function

will define the most basic operation by threads in each block. A kernel caller function will

schedule the resource and call the kernel function. Sometimes this kernel caller function can

be defined as external and called by the host code. In some more complex cases like shared

variables and shared device memory mentioned latter involve, there would be a wrapper like

function to define more details and call the kernel caller function. Eventually there would be a

function defined as external function to be called by host code.

One of major issues to influence the speed performance of GPGPU is data transportation

between host and device. Device (GPU) and host communicates through interface of

computer bus like PCI-E (Peripheral Component Interconnect Express). The specification of

these interfaces restricts data transportation speed between device and host. Compared to the

computation speed of GPU cores, transportation speed is too slow to satisfy computing needs.

35

As an example, the peak processing power of NVidia Tesla S1070 for GPU Computing Server

had reached 4147.2G FLOPS (Floating-point Operations per Second, a standard measure of

computing performance). However its memory bandwidth is 409.6 GB/s (All data from

NVidia). It is obvious that the transportation between device and host is the bottleneck to

restrict GPGPU performance. To solve the problem, shared device memory is introduced. For

GPU computing cores, accessing GPU memory on device would be naturally much faster

than accessing host memory as no interface involves. With this condition, it is possible to

reduce reliance on host memory by locating the most often used variable to device memory. If

the variable is known in host memory, an easy way to utilize device memory is allocating the

device memory first and copying the data from host to device directly. However more

commonly, developers could set a device memory space called shared device memory to store

the variable which will be operated repeatedly in kernel function. Generally the characteristic

of device memory is high speed and small capacity. According to these features, the variables

in shared device memory should be used most frequently and the size is carefully calculated

and strictly refrained. To apply shared device memory, using ‘__shared__’ to define the

variable stored in the shared device memory. Also it needs to define the shared device

memory with type ‘size_t’ variable. When calling kernel function with shared variable inside,

it needs to point out the shared device memory size by the way of <<<grid, block,

mem_size …>>>. The usage of shared device memory and shared variables will be

demonstrated with project code in latter section.

Another important issue for CUDA is the synchronization between threads. Though

operation for each thread is same, however, due to hardware and operating system the

processing time for each thread varies a lot. In the case applying shared variable which

multiple threads would read and write to a same variable, the time difference between threads

would cause disorder and lead to unexpected result. To avoid this situation, NVidia provides a

function ‘__syncthreads()’ to synchronize all threads at the point. In some cases it is

extremely important to apply the function. For example, in a thread operation all threads

access and write on a shared variable, it is necessary to call the synchronization function

before the operation or function involve the shared variable.

36

Above is the brief introduction of CUDA programming model. The following sections

will discuss how to implement the vertical stereo matching and fusion algorithm by

modifying OpenCV source code in second chapter which would involve most knowledge of

CUDA discussed in this section.

3.3 Implementation of Vertical Matching

This section will discuss how to implement the vertical stereo matching algorithm

descripted in the second chapter based on current OpenCV camera calibration module source

code with CUDA support. There will be code and explanation for it. As camera calibration

module of OpenCV is the foundation of this project, it would be helpful to understand what

the structure of the source code is and how it runs.

The header file of GPU module, ‘gpu.hpp’ gives definition of the stereo block matching

object and its interface functions with some necessary parameters and private variables as

below. To support vertical matching and disparity fusion, some private variables are added

and some changes are done to the object. The parameters of previous operator function are

changed in order to enable switching between horizontal and vertical matching. Also a new

operator function for disparity fusion is added. For convenient, all codes below will only

show content directly related to the algorithm and omit some of the original OpenCV code

with some functions to maintain system stable

class CV_EXPORTS StereoBM_GPU

 {

 …… // original OpenCV code

 void operator() (const GpuMat& one, const GpuMat& two,

GpuMat& disparity, bool direction = true, Stream& stream =

Stream::Null());

 // a bool parameter to check matching direction is added

 void operator() (const GpuMat& left, const GpuMat&

right, GpuMat& high, GpuMat& disparity, Stream& stream =

Stream::Null());

 // operator function for disparity fusion, will be

discussed in next section

37

 private:

 GpuMat minSSD, minSSD_ve, minSSD_ho, leBuf, riBuf,

loBuf, hiBuf, ceBuf_ho, ceBuf_ve;

// Some variables are added for vertical matching and disparity

fusion

 };

In the source code folder of GPU module, the source code in file of camera calibration

named ‘stereobm.cpp’ implement the object and interface functions. Normally users just need

to call the object operator function to get the disparity image from input horizontal stereo

images. The operator function would execute the caller function. The caller function will

check whether filter the input images with Sobel Filter and call the CUDA stereo match

function which declared as external defined function in the beginning of the stereo block

matching source file.

After preparing necessary changes to the stereo matching object, the work begins with

modifying stereo matching source code. Following the pattern of existing OpenCV source

code, the operator function now would decide whether do horizontal or vertical stereo

matching and pass the data to corresponding caller function. The new operator function code

is shown as below

void cv::gpu::StereoBM_GPU::operator() (const GpuMat& one,

const GpuMat& two, GpuMat& disparity, bool direction, Stream&

stream)

{

 if(direction==true) // direction is true

 ::stereo_bm_gpu_operator(minSSD_ho, leBuf, riBuf, preset,

ndisp, winSize, avergeTexThreshold, one, two, disparity,

StreamAccessor::getStream(stream)); // Go horizontal case

 Else // direction is false

 ::stereo_bm_gpu_operator_vertical(minSSD_ve, loBuf, hiBuf,

preset, ndisp, winSize, avergeTexThreshold, one, two, disparity,

StreamAccessor::getStream(stream)); // Go vertical case

}

38

While the horizontal case still apply original OpenCV

implementation, the vertical case will follow the structure of

horizontal matching code with new Sobel Filtering function and call

a different CUDA function for vertical matching. New variables in

stereo matching object will be applied in order to avoid confusion.

The code of new vertical matching caller function is shown as below

static void stereo_bm_gpu_operator_vertical (GpuMat& minSSD,

GpuMat& loBuf, GpuMat& hiBuf, int preset, int ndisp, int winSize,

float avergeTexThreshold, const GpuMat& low, const GpuMat& high,

GpuMat& disparity, cudaStream_t stream)

{

 ……// reference from original OpenCV codes

 GpuMat lo_for_bm = low;

 GpuMat hi_for_bm = high;

 if (preset == StereoBM_GPU::PREFILTER_XSOBEL)

 {

 loBuf.create(low.size(), low.type());

 hiBuf.create(high.size(), high.type());

bm::prefilter_xsobel_vertical(low, loBuf, 31, stream);

 bm::prefilter_xsobel_vertical(high, hiBuf, 31,

stream);

 // Filtering with vertical Sobel Filter

 lo_for_bm = loBuf;

 hi_for_bm = hiBuf;

 }

 bm::stereoBM_GPU_Vertical(lo_for_bm, hi_for_bm, disparity,

ndisp, winSize, minSSD, stream);

 // call the CUDA function

39

 ……// reference from original OpenCV codes

}

Now we will discuss the CUDA code for vertical matching. When running the vertical

matching function, the first CUDA function involved is Sobel Filtering function. Following

the pattern of CUDA source code analyzed before, this function is actually a kernel caller

which schedule resource and call the kernel function. The kernel function defines the

convolution computation in each 33 window with Sobel Filter for vertical matching

discussed in Chapter 2. The source code is shown as below.

extern "C" __global__ void prefilter_kernel_vertical(DevMem2D

output, int prefilterCap)

{

 ……// reference from OpenCV codes

 if (x < output.cols && y < output.rows)

 {

 int conv = (int)tex2D(texForSobel, x - 1, y - 1) * (-1)

+ (int)tex2D(texForSobel, x, y - 1) * (-2)

+ (int)tex2D(texForSobel, x + 1, y - 1) * (-1)

+ (int)tex2D(texForSobel, x + 1, y + 1) * (1)

+ (int)tex2D(texForSobel, x, y + 1) * (2)

+ (int)tex2D(texForSobel, x + 1, y + 1) * (1);

// Convolution computation with [-1,-2,-1; 0, 0, 0; 1, 2, 1]

 ……// reference from OpenCV codes

 }

}

The caller code is in almost same style with the horizontal Sobel Filter caller function

hence will not be shown.

After filtering with Sobel filter, the image now is more suitable for stereo matching. The

vertical matching function is also implemented with the CUDA pattern. From top to bottom,

40

the first one is the defined as external function to be called in host code. The task for this

function is to prefetch the frequent used parameters of input images to device memory and

call the kernel caller function based on the sub window size of the matching object. The

kernel caller function will set shared memory space for shared variable and schedule grid and

block size. Then it will call the kernel function with the known parameters. As the style is

almost same with horizontal case, this part of code is omitted.

Just like its name, though some computation work in it is done by other functions, kernel

function is the core part of whole program to realize the algorithm. There is a lot of

preparation work for kernel function of vertical stereo matching include setting shared

variable, define X-axis and Y-axis indicator for lower level function to access image pixels

and reserve the disparity image and minSSD matrix. In computation section the whole images

are divided into blocks. With the epipolar restraint of stereovision, all computation just

involves the pixels in the same vertical line of two images. The code loops in all possible

disparity range. If a less minSSD value is found, the function will update the result. The

minSSD values of starting window position in each block are calculated separately with rest

lines as starting window difference in the block is fixed. To avoid over calculated the value of

last line as starting window difference of next block will be deducted. The minSSD value will

be recorded to the matrix and the corresponding window position is chosen for disparity. As

the key point is the SSD computation; therefore only function of SSD computation for the

starting window of the block and window position in the block is shown below.

template<int RADIUS>

__device__ void InitColSSD_Vertical(int x_tex, int y_tex, int

im_yaw, unsigned char* imageL, unsigned char* imageH, int d,

volatile unsigned int *col_ssd)

{

 unsigned char lowPixel1;

 int idx;

 unsigned int diffa[] = {0, 0, 0, 0, 0, 0, 0, 0};

 for(int i = 0; i < (2 * RADIUS + 1); i++)

 {

41

 idx = y_tex * im_yaw + x_tex;

 lowPixel1 = imageL[idx];

 idx = idx + d * im_yaw;

 diffa[0] += SQ(lowPixel1 - imageH[idx + im_yaw * 0]);

 diffa[1] += SQ(lowPixel1 - imageH[idx + im_yaw * 1]);

 diffa[2] += SQ(lowPixel1 - imageH[idx + im_yaw * 2]);

 diffa[3] += SQ(lowPixel1 - imageH[idx + im_yaw * 3]);

 diffa[4] += SQ(lowPixel1 - imageH[idx + im_yaw * 4]);

 diffa[5] += SQ(lowPixel1 - imageH[idx + im_yaw * 5]);

 diffa[6] += SQ(lowPixel1 - imageH[idx + im_yaw * 6]);

 diffa[7] += SQ(lowPixel1 - imageH[idx + im_yaw * 7]);

 y_tex += 1;

 }

 col_ssd[0 * (BLOCK_W + 2 * RADIUS)] = diffa[0];

 col_ssd[1 * (BLOCK_W + 2 * RADIUS)] = diffa[1];

 col_ssd[2 * (BLOCK_W + 2 * RADIUS)] = diffa[2];

 col_ssd[3 * (BLOCK_W + 2 * RADIUS)] = diffa[3];

 col_ssd[4 * (BLOCK_W + 2 * RADIUS)] = diffa[4];

 col_ssd[5 * (BLOCK_W + 2 * RADIUS)] = diffa[5];

 col_ssd[6 * (BLOCK_W + 2 * RADIUS)] = diffa[6];

 col_ssd[7 * (BLOCK_W + 2 * RADIUS)] = diffa[7];

}

template<int RADIUS>

__device__ void StepDown_Vertical(int idx1, int idx2, unsigned

char* imageL, unsigned char* imageH, int im_yaw, int d, volatile

unsigned int *col_ssd)

{

 unsigned char leftPixel1;

 unsigned char leftPixel2;

 unsigned char rightPixel1[8];

 unsigned char rightPixel2[8];

 unsigned int diff1, diff2;

 leftPixel1 = imageL[idx1];

 leftPixel2 = imageL[idx2];

42

 idx1 = idx1 + im_yaw * d;

 idx2 = idx2 + im_yaw * d;

 rightPixel1[7] = imageH[idx1 + im_yaw * 7];

 rightPixel1[0] = imageH[idx1 + im_yaw * 0];

 rightPixel1[1] = imageH[idx1 + im_yaw * 1];

 rightPixel1[2] = imageH[idx1 + im_yaw * 2];

 rightPixel1[3] = imageH[idx1 + im_yaw * 3];

 rightPixel1[4] = imageH[idx1 + im_yaw * 4];

 rightPixel1[5] = imageH[idx1 + im_yaw * 5];

 rightPixel1[6] = imageH[idx1 + im_yaw * 6];

 rightPixel2[7] = imageH[idx2 + im_yaw * 7];

 rightPixel2[0] = imageH[idx2 + im_yaw * 0];

 rightPixel2[1] = imageH[idx2 + im_yaw * 1];

 rightPixel2[2] = imageH[idx2 + im_yaw * 2];

 rightPixel2[3] = imageH[idx2 + im_yaw * 3];

 rightPixel2[4] = imageH[idx2 + im_yaw * 4];

 rightPixel2[5] = imageH[idx2 + im_yaw * 5];

 rightPixel2[6] = imageH[idx2 + im_yaw * 6];

 //See above: #define COL_SSD_SIZE (BLOCK_W + 2 * RADIUS)

 diff1 = leftPixel1 - rightPixel1[0];

 diff2 = leftPixel2 - rightPixel2[0];

 col_ssd[0 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

 diff1 = leftPixel1 - rightPixel1[1];

 diff2 = leftPixel2 - rightPixel2[1];

 col_ssd[1 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

 diff1 = leftPixel1 - rightPixel1[2];

 diff2 = leftPixel2 - rightPixel2[2];

 col_ssd[2 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

 diff1 = leftPixel1 - rightPixel1[3];

 diff2 = leftPixel2 - rightPixel2[3];

 col_ssd[3 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

43

 diff1 = leftPixel1 - rightPixel1[4];

 diff2 = leftPixel2 - rightPixel2[4];

 col_ssd[4 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

 diff1 = leftPixel1 - rightPixel1[5];

 diff2 = leftPixel2 - rightPixel2[5];

 col_ssd[5 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

 diff1 = leftPixel1 - rightPixel1[6];

 diff2 = leftPixel2 - rightPixel2[6];

 col_ssd[6 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

 diff1 = leftPixel1 - rightPixel1[7];

 diff2 = leftPixel2 - rightPixel2[7];

 col_ssd[7 * (BLOCK_W + 2 * RADIUS)] += SQ(diff2) - SQ(diff1);

}

3.4 Optimization and Implementation of Disparities Fusion

This section focuses on discussing about the implementation of disparity fusion. The

input for fusion algorithm is totally different from single matching. Therefore it is necessary

to change operator function in order to fit matching and fusion algorithm. The code below

shows the overload operator function for fusion algorithm

static void stereo_bm_gpu_operator_fusion (GpuMat& minSSD,

GpuMat& ceBuf_ho, GpuMat& ceBuf_ve, GpuMat& riBuf, GpuMat& hiBuf,

int preset, int ndisp, int winSize, float avergeTexThreshold, const

GpuMat& center, const GpuMat& right, const GpuMat& high, GpuMat&

disparity, cudaStream_t stream)

{

 CV_DbgAssert(center.rows == right.rows && low.cols ==

right.cols && center.rows == high.rows && low.cols == high.cols);

 CV_DbgAssert(center.type() == CV_8UC1);

 CV_DbgAssert(right.type() == CV_8UC1);

 CV_DbgAssert(high.type() == CV_8UC1);

 disparity.create(center.size(), CV_8U);

44

 minSSD.create(center.size(), CV_32S);

 GpuMat ce_for_bm_ho = center;

 GpuMat ce_for_bm_ve = center;

 GpuMat ri_for_bm = right;

 GpuMat hi_for_bm = high;

 if (preset == StereoBM_GPU::PREFILTER_XSOBEL)

 {

 ceBuf_ho.create(center.size(), center.type());

 ceBuf_ve.create(center.size(), center.type());

 riBuf.create(right.size(), right.type());

 hiBuf.create(high.size(), high.type());

 bm::prefilter_xsobel(center, ceBuf_ho, 31, stream);

 bm::prefilter_xsobel_vertical(center, ceBuf_ve, 31,

stream);

 bm::prefilter_xsobel(right, riBuf, 31, stream);

 bm::prefilter_xsobel_vertical(high, hiBuf, 31,

stream);

 ce_for_bm_ho = ceBuf_ho;

 ce_for_bm_ve = ceBuf_ve;

 ri_for_bm = riBuf;

 hi_for_bm = hiBuf;

 }

 bm::stereoBM_GPU_Fusion(ce_for_bm_ho, ce_for_bm_ve,

ri_for_bm, hi_for_bm, disparity, ndisp, winSize, minSSD, stream);

 if (avergeTexThreshold)

 bm::postfilter_textureness(ce_for_bm_ho, winSize,

avergeTexThreshold, disparity, stream);

}

As descripted in previous, the fusion is based on comparison of minSSD value of each

pixel from horizontal and vertical disparity. The one more stereo block matching process

45

would naturally impact speed performance a lot. To achieve real-time goal, optimization for

the algorithm is necessary.

As data transportation between device (GPU) and host (CPU and memory) contributes

most of time consumption in GPGPU, one method to reduce processing time is to reduce data

transportation by concentrating as much as possible data transportation into one transaction

and finishing all computation work once for all. Following this method, the best way to

optimize the fusion algorithm is to combine horizontal and vertical matching procedures into

one session.

Directed by this method, the kernel function would follow the pattern of horizontal and

vertical matching kernel function. However, what fusion kernel function does is to combine

the horizontal and vertical block matching computation into itself, compare the results from

two orientations to decide winner and feedback the final result.

As matching computation of either orientation requires occupying all threads and

defining own shared variable, it is impossible to compute matching algorithm from both

orientations simultaneously. The threads cannot switch between two kinds of computation

continuously and repeatedly. If do so there would be conflict in threads which leads to a

miserable result. One of the proper solutions is combining two processes into one function

and comparing two minSSD results at the end of the function to get the final disparity result.

Furthermore, as the two matching processed are taken in two steps, it could design that one

matching process computes a result and store it to final disparity result then another one

computes and update final result with its own better minSSD area. The code below shows

crucial part of the fusion kernel function.

template<int RADIUS>

__global__ void stereoKernel_Fusion(unsigned char *center_h,

unsigned char *center_v, unsigned char *right, unsigned char *high,

size_t img_step, PtrStep disp, int maxdisp, float fusionRatio)

{

 // Define common variables like X-axis indicator, Y-axis

indicator and result

 int X = (blockIdx.x * BLOCK_W + threadIdx.x + maxdisp +

RADIUS);

46

 int Y = blockIdx.y * ROWSperTHREAD + RADIUS;

 unsigned int* minSSDImage = cminSSDImage + X + Y *

cminSSD_step;

 unsigned char* disparImage = disp.data + X + Y * disp.step;

 int end_row = min(ROWSperTHREAD, cheight - Y - RADIUS);

 int y_tex;

 int x_tex = X - RADIUS;

 if (x_tex >= cwidth)

 return;

 extern __shared__ unsigned int col_ssd_cache_vertical[];

 volatile unsigned int *col_ssd_vertical =

col_ssd_cache_vertical + BLOCK_W + threadIdx.x;

 volatile unsigned int *col_ssd_extra_vertical = threadIdx.x

< (2 * RADIUS) ? col_ssd_vertical + BLOCK_W : 0;

 // define shared variable for vertical matching only.

 …… // same with vertical matching process

 extern __shared__ unsigned int col_ssd_cache[];

 volatile unsigned int *col_ssd = col_ssd_cache + BLOCK_W +

threadIdx.x;

 volatile unsigned int *col_ssd_extra = threadIdx.x < (2 *

RADIUS) ? col_ssd + BLOCK_W : 0;

 // define shared variable for horizontal matching only.

 for(int d = STEREO_MIND; d < maxdisp; d += STEREO_DISP_STEP)

 {

 y_tex = Y - RADIUS;

 __syncthreads();

 InitColSSD<RADIUS>(x_tex, y_tex, img_step, center_h,

right, d, col_ssd);

 if (col_ssd_extra > 0)

 if (x_tex + BLOCK_W < cwidth)

47

 InitColSSD<RADIUS>(x_tex + BLOCK_W, y_tex,

img_step, center_h, right, d, col_ssd_extra);

 __syncthreads(); //before MinSSD function

 if (X < cwidth - RADIUS && Y < cheight - RADIUS)

 {

 uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache +

threadIdx.x, col_ssd);

 // update the final result with the one perform better

minSSD within

// threshold of fusionRatio

 if (float(minSSD.x)/float(minSSDImage[0]) <

fusionRatio) {

 disparImage[0] = (unsigned char)(d + minSSD.y);

 minSSDImage[0] = minSSD.x;

 }

 }

 for(int row = 1; row < end_row; row++)

 {

 int idx1 = y_tex * img_step + x_tex;

 int idx2 = (y_tex + (2 * RADIUS + 1)) * img_step +

x_tex;

 __syncthreads();

 StepDown<RADIUS>(idx1, idx2, center_h, right, d,

col_ssd);

 if (col_ssd_extra)

 if (x_tex + BLOCK_W < cwidth)

 StepDown<RADIUS>(idx1, idx2, center_h +

BLOCK_W, right + BLOCK_W, d, col_ssd_extra);

 y_tex += 1;

48

 __syncthreads(); //before MinSSD function

 if (X < cwidth - RADIUS && row < cheight - RADIUS -

Y)

 {

 int idx = row * cminSSD_step;

 uint2 minSSD = MinSSD<RADIUS>(col_ssd_cache +

threadIdx.x, col_ssd);

// update the final result with the one perform

better minSSD within

// threshold of fusionRatio

 if (float(minSSD.x)/float(minSSDImage[idx]) <

fusionRatio) {

 disparImage[disp.step * row] = (unsigned

char)(d + minSSD.y);

 minSSDImage[idx] = minSSD.x;

 }

 }

 } // for row loop

 } // for d loop

}

49

Chapter 4

Result Analysis and Conclusion

This chapter will demonstrate the result of whole project and compare with previous

implementation to show the improvement.

Most performance test is run with Tsukuba stereo dataset via Middlebury stereovision

page [15]. The reason for choosing Tsukuba is that currently it is the only available stereo

dataset fits for L-shape stereovision. To test the high resolution images, Tsukuba dataset is

enlarged for test.

4.1 Accuracy Results

Besides three input images, the configuration of stereo block matching object are also

parts of the parameters of the function. These configurations include approximate disparity

distance, matching sliding window size for stereo matching and fusion ratio of the fusion

algorithm. The setting of these configurations would also influence the final result a lot, not

only for accuracy but also for speed. For example, if sliding window size is relatively small,

there will be less computation in each sliding window but more computing times in each

block. The best configurations should balance between speed and accuracy and it varies for

different conditions and in applied stereovision system, these configurations could be easily

adjusted. Therefore the way to find best setting is not the focuses of this project. To eliminate

the influences of these factors, we will determine the best parameters for the functions by

experiment before we run the test. As all parameters are independent to others, the experiment

would be conducted by fixing two parameters whiling changing the only one parameter left to

find out the best value. The Figure 4.1 to Figure 4.14 shows the experiment process and Table

4.1 to Table 4.3 compares the result. The number in tables stands for bad matching pixels

50

percentage in different conditions. The experiment determined the best parameters for

Tsukuba approximate distance is 9, sliding window size is 12 and fusion ratio is 0.6.

Figure 4.1 Result with sliding window size 8

Figure 4.2 Result with sliding window size 12

51

Figure 4.3 Result with sliding window 16

Figure 4.4 Result Analysis with sliding window size 8

52

Figure 4.5 Result Analysis with sliding window size 12

Figure 4.6 Result Analysis with sliding window size 16

53

 Non-occluded

region (%)

All regions

(%)

Discontinue region

(%)

Sliding window size

8

8.51 9.78 27.3

Sliding window size

12

7.83 8.95 31.3

Sliding window size

16

7.91 8.94 33.4

Table 4.1 Accuracy Result for various sliding window size

We could observe from the test result that small sliding window size perform better in

occluded area (discontinue region) which is a difficult point in stereovision. However the

overall performance is not that good. Small window would be very accurate in area with

strong features like boundary line as it focuses on a small region. For large open area like

non-occluded area the situation is opposite. Therefore its general performance is not that

good.

54

Figure 4.7 Result with disparity distance 9

Figure 4.8 Result with disparity distance 12

55

Figure 4.9 Result with disparity distance 15

Figure 4.10 Result Analysis with disparity distance 9

56

Figure 4.11 Result Analysis with disparity distance 12

Figure 4.12 Result Analysis with disparity distance 15

57

 Non-occluded

region (%)

All regions

(%)

Discontinue

region (%)

Approximate

disparity distance 9

7.83 8.95 31.3

Approximate

disparity distance 12

7.83 8.95 31.3

Approximate

disparity distance 15

9.29 10.5 37.1

Table 4.2 Accuracy Result for various approximate disparity distance

Approximate disparity range needs to be set carefully. A small range may corrupt the

result as no valid matching would be found while too large estimated range would leave a

large area blank as no matching information. In applied stereovision system, this is a known

variable based on camera disparity setting.

Figure 4.13 Result with fusion ratio 0.6

58

Figure 4.14 Result with fusion ratio 0.7

Figure 4.15 Result with fusion ratio 0.8

59

Figure 4.16 Result Analysis with fusion ratio 0.6

Figure 4.17 Result Analysis with fusion ratio 0.7

60

Figure 4.18 Result Analysis with fusion ratio 0.9

 Non-occluded

region (%)

All regions

(%)

Discontinue

region (%)

Fusion ratio 0.6 7.8 8.94 31.5

Fusion ratio 0.7 7.83 8.95 31.3

Fusion ratio 0.8 7.86 9.01 31.1

Table 4.3 Accuracy Result for various approximate disparity distance

Fusion ratio could be adjusted between 0 and 1 in order to balance between vertical and

horizontal matching. By adjusting fusion ratio we could decide to trust either vertical

matching or horizontal matching more. The best parameters may vary from different scenes.

The fusion model is proven a success. Figure 4.15 show where are the improvement

from original vertical and horizontal matching to the fusion result. Table 4.4 demonstrates the

improvement in data.

61

Figure 4.19 Improvement from Single match to Fusion

Non-occluded

region (%)

All regions (%) Discontinue region

(%)

Vertical 9.03 10.2 36.2

Horizontal 8.92 10.4 34.8

Fusion
7.8 8.94 31.5

Table 4.4 Fusion Accuracy Improvement

The accuracy result of the project is acceptable. As stereo block matching is one of the

simplest stereovision algorithms, there would be a promising room for L-shape trinocular to

improve the accuracy. Table 4.5 shows the accuracy comparison of the project (GPU_TR_BM)

with several other algorithms based on the evaluation in Tsukuba dataset from Middlebury

Stereo Page.

62

Non-occluded

region (%)

All regions (%) Discontinue

region (%)

GPU_TR_BM
7.8 8.94 31.5

Infection [16] 7.95 9.54 28.9

BioDEM [17] 6.57 8.43 28.1

Table 4.5 Accuracy Comparison with Other Stereo Algorithm Implementations

4.2 Speed Result

One of most significant goals and achievements of this project is the real-time

stereovision computation ability. With help from GPU programming, this goal is achieved

perfectly. As mentioned in the beginning, a commonly accepted frequency for real-time vision

is 25Hz–30Hz. So if the system could process a still image (considered as one frame) with

1/30s–1/25s, i.e. 30ms–40ms, the system is possible to achieve real-time. The tests were taken

on stand Tsukuba dataset (resolution 384288), a larger resolution which is commonly used in

online video transmission (640480), an even larger resolution which is typically used for

portable device display (800600) and an ultimate large resolution (1280960). The

important software and hardware environment configurations list as below:

CPU: Intel Core2 i7-2720QM

GPU: NVidia GTX-560M

OS: Linux (Ubuntu 10.10)

Compiler: GCC 4.4.6

Time spent for processing does not count the time consumed for data transportation

between host and device. Table 4.5 shows the average time consumed for each size image.

Figure 4.16-Figure 4.18 shows the result of high resolution images. The results are not as

good as the original one as many pixels in enlarged images are interpolated in the image

rather than original pixel values.

63

Size Average Time per Frame(ms)

384288 2.165

640480 6.717

800600 10.465

1280960 18.84

Table 4.6 Times per Frame for Different Size Image

Figure 4.20 640480 Tsukuba Result

64

Figure 4.21 800600 Tsukuba Result

Figure 4.22 1280960 Tsukuba Result

65

One problem in the test was about the approximate disparity range. As the test images

were enlarged from the original Tsukuba dataset, the disparity range should also enlarge. As a

special case, small disparity ranges were skipped from search. This would reduce processing

time. However, the whole system is still capable of real-time even consider this factor.

Experiment confirms time for 1920960 would increase to about 25ms which is still within

real-time processing speed.

The test is only for one image as a single frame. To apply the method in actual

stereovision system, data transportation time must be considered. A possible solution is to set

a video buffer to accumulate multiple video frames and concentrating multiple transportations

into one.

4.3 Future Development

The result of test has proved the method is successful. Stereo matching accuracy of final

disparity image improves a lot from any single match. The computation speed also meets

real-time requirement. However, many future developments could make it better from

different aspects.

The stereo algorithm applied is stereo block matching. This is one of simplest stereo

algorithm applied. As research in stereo matching progresses a lot in recent years, there are a

lot of effective algorithms available. Though some of them are too complex to be applied in

real-time applications, there are still many algorithms balance well between speed and

accuracy. If we could convert some of them into a vertical version, simplify it to accelerate,

conduct the similar fusion process in the project and introduce GPU programming into the

system, it could become a perfect stereovision method.

Another point could be modified is the fusion model. Currently the fusion model is

based on minimum SSD value in each pixel solely. As discussed before, this method generally

works fine but not so well in the area not covered by all three input images. If a more

dedicated fusion model could be developed, the improvement from single match to fusion

result would be greater.

66

Implementing a GUI (Graphical User Interface) for the project is also a good way to

improve. GUI would be a helpful feature to adjust the stereo matching parameters. With a

GUI user could capture disparity result with different parameters and compare them easily. It

should be fairly easy to develop a GUI with Qt as OpenCV integrates API for Nokia Qt (a

library specifically for GUI development).

 The ultimate goal of converting the method to a real stereovision system would be a

challenging but exciting work. Some configured cameras will replace still images as input

data. In discussion before we have concluded that a video buffer to store data first and

concentrating data transportation between host and device in order to reduce time waste on

data transportation. This would be a must feature in GPU environment. Also the method of

synchronization between different cameras will become a new difficulty. Asynchronous data

transmission always happens due to different communication quality of camera data

connection. This asynchronous data would obviously corrupt the result. Time stamp for image

data may help to solve the problem.

67

Bibliography

[1] Richard Szeliski, Computer Vision: Algorithms and Applications, 2010.

[2] Umesh R. Dhond and J. K. Aggarwal, “Binocular versus Trinocular Stereo”, IEEE

International Conference on Robotics and Automation, 1990

[3] Nicholas Ayache and Francis Lustman, “Trinocular Stereovision for Robotics”, IEEE

Transactions on Pattern Analysis and Machine Intelligence 13, 1 (1991)

[4] Jane Mulligan and Kostas Daniilidis, “Real time trinocular stereo for tele-immersion”,

2001 International Conference on Image Processing

[5] Jane Mulligan, Volkan Isler and Kostas Daniilidis, “Trinocular Stereo A Real-time

algorithm and its Evaluation”, International Journal of Computer Vision, Volume 47

[6] Thomas Hinterhofer and Christian Zinner, “A Trinocular Census-based Stereovision System

for Real-time applications”, International Conference on Signal Processing, Pattern

Recognition, and Applications (SPPRA 2011)

[7] M Harris, “GPGPU: General-purpose computation on GPUs”, SIGGRAPH 2005 GPGPU

Course, 2005

[8] Gangqiang Zhao, Ling Chen, Gencai Chen, “A Speeded-Up Local Descriptor for Dense

Stereo Matching”, IEEE International Conference on Image Processing, 2009

[9] Klaus Engel, Real-time Volume Graphics, 2006

[10] David G Lowe, “Object recognition from local scale-invariant features”, IEEE

International Conference on Computer Vision, 1999

[11] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, “SURF: Speeded Up Robust

Features”, Computer Vision and Image Understanding, 2008

[12] Ce Liu, J. Yuen, A. Torralba, “SIFT Flow: Dense Correspondence across Scenes and Its

Applications, IEEE Transactions on Pattern Analysis and Machine Intelligence”, 2011

[13] Robert Laganière, OpenCV 2 Computer Vision Application Programming Cookbook,

2011

[14] NVidia Corporation, CUDA C Programming Guide version 4.0, 2011

68

[15] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo

correspondence algorithms”, International Journal of Computer Vision, 2002

[16] G. Olague, F. Fernández, C. Pérez, and E. Lutton, “The Infection Algorithm: An

Artificial Epidemic Approach for Dense Stereo Correspondence”, Artificial Life, 2006

[17] J. Martins, J. Rodrigues, and J. du Buf, “Disparity Energy Model Using a Trained

Neuronal Population”, IEEE Symposium on Signal Processing and Information Technology

2011.

[18] J. Fung, “Using graphics devices in reverse: GPU-based Image Processing and Computer

Vision”, 2008 IEEE International Conference on Multimedia and Expo

[19] Milan Sonka, Vaclav Hlavac, Roger Boyle, Image Processing, Analysis, and Machine

Vision, 1999

[20] Donald B. Gennery, “Object detection and measurement using stereovision”, 6
th

International Joint Conference on Artificial Intelligence, 1979

[21] OpenCV official log, http://opencv.willowgarage.com/wiki/OpenCV Change Logs

[22] D. Scharstein and R. Szeliski. “A Taxonomy and Evaluation of Dense Two-frame Stereo

Correspondence Algorithms”. International Journal of Computer Vision, 2002.

[23] E. Rosten and T. Drummond, “Machine learning for highspeed corner detection”,

European Conference on Computer Vision, 2006.

[24] E. RUBLEE, V. RABAUD, K. KONOLIGE and G BRADSKI, “ORB: An Efficient

Alternative to SIFT or SURF”. International Conference on Computer Vision, 2011

[25] Minglun Gong, “A GPU-based Algorithm for Estimating 3D Geometry and Motion in

Near Real-time”, 3
rd

 Canadian Conference on Computer and Robot Vision, 2006

[26] Ohya, A, “Autonomous navigation of mobile robot based on teaching and playback using

trinocular vision”, IEEE Industrial Electronics Society Conference, 2001

http://opencv.willowgarage.com/wiki/OpenCV%20Change%20Logs

