A biased-randomized simheuristic for a hybrid flow shop with stochastic processing times in the semiconductor industry
Títol de la revista
ISSN de la revista
Títol del volum
Col·laborador
Tribunal avaluador
Realitzat a/amb
Tipus de document
Data publicació
Editor
Condicions d'accés
item.page.rightslicense
Publicacions relacionades
Datasets relacionats
Projecte CCD
Abstract
Compared to other industries, production systems in semiconductor manufacturing have an above-average level of complexity. Developments in recent decades document increasing product diversity, smaller batch sizes, and a rapidly changing product range. At the same time, the interconnections between equipment groups increase due to rising automation, thus making production planning and control more difficult. This paper discusses a hybrid flow shop problem with realistic constraints, such as stochastic processing times and priority constraints. The primary goal of this paper is to find a solution set (permutation of jobs) that minimizes the production makespan. The proposed algorithm extends our previous work by combining biased-randomization techniques with a discrete-event simulation heuristic. This simulation-optimization approach allows us to efficiently model dependencies caused by batching and by the existence of different flow paths. As shown in a series of numerical experiments, our methodology can achieve promising results even when stochastic processing times are considered.
Descripció
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works