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Figure 1: Our method takes as input an unconstrained monocular face image and estimates face attributes — 3D pose, geometry, diffuse,
specular, roughness and illumination (left). The estimation is self-shadow aware and handles varied illumination conditions. We show several
resulting style transfer applications: albedos, illumination and textures transfers from and into face portrait images (right).

Abstract

We present a differentiable ray-tracing based novel face reconstruction approach where scene attributes — 3D geometry, reflectance
(diffuse, specular and roughness), pose, camera parameters, and scene illumination — are estimated from unconstrained monocular
images. The proposed method models scene illumination via a novel, parameterized virtual light stage, which in-conjunction with
differentiable ray-tracing, introduces a coarse-to-fine optimization formulation for face reconstruction. Our method can not only
handle unconstrained illumination and self-shadows conditions, but also estimates diffuse and specular albedos. To estimate
the face attributes consistently and with practical semantics, a two-stage optimization strategy systematically uses a subset
of parametric attributes, where subsequent attribute estimations factor those previously estimated. For example, self-shadows
estimated during the first stage, later prevent its baking into the personalized diffuse and specular albedos in the second stage.
We show the efficacy of our approach in several real-world scenarios, where face attributes can be estimated even under
extreme illumination conditions. Ablation studies, analyses and comparisons against several recent state-of-the-art methods
show improved accuracy and versatility of our approach. With consistent face attributes reconstruction, our method leads to
several style — illumination, albedo, self-shadow — edit and transfer applications, as discussed in the paper.

1 Introduction cialized personnel. For example, while interacting at-home through

a monocular front facing camera, the user may encounter harsh
Photorealistic avatarized telecommunication, interactive AR/VR self-shadows (for example, shadows cast by the nose or by the su-
experiences and unobtrusive special effects for professional and perciliary arch on the cheek), multicolored illumination or highly
consumer applications (e.g. selfie filters) require accurate face re- reflective skin conditions. Under varied conditions, consistent recon-
construction without specialized scene capture and subject/actor struction of face attributes, while avoiding self-shadows biases, etc.
constraints. In several such in-the-wild scenarios, users lack access is required. The method should work without manual intervention

to high quality and expensive camera and lighting hardware, or spe- due to consumer constraints, while the reconstruction quality is on
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par with professional face motion capture systems.

Monocular image-based face reconstruction with meaningful at-
tributes estimation is hard due to its under-constrained nature. Given
a face image, its pixel’s final color values can be explained by sev-
eral factors — face shape, skin reflectance, camera position, or light
color(s). This ambiguity makes it difficult to consistently estimate
attributes. Unknown and unconstrained illumination conditions and
consequent face self-shadows further add to the complexity. Our
aim is to handle such scenarios using only monocular face images,
while maintaining face reconstruction quality. This setup alleviates
the need for specialized hardware and light requirements, that opens
up avenues for movie production and VFX industry scenarios.
Face reconstruction methods [ZTB*18,TL18,TBG*19,SBFB19]
estimate geometry based on parametric face models — 3D morphable
model (3DMM) [EST*19]. Such methods assume Lambertian skin
reflectance [AS™*12] with distant light illumination, where the in-
coming radiance is a function of direction. Under this assumption,
spherical harmonics [RHO1] have been widely used to model scene
illumination. These methods do not model self-shadows. The pro-
jected face shape’s geometry-patch corresponding to color saturated
(due to shadows, albedos, illumination) pixel patches can lead to un-
natural geometric deformations and inconsistent attribute estimation.
More recently, [SYH*17,YS*18,SSD*20,LMG*20] introduce spec-
ular reflectance modeling based data-driven priors, however, they
do not explicitly handle self-shadows. While, more complete con-
trolled face reconstruction methods [DHT*00, GCP*09, GRB*18]
exist, such methods are not applicable for at-home consumer, unob-
structed and live performance capture scenarios, due to extensive
hardware requirements, and set pre-conditions.

Our objective is 3D face reconstruction with explicit separation
of face attributes — skin reflectance (diffuse, specular and rough-
ness), 3D geometry (identity and expression), pose and illumina-
tion — from input images. To this end, we use statistical 3DMM
to model base face geometry, diffuse and specular albedos priors,
along with Cook-Torrance bidirectional scattering distribution func-
tion (BRDF) [Sch94] to model skin reflectance. Each vertex on
the geometry is characterized by diffuse, specular and roughness
parameters; illumination is modeled via a novel virtual light stage
with parameterized lights. We also obtain personalized albedos, that
refine the statistical 3DMM-based initial estimates. Modeling pa-
rameters are used to synthesize an image using differentiable ray
tracing, that also obtains self-shadows. Input and synthesized im-
ages are used to minimize a photo-consistency loss in two stages,
where each stage minimizes a subset of the parameters. We note
that although more accurate and complete reflectance modeling ap-
proaches [WMP*06] exist, given the quality and nature of input
images, the Cook-Torrance reflectance model suffices for our recon-
struction needs.

Face attribute reconstruction from monocular images is highly non-
linear, our experiments show that naively optimizing all the param-
eters jointly can lead to poor results. Optimized jointly, specular
albedo may get baked into diffuse albedo, shadows, etc. Thus, a
better strategy for attributes reconstruction is required. We introduce
a two stage optimization (Figure 2), where in first stage, similar
to [GZC*16,SSD*20] we optimize the pose, illumination, geometry,
diffuse and specular albedos, statistically regularized by the 3DMM,
while specular roughness remains fixed. Due to ray tracing, the in-
terplay between estimated geometry and illumination helps extract
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Figure 2: System Overview: Our method is divided into two stages.
In Stage I, for an input image, geometry (pose, identity and expres-
sion), statistical diffuse C and specular S albedos and light stage
illumination attributes are optimized. During this stage, the self-
shadows are estimated as well. In Stage 11, personalized diffuse C
specular S and roughness R attributes are estimated. Stage Il takes
into consideration attributes estimated in the previous stage.

self-shadows. At this stage, person specific (from input image) face
attributes such as facial hair, moles, etc. are not estimated. In second
stage, we extract unconstrained diffuse, specular and roughness that
captures person specific facial details not modeled via statistical
diffuse or specular albedos. This staged optimization strategy adds
structure and makes the under-constrained optimization problem
tractable, leading to superior reconstruction vs. the naive approach.
To summarize, the main contributions of our work include:

e A novel virtual light stage formulation, which in-conjunction
with differentiable ray tracing, obtains more accurate scene illu-
mination and reflectance, implicitly modeling self-shadows. The
virtual light stage models, the switch from point to directional
area lights and vice-versa, Sec. 3.

e Face reflectance — diffuse, specular and roughness reconstruction
that is scene illumination and self-shadows aware.

e A robust optimization strategy that extracts semantically mean-
ingful personalized face attributes, from unconstrained images,
Sec. 4.

To demonstrate the efficacy of our approach we provide several
results (Sec 5), ablation (Sec 6) and extensive comparisons (Sec 7)
against state-of-the-art methods, where geometric, diffuse and spec-
ular albedo estimates are compared. We also compare the proposed
light-stage formulation against high-order spherical-harmonic light
modeling. Since our method provides fine control over the face
attributes, it leads to several style edition and transfer applications
(Sec 8) such as face portrait relighting, illumination transfer, specular
reflections and self-shadow editing, etc. Scenarios such as chang-
ing face pose with accurate resultant self-shadows, or changing
illumination, or addition of face rexture filters, while maintaining
original specular albedo (Figure 1), are possible. Finally, in Sec 10
we conclude with limitations and future works.
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2 Related Works

Face reconstruction from single, multi-camera images, videos or
time-of-flight depth data, is a classic computer vision problem,
where the goal is accurate geometry and reflectance reconstruc-
tion. With rapid progress in mobile camera technologies, selfie-
photography, social media, and telecommunication applications,
single camera face reconstruction approaches has gained special at-
tention. Camera depth ambiguity, capture conditions, non-convexity
of face shapes, reflectance properties of human skin, shadows, and
illumination conditions make monocular face reconstruction ex-
tremely challenging. Several methods have been proposed, that
solve for a subset of the face attributes — 3D geometry (neural shape
and expressions), pose, diffuse, specular, roughness and illumination
(including self-shadows).

Geometry and Reflectance Modeling. [BHB™ 11] presents multi-view
camera and controlled illumination based photogrammetric method
that produces high-quality (includes mesoscopic face details) tempo-
rally stable face geometries. [WVL*11, VWB*12] propose a stereo-
image methods for face reconstruction and shape-from-shading
based geometry refinement. [GHP*08] captures high-fidelity and
multilayered face reflectance using (single camera) multiple images
without other external hardware. [GFT*15] captures high quality
face geometry and reflectance (diffuse, specular) via a multiview
camera setup. More recently, [RGB *20] present a lightweight low-
cost rig for high-quality acquisition of facial geometry and appear-
ance with fine-scale pore details.

Photogrammetric and external hardware based approaches provide
extremely accurate results, but add constraints on the capture scenar-
ios: multi-view cameras, extensive illumination setups, or lighting
conditions (e.g. no self-shadows) for optimal capture. With such
approaches if a single camera is used, the reconstruction formulation
has infinite deformation degrees-of-freedom, making the problem
infeasible. Thus, such methods are not applicable for in-the-wild
monocular images. Most of these methods do not model specular
reflectance and assume a diffuse skin reflectance model.

In-order to use unconstrained monocular images, statistical priors
have been introduced [ZTB*18]. Such priors add structure to the re-
construction formulation. 3D Morphable Models (3DMMs) [BV99,
LBB*17,EST*19] use facial scanning hardware to capture ground-
truth geometry and (diffuse) reflectance. Later, dimensionality reduc-
tion method such as principles component analysis (PCA) is used
to create linear parametric models. [GVWT13,SKSS14,GZC*16]
introduce optimization formulation for geometry (and diffuse) re-
flectance reconstruction, where 3DMM based priors act as optimiza-
tion regularizer. They estimate camera parameters and minimize
photo-consistency losses based on input images. Such methods also
use sparse face image features such as landmarks [SLC11], that
regularize the optimization against local minima. In-order to sep-
arate neutral face shape from expression, FACS [Ekm97] based
blendshapes PCA models are used. These methods work well for
controlled scene conditions, and often do no generalize well for
in-the-wild images scenarios. Where they can bake shadows, specu-
larity into diffuse albedo and vice-versa.

[LZL14] extracts diffuse and specular albedos from a single im-
age using Spherical Harmonics (SH) illumination, however, they
do not model explicit self-shadows. [TZK*17, TBG*19] use self-
supervised autoencoders and inverse-rendering architectures to in-

fer 3DMM’s linearized semantic attributes. Nonlinear face geom-
etry models such as mesh autoencoders [RBSB18] and CNN en-
coder [TL18] have also been proposed. Using high quality face
datasets and novel deep learning algorithms, [SWH*17, LKA*17,
BWS™*18] show vast improvements in geometry reconstruction.
[HCS*18] shows further improvements by inferring mesoscopic
facial attributes given monocular images, an attribute we do not
model in our reconstruction approach.

True human skin reflectance capture and reconstruction is a hard
problem and several BRDF-based [NRH*92] formulations have
been proposed. [T*98, DHT*00, WMP* 06, ARL* 10, GFT*11] pro-
pose extensive measurement systems, structured light setups and
data-driven methods. While such approaches lead to highly accu-
rate skin (diffuse and specular) reflectance modeling, they require
controlled capture conditions and extensive calibration. Our aim,
instead, is to robustly extract face attributes from unconstrained
images, where a highly accurate skin reflectance models may not
be applicable due to the low quality of input images. [GRB*18]
provides a more practical approach to model skin reflectance and
ambient occlusions-based shading. Although their setup is less exten-
sive than other approaches, it still requires a controlled multi-view
and multi-light illumination setup for reflectance modeling.

Most face reconstruction approaches rely on a lightweight paramet-
ric skin reflectance model using linear Lambertian models, where it
is assumed that skin does not have specular attributes. This simpli-
fication has shown great success for face reconstruction [GZC* 16,
TZK*17,SKCJ18]. Recently, [YS*18,SSD*20,LMG™*20] add spec-
ular (without roughness) reflectance modeling from unconstrained
images, as a result the extracted face models have better attribute
disentangling. These methods are more robust against strong self-
shadows and specular reflections in input images. However, as dis-
cussed in Section 7, they do not fully estimate face attributes under
several illumination scenarios and bake these attributes in diffuse
and specular albedos. While [YS™18,LMG*20] infer geometry and
reflectance, but not the illumination. Self-shadows baked into the
albedos can be observed, whereas we model self-shadows implicitly.

Illumination modeling. Scene illumination can be modeled via light
probes [RHD*10, LYL*16], environment maps [HSLO1], sparse
mixture of spherical gaussians [KSES14], and illumination model
relying on Spherical Harmonics [RHO1] that assume Lambertian re-
flectance. While illumination capture requires specialized hardware,
having a linear illumination model limits attributes separation such
as self-shadows. Most approaches assume that illumination is mostly
uniform resulting in self-shadow being baked into albedo attribute.
One way to approach this limitation is to mask shadowed patched via
occlusion maps, and use GANs [NSX*18] to fill-in the albedos. We
approach this problem from a different perspective, similar to initial
experiments by [DBA*19] a novel parameterized virtual area light
stage is introduced that simulates real world illumination conditions.
This illumination model is used together with ray tracing, that im-
plicitly models self-shadow attributes. Consequently, it reconstructs
geometric patch’s reflectance separating incurred shadows (Sec 3.3).
To the best of our knowledge, the proposed method is the first to
estimate reflectance (diffuse, specular, roughness), illumination, and
self-shadows robustly from monocular images.

Applications. High-quality face reconstruction leads to several use
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cases for consumer and movie production scenarios. While quality
face tracking has several advantages, such as reenactment, realis-
tic virtual avatars [SSKS17, KGT* 18], attributes separation opens
up new possibilities. Photoshop-like applications for face portrait
touch-up have been proposed. For example, [SPB* 14] shows how
style from one image can be transferred to another employing image-
based methods for style transfer. [SHS*17] proposes a method for
illumination transfer from source to target images, while [SBT*19]
describes a method for portrait relighting. More recently, [ZBT*20]
proposes a method for foreign shadow removal from images. Since
our method can separates several face attributes, it makes many such
applications feasible, as discussed in the paper.

3 Face Modeling Formulation

Overview. We propose a practical formulation to model and recon-
struct face attributes. Sec 3.1 describes geometry modeling, and
Sec 3.2 describes parameterized reflectance model for diffuse and
specular albedo modeling using statistical priors and Cook-Torrance
model for personalization. Sec 3.3 introduces our novel parameter-
ized virtual light stage for scene illumination modeling with differ-
entiable ray-tracing. These parametric attributes are then formulated
in Sec 4 into an optimization, and solved with a new two-stage
optimization strategy (Fig 2).

3.1 Geometry Modeling

Similar to [GZC™16], geometry is modeled via 3DMM and photo-
consistency loss. This loss is regularized via a sparse set of face
landmarks, where we employ state-of-the-art 2D landmarks estima-
tion [BT17]. This sparse landmark loss (Section 4), helps regular-
ize against local minima where photo-consistency loss is under-
constrained, especially under low light, heavy specular or self-
shadow conditions. We use [BV99, GMFB*18]’s statistical face
model, where identity is given by e = a; + X 0. e a vector of face
geometry vertices with |e| = N. The identity space is spanned by
¥, € R3VXKs composed of Ky = 80 principal components of the
identity shape-space. o € RX describes weights for each coefficient
of the 3DMM and a; € R is the average face mesh. We model face
expressions over the neutral identity by e via linearized blendshapes
v =e+ X0, where v is the final vertex position displaced from e
by weight vector & € R and ¥, € RV*K containing K, = 75
principal components of the expression space.

Camera model. We use a pinhole camera model with rotation
R € SO(3) and translation T € R®. We assume the camera is always
centered at the origin and I'(v;) = R™! (v; — T) is the transformation
that maps a vertex v; € R to the camera coordinate frame. IT is the
perspective camera matrix that maps a 3D vertex to a 2D pixel.

3.2 Reflectance Modeling

We use Cook-Torrance BRDF [CT82, WMLTO07] to model face skin
reflectance, that defines for each geometry vertex v;: a diffuse (color)
c € R3 , specular s; € R3 and roughness r; € R albedos. The BRDF
model that defines how the incoming light is reflected on the surface
geometry is given by:

fr(sivrivci7ni7|7o) :fd(ci)+f5(si7ri7ni7l3o) (1)

fu is the material term for diffused light in all directions. f; is the
specular term for light reflected for a given viewing direction. In

Virtual Light stage Parameterized Area Lights

Unwrapped Config.

Figure 3: Left: Our virtual light stage has an icosahedronic geo-
metric construction. Middle: From each of the twenty faces of the
icosahedron, we create: parameterized area lights Y; with intensity
i, surface area aj, position d; and distance to the origin d . Right:
Unwrapped representation of the icosahedron.

contrast to Lambertian BRDF model, the Cook-Torrance BRDF al-
lows us to model specular highlights on the skin’s surface. n; € R3 is
the normal at vertex v; and | € R is the incident area light direction
(Section 3.3). o € R? the view direction pointing to the origin of
the pinhole camera. For a quick refresher on f,; and f; reflectance
modeling, we refer interested reader to the supplementary material
(section A).

The statistical diffuse albedo c € R* is derived from 3DMM as
c=ar+ X,B, where ¥, € R3N*Kr defines the PCA diffuse re-
flectance with K, =80 and p € RX" the coefficients. a, is the average
skin diffuse reflectance. Similarly, we employ the statistical specular
prior introduced by [SSD*20] to model the specular reflectance:
s = ap + XY where ¥, € R3N*K defines the PCA specular re-
flectance with K, = 80 and y € RX as the coefficients. ap is the
average specular reflectance. Note that, [SSD*20] recommends
using Y = B, however, we use separate parameterization with regu-
larization that leads to similar results with more flexibility.

In unwrapped (UV) image texture space, C € RYXM>X3 and S e
RMXMX3 are the statistical diffuse and specular albedos, respec-
tively. R € RM*M defines roughness (no given statistical prior),
with M x M texture resolution. For each projected vertex onto the
texture, C,S and R describes the interpolated (r,g,b) color, spec-
ularity and roughness factors for vertex v;, where, statistical dif-
fuse albedo ¢; = C(u;, v;), statistical specular albedo s; = S(u;,v;),
roughness r; = R (u;,0;). {1;,0;} € [0, 1] is projection of vertex v;
onto UV space.

Image-based Personalized Albedo. In Stage I (Section 4), statisti-
cal diffuse C and specular S albedos are constrained by 3DMM. In
Stage II, we personalize albedos using the input image to capture
person specific details — facial hair, moles, coloration, and oiliness.
Thus, Stage II refines the initially estimated (Stage I) albedo for
unconstrained diffuse C, specular S, and additionally roughness R.

3.3 Illumination Modeling

Introduced by [RHO1], spherical harmonics (SH), is a method for
illumination modeling (assumes light at infinity) with Lambertian
reflectance. [DHT™00] introduces a method to capture scene light,
that can be used as an environment maps for image-based light-
ing. [GGSC96] introduced Lumigraph, to model a complex 4D
plenoptic function that describes the flow of light at all positions in
all directions for a given scene. Some of these methods require phys-
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ical apparatus, some are parametrically complex, while others intro-
duce material modeling limitations. In our initial experiments, we
formulated illumination modeling using both higher-order SH and
environment maps. However, these methods result in sub-optimal
self-shadows modeling, and attribute disentangling (see Section 6).
For our problem, we need a lightweight yet flexible, parametric
scene illumination approach that can not only approximate incom-
ing light, but also model bright, dim, non-uniform, multi-color il-
lumination over non-convex face geometry. Moreover, unlike SH
and environment maps, we want to model semantically meaningful
light configurations such as point, area, and directional. Thus, we
introduce the virtual light stage illumination model. For physical
face geometry capture, structured light approaches [GCP*09] exist,
such methods build physical rigs, known as light stages, with pro-
grammable lights and cameras. Inspired from light rigs, we form our
virtual light stage that loosely simulates these physical structures to
model scene illumination.

To model incoming light on face geometry, we explore various geo-
metric configurations such as a tetrahedron, octahedron, icosahedron
and spherical — convex 3D manifolds. Such configurations’ triangles
can be thought of as area lights, directed towards the manifold’s
origin. In our experiments, we observe that these light stage con-
figurations practically satisfy the requirements for inctoming light
needed for face modeling. During our nascent explorations, we tried
very simple structures such as a tetrahedron with four area lights,
and more complex geometries like discrete sphere with eighty area
lights. Along the various geometric structures, icosahedron provides
optimal complexity for illumination modeling. See Section 6 for
comparisons and Supplementary material for various configurations
and resultant face reconstructions.

Virtual Light Stage. A virtual light stage with area lights v;,
j €{1,...,20}, an icosahedron is shown in Fig 3. The shape, size
and position of the area lights are derived from the face triangles of
the icosahedron. Each area light, modeled independently, has the
following parameters: distance d; € R from the face geometry (at
the origin), relative surface area a; € R, local position p; € R? of
the light center in barycentric coordinates within the face triangle,
and perceived intensity i; € R3. We define vj ={dj,a;,pj,ij} as
the set of parameters for an area light. Each light can be switched-off
by setting the perceived intensity parameter i; to zero. The physical
intensity |; € R used for illumination is given by:

I = Li; @

Here, the surface area a; of the light is relative to the face triangle’s
area. a; is bound between 0 — corresponding to a point light, and
1 — maximum surface area of the face triangle. This parameter set
has been chosen to better decouple the light parameters. With the
standard illumination equation, the light influx reaching an object
depends on the physical intensity, distance and size of the light. But,
our formulation decouples these parameters and makes it possible
to operate only on a single light parameter without effecting other
parameters. These variables are orthogonal, and ease the optimiza-
tion. Without this orthogonal representation, if the effect of a light is
too strong, the optimization would have several degrees-of-freedom
to change intensity, such as position, size of the light, etc., while, in
our formulation, only parameter i; is needed to modify intensity.

During the initialization, an area light is positioned at center of
each triangle of the light stage icosahedron. Each light y; can move
according to its distance d; from the geometry center — its size re-
maining proportional to d;. a; and p; are used to control position
and size of each light y; within the surface defined by the homothetic
face — the icosahedron face scaled by d ;. Thus, the area light remains
parallel to original icosahedron’s face. A soft box constraint ensures
the area lights stay within these homothetic faces (see Section 4).
The position and size of the area light control incident light beams,
and thus determine the position and the appearance of self-shadows —
soft or hard, and specular reflections. When the lights share identical
parameters, they are uniformly distributed over 3D angular space;
in this case, the model can approximate uniform illumination. The
surface of an area light can also become small enough to approxi-
mate point light sources.

Shadows approximation. In Section 4, we introduce our optimiza-
tion formulation that relies on differentiable ray tracing for image
synthesis. By varying the number of ray-bounces against scene ge-
ometries and subsequent indirect illumination, self-shadows can be
modeled. That is, gradient of shading for a geometric face is depen-
dent on the ray bounces that contribute to incoming light on a face.
In our formulation, since we have no information on scene geometry
(other than the human face), we do not model indirect illumination
due to lack of geometry to bounce-off from. We avoid self-geometry
bounces, as in our experiments, it did not lead to substantial gains
in accuracy. By using area lights that can be turned on or off, and by
controlling their intensity, position and surface area, we are capable
of modeling several illumination and self-shadow scenarios.

4 Optimization

Our goal is robust face reconstruction via geometry (pose, iden-
tity and expression), reflectance (diffuse, specular, roughness) and
illumination estimation. With unconstrained illumination the opti-
mization can become under-constrained, we therefore resort to a
carefully designed two staged optimization strategy. In each stage,
Figure 2, we select a subset of the face attributes. Our analysis-by-
synthesis approach consists in synthesizing an image using param-
eters § = {®,a,,B,Y,R, T} (where ® = {d,a,p,i} are the light
stage parameters) using differentiable ray tracing [LADL18]. This
minimizes a photo-consistency loss between synthesized 7% and
real % images on per pixel basis:

S
Epn() = Y 1P (1) — pF| 3)
i€l
Here, pis , p,R e R are ray traced and real image pixel colors, respec-

tively. Rendered pixel colors are given by piS =F(w,0,8,B,v,R,T),
where F is the Monte Carlo estimator of the rendering equation
[Kaj86]. We also define a sparse landmark loss that measures the
distance between the projection of L = 68 facial landmarks and their
corresponding pixel projections z; on input image:

L
Etana(X) = Y _ [T L(v}) — z[3 @)
=1

The sparse landmark loss regularizes the optimization against local
minima occuring when photo-consistency loss is ambiguous.

Optimization strategy. We introduce a two-stage optimization strat-
egy, where Stage I uses statistically regularized albedo priors and
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Figure 4: For each image we show the final optimization result with the estimated parameters: illumination (with estimated self-shadows),
diffuse, specular albedo and roughness.

Stage II optimizes unconstrained albedos:

Stage I. We optimize camera parameters I" and blendshape coeffi-
cients using the landmark loss (Eq 4). After this pose and expression
initialization, we introduce the optimization for statistical albedos
(B and ), face geometry and expression (a, d), illumination (®), and
camera (R, T), while other parameters — specularity S, roughness
R and diffuse albedo C — remain fixed. The statistical albedo and
virtual light stage illumination model guide the optimization and
avoid mixing intrinsic albedo and illumination. The loss is:

argmin  E4z(x)+ Ep(o,B,y, )+ Ep(Y,0) )

(@,0,3,8,7.R,T)

With E4(X) = Epn(x) + 01 Ejana(x) and Ep(.,B,v,®) is a prior
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that ensures optimization tractability and given by Ep(a.,B,Yy) +
wy Ep(®). Ep(a,B,y) is the statistical face (shape and albedo)
prior that regularizes against implausible face geometry and re-
flectance deformations, and given by E,(a.,B,y) = w; ZkK;l (%;) +

we Xk ( 5; )+ ws L2 (&), o, Op, and oy, are the standard de-

viations for shape, diffuse and specular albedo, respectively. Light
intensity regularizer E,(0) = 21}/1:0 [|1; —mj] 2, where m ;j is mean
intensity of the ;' h light. We observe that the final illumination is sen-
sitive to weight w1, where high value for w; leads to monochromatic
illumination, while smaller values favor multi-colored illumination.
For all our experiments, we use wi = 0.01, that helps model various
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Figure 5: Left: Consistency of the estimated light for different subjects under the same lighting condition. Right: Consistency of the estimated
diffuse albedo for the same subject under different lighting conditions and poses. Right: Stage 1I, C2 refines the estimated priors of Stage I, C1
and capture person specific facial details in the final diffuse (red), specular (blue), roughness (green) albedos. Even under strong directional
light (second row), our method successfully captures the shadows and produces shadows-free personalized albedos.

illumination scenarios and avoids baking albedos into illumination.
Finally, E, (8, ®) is a box constraint that restricts 8 to range [0, 1].
d;j>0,a; >0,i; > 0and p; ensure that the area lights stay within
the homothetic icosahedron faces.

Stage II. Albedos obtained in Stage I captures the base diffuse and
specular statistical albedos. In this stage, we capture personalized
face skin attributes — diffuse C, specular S and roughness R. We
use optimized C and S to initialize personalized albedos ¢, S, and
uniform initial roughness R with loss:

W4(Em(@) +En(8) +En(R)) + (Ep(S) +Ep(R))  (6)

Here, § = {0,0,8,C,S,R,R, T} is new parameters set and E;(S)
(resp. E5(R)) is the soft box constraints that restrict the specular
(resp. roughness) to remain in an acceptable range [0, 1]. En(C)
(resp. Em(S) and Ex(R)) is a constraint term that ensures local
smoothness of each vertex, with respect to its first ring neighbors in
the UV space, and given by E;,(C) = L,eNs, [1(C(x,) — (x5
where N is 4- plxel nelghborhood of pixel x;.

Es(C) = Yiem |C(xi)) — £1ip(C(x;)))|1 is a symmetry constraint,
where £1ip() is the horizontal flip operator, similar to [TL18].
EC((f ,C) is a consistency regularizer that weakly regularizes the op-
timized € with respect to the previously optimized statistical albedo
C based on the chromaticity ¥ of each pixel in the texture, given by,
Ee(C.C) = Tien k(C(x:)) — x(C(x:))|1- Es(C) and Ec(C,C) help
prevent residual self-shadows or specular reflections to bake into the
diffuse albedo (same reasoning applies for E4(S) and E¢(S,S)).

Intuitively, when the side of the face is under a shadow, the estimated
shadow due to illumination approximation (Stage I), may not fully
estimate the real shadow in the input image, while Equation 6 tries
to extract meaningful information from the image. Thus, a residual
shadow, not fully estimated due to illumination approximation, can
get baked into C. Es (é) is a symmetric regularizer that prevents
baking of the residual shadow into ¢é, penalizing for a image-based
imbalance between the two sides of the face. Ec(C,C) the consis-
tency regularizer, makes sure that diffuse albedo is closer to the
statistical diffuse albedo, than the self-shadow’s chromaticity.

We note that although the method can be iterated over the Stage I
and II, this iteration did not provide substantial improvements in the
final results or refinements in disentangling.

Edge Sampling. An important limitation of differentiable ray trac-

ing is the discontinuities present around geometric edges. That is,
when solving for the rendering equation [Kaj86] via Monte Carlo
ray tracing, very few points on the edge of the geometric shape are
sampled, causing a discontinuity along the edges. As a result, back-
propagation based gradients calculation fails to take into account
sensitive information along the geometric edges. Consequently, the
gradients on the edges remain noisy, and optimization does not use
the frue gradient during an iteration, especially while optimizing for
affine transformations and geometric shape change.

One solution is to use high number of sample points for sampling
along edges. However, this is computationally infeasible. Several
techniques [LHJ19, LADL18] have been proposed to overcome this
limitation. In our work, we rely on [LADL18]’s technique to explic-
itly sample the geometry edges — a costly yet mandatory operation
needed for correct geometric shape estimation.

Variance Reduction. Another aspect when using differentiable ray
tracing is image variance due to Monte-Carlo random sampling.
Choosing an appropriate sampling strategy can drastically reduce
this variance. While, a naive increase in the number of samples can
reduce the variance, it is computationally expensive. We use impor-
tance sampling [PJH16,LADL18] with 16 samples/pixel and then
apply Gaussian smoothing over the synthesized image with a kernel
of size 3 X 3 and ¢ = 1. Due to this smoothing operation, variance
is considerably attenuated and optimization converges faster.

5 Results and Implementation

We created a dataset of images with various illuminations, self-
shadows (hard and soft), ethnicity, facial hair, skin types, expressions
and poses to assess the robustness and quality of the reconstruction,
Figure 4. For each subject, we show the final reconstruction, along
with the estimated reflectance (diffuse, specular and roughness),
estimated illumination and self-shadows. Subjects 1-5 (Fig 4) and
2™ and 3 subjects in Fig 1 shows disentangled attributes of neutral
face shapes, expressions, shadow-free albedos and light directions,
under challenging lighting conditions.

For Subject 1, the optimized light produces sharp shadows, true to
the input image. Subjects 3 and 5, show reconstruction from gray
scale input images. Here, a blueish light estimate compensates for
the red and yellow components and produces a final gray-scale result
similar to the input image, and a meaningful diffuse albedo is also
reconstructed (similarly for Subject 12). In addition to handling
hard shadows, we show in Subjects 6-8, the ability to produce
soft shadows. For Subject 6, we get a fair reconstruction under a
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Figure 6: From left to right. Cl: Input image C2: Results obtained by our method C3: Results obtained by using spherical harmonics (SH)
3-bands C4: Results obtained with SH 7-bands C5: Reconstruction using an environment map C6 : Reconstruction using a fixed light stage

directional light. Subjects 9-11, 15 have visible specular areas on
their faces. Our method successfully extracts specular highlights
seen in specular and roughness reconstructions.

Subjects 12-17 show reconstructions for people with various skin
pigmentations, colorations, facial hair and ethnicities. Our method
captures person specific details in the optimized diffuse albedo.
Subject 18 (from [ZBT*20]), with challenging lighting conditions
is shown, where the face is lit by incoming light from the bottom
right T and a hard shadow on the subject’s nose. The estimated light
captures this shadow and produces shadow-free albedos. Subject
19 is a failure case from [ZBT*20], our method provides a good
estimate of self-shadows (especially under the eyes).

Implementation Details. Our framework is implemented using
PyTorch [PGC*17] with a GPU enabled backend (NVIDIA GeForce
RTX 2080 GPU and Intel i7 9800X). Ray tracing is based on the
method of [LADL18], and for optimization we use Adam [KB14]
with default B; = 0.9,B, = 0.999 and o; = 1. In-order to weight
all parameters equally during the optimization, we use different
learning rates (1r) for each parameter. For light stage parameters
we use 1r = 0.001, for statistical albedo 1r = 0.02 and for shape
identity 1r = 0.01. Camera rotation, translation and blendshapes
use 1r = 0.001. Finally for the diffuse, specular and roughness, we
use 1r = 0.005. For regularization we use w; = 0.0025, we = ws =
0.0025, w; =0.01, wp = w3 = 0.3 and wq = 0.0002. The processing
time of our method depends on input image resolution. An image of
resolution 512 x 512 takes about 6.4 minutes (wall-clock time) for
the full optimization, where Stage I takes 5.1 minutes and Stage II
takes 1.3 minutes.

6 Ablation Studies

We show ablation studies on comparison against fixed light stage
and the importance of the Stage II to capture personalized skin re-
flectance. We refer the reader to the supplementary material (section
B) for additional ablation studies on the choice of geometries for
the light stage.

We validate the importance of our parameterized virtual light stage.
A fixed light stage is created, where the light intensity I; is now
a parameter — not dependent on d; or a; — fully unconstrained.
The light surface-area and position are fixed and not optimized and
only the light intensity is optimized. We observe that this optimiza-
tion formulation gives less accurate shadow estimation and leads

T See supplementary video for shadow edition results.

to suboptimal light-albedo disentangling (Figure 6, C6). Adding
structure to | ; parameterization (Equation 2) leads to substantially
better results as shown on Figure 6, C2. Figure 5 (left), discusses
the effectiveness of Stage II personalization to refine over Stage I's
result. Figure 5 shows the consistency of the estimated light and
albedos under various input image and subject conditions.

7 Comparisons

Geometry and Albedo. We compared the geometric reconstruc-
tion error against state-of-the-art methods, [TZK*17], [TLL19],
[CCZ*19], and [LMG™20], where twenty four ground truth geome-
tries from [GZL18,PJY *19] are used. Our method outperforms these
methods and the results are available in the supplementary (Sec-
tion D). We also compare against state-of-the-art methods [YS*18],
[SSD*20]* and [LMG*20], that extract both diffuse and specular
albedos (Figure 7). Note that methods [YS* 18] and [LMG*20] does
not model scene illumination and directly infer skin reflectance at-
tributes, so we do not have their final image render. For the same
reason, without given illumination, their methods can bake some
self-shadow information into the estimated diffuse and specular
albedos, as highlighted (in blue) in Figure 7.

We note that [YS*18] and [LMG®*20] estimates displace-
ment/normal maps while our method does not. This requires high-
quality and well lit input images (as reported by authors) for optimal
results. Additionally, [LMG*20] estimates reflectance maps for full
face head in the UV space, whereas our method restricts recon-
struction to frontal face only. [SSD*20] estimates light (three bands
spherical harmonics) but, may not correctly estimate personalized
reflectance outside the statistical albedo space. A complete catalog
of comparisons against these methods is available in the supplemen-
tary material (section C). Additionally, we also compare our method
with [TZK*17,TLL19,SKCJ18], see supplementary (Section C).

Digital Emily. In Figure 8, we compare our method with the ground
truth (GT) data from the Digital Emily [Emil7] project. In addition,
we compare quantitatively, our image reconstruction quality against
state-of-the-art (see Table 1). For each method, we compute SSIM
(max: 1.0) and PSNR (dB) scores for final render, Ground-Truth
(GT) diffuse, and GT specular image pairs (GT roughness not com-
pared due to unavailability). Each image is rendered from the GT
camera space using a mask depicted in Figure 8 (bottom-left). As
shown in Table 1, our method provides images with the highest

1 Using https://github.com/waps101/AlbedoMM
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Figure 7: For each subject (left to right), we compare final reconstruction, diffuse, specular, and roughness albedos with [YS* 18, SSD* 20,
LMG™20]. [YS* 18, LMG™20] final reconstruction is not available as their method do not estimate scene light; none of the other methods

explicit estimate roughness.

vs GT Final Final Diffuse  Diffuse  Spec. Spec.
Render (SSIM) (PSNR) (SSIM) (PSNR) (SSIM) (PSNR)
Ours 0.965 36.390  0.722 29.812  0.547 29.670
[YS*18] - - 0.679 30.061  0.604 30.923
[SSD*20]  0.906 35389  0.639 29.006  0.452 28.833
[LMG*20] - - 0.540 28.633  0.516 28.926

Table 1: Final, diffuse and specular albedos in comparison with GT
Maya renders for our, [YS*18], [SSD*20] and [LMG*20]. SSIM
and PSNR (dB): higher the better.

similarities in SSIM for diffuse rendered image. For PSNR (dif-
fuse, specular) and SSIM (specular) [YS™ 18] scores slightly better
than our method. Please note that since each method has a different
UV map parametrization, we did the comparison on the face mask
image renders and not on unwrapped texture space. As [YS*18]
and [LMG™20] do not estimate scene light, so we do not have com-
parison of the final image renders against GT. Finally, we compare
rendered GT images (using Autodesk Maya) against input image and
obtain SSIM = 0.973, PSNR = 36.526. We note that our final image
render vs. input image have scores SSIM = 0.982, PSNR = 41.475
that are closer to the input image.

Spherical Harmonics (SH) vs. Light Stage. In this experiment,
we use Spherical Harmonics (SH) to model light instead of the
light stage (Figure 6). First subject (first row Fig 6), three-bands SH
(C3) provides a coarse estimation of the light, and the shadow is
barely captured, where estimated albedos get some light and shad-
ows baked into it. Seven-bands SH (C4) captures more shadows
but still produces sub-optimal disentangling vs. our light stage (C2).
For the second subject (second row), the hard shadow cast by the
nose was only captured by our light stage while (3 and 7 bands)
SH are visually inaccurate. We also experimented with higher-order
SH band (9 and 11) without substantial improvements, especially
for subject in row two, Fig 6. These experiments shows that using
high-order SH can be used to obtain meaningful shadows estima-
tions, but fails to capture hard shadows produced by point lights
in the scene, and leads to sub-optimal disentangling. Finally, our
parametric light stage models semantically meaningful light types
— point, directional, while basis functions used by SH only model

lights at infinity and are harder to manipulate intuitively (e.g. for
shadow removal applications).

Environment Map vs. Light Stage. In this experiment, we re-
placed the light stage with an environment map to model lighting.
Each pixel in the environment map , 32 x 32 resolution, represents a
light source at infinity, where light intensity of each pixel is param-
eterized. Results for this optimization are shown in Figure 6 (C5).
Because environment map can only model lights at infinity, is not
flexible enough to model arbitrary (e.g area) lights, opposed to the
lightstage, and thus, fails to capture the shadows generated by point
lights (for both subjects) and produces sub-optimal disentangling.

8 Applications

Robust estimation of reflectance and illumination provides explicit
control over these attributes, with several practical applications: re-
lighting, light transfer, shadow and specularity editing, and image
texture filters addition.

Hllumination Edition and Transfer. Figure 1 (right) first column
shows relighting under novel illumination conditions. Second col-
umn, shows results for estimated light transfer, where estimated
light from source image is used to illuminate target subject. Source
image’s self-shadows, due to illumination, are successfully trans-
ferred in the target render.

Shadow and Flash Removal. ** Inspired by [ZBT*20], we show
self-shadow removal application. While, [ZBT*20]’s method can
remove shadows cast from external (foreign) objects; our method
handles self-shadow removal, as shown in Figure 9 (left). In the
accompanying video, we also show demonstration of camera flash
removal for face images, where estimated illumination from first
image replaces estimated illuminations in subsequent image frames.

Albedo Edition and Transfer. Third column in Figure 1 (right) shows
diffuse and specular albedo transfer applications, from thumbnail
source to target image, while the last column shows the result of

** The reader is referred to supplementary video for better visualization
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Figure 8: Left: Comparison of our method with Ground Truth (GT) data of the Digital Emily project. Right: Relighting comparison.

applying a texture filter (using multiplication operator) on the opti-
mized diffuse albedo in the UV space. Finally, in Figure 9** (right),
we show an application where estimated specular albedos can be
edited on portrait images. This is done by gradually decreasing the
estimated roughness, while using a constant estimated base specular
albedo.

9 Limitations and future works

Limitations. Our method relies on sparse landmarks for pose and
geometry estimation. While this works well for several illumination
scenarios, in extreme partial darkness (Figure 10, left), landmarks
estimates and subsequent geometry estimation are less accurate. In
several such cases, human landmarks estimation can also be incor-
rect, thus, a better approach to handle such cases is needed. Our
method does not model external shadows (Fig 10, right), in that
case our method could benefit from a method such as [ZBT*20].
Another limitation of our method is reliance on statistical albedo
priors (Optimization, Stage I) that do not model certain skin tones.
As aresult, non-Caucasian albedos may not be estimated correctly.
The unexplained diffuse albedo can get baked into the illumination,
especially for darker skin tones, as shown in Figure 4, Subject 20.

We note that our albedos (esp. roughness) attributes are view and
input image illumination condition dependent, however, when avail-
able, statistical priors help give meaningful estimates. Here, our
method relies on symmetry, consistency and smoothness regulariz-
ers (Eq 6) to avoid overfitting. In some cases, due to these regulariz-
ers, person specific attributes are not captured. Additionally, while
the consistency and symmetry regularizers (Stage-1I) help avoid bak-
ing shadows in the final albedo, in some cases, when the optimized
light and consequent shadows are inaccurate, some light/shadow
patches may appear in the estimated albedos. Finally, the proposed
light stage may not always recover accurate illumination for certain
illumination conditions. For instance, because we model a single
area light per icosahedron face, in case there are several light sources
in one direction, the light stage may either favor the main light in
this direction or an average of these lights.

Future Works. In the future, we want to extend our approach
with methods such as [LBZ*20], to model mesoscopic geometric
details, [YS*18]. Currently, we use single bounce rays for illumi-
nation modeling due to lack of external scene geometries, a natural
extension is to model multi-ray bounces for softer shadows. Further,
our methods naturally extends to a multi-view face reconstruction
formulation that would help improve attribute estimation quality.
Finally, we plan to extend our method with more complex skin re-
flectance models such as BSSRDF/dielectric materials, [WMP™*06].

Shadow Removal

Roughness Editing

Figure 9: Left: We show self-shadow editing removing resultant
self-shadows (in red) by manipulating optimized illumination to
uniform illumination. Right (Input, optimized, and edited specular
highlights): By manipulating the optimized roughness map, specular
reflections (in green) can be edited.

Landmarks External Shadows
Figure 10: Limitations — left: Imprecise landmarks under extremely
scene illumination produces incorrect geometry reconstruction.
Right: External shadows get baked into albedos.

10 Conclusion

We present a novel and robust face modeling approach, under gen-
eral illumination conditions. A virtual light stage formulation to
model scene illumination is introduced, which, used in-conjunction
with a differentiable ray tracing, makes our method self-shadows
and specular reflectance aware. We then formulate face modeling
as a loss minimization problem, and solve it via a two-stage op-
timization strategy. This strategy systematically disentangles face
attributes, that make the optimization tractable for unconstrained
input images. To validate our method, along with several results, we
provide ablation studies, analysis of various modeling decisions and
limitations. Beyond its accuracy and robustness to light conditions,
the rich decomposition resulting from our approach allows for sev-
eral style — illumination and albedo — transfer and edit applications.
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A Face Reflectance Model

We provide the interested reader the Cook-Torrance BRDF used
to model the human face reflectance. Equations presented here are
based on [WMLTO07]. The Cook-Torrance BRDF models a surface
as small micro-facets where each facet interacts differently with
the incoming light depending on its local normal, roughness and
specular parameters. The BRDF is represented as:

fr(siarivcivni7|7o) :fd(ci)+f5(si7ri7ni7lao) (7)

where, ¢; is the intrinsic albedo color of the surface point. s; € R3

represents the base reflectivity of a point. r; € R is the roughness

term, n; is the normal vector at point v;, | € R? is the light direction

and o € R is the view vector. fa 1s the Lambertian diffuse term:
c

falci) == ®)

o
and f; the specular and roughness (r;) term:

D(h7 ni,ri) * G(h7 ni,ri) >1<F(Si,07 |)
4% (O~ n,-)(l . ni)

f5(5i7ri7ni7|70): (9)

D is the statistical distribution of surface normal over the micro-
surface. In our case, the Blinn-Phong distribution is used, given by:

2

=42 2,
D(h,n;,r;) =1 kh)ri 1
( 1nl7r1) Tw (nl* ) (10)
where h is the normalized halfway vector between | and o:
h— l+o0 an
[[1-oll

G is the bidirectional shadow masking function that describes which
portion of the micro-facet is under a shadow in both directions o and
I. In our case, Smith [Smi67] shadowing masking approximation
is used, that approximates G as product of two mono-directional
shadowing terms:
G(h,ni,ri,o,l)%Gl(ni,o,ri)-Gl(ni,l,ri) (12)

with G| equals to (using [WMLTO7] approximation) :

b _3.835a+2.181’  ip o 16
Gi(niwv,ri) = A=Yy ] TR 2T6ar2 5772 OS] a3
n;-v 1, otherwise,
with a equal to:
1
_ 14
ri-tan(cos—(n;-v) ()
and
1, ifx>0.
A= b ] 15
(x) {07 otherwise >

Finally, F is the Fresnel term that describes the amount of re-
flected light in a given direction. We use Schlick approximation
[Sch94] for F equal to:

F(si,0,l)=si+(1—s;)-(1—0-h) (16)
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Figure 11: Comparison results for different light-stage geometric
configurations. For each subject, we show the estimated shadows
and light direction (represented as sphere environment map).

B Ablation Studies (continued)

Light stage Geometries. We compare different light stage configu-
rations such as tetrahedron (four lights), octahedron (eight lights),
icosahedron (twenty lights) and spherical (eighty lights) shape ge-
ometries, as shown on Figure 11. For the topmost subject, the tetra-
hedon and octahedron light stage geometries fail to capture the
bright area on the face (in the forehead area). The estimated light
direction shows incoming light from the right (see the corresponding
spherical environment map), while real light comes from the top-
right side of the subject. The spherical light stage, provides a good
approximation of the incoming light direction but the estimated
shadows are not as accurate as the one produced by the icoshaedron.
The icoshaedron geometry, produces a high quality self-shadows
approximation that is visually close to the input image, even the
shadows on bottom of the subject’s right eye are captured. For the
second subject, all the light stage geometries provide a good approx-
imation of the input self-shadows. We conclude that the icoshaedron
provides the optimal setup for dataset of images shown in the paper.

C Face Catalogs

On Figure 12, we show comparison of our reconstruction and
estimated face and light parameters with those obtained from
[TZK*17, TLL19]" and [SKCJ18]*. These methods rely on Lam-
bertian reflectance model combined with spherical harmonics (SH)
illumination, neither model self-shadows nor specular reflections.
So, we compare their SH illumination with our virtual light stage
illumination and their diffuse albedo with our estimated diffuse
albedo C. Only [TLL19] estimates a personalized diffuse albedo
similar to our, while [TZK*17] and [SKCJ18] only estimate sta-
tistical prior-based diffuse albedos, Figure 12. Our reconstruction
is self-shadows and specularity aware, and avoids baking these at-
tributes into the diffuse albedo.

In Figure 13, we show reconstruction results compared to [YS* 18]

T Results obtained from authors
1 Using https://github.com/senguptaumd/SfSNet
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Figure 12: Examples of the final, illumination, and diffuse triplets compared to [TZK* 17], [SKCJ18], and [TLL19].

and [SSD*20]. We note again that, [YS* 18] directly regress dif-
fuse and specular albedos from input image and does not estimate
the scene light, so the final reconstruction from their method are
unavailable.

D Geometry Reconstruction Comparisons

Figure 14 shows geometry reconstruction error against state-of-
the-art methods [TZK*17], [TLL19], [CCZ*19], and [LMG*20]
§. Vertex error was evaluated for reconstructed GT geometries pro-
vided by [GZL18] and [ZLLL17]. This 3D face dataset is based
on the AFLW dataset [KWRB11]. The last two images in the sec-
ond column shown in Figure 14 are obtained from the 3DFAW
database [PJY*19], that also provides GT geometries. For a fair

§ Reconstruction geometries were obtained from the authors except
[CCZ*19]

Distances Position Normal

Method Mean Stdev | Mean Stdev
[TZK*17] | 0.299260 0.138 | 0.187251 0.050
[YS*18] 0.254348 0.116 | 0.155058 0.053
[TLL19] 0.173339 0.074 | 0.160323 0.047
[CCZ*19] | 0.290367 0.119 | 0.201893 0.057
[LMG*20] | 0.201139 0.080 | 0.159559 0.045
Ours 0.157435 0.049 | 0.138541 0.044

Table 2: The mean 3D mesh errors — positional and normal, over
all geometry reconstructions (lower is better).

comparison we align all meshes to GT (see Section E for details).
Comparisons show that our method has lower vertex error compared
to others, especially under low light, specular or self-shadow condi-
tions.

Finally, Table 2 shows the mean geometric and normal error for
reconstruction over twenty-four input images. Since, the positional
distance metric does not measure smoothness or bumpiness of the
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Figure 13: Examples of the final, diffuse, and specular triplets compared to [YS* 18] and [SSD*20].
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Figure 14: Quantitative evaluation of 3D mesh reconstructions. For each subject image, the first four columns show the vertex error of
state-of-the-art methods, while the last column shows our results. The vertex errors are color-coded from blue to red, where vertices closer to
the Ground Truth (GT) are more blue.
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reconstructions, we report the normal distance error. The normal
error computes the mean per-vertex unit-normal distance (on the
unit sphere surface) between reconstruction and GT meshes.

E Mesh difference

The mean differences were computed per-vertex for each mesh.
We implement a similar 3D mesh evaluation protocol as described
in [PJY*19]. For computing the mesh difference, we first align the
reconstructed mesh to GT meshes. Several feature points (sparse
correspondence) are defined on both GT and the reconstructed face
meshes, where vertices are minimally affected by facial muscles.
With the corresponding sparse points on both meshes, we use a
traditional least-square estimation introduced by [Ume91] to align
the two meshes. After this alignment, we compute the distance from
each vertex of a mesh to the other, and calculate the average of the
distance measured by [MT97].
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