
HAL Id: hal-04253821
https://hal.science/hal-04253821v1

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-output Regression for Imbalanced Data Stream
Tao Peng, Sana Sellami, Omar Boucelma, Richard Chbeir

To cite this version:
Tao Peng, Sana Sellami, Omar Boucelma, Richard Chbeir. Multi-output Regression for Imbalanced
Data Stream. Expert Systems, 2023, pp.e13417. �10.1111/exsy.13417�. �hal-04253821�

https://hal.science/hal-04253821v1
https://hal.archives-ouvertes.fr


Multi-output Regression for
Imbalanced Data Stream

Tao Peng1, Sana Sellami1, Omar Boucelma1 and Richard
Chbeir2
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In this paper we describe an imbalanced regression method for making predictions
over imbalanced data streams. We present MORSTS (Multiple Output Regression
for Streaming Time Series), an online ensemble regressors devoted to non-
stationary and imbalanced data streams. MORSTS relies on several multiple
output regressor submodels, adopts a cost sensitive weighting technique for dealing
with imbalanced datasets, and handles overfitting by means of the K-fold cross
validation. For assessment purposes, experiments have been conducted on known

real datasets and compared with known base regression techniques.
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1. INTRODUCTION

In this paper, we are interested in the multi-output
regression problem in imbalanced data stream. Multi-
output regression aims to predict multiple outputs given
an input [1]. In a continuous setting (regression),
according to [2], imbalanced regression faces two main
challenges: (1) ”provide a principled approach capable
of describing non-uniform preferences over continuous
domains”, and (2) ”finding appropriate evaluation
and optimization criteria capable of improving the
predictive ability of models towards extreme values”.

As a use case of a continuous imbalanced setting,
let’s consider the imbalanced smart meter data example
[3]. The problem we address here is forecasting the
consumption of electrical appliances, a central problem
in power management systems for Smart Homes [4].
Appliances can report their energy consumption at
specific time intervals via a smart plug.

In this context, data may be correlated and
imbalanced. Correlation results from devices that have
correlated consumption, and imbalance may express the
presence of extreme / rare values.

To address imbalanced data learning issues, several
strategies have been proposed [5]: 1) Under-/Over-
sampling, 2) Cost sensitivity strategy, and 3) Online
ensemble learning which combines the two previous
strategies, in case of a data stream. The under-/over-
sampling consists of either adding synthetic instances
of the minority classes in the classification problem,
such as SMOTE [6], or deleting instances of a majority

class, such as NearMiss [7], to obtain a re-balanced
dataset. The cost sensitivity strategy means that
some data instances (e.g. wrongly predicted data)
have higher weights in their loss function calculation.
The assumption behind this is that data instances
in sparse intervals are easily ignored in the learning
process. Therefore, the weight of incorrectly predicted
instances must be increased to make the learning
process more biased towards incorrectly predicted
instances (which tend to belong to sparse intervals)
[5]. An online ensemble regression model is a set
of individual regression models (submodels) whose
predictions are combined to predict the labels of newly
entered instances in real time. According to [9, 8],
online ensemble regression with cost-sensitive strategy
is a promising approach for dealing with imbalanced
data as it can provide stable prediction accuracy in
imbalanced data streams.

In our work, we adopt a multi-output regression
formalism. Most of the existing multi-output regression
algorithms [10] operate on a batch mode and adopt
the independent and identically distributed (i.i.d) data
assumption. Conversely, streaming regression relies
on sequential data ingestion, makes predictions for
a limited time and may deal with concept drift.
Therefore, we believe that multi-output streaming
regression is suitable for predicting energy consumption
of several appliances.

There exist two kinds of multi-output regression
methods [1]: local methods that transform the multi-
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output problem into single-output problems and global
methods (aka adaptation method) that adapt single-
output ones to handle multi-output datasets. Also,
authors [1] claim that ”an adaption method has several
advantages over problem transformation methods: it
is easier to interpret a single multi-output model
than many single-target models and it ensures better
predictive performance especially when the targets are
correlated.” In addition, there is a risk of overfitting
[11], compared to the similar single-output model,
because a model with multiple outputs have more
parameters to determine than its version with single
output.

In this paper, we propose MORSTS, a Multiple
Output Regression method for imbalanced data stream.
MORSTS is an algorithm adaptation method, with the
following characteristics: 1) all submodels are multiple
output (e.g., LSTM, Decision Tree), 2) it handles
imbalanced data thanks to a cost sensitive strategy, and
3) it provides an overfitting mitigation mechanism by
means of k-fold cross validation (KFCV). Experiments
on two real datasets demonstrate the efficiency of
MORSTS compared to other models.

This paper is organized as follows: Section 2
presents a formalization of the problem. We present
a literature review in section 3. Section 4 describes
the proposed method and section 5 presents the
experiments performed on a real data set. Finally, we
conclude this paper in section 6.

2. PROBLEM STATEMENT

Recall that, in our use case scenario, we are dealing
with data (values) that are continuously emitted by
sensors. As described in [12], we have to accommodate
two concepts: data streams and time series. Hence, to
better cope with the situation, we define the concept of
Streaming Time Series (definition 2.1) in adapting the
definition of Time Series Stream provided in [12].

Definition 2.1. [Streaming Time Series (STS)] is
a continuous (unbounded) flow of input data where
each instance is a vector of real values: STS =
[y(1), y(2), ..., y(t− 1), y(t)] , where y(i) ∈ Rg,∀i ∈
[1, 2, ..., t− 1, t], t is the timestamp of the last value
entered, t increases over time and g is the length of
the vector that is greater than or equal to 1.

Fig. 1 illustrates an excerpt of energy consumption
of some appliances at different points in time. Each
column represents a vector of g values, where g is
the number of appliances. The explained variable of
the model is the energy consumption of all appliances
at a time t. For example, y(t − 1) is a vector of
length g, representing the energy consumption of g
appliances at time t − 1. As described in definition
2.2, at time (t − 1), the multi-output regression model
takes x(t) as input, and makes a prediction for y(t).
In order to predict the consumption for the next time

interval, we use a sliding window (noted as x(t) =
[y(t−WSW ), ..., y(t− 2), y(t− 1)], where WSW is the
size of the sliding window) that captures the recent
historical consumption values of all g appliances. The
sliding window size can be adjusted depending on
specific scenarios/dataset.

Definition 2.2. [Multi-output regression problem]
Let {y(1), ..., y(t− 1), y(t))} an output vector of

length g, representing the energy consumption of g
appliances at time t and {x(1), ..., x(t− 1), x(t))} an
input vector of length g′, representing the recent
historical energy consumption of g appliances before
time t and depending on two factors: the size of
the sliding window (noted WSW ) and g which is the
number of appliances. Then, g′ = WSW ∗ g. At time
(t− 1), the multi-output regression model takes x(t) as
input, and makes a prediction for y(t) as output (Fig.
1). The task is to learn a multi-output regression model
consisting of finding a function H that assigns to each
instance, given by the input vector x, an output vector
y of g target values.

FIGURE 1. Home appliance energy consumption data and
MORSTS inputs and outputs presented in Streaming Time
Series (STS) format.

3. RELATED WORK

Because MORSTS deals with both multiple output
regression and imbalanced data streams, this section
reviews some work that are relevant to both aspects.

3.1. Regression in imbalanced data stream

In [13], authors proposed an On-line Weighted
Ensemble (OWE) which is a set of single output
regressor models in the non-stationary data stream and
uses a cost-sensitive boosting strategy to assign small
errors to the models that predict accurately the samples
predicted poorly by the ensemble.

Experiments performed on several real-world datasets
show that OWE handles concept drift and outperforms
online ensemble methods such as ILLSA [14] or AddExp
[15], which do not have the cost sensitive strategy.

Learn.++R2C [16] is a framework that transforms a
single-output regression problem into a single-output
classification problem, and then uses Learn.++NSE
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[17] a well-known online ensemble classification al-
gorithm with a built-in cost-sensitive strategy to
solve this single-output classification problem. Ex-
periments with a real traffic dataset, showed that
Learn.++R2C achieves better prediction accuracy re-
sults than SARIMA, Passive Aggressive Regression and
Regression Tree. However, these two methods are single
output variable prediction.

In [18], authors propose two sampling strategies
based on Chebyshev’s inequality and in the relevance
of rare extreme values to train learning models over a
balanced data stream once the incoming data stream is
imbalanced. This work is based on the hypothesis that
the rare cases have extreme target values. Experiments
performed on fourteen benchmark data sets showed a
reduction of the prediction errors over the rare cases.

3.2. Multi-output Regression in Data Streams

In [19], authors propose an incremental model trees
for multi-target regression (FIMT-MT) that relies on
the principles of tree-based predictive clustering and
the probability boundary analysis (PBA) to partition
decisions. Linear models are computed for each target
separately, by incremental training of perceptrons.
Experiments conducted on both stationary synthetic
and real data show that this approach is more accurate
and requires less memory compared to a set of single
output regression trees.

ILLSA [14] (Incremental Local Learning Soft Sensing
Algorithm) is a set of RPLSs (Recursive Partial Least
Squares) for multiple output tasks in a data stream.
RPLS is an adaptation multi-output regressor that
can be updated incrementally. ILLSA uses a two-
step phase: 1) in the initial phase, data is divided
into samples containing different concepts (via T-test)
and RPLS submodels are trained separately; 2) in the
online phase, for each incoming data item, the RPLSs’
weights are first adjusted using a posteriori probabilities
in a Bayesian network, and then the RPLSs are
updated with the incoming data. ILLSA does not add
or remove submodels, which makes its computation
efficient. However, if in the initialization data does not
cover the concepts (distributions) in the data stream,
the overlooked concepts will affect the accuracy of the
prediction. Experiments based on real sensor data show
that ILLSA outperforms individual RPLS. In [20], iS-
PLS, a model based on RPLS is proposed for multiple
output prediction in the data stream. iS-PLS aims
to find a low-dimensional subspace to maximize the
correlation between inputs and outputs. Experiments
with financial data demonstrate the improved accuracy
of iS-PLS over RPLS.

In [21], authors proposed an online multiple-output
regression method for stream data called MORES
which learns the structures of the regression coefficients
change and the residual errors in order to refine the
model. In MORES, the input vector is multiplied by

a learned regression coefficient matrix to obtain the
output vector. The matrix of coefficients is updated
progressively while respecting certain constraints: 1)
the new matrix should not be too different from
the old one and 2) the prediction error for the new
instances under the new matrix should not be too large.
Experiments based on one synthetic and three real data
sets show that MORES outperforms iS-PLS in terms of
efficiency and accuracy.

In [22], authors presented a rule-based algorithm
called AMRules-S. AMRules-S decomposes the multi-
output problem into several multi-output sub-problems
by learning Adaptive Model Rules (e.g. Decision
Tree) and the correlated output variables are placed
in the same multi-output sub-problems (e.g. leafs in
Decision Tree). The goal is to highlight the correlation
between the output variables in each multi-output
sub-problem and an adaptation multi outputs MLP
(Multilayer Perceptron) makes prediction. Experiments
with simulated and real data sets show that AMRules-S
is more efficient than individual MLP.

An online multi-output regression system called
MORStreaming (Multi-Output Regression System for
Streaming Data) was proposed in [10] for solving
multiple-output regression problem of streaming data.
MORStreaming used an incremental topology learning
to select a sub-set of the historical data (i.e. sampling)
to represent the current data distribution. So,
each multi-output sub-problem has one multi-output
submodel which corresponds to a subset of the historical
data and an instance-based prediction model (similar
to KNN). Experimental results on simulated and real
data show that MORStreaming is more accurate than
the variants of AMRules-S and variants of Trees.

Note that works described above do not tackle data
imbalance. Indeed, learning imbalanced data stream is
a challenging task and most of the existing works rely on
binary and multi-class classification in imbalanced data
streams, as claimed in [23], where few of them addressed
regression with imbalanced data due to its complexity
[5, 24, 2]. In particular, for multiple output regression,
it is possible that some output variables involve data
imbalance while others do not. In this case, applying
the Under-sampling /Over-sampling according to a few
variables that are involved in data imbalance may result
in creating a new data imbalance on other variables.

In addition, in a non-stationary imbalanced data
stream, the cost-sensitive strategy should be used in
conjunction with online ensemble learning to ensure
better accuracy [9, 8].

4. MORSTS: MULTIPLE OUTPUT RE-
GRESSION ALGORITHM

In this section, we describe MORSTS (Fig. 2), a
Multiple Output Regression method for Streaming
Time Series which has the following characteristics:

1. MORSTS adopts an Ensemble approach, with
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several (multiple output regression) submodels
such as LSTM and decision trees. A final
prediction is obtained with a weighted vote of all
submodels.

2. MORSTS is an online model, and its predictions
are in real time. The weights of the submodels are
updated per batch according to their prediction
error in the current batch. In each batch, the
submodel with the lowest weight is replaced by a
new submodel.

3. It relies on a cost sensitive strategy for handling
data imbalance: a weight of each data instance is
calculated according to its prediction error.

4. MORSTS uses k-fold cross validation (KFCV) to
handle overfitting. For each new submodel, KFCV
error must be below a threshold which is positively
correlated with a voted prediction error.

4.1. Method description

We present a formal description of MORSTS.

• if (x(i), y(i)) is an instance of the training data
at time i, x(i) ∈ Rg′

is a vector describing
independent variables,

• y(i) ∈ Rg is the vector of dependent variables,
• the multi-output regression function H can be

defined as

H(x(i)) → ŷ(i)

x(i) ∈ Rg′

ŷ(i) is an estimation of y(i) ∈ Rg

(1)

FIGURE 2. Brief description of the process and
characteristics of MORSTS

4.2. Algorithm

Algorithm 1 illustrates the pseudo-code description of
MORSTS (resp. the notations). Notations are detailed
in Table is1.

Algorithm description: If the current batch is the
first (line 2), a new submodel h1 is trained with D1,
according to an algorithm randomly chosen in the set of
algorithms (lines 3 and 4). This new submodel is added
to the set of submodels (line 5). Because this is the first
submodel, the current hypothesis is equivalent to this
new submodel (line 6).

If the current batch is not the first (line 7),
the predictions in the tth batch are given according to
the current hypothesis Ht−1 (line 8). The errors of
predictions are also computed (line 9). The weights of
all instances are assigned according to their prediction
error (line 10). Then, for all submodels (line 11),
their average of weighted error for the current batch
is computed (lines 12, 13, 14).

In each batch, a new submodel will be added. An
algorithm is randomly chosen (line 19) and the KFCV
method is used to predict all instances in the current
batch (line 20). The error of each instance of the current
batch (line 21) is calculated, noted errt(i). We obtain
the average of the weighted prediction errors, noted εtht

(line 22). If εtht satisfies the condition, i.e. εtht < εtHt−1 ·
V ∗ ∗(r − 1) (line 23), a submodel is trained according
to the chosen algorithm using all the instances of the
current batch (line 24). This new submodel is added
to the set of submodels (line 25). The weight of this
new model is based on its KFCV error (weighted with
the data weights). Rather, if the above condition is not
satisfied (i.e. εtht >= εtHt−1 ·V ∗∗(r−1)), a new attempt
is made (line 27), and r increases by 1 (line 28).

If the number of submodels exceeds a predefined
maximum number, then the submodel with the largest
weighted prediction error is removed (lines 31 and 32).

The vote weight of each submodel is inversely
proportional to the (weighted) average prediction error
of the current batch and inversely proportional to the
age (i.e. length of time from training to current) of the
submodel (lines 34 and 35). At the end, according to the
weights of the vote of the submodels, all the submodels
vote to generate the hypothesis, noted Ht (line 37).

Algorithm complexity: The theoretical temporal com-
plexity of the ensemble regressor/model is positively re-
lated to the number and complexity of the submodels
[14, 16, 10]. Since MORSTS relies on several multi-
ple regressor submodels, the complexity of these collec-
tive models remains a challenge [15, 17, 22] because of
the non-uniformity of the complexity of the submod-
els. In the worst case, the time complexity of one
submodel predicting N vectors is denoted as Cpred,
the time complexity of updating a model with N vec-
tors is denoted as Cupdate, the complexity correspond-
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TABLE 1. MORSTS Algorithm Notations
Notation Explanation

All superscripts and subscripts are indices

∗∗ exponentiation
t the number/index of batch, t = 1, 2, ...
Dt tth batch
mt the size of Dt (number of data instances in tth batch)
i the number/index of instances in each

batch, i = 1, ...,mt

EAR a set of multiple output regression algorithms
algo a multiple output regression algorithm
ESM the set of submodels
ht (resp. hj) the submodel that is trained with tth (resp. jth) batch
T the maximum number of submodels
k the parameter of KFCV
g′ the length of the vector as inputs
g the length of the vector as outputs(
xt (i) ; yt (i)

)
the ith instance (tuple) in tth batch,
and yt (i) ∈ Rg

xt (i) the explanatory variables of the ith instance
in the tth batch

yt (i) the explained variables of the ith instance
in the tth batch

yt
f (i) the fth dependent variable of yt (i), 1 ⩽ f ⩽ g

a and b the slope and inflection point of sigmoids
Ht the hypothesis of MORSTS in the tth batch[
ŷt
1 (i) , .., ŷ

t
g (i)

]
the estimation of yt (i) =

[
yt
1 (i) , .., y

t
g (i)

]
errt(i) the prediction error of ith instance in tth batch
Θt(i) the weight of ith instance in tth batch
εtHt−1 the average of weighted error of Ht−1 in tth batch
V the validation parameter of the submodel, V > 1
r the number of attempts to generate a validated

submodel in the current batch
εthj the average error (weighted according to Θt) of hj

in the tth batch
W t

hj vote weight of the hj in the tth batch

ing to initializing a submodel with these N vectors is
denoted as Cini. In the worst case, it takes Ntry at-
tempts to pass the k-fold validation test. Therefore, we
can express the time complexity MORSTS as follows:
in order to predict N vectors, the time complexity is
M ∗ (Cpred + Cupdate) +Ntry ∗ k ∗ Cini where M is the
number of submodels.

5. EXPERIMENTS

In this section, we present the experiments that have
been conducted on two real-world datasets in order
to assess its accuracy and performance. Source code
is available at the following Git repository: https:

//github.com/jy02407380/MORSTST.

5.1. Description of the datasets

Our experiments are performed on two datasets: UK-
DALE 3 and CU-BEMS 4.

• UK-DALE is derived from the electricity consump-
tion of appliances in five UK households with one
minute intervals. We used the ”House 1 of UK-
DALE” data from the energy consumption of 48
household appliances, over the period November
2013 to January 2016. A sample of this data is
shown in table 2. Fig. 3-(a) and Fig. 4-(a) il-
lustrate respectively the imbalance and the non-
stationarity of UK-DALE dataset.

• CU-BEMS is a smart building energy data set
in Bangkok, Thailand 5. In our experiments, we
used the energy consumption of 22 devices installed
in an office over the period from January 2019

3Domestic Appliance-Level Electricity dataset available here:
https://jack-kelly.com/data/

4https://www.kaggle.com/datasets/claytonmiller/cubems-
smart-building-energy-and-iaq-data

5https://www.kaggle.com/claytonmiller/cubems-smart-
building-energy-and-iaq-data
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Algorithm 1 MORSTS

Require: For each batch Dt, t = 1, 2, ..., its instances (training

data) are tuples
(
xt (i) ; yt (i)

)
, where xt (i) ∈ Rg′ , yt (i) ∈

Rg , i = 1, ...,mt.
Require: Parameters a (slope) and b (inflection point) of the

sigmoid function
Require: T : Maximum number of submodels
Require: k: Parameter of the k-fold validation
Require: V , Parameter of submodel validation
Require: ESM ← ∅, Set of submodels
Ensure: Ht for t = 1,2,3,....
1: for t = 1,2,3,.... do
2: if t = 1 then
3: algo← randomly select an algorithm ∈ EAR,
4: h1 ← train a submodel according to algo with D1

5: ESM ← ESM ∪ h1

6: H1 ← h1

7: else
8:

[
ŷt1 (i) , .., ŷ

t
g (i)

]
← Ht−1(xt (i)), for i = 1, ...,mt

9: errt(i)← 1
g

∑g
c=1 |ŷtc (i)− ytc (i) |, for i = 1, ...,mt

10: Θt(i)← errt(i)/
∑mt

i=1 err
t(i) for i = 1, ...,mt

11: for ∀hj ∈ ESM do
12:

[
ŷt1 (i) , .., ŷ

t
g (i)

]
← hk(xt (i)), for i = 1, ...,mt

13: errt(i)← 1
g

∑g
c=1 |ŷtc (i)− ytc (i) |, for i = 1, ...,mt

14: εt
hj ← 1

mt

∑mt

i=1 Θ
t(i) · errt(i)

15: end for
16: εt

Ht−1 ← 1
mt

∑mt

i=1 Θ
t(i) · errt(i)

17: r = 1
18: while True do
19: algo← randomly choose an algorithm ∈ EAR.
20:

[
ŷt1 (i) , .., ŷ

t
g (i)

]
for i = 1, ...,mt ← k-fold-cross-

validation (k, algo,Dt)
21: errt(i)← 1

g

∑g
c=1 |ŷtc (i)− ytc (i) |, for i = 1, ...,mt

22: εt
ht ← 1

mt

∑mt

i=1 Θ
t(i) · errt(i)

23: if εt
ht < εt

Ht−1 · V ∗ ∗(r − 1) then

24: ht ← train a submodel according to algo with
Dt

25: ESM ← ESM ∪ ht

26: break
27: else
28: r ← r + 1
29: end if
30: end while
31: if |ESM | > T then
32: ESM ← ESM − hj′ , where εt

hj′ = argmax
hj∈ESM

εt
hj

33: end if
34: for ∀hj ∈ ESM do
35: W t

hj ← loge(
1

εt
hj ·sigm(a,b,t−j)

)

36: end for
37: Ht ←

∑
hj∈ESM (W t

hj · hj)/
∑

hj∈ESM W t
hj

38: end if
39: end for

to December 2019. The sampling interval is 1
minute (table 3). Fig. 3-(b) and Fig. 4-(b) show
respectively the imbalanced and non-stationarity of
CU-BEMS dataset.

Table 4 shows that there is an autocorrelation of
the energy consumption data of the same appliances,
for the UK-DALE data. Autocorrelation is due to
the fact that the current state of a device can be
correlated with the previous state, i.e., there is a
time dependence. As the lag (i.e., time difference)
increases, the autocorrelation decreases.

FIGURE 3. Normalized data from 4 devices over a one
month from (a) UK-DALE and (b) CU-BEMS. The green
triangle represents the median and the yellow vertical line
represents the mean.

FIGURE 4. Imbalanced data from 2 devices during 2 days.

TABLE 2. Sample of normalised UK-DALE data (part of
the appliances, 2012-Nov)
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Nov.22 22:09:06 0.0 0.0 0.01 0.00 0 0 0 0.70 0 0.68 0.71 0 0 0 0.51
Nov.22 22:10:06 0.0 0.0 0.01 0.00 0 0 0 0.78 0 0.74 0.71 0 0 0 0.56
Nov.22 22:11:06 0.0 0.0 0.01 0.00 0 0 0 0.70 0 0.76 0.80 0 0 0 0.49
Nov.22 22:12:06 0.0 0.0 0.01 0.07 0 0 0 0.78 0 0.70 0.71 0 0 0 0.55
Nov.22 22:13:06 0.0 0.0 0.01 0.00 0 0 0 0.70 0 0.72 0.71 0 0 0 0.48
Nov.22 22:14:06 0.0 0.0 0.00 0.00 0 0 0 0.70 0 0.63 0.70 0 0 0 0.48
Nov.22 22:15:06 0.0 0.0 0.00 0.00 0 0 0 0.70 0 0.51 0.80 0 0 0 0.48
Nov.22 22:16:06 0.0 0.0 0.00 0.00 0 0 0 0.78 0 0.59 0.70 0 0 0 0.54
Nov.22 22:17:06 0.0 0.0 0.00 0.00 0 0 0 0.78 0 0.54 0.78 0 0 0 0.54
Nov.22 22:18:06 0.0 0.0 0.01 0.00 0 0 0 0.78 0 0.40 0.80 0 0 0 0.68

TABLE 3. Sample of normalised CU-BEMS data (part of
the appliances, 2019-JAN)
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JAN.01 22:15 0.0005 0.0004 0.0153 0.0211 0.0819 0.1394 0.1424
JAN.01 22:16 0.0004 0.0004 0.0153 0.0213 0.0819 0.1374 0.1408
JAN.01 22:17 0.0004 0.0004 0.0153 0.0213 0.0819 0.1130 0.1161
JAN.01 22:18 0.0005 0.0004 0.0153 0.0213 0.0799 0.1360 0.1393
JAN.01 22:19 0.0004 0.0004 0.0153 0.0213 0.0799 0.1371 0.1409
JAN.01 22:20 0.0004 0.0004 0.0153 0.0213 0.0799 0.1371 0.1407
JAN.01 22:21 0.0005 0.0004 0.0153 0.0211 0.0800 0.1382 0.1407
JAN.01 22:22 0.0004 0.0004 0.0153 0.0211 0.0800 0.1382 0.1424
JAN.01 22:23 0.0005 0.0004 0.0153 0.0213 0.0719 0.1382 0.1424
JAN.01 22:24 0.0005 0.0004 0.0153 0.0213 0.0809 0.1394 0.1439
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TABLE 4. Autocorrelation for some UK-DALE devices (part of the appliances), with sampling occurring from November
to December 2013, lags from 0 to 10.
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0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 0.87 0.78 0.22 0.97 0.96 0.99 0.75 0.37 0.97 0.96 0.98 0.99 0.39 0.88 0.99
2 0.76 0.53 0.22 0.94 0.94 0.99 0.75 0.44 0.94 0.92 0.98 0.99 0.39 0.77 0.99
3 0.70 0.34 0.21 0.91 0.92 0.98 0.74 0.47 0.91 0.90 0.98 0.98 0.38 0.71 0.99
4 0.66 0.17 0.20 0.89 0.89 0.98 0.73 0.42 0.87 0.87 0.98 0.98 0.38 0.69 0.99
5 0.62 0.12 0.20 0.86 0.87 0.97 0.73 0.41 0.85 0.85 0.98 0.97 0.38 0.67 0.99
6 0.58 0.12 0.20 0.83 0.85 0.97 0.72 0.42 0.82 0.83 0.98 0.96 0.38 0.65 0.99
7 0.56 0.09 0.19 0.81 0.83 0.96 0.71 0.40 0.79 0.81 0.98 0.96 0.38 0.63 0.99
8 0.54 0.08 0.19 0.78 0.80 0.96 0.71 0.38 0.76 0.79 0.97 0.95 0.37 0.61 0.99
9 0.51 0.06 0.19 0.75 0.78 0.96 0.70 0.39 0.74 0.78 0.97 0.95 0.37 0.59 0.99
10 0.50 0.06 0.18 0.72 0.76 0.95 0.69 0.38 0.72 0.76 0.97 0.94 0.37 0.58 0.99

For the UK-DALE dataset, we configured MORSTS
to take as input the energy consumption data of the 5
minutes before t for all devices (i.e., a sliding window
with a width of 5 in Fig. 1). Table 4 shows that: 1)
when the lag is less than 5, the autocorrelation of some
devices decreases; 2) when the lag is greater than 5, the
autocorrelation coefficients of almost all devices remain
stable. Considering that the number of devices is 48, the
length of the input vector g′ is 240. Similarly, for CU-
BEMS dataset, MORSTS has been configured to take
as input the energy consumption data of the 3 minutes
preceding t for all devices (i.e., a sliding window with a
width of 3 in Fig. 1). Considering that the number of
devices is 22, the length of the input vector g′ is 66.

Fig. 5 shows the correlation between the energy
consumption data of UK-DALE devices. For example,
there is a significant positive correlation between the
hifi office and lcd office. It is likely that hifi office and
lcd office are used during the same period.

5.2. Pre-processing of data

Two main pre-processing have been applied before
conducting our experiments:

• Normalization: When having multiple output
functions, normalization is essential, as the loss
function is calculated for several variables [1]. The
aim of normalization is to bring all values of the
variable back between 0 and 1, while maintaining a
certain distance between these values. So, for both
datasets, the power consumption values have been
normalised for each device using equation 2 where:
x is an original value of a given device, max(x)
and min(x) are the max value and min value
from the same device, and x′ is the corresponding
normalized value.

x′ =
x−min(x)

max(x)−min(x)
(2)

FIGURE 5. Correlation between some appliances, UK-
DALE.

• Elimination of collinearity: Correlation be-
tween devices can lead to collinearity between the
explanatory variables (inputs), which can affect the
accuracy of the prediction model [25]. According
to [25], there are three strategies for solving the
collinearity problem: 1) eliminating collinearity be-
fore modeling, 2) modeling with latent variables,
and 3) modeling insensitive to collinearity. Remov-
ing collineraity before model building is the most
widely used method, and experiments described in
[25] have shown that the latter two types of method
have no relative advantage in terms of accuracy.
Principal component analysis (PCA) is the most
commonly used method for eliminating collinear-
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ity prior to modeling. The main idea behind PCA
is to go from N dimensions (variables) to N’ decor-
related dimensions (variables) [26], N’ smaller than
N. PCA not only reduces training time and model
complexity, but also enables the model to achieve
better prediction performance [26]. That’s why, we
applied Principal Component Analysis (PCA) for
both datasets. For UK-DALE dataset, the length
of the input vector g′ has been reduced from 240 to
25 after PCA . Fig. 6 shows that: 1) when the num-
ber of generated dimensions of the inputs exceeds
25, the share of variance explained by the added di-
mension tends to zero; 2) the share of cumulative
explanatory variance of the 25 dimensions is 94%,
which exceeds 85% and is therefore expected to ex-
plain almost all of the variance [27]. Similarly, for
CU-BEMS, the length of the input vector has been
reduced from 66 to 10 after PCA (see Fig. 7).

5.3. Evaluation metrics

For evaluation purposes, we used Accuracy and
Efficiency metrics:

• Prediction Accuracy is the average root mean
squared error (aRMSE) of all variables measures
the global accuracy (equation 3).

• Model Efficiency is the average running time for
each 10,000 data (vector).
Numbers discussed below have been obtained in
using a MAC mini 2014, Core i5 chip, 8GB RAM,
with Python 3.7.

aRMSE =
1

g

g∑
f=1

RMSE for fth variable (3)

5.4. Super-parameters

Several super-parameters have been used:

Type of submodels The submodels have been randomly
selected from multi-output models in libraries (such as
Sklearn 6): Ridge regression, Decision Trees, Random
Forest and LSTM.

a and b are the parameters of Sigmoid function, which
assigns time weights to the submodels (the closer they
are, the greater it is). For UK-DALE dataset, a = 0.35
(slope) (optimal value between 0.05 and 1 by steps of 0.1
for a best aRMSE) and b = 1 (optimal value between 1
and 5 by step of 1 for a best aRMSE). For CU-BEMS
dataset, we set a = 0.4 and b = 2.

|Dt| (Batch size) Batch size is essential for accurate
models, but difficult to determine [28]. By varying the
batch size as illustrated in Fig. 8-(a), the optimal value

6https://scikit-learn.org/stable/

FIGURE 6. Variance of inputs (UK-DALE data) by PCA.

FIGURE 7. Variance of inputs (CU-BEMS data) by PCA.

of the batch size for UK-DALE dataset is 10080 and it
is equal to 7200 for CU-BEMS (Fig. 9-(a)).

K-fold cross-validation (KFCV) MORSTS uses
KFCVto evaluate the weight of the emerging sub-
model, to mitigate the risk of over-learning of
submodels and their negative effects. According to
[29], when the amount of available data is large, the
value of k can be relatively small to save time costs.
However, it is not specified in [29] which criteria to
be used. For UK-DALE, we set k = 3 because the
accuracy is stable and the execution time increases
steadily with k (as shown in Fig. 8-(b)). Similarly, for
the CU-BEMS dataset, we set k = 4 (Fig. 9-(b)).

Submodel validation parameter (V ) In MORSTS, a
new approved submodel ht must be generated under
the condition εtht < εtHt−1 · V ∗ ∗(r − 1). The larger
is V value , the higher is the overfitting risk. The
smaller is V value, the bigger is the number of attempts
(i.e., computational cost) will be made to obtain a new
validated submodel. We set V = 1.2 for UK-DALE,
which is the most optimal value between 1.1 and 1.9,
as illustrated in Fig. 8-(c), and V = 1.4 for CU-BEMS
dataset (Fig. 9-(c)).
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Maximum number of submodels (T ) The maximum
number of submodels for both datasets is T = 12 which
is the optimal value to get the best accuracy (Fig. 8-(d)
and Fig. 9-(d)).

5.5. MORSTS Assessment

We compared MORSTS with MORSTSnoKFCV , its
version without KFCV, to check whether cross-
validation effectively controls overfitting or not. We
also compared MORSTS with some multiple output
models such as Decision Trees, Random Forest, Ridge
regression, and LSTM. For UK-DALE dataset (resp.
CU-BEMS), the latter models use the first 10080 (resp.
7200) instances for initialization, and the remaining
data for testing, with no model update and no cross
validation.

5.6. Results

Overfitting Figs. 10-(a) and (b) (resp. Figs. 11-(a)
and (b)) show the distance between the Training Error
and the Testing Error which is the measure of overfitting
in UK-DALE (resp. CU-BEMS), corresponding to the
blue areas: the larger is the blue area, the greater
is overfitting. It is worth noticing that, considering
the flow of data, for a newcomer submodel on the tth
batch, its learning error is on the tth batch, and its
generalization error is on the t+1th batch. We observe
that the number of MORSTS blue areas is significantly
smaller than MORSTSnoKFCV one. This is due to
the fact that MORSTS has a process based on k-fold
cross-validation, which limits the risk of overfitting.
Fig. 10-(b) also shows that the MORSTS submodels
trained on the 4th, 14th, 35th, 56th, 65th batches are
relatively large over-fitted. The most likely explanation
is that the house was unoccupied during this time and
the appliances were switched off (almost no energy
consumption). For the same reasons, MORSTS has
very low aRMSE values for these batches (4th, 14th,
35th, 56th, 65th) as shows Fig. 10-(c). Although
the MORSTS submodels born in the 4th, 14th, 35th,
56th and 65th batches suffered from overfitting, in
the UK-DALE dataset, the MORSTS’s aRMSE values
however did not receive a significant negative impact
for the successor batches (i.e., 5th, 15th, 36th, 57th
and 66th) as shown in Figure 10-(c). Since these
submodels with the risk of overfitting are given very low
weights, this does not affect the voting results, thanks
to the k-fold cross-validation. Fig. 10-(a) shows that
MORSTSnoKFCV has a significant overfitting in 3rd,
7th, and 10th batches, in the UK-DALE dataset. As a
result, in the following batches, the prediction accuracy
of MORSTSnoKFCV decreases significantly (i.e., the
blue curve increases explicitly in Fig. 10-(c)). This
is due to the fact that the submodels trained on the
3rd, 7th, and 10th batches were incorrectly assigned
high weights based on their learning errors. In the UK-
DALE dataset, we also observed that the overfitting

of the MORSTSnoKFCV newborn submodel persisted
from batch 15 onward, but there was a trend toward
improved prediction accuracy for MORSTSnoKFCV

(i.e., the blue curve has a downward trend and
then remains stable in Fig. 10-(a)). One possible
explanation is that MORSTSnoKFCV has collected
a sufficient number of submodels with appropriate
weights since the 15th batch, so the negative effects
of overfitting newcomer submodels are controlled. To
summarize, our experiments on CU-BEMS and UK-
DALE datasets show that MORSTS performs well with
respect to prediction accuracy, thanks to the control
of overlearning. It is also important to note that CU-
BEMS data come from office buildings, not houses.

Accuracy We evaluated the accuracy of MORSTS and
compared it with other baseline models. We note that
MORSTS has a better accuracy in most of the batchs
for both datasets as illustrated in Fig. 10 and Fig. 11.
The average accuracy for all the the models is described
in table 5 showing that MORSTS outperforms the other
models thanks to cost-sensitive and KFCV strategies.
We also compared MORSTS with MORSTSnoKFCV , its
version without KFCV. The outcome was that multiple
validation helps improving global accuracy. Finally, we
note that ensemble models combined with cost-sensitive
strategy perform better than baseline models (Decision
Tree, Random forest, Ridge Regression, LSTM) in case
of imbalanced and non-stationary STS.

Single output vs. Multi-output We compared the ac-
curacy (aRMSE) of the original multi-output MORSTS
and with its single-output version, i.e., all MORSTS
submodels are used with their single output versions.
Regarding the datasets, we used a sample of highly cor-
related sensors and and weakly correlated ones. As il-
lustrated in Fig. 5, we selected 5 pairs of highly corre-
lated UK-DALE sensors: 1) multiple outputs for each
pair of sensors and 2) separate single outputs for in-
dividual sensors. We used the same inputs for both
predictions i.e.,

past energy consumption data obtained with a 5
minutes sliding window for 48 appliances with at 1
minute delay, reduced to 25 dimensions after PCA.
Table 6 shows that, in presence of correlation, original
MORSTS is in most cases more accurate than single-
output models. Similarly, we selected 5 pairs of
weakly correlated sensors (Fig. 5). Table 7 shows
that, for some pairs of weakly correlated sensors, the
multi-output model does not obtain better accuracy,
compared to the single-output model. This situation
supports the statement of [1] regarding the fact that
correlated output may improve prediction accuracy.

Execution time We compared the different models in
terms of time execution for 10 thousand predictions
as illustrated in Table 8. For UK-DALE data, we
note that MORSTS is time-consuming (time = 2s) in
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TABLE 5. Accuracy of Baseline Models.
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aMRSE, UK-DALE 0.019 0.024 0.034 0.024 0.034 0.057

aMRSE, CU-BEMS 0.057 0.066 0.134 0.107 0.159 0.172

FIGURE 8. Super-parameters of MORSTS with UK-
DALE.

FIGURE 9. Super-parameters of MORSTS with CU-
BEMS.

FIGURE 10. Overfitting and aRMSE of MORSTS with
UK-DALE.

FIGURE 11. Overfitting and aRMSE of MORSTS with
CU-BEMS.

comparison to Decision Trees (0.28s), Random Forests
(0.27s), Ridge Regression (0.2s) and LSTM (0.6s).
This is because each MORSTS prediction requires all
submodels’ predictions followed by voting. We observe
that 10,000 predictions take 2 seconds which means
that each prediction takes an average of 0.0002 seconds,
which is far below the sampling time of the dataset used
in this experiment (1 minute). Hence, we may conclude
that MORSTS can provide real-time predictions.

In terms of accuracy, Table 5 shows that Random
Forest (RF) has the best accuracy with minimal
computing time for both datasets (see Table 8).
Although Random forest is behind MORSTS in terms
of accuracy, RF may perform better assuming it
could make use of online updating and cost-sensitive
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TABLE 6. Accuracy of Multi vs. Single-output:
case of highly correlated sensors
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#43 data logger pc #18 adsl router 0.0025 0.0026 +0.0001
#50 office lamp3 #21 gigE & USBhub 0.0067 0.0073 +0.006
#8 kitchen lights #25 lighting circuit 0.0594 0.0652 +0.0058
#39 hair dryer #40 straighteners 0.0089 0.0089 0
#17 amp livingroom # 7 tv 0.039 0.041 +0.002

TABLE 7. Accuracy of Multi vs. Single-output:
case of weakly correlated sensors
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#27 iPad charger #52 baby monitor tx 0.0203 0.0195 -0.0008
#39 hair dryer #12 fridge 0.0156 0.0156 0
#44 childs table lamp #18 adsl router 0.0035 0.0028 -0.007
#6 dishwasher #36 coffee machine 0.0176 0.0182 +0.006
#15 hifi office #8 kitchen lights 0.0380 0.0408 +0.028

strategies,
in presence of imbalanced and non-stationary data

stream.
In addition, Random forest can replace MORSTS

when 1) the sampling rate is very small and 2)
the requirement for prediction accuracy is not very
demanding, to avoid the delay in prediction due to
the update time of MORSTS. Conversely, MORSTS
can provide optimal accuracy when the sampling rate
is significantly larger than the time required for the
update of MORSTS (e.g. in this experiment).

We evaluated the update run times of MORSTS and
its version without KFCV MORSTSnoKFCV . We noted
that MORSTS (38s) is more expensive in terms of
updating time than MORSTSnoKFCV (14s) because it
is cross-validation based. In the previous experiments,
we have found that 1) KFCV significantly improves

TABLE 8. Running time for 10K predictions. UK-DALE
and CU-BEMS.
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for prediction (s),
UK-DALE

2 2 0.28 0.27 0.2 0.6

for updating (s),
UK-DALE

38 14 - - - -

for prediction (s),
CU-BEMS

0.51 0.49 0.07 0.08 0.07 0.22

for updating (s),
CU-BEMS

7 3.5 - - - -

the performance of MORSTS in the early stages of
the online process , and 2) KFCV becomes less useful
after MORSTS has accumulated enough submodels.
Therefore, a potential optimization scheme is that
if the prediction accuracy of MORSTS tends to be
stable, then newcomer submodels are exempted from
k-fold cross-validation. The advantage of this strategy
is to reduce the use of k-fold cross-validation, which
means that the computation time of MORSTS would
be reduced without affecting the accuracy of the
predictions.

Our experiments showed that MORSTS performs
better than baseline models on imbalanced data stream
and handles overfitting but remains expensive due to
KFCV and models’ update.

6. CONCLUSION AND FUTURE WORK

In this paper, we described MORSTS, an online en-
semble regression model for making predictions on non-
stationary and imbalanced data streams. MORSTS
adopts a cost-sensitive strategy for imbalanced data,
and performs k-fold cross-validation (KFCV) to handle
submodels’ overfitting.

Experiments conducted with two real datasets from
smart buildings show that (1) MORSTS improves
prediction accuracy when there exist a correlation
between output variables compared to some renown and
multi-output models; (2) KFCV significantly improves
the accuracy at the early stages of the online process.
However, MORSTS execution time is costly, due to
voting and KFCV procedures.

Lessons learnt from MORSTS already emphasized
the impact of KFCV and multiple output correlations.
For future work, we target further improvement of
MORSTS by combining different state of the art
approaches. Among other approaches that are worth
to consider one can cite: rule-based algorithms [22],
learning automatically correlations between multiple
outputs [10] and under/over sampling algorithms
[18]. Indeed, the correlation between output variables
can vary over time. In this case, the dynamic
transformation of multiple-output problems into several
multiple-output sub-problems [22, 10] represents a
research direction we wish to explore. Thus, one (or
more) submodel(s) is (are) formed to correspond to each
multiple-output sub-problem. However, this requires
1) automatically and dynamically (without human
intervention) planning multiple-output sub-problems in
a data stream; for example, it is better to avoid some
variables being covered by only a few sub-problems
and others by too many; 2) training the corresponding
prediction model if a new multiple-output sub-problem
appears and avoiding repeated access to historical data;
3) knowing how these submodels, with different weights
and output structures, will vote to produce the final
result. In addition, when the data are imbalanced, how
to apply a cost-sensitive strategy to submodels with
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different output structures is a line of research to be
explored. Finally, we aim to consider extra information
related to the sensors and to the energy consumption
such as weather (e.g. temperature, barometric pressure,
etc.) in order to analyze their impact on the regression
outputs.
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