

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jan 14, 2025

Static Timing Analysis of OPC UA PubSub

Denzler, Patrick ; Frühwirth, Thomas ; Kirchberger, Andreas; Schoeberl, Martin; Kastner, Wolfgang

Published in:
Proceedings of 17

th
 IEEE International Conference on Factory Communication Systems

Link to article, DOI:
10.1109/WFCS46889.2021.9483614

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Denzler, P., Frühwirth, T., Kirchberger, A., Schoeberl, M., & Kastner, W. (2021). Static Timing Analysis of OPC
UA PubSub. In Proceedings of 17

th
 IEEE International Conference on Factory Communication Systems (pp.

167-174). IEEE. https://doi.org/10.1109/WFCS46889.2021.9483614

https://doi.org/10.1109/WFCS46889.2021.9483614
https://orbit.dtu.dk/en/publications/8634be87-8328-474d-b8e6-1c49460bac4b
https://doi.org/10.1109/WFCS46889.2021.9483614

Static Timing Analysis of OPC UA PubSub
Patrick Denzler

Institute of Computer Engineering
TU Wien

Vienna, Austria
patrick.denzler@tuwien.ac.at

Thomas Frühwirth
Research Department

Austrian Center for Digital Production
Vienna, Austria

thomas.fruehwirth@acdp.at

Andreas Kirchberger
Institute of Computer Engineering

TU Wien
Vienna, Austria

a.kirchberger@kbit.pro

Martin Schoeberl
Department of Applied Mathematics and Computer Science

Technical University of Denmark
Lyngby, Denmark

masca@dtu.dk

Wolfgang Kastner
Institute of Computer Engineering

TU Wien
Vienna, Austria

wolfgang.kastner@tuwien.ac.at

Abstract—Industrial automation is changing towards higher
integration and seamless communication. A stepping stone is
end-to-end real-time machine-to-machine communication, now
becoming feasible with technologies such as time-sensitive net-
working (TSN) and OPC Unified Architecture (OPC UA) publish-
subscribe. While TSN takes care of communication, the OPC
UA stack’s execution time behavior remains unknown. This
paper highlights experiences made while adjusting the OPC UA
subscriber of the open62541 stack for worst-case execution time
(WCET) analysis. Two directly connected time-predictable T-
CREST platforms hosting the publisher and subscriber delivered
end-to-end timing measures validating the WCET estimates. The
paper concludes by outlining further research with several time-
predictable publishers and subscribers.

Index Terms—worst-case execution time, industrial software,
real-time communication, OPC UA

I. INTRODUCTION

Modern factories are complex entities built upon software
and hardware components from the domains of information
technology (IT) and operational technology (OT). IT and OT
in industrial automation form a pyramid alike architecture
referred to as the automation pyramid (cf. Figure 1) [1].

The lower two OT levels of the pyramid consist of the
field layer with its sensors and actuators and the control
layer with programmable logic controllers (PLCs) often cou-
pled by industrial communication systems, such as EtherCat
or Profibus [2]. For specific control loops, OT must fulfill
real-time requirements to ensure timely communication and
processing to meet fixed deadlines. The Supervisory Control
and Data Acquisition (SCADA) systems and human-machine
interfaces on the third layer observe and handle the lower
layers below [3]. The upper two IT levels establish the connec-
tion to the enterprise systems represented with Manufacturing

This work has been partially supported and funded by the Austrian
Research Promotion Agency (FFG) via the “Austrian Competence Center for
Digital Production” (CDP) under the contract number 881843. Moreover, the
research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 764785, FORA—Fog Computing for
Robotics and Industrial Automation.
978-1-6654-2478-3/21/$31.00 ©2021 IEEE

S A S A S A

P/G P/G P/G P/G

P/G P/G P/G

P/G ERP

SCADA

PLC

P - Processing
G - Gateway
S - Sensor
A - Actuator P/G P/G MES

P - Processing
N - Nodes
S - Sensor
A - Actuator

IP
 C

om
m

un
ic

at
io

n

IT
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

IP
 C

om
m

un
ic

at
io

n

O
T

O
pe

ra
tio

na
l

Te
ch

no
lo

gy

IIo
T

Tr
an

sf
or

m
at

io
n

Fig. 1. Automation pyramid transformation towards Industrial Internet [3]

Execution Systems (MESs) and Enterprise-Resource-Planning
(ERP) applications built upon commercial off-the-shelf com-
ponents such as servers, desktop PCs communicating via the
Internet Protocol (IP). Due to the technological differences, a
gap occurs between OT and IT.

Currently, industrial automation is changing towards higher
integration and seamless communication. The Industrial In-
ternet envisions an IP-based architecture that vertically and
horizontally integrates all devices in a factory from the shop
floor to the cloud. Technological advances such as time-
sensitive networking (TSN) address OT real-time requirements
and fog computing provides computing resources necessary to
close the OT/IT gap [4]. For machine-to-machine communica-
tion, OPC Unified Architecture (OPC UA), a middleware with
extensive information modeling capabilities, enables accessing
industrial equipment and systems. The combination of TSN
and the OPC UA extension for publish-subscribe, further
pushes towards an end-to-end real-time machine-to-machine
communication [5].

A remaining challenge on the way to end-to-end real-time
communication is the timing behavior of the OPC UA stack.
While TSN ensures the timely transport of data packages,
OPC UA PubSub does not provide any timing guarantees
for processing the packages. Other domains (e.g., avionics or
automotive engineering) with strict timing requirements ad-
dress such an issue with program timing analysis [6]. A well-
known timing measure to determine a program’s execution
time characteristics is the worst-case execution time (WCET)
of a program [7]. Available tools for determining the WCET
are measurement-based or perform static program analysis.

This paper addresses the challenges of applying static
WCET analysis on the OPC UA PubSub part as the first
step towards a distributed real-time end-to-end data transfer
environment suitable for the Industrial Internet. The open-
source OPC UA stack open62541 provided the foundation
for the WCET analysis, and the time-predictable platform T-
CREST [8] the WCET tools and the Patmos processor [9].

On the one hand, the contributions are an OPC UA stack
adapted for WCET analysis with necessary changes at the
source code for specifying WCET values and indications to de-
termine RT-capabilities. The adjusted source code is available
in a Git repository [10]. On the other hand, a measurement
setup with two time-predictable platforms is introduced to
evaluate the WCET values and timing results for a complete
end-to-end data transfer. The obtained WCET values form a
baseline for comparison with measurements collected on off-
the-shelf processors not purposely built for WCET analysis.
Moreover, the findings enable research on the inclusion of
TSN as a means of communication between platforms.

This paper contains seven sections: the following two sec-
tions present background and related work relevant to the
topic. Section IV introduces the WCET adjustment process and
gained insights applying it to the publisher and subscriber. The
evaluation Section V addressed the setup and obtained results.
Section VI discusses the findings, and Section VII concludes
the article.

II. BACKGROUND

The primary aim of timing analysis is to characterize
the timing behavior of programs or systems and provide
guarantees on upper timing bounds [7]. Widely used time
bounds are WCET- and best-case execution times (BCETs).
WCET and BCET refer to the longest and shortest execution
time of a program or task, respectively (cf. Figure 2). Worst
case guarantees for programs or systems are larger than the
WCET value. There are two main methods, static analysis and
measurement-based, to obtain timing bounds [7].

A. WCET Analysis and Tools

In industry, a frequently used method for program timing
analysis is by measurements [11]. Numerous test-runs measure
a program’s execution time while varying the input parameters
(cf. Figure 2). This kind of method provides an average
timing behavior or an approximate WCET value. However,
there is a limitation of this type of analysis. Each run only

D
is

tr
ib

ut
io

n
of

 ti
m

es

 Time

WCET
BCET

measured execution times

Lower
timing
bound

Upper
timing
bound

possible execution times

0

worst-case guarantee

Fig. 2. Basic notions of timing analysis [7].

follows one program path, i.e., if there are too many execution
paths, this method is not suitable because the measurements
underestimate the WCET. This method requires adding safety
margins to ensure that the WCET value is not too low. These
margins carry the risk of over-or under-provisioning of com-
puting resources or cause schedulability issues. Measurement
equipment includes oscilloscopes, logic analyzers, and in-
circuit emulators on the hardware to measure execution times.

The static WCET analysis technique is more suitable for
programs with multiple execution paths and stricter timing
boundaries. This type of method does not execute the program
but statically analyses the timing properties [12]. Static WCET
tools tend to give larger WCET estimates (upper bounds)
than the actual execution time without the need for additional
margins. Simplified, a WCET analysis consists of three parts:
a flow analysis to distinguish the possible program execution
paths, a low-level analysis to approximate times for atomic
parts of the code (e.g., instructions, basic code blocks), and
the calculation part to combine the two previous phases into
a WCET approximation.

Flow analysis is about defining maximum loop bounds [13]
because the number of loop iterations affects the WCET
estimates. Advanced tools include methods to determine loop
bounds automatically; however, the manual annotation of loop
bounds is still required in most cases. Another characteristic
of the flow analysis is the possibility of recognizing infeasible
paths, i.e., paths that are feasible in the control-flow graph
(CFG), but inaccessible when studying the input data values
and the semantics of the program [13].

The low-level analysis considers that modern hardware
features pipelines, caches, and out-of-order execution influ-
ence the timing behavior of the program [8] A technique to
deal with these issues is using models, e.g., simulators, to
enable the analysis without the actual hardware. Nevertheless,
creating accurate models of a processor and hardware is
complicated and sometimes introduces additional complexity
into the analysis. Safe and straightforward processor models,
on the other hand, lead to higher WCET bounds. The combi-
nation of flow and low-level analysis allows the calculation
of the WCET. For more detailed information, readers are
encouraged to consider reading the detailed survey about
available methods and technological advances in determining
timing guarantees by Wilhelm et al. [7].

With the increasing complexity of current software and
hardware, there is a broad spectrum of research activities.
The topics span from integer linear programming [14], model
checking [15], and tree-based calculation, [13]. Other re-
searchers investigate code conversion to WCET-analyzable
single-path code [16] or specialized programming lan-
guages [17]. On the tooling side, there are a few commer-
cial products available such as aiT [18] from AbsInt or
RapiTime [19] from Rapita Systems, and academic open-
source prototypes, such as T-CREST [9] or SWEET [13].

B. OPC Unified Architecture

OPC UA is the successor of the open platform commu-
nications (OPC) protocol and regarded as one pathfinder
to homogenize communication in the industrial domain. A
typical view of the OPC UA architecture is one of two
pillars [20]. The first represents the Meta Model that enables
information modeling. In contrast, the second pillar describes
the Transport Mechanisms responsible for encoding data and
exchanging messages between devices. OPC UA’s primary
communication paradigm is Client-Server but it also offers
support for Publish-Subscribe (OPC UA PubSub) commu-
nication patterns. The Client-Server mechanism can invoke
complex services like browsing the information model and
calling methods. The newer OPC UA PubSub part minimizes
the communication overhead and is primarily intended for
exchanging process data.

There are several OPC UA software stacks available in a
variety of programming languages. A widely used and well-
maintained open-source stack is the open62541 project. The
open62541 supports most of the OPC UA features, imple-
ments the OPC UA PubSub specification, and allows easy
porting to other hardware platforms. The stack is implemented
in C, which is well-supported by the T-CREST project and
other WCET analysis tools.

III. RELATED WORK

The range of publications concerned with timing analysis is
considerably extensive; however, concrete studies on analyzing
industrial software are quite rare. As the OPC UA PubSub
standard is relatively new, there are no studies available that
approach WCET analysis. Therefore, the related work presents
research closely linked.

The authors in [21] propose a concept of real-time capa-
ble and long-running tasks in OPC UA. They use OPC UA
programs and combine it with real-time communication over
TSN to achieve a distributed and synchronized message
exchange for industrial applications. Similarly in [22], the
authors investigate the usability of TSN for the transport
of OPC UA PubSub messages in practice. They propose
an open62541 adjusted publisher triggered by a hardware
interrupt that accesses a shared information model to achieve
real-time properties. Other research focuses on TSN enabled
field devices with OPC UA running on commercial off-the-
shelf (COTS) hardware and software [23], or explore the pos-

sibilities of configuring TSN and OPC UA as an application
layer protocol [24].

In [25], the authors interwove TSN, OPC UA, and software-
defined networking to provide a solution for future industrial
networks, especially for dynamically interconnected devices
and applications with time-sensitive requirements. The always-
changing interconnection between devices and applications
requires a dynamic configuration. The authors in Panda et
al. [26] simulated OPC UA field level communication by
using OPC UA PubSub, best-effort IP-based communication
between OPC UA servers, and a shared information model.
In almost all current research related to OPC UA PubSub the
open-source OPC UA project open62541 was chosen.

Timing analysis on industrial software reaches from space
applications [27] to the avionics industry [6]. Relevant for
the industrial communication context, the authors in [28]
present a case study to find upper time bounds for time-critical
industrial code with static WCET analysis. This case study
focused on identifying practical difficulties when applying
current WCET analysis methods and how labor-intensive the
analysis becomes. Gustafson et al. [29] compiled their results
from five different industrial case studies using both static
and measurement-based tools with a similar approach. Of
particular interest was if current timing analysis methods are
suitable for industrial code. The authors achieved very high ac-
curacy but also indicated a high complexity due to the required
annotation work. In [30], the authors used automatic flow
analysis on industrial real-time system code to reduce manual
work. Most case studies analyze binary code, which makes
the annotation more difficult. Lisper et al. [31], proposed to
address the annotation issue by executing the program flow
analysis on the source level and resolved some program flow
constraints on the binary level.

Other authors focused on general WCET challenges. For
example, Sehlberg et al. [32] found that industries in this
field oppose complexities with strict guidelines that exclude
language constructs that make programs not analyzable for
WCET. Especially structures such as pointers, recursive data
structures, dynamic memory allocation, assignments with side
effects, recursive functions, and variable-length loops are
known to be an obstacle for WCET analysis [33]. Modern
WCET tools can handle some of those constructs; however,
reprogramming is required in some cases. The accuracy of the
required WCET bounds determines the amount of work to be
completed [34].

IV. WCET ANALYSIS OF OPC UA PUBSUB

The main objective of this paper is to enable real-time com-
munication via OPC UA PubSub. Therefore, this section first
examines the timings involved in end-to-end data transmission.
Next, it presents a process for preparing existing software for
WCET analysis. This process is then applied to the OPC UA
publisher and subscriber implementations of the open62541
open-source stack and the tools provided by the T-CREST
project are used to determine their WCETs.

Signal
change

Encode

UdpSend

EthSend

Task
Scheduling

Delay

OPC UA
Stack

Network
Stack

Media
Access

Network NetworkDelay

EthRec

UdpRec

Decode

Perform
action

End-to-End Latency

Sending end system
(Publisher)

Receiving end system
(Subscriber)Network

Fig. 3. OPC UA PubSub end-to-end latency diagram

A. End-to-end latency

The exchange of an input signal from one device to another
via OPC UA PubSub involves numerous delays at the sending
end system (i.e., the publisher), the receiving end system (i.e.,
the subscriber), and the network connection. These delays are
illustrated in Figure 3 and have to be analyzed to obtain a
guaranteed upper limit for the end-to-end latency of transmis-
sions.

The analysis starts at the publisher with the change of a
signal representing some operational data relevant for another
device. In most real-time systems, software tasks are executed
at predefined points in time rather than triggered by external
events. This concept avoids unpredictable behavior in high-
load scenarios, e.g., if the input signal changes very rapidly.
However, it introduces the TaskSchedulingDelay, which is
the time elapsing between a change of the signal and the
subsequent execution of the publisher task. The TaskSchedul-
ingDelay is limited by the task’s period, i.e., the time between
two consecutive activations. It can be reduced close to zero if
the signal represents some internal data value or if changes to
the input signal can be synchronized to the publisher task.

Next, during Encode, the OPC UA publisher encodes the
signal in a message, following the structure defined in Part 6
and Part 14 [35] of the specification. The message is then
handed from the OPC UA stack to the network stack, which
adds additional information like the UDP, IP, and Ethernet
datagram headers (UdpSend). All operations performed during
Encode and UdpSend are implemented in software. Therefore,
upper limits for their execution times can be determined by
applying WCET analysis.

The Ethernet frame is then processed and sent over the
network by the Ethernet controller, typically implemented
in hardware. Therefore, the delay introduced in this step
(EthSend) is predictable, as long as the Ethernet controller
is not occupied with the processing of other messages. This
behavior has already been analyzed in other studies [36]. The
next timing to be considered is the NetworkDelay. If the
message shall be transmitted with bounded delays, a real-time
Ethernet protocol (e.g., TSN) is mandatory.

Port application
to new platform

Generate call
graph and control

flow graph

Apply
annotations[else]

[WCET can
be calculated]

Apply
transformations[else]

[All annotation
rules applied]

Fig. 4. Process for adjusting existing software for WCET analysis [37]

The delays occurring at the subscriber are analogous to
the ones introduced at the publisher. They are caused by the
EthRec, UdpRec, and Decode functions, whereby only the
latter two are implemented in software and need to be analyzed
for WCET.

B. WCET Analysis Process

Although existing WCET analysis tools like Absint aiT or
the T-CREST platform offer significant support, determining
the WCET cannot be fully automated. In practice, static
WCET analysis of existing code that has not been written for
real-time applications often requires additional manual work
to calculate the WCET. Furthermore, finding reasonable tight
bounds to make the code applicable in real-time applications
may require considerable effort.

Figure 4 illustrates the essential steps to prepare existing
program code for WCET analysis in a simple process derived
from modern WCET analysis tools. The process is intended
to serve as an abstract guide and a helpful starting point for
static WCET analysis. It consists of four main steps, which are
presented in detail in [37]: (A) porting the existing code to a
time-predictable platform, (B) examining the code structure via
the call graph and the control-flow graph (CFG), (C) applying
code annotations, and (D) code transformations.

Most importantly, the process steps cover annotation rules
to define upper bounds and enable WCET analysis of while
loops, do-while loops, for loops, and direct recursions. Further-
more, code transformation rules suggest how to adjust indirect
recursions, jump tables, callback functions, and other non-
analyzable code for WCET analysis. Applying this process
to an OPC UA publisher and subscriber allows determining
the WCET for sending and receiving PubSub messages.

C. Adjusting the OPC UA Publisher

The OPC UA publisher receives information from the ap-
plication, encodes the information in an OPC UA PubSub
network message, and transmits/publishes the message via a
network interface. Thereby, the OPC UA Specification Part
14: PubSub [35] defines the message format. The specification
limits the number of data fields in a PubSub message and each
data field’s length to 2,147,483,647 (max Int32). This value is
not suitable for static WCET analysis, and a trade-off between

TABLE I
PROGRAMMING CONSTRUCTS AND NUMBER OF OCCURRENCES FOR THE

OPC UA PUBLISHER AND SUBSCRIBER

Programming Number of occurrences
construct Publisher Subscriber
While loop 1 0
Do-While loop 0 0
For loop 1 11
Indirect recursion 1 3
Jumptable 1 1
Other, non-WCET-analyzable code 6 7

the software stack’s flexibility and the desire for a tight WCET
bound has to be made.

Therefore, appropriate changes to the open62541 stack were
necessary, reducing the maximum number of supported data
fields per message. The modified version of the software
supports a maximum of two data fields per message with a
limited selection of data types. In addition, the application
needs to set the open62541 UA PUBSUB RT FIXED SIZE
flag, which defines that the message structure does not change.
Furthermore, only data types of fixed size like Boolean,
Integer, and Float may be used, but support for variable-
length data types like String and Bytestring is removed. These
limitations are considered acceptable because additional data
values can easily be transmitted in separate messages and real-
time-critical data, e.g., sensor values, typically are of fixed
size.

The WCET analysis process presented in Section IV-B
was applied to the publisher of the open62541 [38] OPC UA
stack. Table I summarizes how often each annotation and
transformation rule was used. The analysis was conducted
with the tools provided by the T-CREST project and yielded a
WCET of 18,632 processor cycles. This value corresponds to
about 232.9 µs for a processor operating at 80 MHz. A detailed
discussion of the evaluation results is presented in [37] and the
code is available under [10].

D. Adjusting the OPC UA Subscriber

The OPC UA subscriber receives PubSub messages, de-
codes their contents, and hands the data values over to the
application. The application can then act upon the received
data values, e.g., by performing calculations and setting out-
puts. The same considerations regarding the number of data
fields in a message and the supported data types mentioned
for the publisher also apply for the subscriber.

However, the subscriber included in the open62541 stack
uses dynamic memory allocation for each received frame and
each data field. The standard library implementations that
handle memory allocation in C (malloc, free, and related
functions) fall in the category of non-WCET-analyzable code.
Therefore, these functions had to be re-implemented. The new,
WCET-analyzable implementation of malloc provides only
a fixed number of 32 memory blocks with 512 bytes each.
Calling malloc returns a pointer to the next free memory block
and marks it as “in use”. If no free memory block is available,

malloc causes an out-of-memory error (ENOMEM), which the
caller needs to handle. Furthermore, calling free releases the
memory block corresponding to the address that is passed as a
parameter. The new functions share the same method signature
with the standard C library and require no additional changes
to the remaining code.

Table I summarizes how often each annotation and trans-
formation rule had to be applied for the open62541 subscriber
to obtain a WCET analyzable implementation. The analysis
yielded a WCET of 443,543 processor cycles, corresponding
to about 5,544.29 µs for a processor operating at 80 MHz.

V. EVALUATION

This section covers the evaluation performed primarily to
verify the results obtained from static WCET analysis. Fur-
thermore, the evaluation setup allows determining hardware
delays and estimating end-to-end latency.

A. Setup

Figure 5 illustrates the evaluation setup. PublishCall-
back and SubscribeCallback handle publishing and receiving
OPC UA PubSub messages via the open62541 stack. Note that
the PublishCallback, in addition to Encode and UdpSend, per-
forms some pre-processing and post-processing of its internal
data structures. Likewise, the SubscribeCallback requires some
extra operations in addition to UdpRec and Decode. The setup
includes two Altera DE2-115 development boards featuring
Cyclon IV FPGAs. A Patmos time-predictable processor,
which is part of the T-CREST project, is instantiated on each
FPGA and operating at a frequency of 80 MHz. The OPC UA
publisher and subscriber are executed on these platforms.
Furthermore, the two FPGA boards are directly connected
with a 100 Mbit point-to-point Ethernet connection of 2 m
in length. The publisher and subscriber set and reset general
purpose input/output (GPIO) pins at relevant positions in their
program flow. A Saleae Logic Pro 8 logic analyzer logs these
events on the GPIOs for the subsequent timing analysis. The
evaluation setup exchanges a single Int32 counter value that
is incremented every time before publishing a new message.

B. WCET Results

The histograms depicted in Figure 6 show the distribu-
tions of the execution times measured for PublishCallback,
SubscribeCallback, encoding (Encode), sending (UdpSend),
receiving (UdpRec), and decoding (Decode) 1000 PubSub
messages. As the publisher handles encoding and sending mes-
sages, the added execution times of Encode and UdpSend must
be lower than the theoretical WCET obtained in Section IV-C.
The longest execution time for Encode + UdpSend recorded
by the logic analyzer is 136.852 µs. Therefore, the WCET
bound is approximately 70 % higher than the execution time
obtained by the measurements.

Similarly, the subscriber receives and decodes messages
via the UdpRec and Decode functions, respectively. Again,
the combined execution time of these two functions is below
the theoretical upper bound obtained via the WCET analysis

Saleae Logic Pro 8
(8-Channel Logic Analyzer)

Altera DE2-115 (Publisher)
(FPGA Development Board)

Encode
Reset
GPIO

Encode
Set GPIO
Encode

GPIO
Encode

Program flow for PublishCallback

GPIO
UdpSend

EthSend
Reset
GPIO

UdpSend
Set GPIO
UdpSend

Point-to-Point
Ethernet

Connection

Altera DE2-115 (Subscriber)
(FPGA Development Board)

EthReceive
Reset
GPIO

UdpRec
Set GPIO
UdpRec

GPIO
UdpRec

Program flow for SubscribeCallback

GPIO
Decode

Decode
Reset
GPIO

Decode
Set GPIO
Decode

Probe 2

Probe 3

Probe 5

Probe 6

0

1

0

1

0

1

0

1

Execution Time:
UdpSend

Execution Time:
Encode

Execution Time:
UdpRec

Execution Time:
Decode

Message n Message n+1

Probe 2 Probe 3 Probe 5 Probe 6

0

1
End-to-End

Latency

Set GPIO
Publish

Reset
GPIO

Publish

GPIO
Publish

Set GPIO
Subscribe

Reset
GPIO

Subscribe

GPIO
Subscribe

Probe 4Probe 1

Probe 4
1

Execution Time:
SubscribeCallb.

Probe 1
1

Execution Time:
PublishCallback

0

0

Fig. 5. Evaluation setup

in Section IV-D. The longest execution time measured is
513.08 µs. Therefore, the WCET bound is approximately
980 % higher than the execution time obtained by the mea-
surements. The over-estimation in the case of the subscriber is
worse than for the publisher because of its higher complexity,
particularly regarding the challenges arising from dynamic
memory allocation.

C. End-to-End Latency Analysis

The measurements presented so far only verify the results of
the two WCET analyses. However, as shown in Section IV-A,
the OPC UA publisher and subscriber cause only a part
of the end-to-end latency. Therefore, Table II sums up all
the involved software and hardware delays. The first value
TaskSchedulingDelay is not included in this analysis because
the counter value used as a payload is only incremented right
before triggering the Encode task (cf. Figure 3). The next
entries in the table represent the theoretical WCET bounds and
the longest execution times measured for Encode, UdpSend,
UdpRec, and Decode, which have already been discussed. The
remaining entries EthSend, NetworkDelay, and EthRec are

0

100

200

300

400

136.65 136.70 136.75 136.80

S

am
pl

es

Execution Time: PublishCallback [μs]

0

200

400

600

800

45.60 45.65 45.70 45.75

S

am
pl

es

Execution Time: Encode [μs]

0

100

200

300

81.55 81.60 81.65 81.70

S

am
pl

es

Execution Time: UdpSend [μs]

0

20

40

60

513.00 513.05 513.10 513.15

S

am
pl

es

Execution Time: SubscribeCallback [μs]

0

200

400

600

800

17.20 17.25 17.30 17.35

S

am
pl

es

Execution Time: UdpRec [μs]

0

100

200

300

400

500

387.15 387.20 387.25 387.30

S

am
pl

es

Execution Time: Decode [μs]

Fig. 6. Histograms of measured execution times for PublishCallback, Encode,
UdpSend, SubscribeCallback, UdpReceive, Decode

TABLE II
COMPARISON OF HIGHEST TIMING MEASUREMENT RESULTS AND

THEORETICAL UPPER BOUNDS

SW/HW component Upper bound Measurement result
TaskSchedulingDelay not relevant not relevant
PublishCallback 232.9 µs 136.85 µs
. Encode . - . 45.67 µs
. UdpSend . - . 81.69 µs
. Pre- and postprocessing . - . 9.49 µs
EthSend +
NetworkDelay + HW-dependent 15.4 µs
EthRec
SubscribeCallback 5,544.29 µs 513.08 µs
. UdpRec . - . 17.29 µs
. Decode . - . 387.22 µs
. Pre- and postprocessing . - . 108.57 µs
End-To-End 5,777.19 µs + 642.32 µs
Latency NetworkDelay

specific to the evaluation platform and are briefly discussed
in the following.

Sending an Ethernet frame using the Altera DE2-115 eval-
uation platform involves two distinct hardware components:
Ethernet MAC and Ethernet PHY [39]. The Ethernet MAC
functionality is implemented in the FPGA, while the Ethernet
PHY uses a dedicated chip (Marvell 88E1111). The total
delay caused by these components for transmitting a frame
is subsumed as EthSend. At the subscriber, the time required
for receiving an Ethernet frame is subsumed as EthRec.
Furthermore, the NetworkDelay of the point-to-point Ethernet
connection is in the order of nanoseconds and, therefore,
neglectable. The longest total duration of EthSend + Net-

0

2

4

6

8

638 639 640 641 642 643 644

S

am
pl

es

Execution Time: End-to-end Latency [μs]

Fig. 7. Histogram of measured end-to-end latency

0

2

4

6

8

10 11 12 13 14 15 16 17 18

S

am
pl

es

Execution Time: EthSend + NetworkDelay + EthRec [μs]

Fig. 8. Histogram of measured NetworkDelay including hardware delays

workDelay + EthReceive was measured at 15.4 µs. As all
of these components are implemented in hardware, the jitter
observed is minimal, and the theoretical limit for this delay is
set equal to the measurement result.

With an assumed NetworkDelay of ≤20 µs, the guaranteed
upper bound for publishing, transmitting, and receiving a
signal via OPC UA PubSub results to 5,797.19 µs. The longest
observed end-to-end latency is 642.32 µs and, therefore, within
the expected bound. The measurement results for the end-to-
end latency and the NetworkDelay are depicted in Figures 7
and 8, respectively.

VI. DISCUSSION

This research aims to adjust the open62541 OPC UA Pub-
Sub stack to obtain WCET values, identify relevant challenges
and provide a baseline for further research. The subscriber
part is significantly more complex than the publisher [37], as
it uses dynamic memory allocation to receive unknown size
messages. Such code constructs are not WCET analyzable [29]
and require reprogramming [28], [34]. Therefore, as indicated
in Section IV-D, several assumptions were made regarding
the maximum number of data fields in a message and the
supported data. The obtained WCET values are valid for
various applications as long as they do not violate these
assumptions. However, conducting this analysis again with
known message sizes and data types could result in more
accurate WCETs estimates.

A noteworthy fact is that neither the publisher nor the
subscriber has dependencies on global data structures, espe-
cially as [30] reports such dependencies as quite common in

industrial code. This circumstance occurs due to the absence of
global values changeable by external program parts. Moreover,
the implemented loops do not contain any break statements,
nor are variables involved in the loop condition manipulated
within the loop. It is unclear why the the open62541 OPC UA
PubSub contributors choose not to use such dependencies.

The obtained WCET values of the publisher and subscriber
are larger than the measured values in the evaluation, which is
an expected outcome as the WCET analysis needs to provide
worst-case guarantees. This characteristic distinguishes WCET
analysis from work done by Pfrommer et al. [22] where a hard-
ware interrupt ensures the timely execution of the publisher.
However, addressing the identified code issues would allow
closer worst-case guarantees.

In general, the conducted research confirms the feasibility
of realizing a distributed real-time end-to-end data transfer
environment for the Industrial Internet. However, the results
are not directly comparable with other research, as the setup
does not include TSN, and the Patmos is a non-standard
processor specifically designed to simplify the determination
of WCET bounds. Nevertheless, the results are in similar
ranges, as in Eymüller et al. [21], where a round trip for a
floating-point value (8 to 160 byte) takes on average 268 µs –
369 µs, which equals 134 – 182 µs end-to-end latency. Their
latency is approximately 25 % of the highest measured value
(642 µs) presented in this article. Possible reasons are that
the setup in Eymüller et al. uses specific OPC UA programs,
and the evaluation was done on standard office computers.
Therefore, it is reasonable to use the WCET values presented
in this paper as a baseline for comparison.

Another limitation is that depending on the application
scenario and potentially required certification, the claim that
the hardware delays (EthSend, NetworkDelay, EthRec) in the
evaluation setup are constant may require additional experi-
ments. If other software also accesses the network interfaces,
this may be particularly challenging and require hardware
support directly in the end systems (e.g., a TSN interface).

VII. CONCLUSION

The paper presents findings and experiences made while ad-
justing the open62541 OPC UA PubSub stack part for WCET
analysis. The use of a simple process and the time predictable
open-source T-CREST platform yielded representative WCET
estimates. WCET timing values were evaluated by an actual
point-to-point setup on two development boards hosting the
publisher and subscriber. In combination, the results lay the
ground for a distributed real-time end-to-end data transfer
environment. The next step in the research process is adding
additional time predictable platforms hosting several pub-
lishers and subscribers to a TSN network. Adding multiple
participants could allow the observation of an entire system’s
timing behavior, thus creating a reference for industrial im-
plementations. Additionally, the adjustment of the open62541
OPC UA PubSub stack needs to be continued to allow further
studies where time-critical communication is relevant, e.g., in
control, optimization, data processing, and decision making.

REFERENCES

[1] T. J. Williams, “The Purdue enterprise reference architecture,” Comput-
ers in Industry, vol. 24, no. 2-3, pp. 141–158, 1994.

[2] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The Future of Industrial
Communication: Automation Networks in the Era of the Internet of
Things and Industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11,
no. 1, pp. 17–27, 3 2017.

[3] S. Schriegel, T. Kobzan, and J. Jasperneite, “Investigation on a dis-
tributed SDN control plane architecture for heterogeneous time sensitive
networks,” in 2018 14th IEEE International Workshop on Factory
Communication Systems (WFCS), 6 2018, pp. 1–10.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New York,
NY, USA: Association for Computing Machinery, 2012, pp. 13–16.

[5] D. Bruckner, M. Stănică, R. Blair, S. Schriegel, S. Kehrer, M. See-
wald, and T. Sauter, “An Introduction to OPC UA TSN for Industrial
Communication Systems,” Proceedings of the IEEE, vol. 107, no. 6, pp.
1121–1131, 2019.

[6] P. Montag, S. Görzig, and P. Levi, “Challenges of Timing Verification
Tools in the Automotive Domain,” in Second International Symposium
on Leveraging Applications of Formal Methods, Verification and Vali-
dation (isola 2006), 2006, pp. 227–232.

[7] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The Worst-Case
Execution-Time Problem—Overview of Methods and Survey of Tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, 5 2008.

[8] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Toc-
chi, “T-CREST: Time-predictable multi-core architecture for embedded
systems,” Journal of Systems Architecture, vol. 61, no. 9, pp. 449–471,
2015.

[9] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber, and D. Prokesch, “Pat-
mos: a time-predictable microprocessor,” Real-Time Systems, vol. 54,
no. 2, pp. 389–423, 2018.

[10] P. Denzler, T. Frühwirth, A. Kirchberger, and M. Schoeberl, “Readme
[Source code],” https://github.com/t-crest/rt-ua, 2020.

[11] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang, “A
Survey of WCET Analysis of Real-Time Operating Systems,” in 2009
International Conference on Embedded Software and Systems, 2009, pp.
65–72.

[12] P. Puschner and C. Koza, “Calculating the maximum execution time of
real-time programs,” Real-Time Syst., vol. 1, no. 2, pp. 159–176, 1989.

[13] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper, “Automatic
Derivation of Loop Bounds and Infeasible Paths for WCET Analysis
Using Abstract Execution,” in 2006 27th IEEE International Real-Time
Systems Symposium (RTSS’06), 2006, pp. 57–66.

[14] B. Lisper, “Fully Automatic, Parametric Worst-Case Execution Time
Analysis.” WCET, vol. 3, pp. 77–80, 2003.

[15] M. Lv, Z. Gu, N. Guan, Q. Deng, and G. Yu, “Performance Comparison
of Techniques on Static Path Analysis of WCET,” in 2008 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing,
vol. 1, 2008, pp. 104–111.

[16] D. Prokesch, P. Puschner, and S. Hepp, “A Generator for Time-
Predictable Code,” in Proceedings - 2015 IEEE 18th International
Symposium on Real-Time Distributed Computing, ISORC, 2015, pp. 27–
34.

[17] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A.
Lee, “Predictable Programming on a Precision Timed Architecture,”
in Proceedings of the 2008 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems. New York, USA:
Association for Computing Machinery, 2008, pp. 137–146.

[18] AbsInt, “ait,” Available at https://www.absint.com/ait/, 2021.
[19] Rapita Systems, “Rapitime,” Available at https://www.rapitasystems.

com/products/rapitime, 2021.
[20] W. Mahnke, S.-H. Leitner, and M. Damm, OPC unified architecture.

Springer Science & Business Media, 2009.

[21] C. Eymüller, J. Hanke, A. Hoffmann, M. Kugelmann, and W. Reif,
“Real-time capable opc-ua programs over tsn for distributed industrial
control,” in 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, 2020, pp. 278–
285.

[22] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open
source opc ua pubsub over tsn for realtime industrial communication,”
in 2018 IEEE 23rd International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1, 2018, pp. 1087–1090.

[23] A. Gogolev, R. Braun, and P. Bauer, “Tsn traffic shaping for opc ua
field devices,” in 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN), vol. 1, 2019, pp. 951–956.

[24] F. Prinz, M. Schoeffler, A. Eckhardt, A. Lechler, and A. Verl, “Configu-
ration of application layer protocols within real-time i4.0 components,”
in 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN), vol. 1, 2019, pp. 971–976.

[25] T. Kobzan, I. Blöcher, M. Hendel, S. Althoff, A. Gerhard, S. Schriegel,
and J. Jasperneite, “Configuration solution for tsn-based industrial
networks utilizing sdn and opc ua,” in 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, 2020, pp. 1629–1636.

[26] S. K. Panda, M. Majumder, L. Wisniewski, and J. Jasperneite, “Real-time
industrial communication by using opc ua field level communication,”
in 2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1, 2020, pp. 1143–1146.

[27] N. Holsti, T. Langbacka, and S. Saarinen, “Using a worst-case execution
time tool for real-time verification of the DEBIE software,” Proceedings
of DASIA 2000 Conference (Data Systems in Aero- space 2000, ESA SP-
457), vol. 457, pp. 307–312, 2000.

[28] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper, “Applying
static WCET analysis to automotive communication software,” in 17th
Euromicro Conference on Real-Time Systems (ECRTS’05), 2005, pp.
249–258.

[29] J. Gustafsson and A. Ermedahl, “Experiences from Applying WCET
Analysis in Industrial Settings,” in 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing
(ISORC’07), 2007, pp. 382–392.

[30] D. Barkah, A. Ermedahl, J. Gustafsson, B. Lisper, and C. Sandberg,
“Evaluation of Automatic Flow Analysis for WCET Calculation on
Industrial Real-Time System Code,” in 2008 Euromicro Conference on
Real-Time Systems, 2008, pp. 331–340.

[31] B. Lisper, A. Ermedahl, D. Schreiner, J. Knoop, and P. Gliwa,
“Practical experiences of applying source-level WCET flow analysis
to industrial code,” International Journal on Software Tools for
Technology Transfer, vol. 15, no. 1, pp. 53–63, 2013. [Online].
Available: https://doi.org/10.1007/s10009-012-0255-9

[32] D. Sehlberg, A. Ermedahl, J. Gustafsson, B. Lisper, and S. Wiegratz,
“Static WCET Analysis of Real-Time Task-Oriented Code in Vehicle
Control Systems,” in Second International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (isola
2006), 2006, pp. 212–219.

[33] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson,
P. Marwedel, J. Reineke, C. Rochange, M. Sebastian, R. V. Hanxle-
den, R. Wilhelm, and W. Yi, “Building Timing Predictable Embedded
Systems,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 4, 03 2014.

[34] M. Platzer and P. Puschner, “A Real-Time Application with Fully Pre-
dictable Task Timing,” in Proceedings - 2020 IEEE 23rd Int. Symposium
on Real-Time Distributed Computing, ISORC, 2020, pp. 43–46.

[35] OPC Foundation, “OPC Unified Architecture Specification Part 14:
PubSub, Release 1.04,” 2018.

[36] T. Frühwirth, W. Steiner, and B. Stangl, “TTEthernet SW-based End
System for AUTOSAR,” in Proceedings of the 10th IEEE International
Symposium on Industrial Embedded Systems (SIES), Siegen, Germany,
Jun. 2015, pp. 1–8.

[37] P. Denzler, T. Frühwirth, A. Kirchberger, M. Schoeberl, and W. Kastner,
“Experiences from Adjusting Industrial Software for Worst-Case Exe-
cution Time Analysis,” in Accepted in - 2021 IEEE 24th International
Symposium on Real-Time Distributed Computing, ISORC, 2021.

[38] F. Palm, S. Grüner, J. Pfrommer, M. Graube, and L. Urbas, “open62541-
der offene OPC UA-Stack,” 5. Jahreskolloquium “Kommunikation in der
Automation”(KommA 2014), 2014.

[39] L. Pezzarossa, J. K. Toft, J. Lœnbæk, and R. Barnes, “Implementation
of an ethernet-based communication channel for the patmos processor,”
Technical University of Denmark, 2015.

