
ABBA: A Balls and Bins Approach to Secure
Aggregation in WSNs

Claude Castelluccia
INRIA

655, avenue de l’Europe
38334 Saint-Ismier Cedex, France

Claude.Castelluccia@inrialpes.fr

Claudio Soriente
Computer Science Department
University of California, Irvine

csorient@uci.edu

Abstract—Sensor networks pledge to solve many monitoring
problems: thousands of small inexpensive devices can be easily
deployed in any environment and can provide measurements
about diverse phenomenons, such as temperature, pollution, birds
migration, etc. As sensors are low-capabilities, battery powered
devices, several protocols have been proposed to maximize their
lifetime, but only recently research has focused on security issues
such as privacy and integrity: sensors are also very easy to tamper
with and usually deployed in hostile environments, where they
can be easily corrupted by an attacker in order to manipulate
the information provided by the network.
In this paper, we present a novel secure data aggregation protocol
that provides security and integrity for sensor networks using
inexpensive cryptographic tools. Our scheme protects against
both internal and external attackers and balances message size, as
well as energy consumption among network nodes. It provides
the sink with a great amount of information, as it is able to
compute mean, standard deviation, frequency distribution, etc.
of the sensed values, with only one query.

Index Terms—Data aggregation, Privacy, Integrity.

I. INTRODUCTION

Sensor networks are constantly increasing in popularity
in monitoring applications. Sensors are simple, inexpensive,
battery powered devices with small computational power and,
most of the times, wireless communication capabilities. They
also have sensing capabilities to monitor light, seismic waves,
vehicular traffic, etc. [1]. The general model for sensor net-
works [2], [3] consists of a few thousands nodes arranged in
a tree topology rooted at a special node, the sink, that has no
power nor computation constraints. Sensing is triggered by a
query broadcasted by the sink; nodes sense a value and send
their measurements through the tree back to the sink.

Because they are usually deployed in hostile environments
and their replacement might be expensive or impossible, one
of the first research challenges was to design sensing protocols
that minimize the amount of data sent by each node and,
as a consequence, maximize their battery lifetime. A very
popular solution is in-network data aggregation [4]. Most of
the times, the sink is not interested in single measurements
but in a function of them. The main idea is to compute the
function while data traverse the network, avoiding sending
each measurement to the sink. As an example, if the sink
is interested in the mean of the measurements, each node

can add its measurement to the ones received by its children
before forwarding the result to its parent; once the sum of the
measurements reaches the sink, the latter divides the received
value by the number of nodes in the network to get the average.

In-network data aggregation protocols are very efficient in
terms of energy consumption but do not take into account
security issues. Sensor are very easy to tamper with and
cannot be protected by any means when they are deployed in
hostile environments. If a sensor is corrupted, the attacker can
arbitrarily change its sensed value. This is not different from
a faulty node providing incorrect measurements or a properly
working node deployed in an area where an attacker has
modified the environmental conditions; i.e., lighting a match
close to a sensor monitoring temperature, will sensitively
increase its measurement. A very serious threat is represented
by an attacker that corrupts one or more nodes, obtains their
cryptographic materials, and uses them to modify network
messages in order to provide the sink with false measurements.
An adversary can also perform a denial of service attack
blocking messages between sensors, but this kind of attack
is out of the scope of this paper.

We propose a novel network aggregation protocol that
mitigates the problems related to corrupted nodes in sensor
networks. Our solution is based on scalar quantization and the
main idea is to use a bucket with a fixed number of slots,
where each slot represents an interval of the values that can
be sensed in the network. Each sensor, instead of reporting
its sensed value, increases by one the value of one bucket
slot, similarly to voting systems where different bins represent
different choices and users must state their preference inserting
a ball in one of them. Surprisingly, this technique provides
some interesting security features.
Our scheme has been designed with the following goals:
• Privacy - Node measurements should only be revealed to

the sink. No external nor internal attacker should learn
about other sensor measurements.

• Robustness - The sink must be able to detect, with high
probability, malicious manipulation of the sensed values,
even if a small fraction of the sensors in the network has
been corrupted. The probability of detecting an attack

should be proportional to the strength of the attack.
• Low energy consumption - Because sensors are battery

powered and lifetime is a major issue, they must send
a constant number of bits per query, regardless of their
position in the network topology or their proximity to the
sink.

• Computation - Because sensors are not capable of ex-
pensive computations, they should only perform simple
operations such as xor, sum, multiplication, etc.

• Versatility - The protocol must be versatile enough to
allow the sink to compute several functions of the sensed
values, as mean, standard deviation, etc.

The rest of the paper is organized as follows. Section II
surveys related work while section III introduces our scheme,
ABBA. Section IV analyzes ABBA computation and com-
munication requirements, while section V analyzes its security.
Section VI gives conclusion and future work.

II. RELATED WORK

Several proposals have focused on security for low-energy
sensor networks. None but [5] provides internal privacy and
most of them rely on statistical instruments to detect attacks.
Some proposals require much trust in the aggregators, that
become very attractive targets for attackers; others are based
on commit and attest paradigms that require several rounds
and several messages to be sent by network nodes.

Wagner [6] defines the term resilient aggregation to re-
fer to function computations that use aggregation and are
robust against arbitrary changes to a subset of the sensor
measurements. The authors show that some functions, like
min/max computations, are inherently insecure and that a
secure protocol for their computation is not likely to be found
in a constrained environment such as sensor networks.

Castelluccia et al. [5] propose a variant of the one-time pad
encryption scheme to provide privacy using inexpensive com-
putations. Their scheme has very low bandwidth requirements
but does not address integrity issues.

Buttyan et al. [7] introduce a scheme where data is analyzed
by an aggregator, before aggregation is performed. Main
drawbacks are the role of aggregators that become attractive
targets for attackers and the detection algorithm based on value
comparisons, that requires aggregators to have an a priori
knowledge about values that are likely to be sensed.

Hu and Evans [8] propose a protocol based on delayed ag-
gregation: instead of performing aggregation at parent nodes, it
is delayed one level above; this increases bandwidth but allows
detecting single corrupted nodes. Because integrity relies on
intermediate nodes, those close to the sink become more
appealing targets for attackers. In their scheme, corrupting two
consecutive nodes in the tree topology, allows for arbitrarily
changes to all values sensed in the subtree rooted at one of
the two.

Yang et al. [9] introduce a scheme based on a commit
and attest paradigm. In the commit phase, nodes are divided
in groups and each group provides the sink with the group

aggregate, while nodes commit to their measurements. The
sink uses the maximum normalized residual test to decide
which groups provided suspicious results. During the attest
phase, a subset of those nodes are required to provide their
measurements. Because of the outlier detection technique,
the protocol is suitable only to sensor networks where all
groups sense similar values. Moreover, the commit and attest
paradigm requires multiple messages to detect the presence of
an attacker.

Przydatek et al. [10] present another commit and attest
scheme based on Merkle-Hash trees. They design several
protocols for different types of queries. In their scheme much
trust is required in the aggregators, that collect raw data from
the sensing nodes and then engage in interactive proofs with
the sink to prove the validity of committed measurements.
As before, the commit and attest paradigm might involve
several rounds where some nodes are required to provide their
measurements without aggregation.

Sirivianos et al. [11] state the requirements for non-
manipulable aggregator node election protocols. To this end,
they design and compare three secure aggregator node election
protocols, which randomly choose the aggregator node in
a decentralized way. They use lightweight cryptography to
guarantee that no party can manipulate the outcome of the
election process.

III. ABBA

In this section we introduce ABBA, a novel secure data
aggregation protocol for wireless sensor networks that pro-
vides privacy and integrity against external as well as internal
adversaries, using very little additional bandwidth.
The main idea is to define several bins for different sensing
intervals and to demand each sensor to provide its sensed value
adding one ball in the appropriate bin.

Sensed values are divided in k slots, i.e., a bucket B with
k slots is used. Given [0, T [as the range of sensible values,
slot B[j] (j = 0, ..., k − 1) represents the number of nodes
that sensed a value between j · d T

K e and (j + 1) · d T
K e − 1.

An additional slot will be used as checksum, leading to k+ 1
slots.

TABLE I
LIST OF USED SYMBOLS

S The sink
N Number of nodes
T Maximum sensible value
g Security parameter
µ Average of the sensed values
σ Standard deviation of the sensed values
B Bucket
B[q] q − th slot of B
Ui i− th node
Kij Ui’s j − th slot key

CHKj j − th checksum key

Tab. I lists the symbols used in the paper. Each node Ui

shares k+ 1 slot keys, Ki0 , ...,Kik
with S. All nodes share k

checksum keys CHK0, ..., CHKk−1, also known by S. All
keys are supposed to change at every query. Operations in the
checksum slot are modulo g, while operation in the other slots
are modulo N · T .

For each query, a leaf node Ui sensing a value that falls in
the q− th slot, adds its contribution to B[q], i.e., it adds 1 to
the value found in that slot. Also it adds its q − th checksum
key to the checksum slot B[k]. Finally, it adds its slot keys to
each of the slots of the bucket.

In detail, a node Ui senses a value, say V , and runs the
following algorithm:

for j = 0, ..., k − 1 do
if j · d T

K e ≤ V ≤ (j + 1) · d T
K e − 1 then

B[j] = B[j] +Kij + 1
B[k] = B[k] +Kik

+ CHKj

else
B[j] = B[j] +Kij

end if
end for

It then sends the bucket to its parent in the tree.

For each query, a non leaf node Ui receives a message from
η of its children and sums the received buckets, slot by slot. If
the node is also a sensor and not just an aggregator, it runs the
above algorithm on the bucket resulting from the sum. Finally
the node forwards the bucket to its parent in the tree.

Suppose that L nodes answer to a query. When S receives
messages from its children, it sums the received buckets slot
by slot, subtracts the slot keys of the replying nodes and checks
that the resulting bucket is valid. A negative value in any slot, a
number of replying node different from the expected one or an
invalid checksum will cause the sink to discard the received
bucket. The following algorithm is run by S on the bucket
resulting from the sum of the received messages:

for each Ui that has replied to the query do
for j = 0, ..., k do
B[j] = B[j]−Kij

end for
end for
for j = 0, ..., k − 1 do

if B[j] < 0 then
Return: REJECT

end if
end for
Sum = 0
Nodes = 0
for j = 0, ..., k − 1 do
Sum = Sum+B[j] · CHKj

Nodes = Nodes+B[j]
end for
if Sum == B[k] && Nodes == L then

Return: ACCEPT
else

Return: REJECT
end if

Similar to [5], in our solution the sink needs to be aware
of the replying node id’s, in order to subtract the correct keys
from the slots of the bucket. Because wireless sensor networks
are not always reliable, it cannot be expected that all nodes
reply to all requests. Therefore there needs to be a mechanism
for communicating the id’s of the responding nodes to the
sink. The simplest approach, is for the sensors to append their
respective node id to their messages 1.

In what follows, we give a small example of how ABBA
works. The number of nodes in the network as well as the size
of the keys are somewhat unrealistic, nevertheless, we believe
it will help clarifying ABBA operations.

Let us assume three sensors, arranged in a network topology
as shown in Fig. 1. Suppose that possible values range from 0
to 19, that the security parameter is g = 71 and that a bucket
B with 4 slots is used. The left side of Fig. 1 shows the system
parameters, the slot keys that each nodes shares with the sink,
as well as the checksum keys shared among all nodes and the
sink.

The status of the bucket while it traverses the network
towards the sink is shown next to each node. U1 senses a
value in the range [0− 4[and adds 1 to the 0− th slot of its
bucket as well as the 0 − th checksum key to the checksum
slot (1a). Then it adds its slot keys to the bucket (1b) and
sends it towards the sink.

U2 starts with another copy of the bucket; it senses a value
in the range [10− 14[, i.e. it adds 1 to the 2−nd slot as well
as the 2−nd checksum key to the checksum slot (2a). It then
adds its slot keys to the bucket (2b) and sends it to its parent.

U3 adds the buckets received from U1 and U2 respectively
(3a). As it senses a value in the range [10− 14[, it adds 1 to
the 2− nd slot of the resulting bucket, as well as the 2− nd
checksum key to the checksum slot (3b). It then adds its slot
keys (3c) and sends the resulting bucket to the sink.

S receives the bucket (4a) and subtracts the slot keys of U1

(4b), U2 (4c) and U3 (4d), respectively. From the resulting
bucket, S learns that one node sensed a value in the range
[0−4[while two of them sensed a value in the range [10−14[.
To check the integrity of the bucket, S makes sure that Bk =∑j=k−1

j=0 BjCHKj .

IV. PERFORMANCE ANALYSIS

As the sink is provided with all measured values, the
protocol is suitable for different computations, such as mean,
median, mode, frequency distribution, etc. Nevertheless, the
accuracy of the results is indirectly proportional to the width

1Depending on the number of nodes that respond to a query, it might be
more efficient to communicate the id’s of non-responding sensors.

Fig. 1. Example of ABBA in a network with three nodes.

TABLE II
MESSAGE SIZE OF NO-AGG AND ABBA.

NO-AGG ABBA
1024 nodes 2048 nodes 1024 nodes 2048 nodes

Degree Degree Slots Slots
Depth 2 4 8 2 4 8 10 20 10 20

1 44457 29667 50895 89001 118775 50895

180 280 190 300

2 22185 7395 6351 44457 29667 6351
3 11049 1827 783 22185 7395 783
4 5481 435 87 11049 1827 87
5 2697 87 5481 435
6 1305 2697 87
7 609 1305
8 261 609
9 87 261
10 87
Mean 697 407 299 1567 927 647 180 280 190 300
Std Dev 2669 1803 1751 3917 3209 2103 0 0 0 0

of the slots. In some applications, different width slots might
be used to gain accuracy. With fixed width slots, the size
of the bucket, as well as the number of bits sent by each
node, is k · log(N · T) + g. Because the only scheme that
provides the sink with the same amount of information is the
one where no in-network aggregation (NO-AGG in the rest of
the paper) is performed, we compare message sizes of ABBA
with message sizes of protocols where raw data is forwarded
from each node to the sink.

Tab. II compares ABBA and NO-AGG, showing the num-
ber of bits sent by a node, based on its depth, in a tree with
1024 or 2048 nodes. For NO-AGG, we consider a 7 bit value
and trees with degree 2, 4 and 8, respectively. For ABBA,
we consider [0− 128[as the range of sensible values and 10
or 20 slot buckets. For both protocols we consider an 80 bit
checksum.

An interesting property of ABBA is that all nodes send the
same amount of data, independently of their distance (number
of hops) to the sink; in NO-AGG, nodes close to the sink
must forward many messages that will quickly deplete their
batteries. Thus, ABBA helps balancing energy consumption
and simplifies cluster-head election issues. Even though our
analysis focus on tree structured networks, ABBA works for
any network topology where each node is aware of its next
hop to the sink.

Nodes perform η · (k+ 1) modular additions where η is the
number of children that replied to the query (if the node has
no children, it performs k + 1 additions).

For each query, each sensor must use k+ 1 fresh slot keys
as well as k fresh checksum keys. Slot keys, that are shared
only with the sink, might be produced from a unique seed,
known to the sink, and a common pseudo-random function:

for each query, the function is iterated k + 1 times and the
results are used as slot keys. Checksum keys can be produced
in a similar fashion but, as they have to be shared by all nodes,
a common seed must be used. Such key computation also
provides forward security, i.e., an adversary corrupting a node,
will not be able to compute the keys that node has used before
being corrupted and will not be able to learn the values sensed
during previous queries.

V. SECURITY ANALYSIS

Slot keys guarantee privacy of sensed value only if buckets
sent by leaf nodes are initialized with random values. Other-
wise, an ubiquitous eavesdropper listening to messages sent
by leaf nodes will learn their keys with high probability. If
a leaf node Ul senses a value in the j − th slot, its outgoing
bucket will store its slot keys in slot B[0], ..., B[j−1], B[j+
1], ...B[k−1], while slot B[j] will store Klj +1. Listening to
all ingoing and outgoing messages, an eavesdropper can learn
the slot keys of all nodes and use them to break the privacy
of the system, i.e. to learn sensed values. Key leakage can be
easily prevented by initializing the bucket slots at leaf nodes,
with random values known to the sink, in a similar fashion to
which keys are computed.

The most dangerous threat for sensor networks consists
of an attacker that corrupts one or more sensors and uses
their cryptographic material to provide the sink with false
measurements as if they were sent by honest sensors.

Consider a sensor network for fire detection where the sink
believes there is a fire if most nodes report a temperature above
a threshold value. If the attacker wants the sink to believe
there is a fire, he cannot just provide a few values above the
threshold, as the sink would regard those measurements as sent
by defective nodes. Indeed, the attacker should shift the mean
of the distribution from its real value, to a target value above
the threshold. If sensed values are reported using a bucket, as
in ABBA, the attacker goal will be to move an appreciable
number of measurements from the slots around the real mean
to the slots corresponding to his target mean.

Analyzing the security of ABBA, we consider an adversary
that is aware of the mean and the standard deviation of the
sensed values. Despite such a strong assumption, ABBA has
high probability of discovering malicious manipulation of the
sensed data. If the attacker has to estimate mean and standard
deviation of the sensed values, perhaps using the measurement
of its corrupted nodes, probability of being discovered is even
higher, i.e., ABBA is even more secure.

We consider an external as well as an internal adversary.
Both of them are able to intercept, modify and reinject all
packets that travel in the network. An external attacker does
not control any nodes, so he can perform a denial of service
attack intercepting packets and modifying the values of the
bucket so that the checksum test at the sink fails. It is easy to
see that the probability of changing any value in the bucket

and resulting in a valid checksum is inversely proportional to
the size of the modulo used in the checksum slot (g).

An internal attacker controls a corrupted node and knows
its slot keys as well as the checksum keys. As the latter
are shared among all nodes, corrupting more than one node
will not improve the attacker capabilities. We suppose that he
knows the expected distribution of the results, its mean and
its standard deviation. Corrupting a node, he might be able
to modify the results, moving contributions from one slot to
another. In order to move w contributions from slot B[i] to
slot B[j] the attacker must do the following:

1) Subtract w from B[i]
2) Subtract w · CHKi from B[k]
3) Add w to B[j]
4) Add w · CHKj to B[k]

However, decreasing the value of a slot, say B[i], might
lead to a negative value that will reveal to S the malicious
manipulation of the bucket. Note that in order to discover the
attack, B[i] must be decremented by a value greater than the
number of nodes that sense a value between i · d T

K e and (i+
1) · d T

K e. That is, even though a slot reaches a negative value
because of the attacker, other nodes adding their contributions
on the way through S, might increase that slot value above 0
and conceal the attack to the sink.

Suppose that an attacker has corrupted a node Uq . Suppose
he wants to shift the mean from µ to µatt and/or he wants to
change the standard deviation from σ to σatt. Knowing µ and
σ he might estimate the distribution and modify the bucket,
slot by slot, based on the differences between his estimate
distribution and the target one. Let Best be the estimated
bucket and Batt the target one, the attacker runs the following
algorithm:

for i = 0, ..., k do
if Best

i > Batt
i then

Bi = Bi − (Best
i −Batt

i)
Bk = Bk − (Best

i −Batt
i)CHKi

else
Bi = Bi + (Batt

i −Best
i)

Bk = Bk + (Batt
i −Best

i)CHKi

end if
end for

From the above algorithm, it is clear that the more Batt

differs from Best, the lower will be the attacker probability
of success. Since the attacker knows σ and µ, the estimate
distribution Best will be a good approximation of the real
one. If we relax the latter hypothesis, the attacker probability
of success will sensibly decrease.

If the attacker tries to shift the mean of the distribution of
just a few slots, he will succeed and remain undetected with
high probability. Nevertheless, such an attack will not change
much the information derived from the query by the sink,

i.e., the sink will not trigger an alarm. To trigger the alarm,
the attacker must be aggressive and significantly move the
distribution of the sensed value. As shown in our simulation
results, ABBA detects such attacks with high probability.

Fig. 2 shows the attacker success probability when he tries
to modify the distribution of the sensed values in a network
with 1024 or 2048 nodes. A 10 slot bucket is used and the
original mean falls in the 5− th slot. As shown, the attacker
success probability decreases as the slot of the target mean
moves away from the slot of the original one. For example,
probability of moving the mean to the 8 − th slot remaining
undetected is about 0.1. It is also shown that the number
of nodes in the network slightly affect the attacker success
probability.

Fig. 2. Attacker Success Probability

Fig. 3 is similar to Fig. 2 but it considers buckets with
different number of slots. In the 10-slot bucket, the mean falls
in the 5−th slot and the curve shows the probability of shifting
it up to the 10− th one, without being discovered by the sink.
In the 20-slot bucket, the mean falls in the 10−th slot and the
curve shows the probability of shifting it up to the 20−th one.

Let B10 be a 10-slot bucket and let R10 be the width of each
slot. Let B20 be a 20-slot bucket and let R20 be the width of its
slot. Given the same range of sensible values, R10 = 2 ·R20.
To increase the mean from µ to µ + k in B10, the attacker
has to shift the mean of k

R10
slots. To achieve the same result

in B20, the attacker has to shift the mean of k
R20

= 2 · k
R10

slots. As shown if Fig. 3, doubling the distance between the
original mean slot and the target one, dramatically reduces the
attacker success probability.

1) Analytical Analysis: In what follows, we provide ana-
lytical analysis of ABBA to validate our simulation results.
We derive the success probability of an internal attacker,
i.e., his probability of modifying the distribution of sensed
data, without being discovered, that is, without any slot with
negative values. Assume that:

Fig. 3. Attacker Success Probability (2)

- Sensed data follow a given distribution whose probability
density function (pdf) is defined by f(u;µ, σ), where µ
is the mean and σ the standard deviation,

- The bucket has k slots.
- Sensible data range is [0; kR], where R = d T

K e, i.e., the
width of a slot.

- The network is composed of n sensors.

Given that slot Bi covers the range [xi, xi+1], where xi =
iR and xi+1 = (i+1)R, the probability pi that a sensed value
fall in that slot is defined by:

pi =
∫ xi+1

xi

f(x, µ, σ)dx (1)

We are now interested in computing the distribution of the
values of slot Bi, for any i. We therefore have a “bins and
balls” problem, with n balls that fall in k bins according to a
given distribution.

It is known that the number of balls that fall in slot Bi

follows a binomial distribution. In other words, the probability
that Bi contains j balls, with 0 ≤ j ≤ n is defined by:

Pi[j] = Cj
n · pk

i · (1− pi)j (2)

This distribution can be approximated by a gaussian distri-
bution of mean n · pi and variance n · pi · (1− pi).

To indicate that a random variable X is normally distributed
with mean µ and variance σ2, we write:

X ∼ N(µ, σ2) (3)

Therefore, the distribution of number of balls Bi in Bi

follows the gaussian distribution.

Bi ∼ N(n · pi, n · pi · (1− pi)), (4)

where pi is defined by equation 1.

The attacker transforms the bucket by subtracting from
it n values that follow a gaussian distribution N(n · pi, n ·
pi · (1 − pi)). He also adds n values that follow the target
gaussian distribution N(n · pti, n · pi · (1 − pti)), where
pti =

∫ xi+1

xi
ft(x, µ′, σ′)dx and ft(x, µ′, σ′) is the target

distribution of the sensed data.
It is known that if X ∼ N(µx, σ

2
x) and Y ∼ N(µy, σ

2
y) are

independent normal random variables then the sum is normally
distributed with

U = X + Y ∼ N(µx + µy, σ
2
x + σ2

y). (5)

Therefore, after manipulation, the distribution of the number
of balls B′i in a given slot Bi is defined as follows:

B′i ∼ N(n · pti, 2 · n · pi · (1− pi)− n · pti · (1− pti)), (6)

where pti =
∫ xi+1

xi
ft(x, µ′, σ′)dx.

We are now interested in computing the probability that the
B′i is smaller than 0, i.e. F (0;n·pti, sqrt(2·n·pi ·(1−pi)−n·
pti ·(1−pti))), where F (x;µ, σ) is the cumulative distribution
function (cdf).

The cumulative distribution function of a normal distribution
N(µ, σ2) is expressed as follows:

F (x;µ, σ) =
1

σ
√

2π

∫ x

−∞
exp

(
− (u− µ)2

2σ2

)
du (7)

= Φ
(
x− µ
σ

)
, (8)

or

F (x;µ, σ) =
1
2

[
1 + erf

(
x− µ
σ
√

2

)]
. (9)

An attack is successful (i.e. undetected by our algorithm) if
no slot reaches a value smaller than 0. Therefore the success
probability is defined by:

Psuccess =
k∏

i=1

(1− F (0;µ′i, σ
′
i)). (10)

where
µ′i = n·pti and σ′i = sqrt(2·n·pi ·(1−pi)−n·pti ·(1−pti)).

If we assume the sensed data follows also a gaussian distri-
bution N(µs, σ

2
s) and the target distribution is also gaussian

and defined as N(µst, σ
2
st), then

pi = F (xi+1;µs, σs)− F (xi;µs, σs) (11)

and

pti = F (xi+1;µts, σts)− F (xi;µts, σts) (12)

, where F (u) is defined by equation 9.

Note that our analysis is general enough to consider
different types of distributions. In some applications, the
sensed value will follow a uniform distribution in [0; kR] in
normal situations and will move to a gaussian distribution
N(µalarm, σ

2
alarm) if something wrong happens (like a fire)

and an alarm must be set.
The goals of an attacker can then be:
• To generate an alarm by moving the uniform distri-

bution to a gaussian one. In this case equation 10,
with pi = 1/k and pti = F (xi+1;µalarm, σalarm) −
F (xi;µalarm, σalarm), can be used to compute the suc-
cess probability of the attacker.

• To hide an abnormal situation by moving the gaus-
sian distribution back to a uniform one. In this case
equation 10, with pi = F (xi+1;µalarm, σalarm) −
F (xi;µalarm, σalarm) and pti = 1/k, can be used to
compute the success probability of the attacker.

VI. CONCLUSION

In this paper, we introduced ABBA, a new in-network data
aggregation protocol for sensor networks, that provides privacy
and security against both external and internal attackers.
ABBA requires each sensor to perform inexpensive compu-
tations and to send a fixed amount of data, regardless of its
position in the network. Future work includes implementation
of ABBA using nesC for TinyOS and real testing on MICA
Motes.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, A survey on
sensor networks, IEEE Communications Magazine, 2002.

[2] G. J. Pottie and W. J. Kaiser, Wireless Integrated Network Sensors,
Communications of the ACM, 2000.

[3] C. Shen, C. Srisathapornphat and Ch. Jaikaeo, Sensor Information Net-
working Architecture and Applications, IEEE Personel Communication
Magazine, 2001.

[4] C. Intanagonwiwat, D. Estrin, R. Govindan and J. Heidemann, Impact
of network density on data aggregation in wireless sensor networks,
Technical Report, University of Southern California, 2001.

[5] C. Castelluccia, E. Mykletun and G. Tsudik, Efficient aggregation of
encrypted data in wireless sensor networks, 2nd Annual International
Conference on Mobile and Ubiquitous Systems: Networking and Ser-
vices (MobiQuitous’05), 2005.

[6] D. Wagner, Resilient aggregation in sensor networks, ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN’04), 2004.

[7] L. Buttyan, P. Schaffer and I. Vajda, Aggregation with Attack Detection
in Sensor Networks, 4th IEEE International Conference on Pervasive
Computing and Communications, 2006.

[8] L. Hu and D. Evans,Secure Aggregation for Wireless Networks, Sympo-
sium on Applications and the Internet Workshops (SAINT’03), 2003.

[9] Y. Yang, X. Wang, S. Zhu and G. Cao, SDAP: A Secure Hop-by-Hop
Data Aggregation Protocol for Sensor Networks, 6th ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MOBI-
HOC’06), 2006.

[10] B. Przydatek, D. Song and A. Perrig, SIA: Secure information ag-
gregation in sensor networks, 1st ACM International Conference on
Embedded Networked Sensor Systems (SenSys’03), 2003.

[11] M. Sirivianos, D. Westhoff, F. Armknecht, J. Girao, Non-manipulable
Aggregator Node Election Protocols for Wireless Sensor Networks, Pro-
ceedings of the International Symposium on Modeling and Optimization
in Mobile, Ad Hoc, and Wireless Networks (WiOpt’07), 2007.

