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Abstract

We propose a normalization layer for unsupervised do-
main adaption in semantic scene segmentation. Normal-
ization layers are known to improve convergence and gen-
eralization and are part of many state-of-the-art fully-
convolutional neural networks. We show that conven-
tional normalization layers worsen the performance of cur-
rent Unsupervised Adversarial Domain Adaption (UADA),
which is a method to improve network performance on un-
labeled datasets and the focus of our research. Therefore,
we propose a novel Domain Agnostic Normalization layer
and thereby unlock the benefits of normalization layers for
unsupervised adversarial domain adaptation. In our eval-
uation, we adapt from the synthetic GTAS data set to the
real Cityscapes data set, a common benchmark experiment,
and surpass the state-of-the-art. As our normalization layer
is domain agnostic at test time, we furthermore demon-
strate that UADA using Domain Agnostic Normalization
improves performance on unseen domains, specifically on
Apolloscape and Mapillaryﬂ

1. Introduction

Semantic segmentation constitutes a crucial task in com-
puter vision of assigning a class to every pixel in an image.
Applications range from autonomous driving and robotic
navigation to segmenting natural scenes. Convolutional
neural networks (CNNs) have shown good performance,
e.g. [4, B2]. However, when we train these models on a
source domain, and evaluate on another, farget domain, the
performance degrades. Ideally, we would adapt our model
to the target domain, without requiring to label the images
(unsupervised). In this work, we aim for unsupervised do-
main adaptation to improve generalization capability for se-
mantic scene segmentation.

Unsupervised domain adaptation addresses three prob-
lems: 1) In new domains, images differ in appearance, light-
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Figure 1. Diagram for unsupervised domain adaptation. During
training, we only have labels for the source domain. During test-
ing, we want a model that we can apply to any unseen and unla-
beled domain, without any domain-specific fine tuning.

ing, contrast or colorization. For example, when the time
of day, season or camera changes. This shift is studied in
[231[39,[38]. We want good performance for all domains; 2)
Labeling the data is a cumbersome task. For example, label-
ing the Cityscapes data set took up to 90 minutes per image
[12]. Unsupervised domain adaptation alleviates this label-
ing burden as no labels are required for the target domain;
3) Models trained on simulated data fail to perform well on
real data. Domain adaptation poses a potential solution to
close this gap.

A recent and promising work in unsupervised domain
adaptation for semantic segmentation is unsupervised ad-
versarial domain adaptation (UADA) [15], which will be
the focus of our work. Current approaches in UADA have
two challenges. First, evaluations of the model focus on
the source and target domain, but omit any unseen domains.
For example, when we adapt a segmentation model from
Germany to China, we also want good performance in other
Asian countries. To summarize, we aim to improve the gen-



eralization capability of the model to any (unseen) domain,
not limiting to only the source and target domain.

As a second challenge, many recent approaches in
UADA use CNNs without normalization layers. This is sub-
optimal as normalization layers speed up convergence and
reduce sensitivity to initialization of the parameters and hy-
perparameters [22] 24| 36| [8]. For example, the winning
entries of the recent ImageNet competition and Robust Vi-
sion competition at CVPR 2018 use normalization layers
[27, 15, 451 20]. However, none of previous work in UADA
use normalization layers [35) 19/ [10]. This absence proba-
bly follows from observations that normalization layers re-
duce performance during adversarial training 34} 44].

Batch normalization [22], the most commonly used nor-
malization layer, makes the output for one image dependent
on another image in a batch. This dependency creates havoc
when the batch contains images from both labeled and unla-
beled domains. Therefore, we propose a new normalization
layer for UADA. In Section we show that our normal-
ization layer does not degrade performance in UADA, as
conventional normalization layers do. Next, in Section@
we show that we surpass state-of-the-art, [19]], adaptation
using our normalization layer. Moreover, we show that this
adaptation also improves performance on two unseen do-
mains.

We evaluate our approach on large-scale scientific
benchmarks for semantic scene segmentation. We experi-
ment on data from urban scenes as these data pose many
challenges due to object clutter and have a wide diversity of
classes and appearance. We consider two adaptation tasks:
from synthetic to real data, GTAS to Cityscapes; from real
to real data, Cityscapes to Mapillary [12} 33} [30]. To the
best of our knowledge, we are the first to evaluate per-
formance on unseen domains, Mapillary and Apolloscape
[304 21]].

As we unlock the benefits of normalization layers for
UADA, we make the following contributions:

e We demonstrate a degraded performance when using
conventional batch normalization in UADA and pro-
vide insight in this degradation using an experiment.

(Section

e We propose a Domain Agnostic Normalization layer
for UADA (Section @, surpass state of the art, [[19],
and show a performance improvement on two unseen
domains (Section[5.2).

Our code to reproduce the results is available at [43]].

2. Related work
2.1. Semantic segmentation

Semantic segmentation has been widely studied in com-
puter vision. Many current semantic segmentation models

use CNNs, following the progress in large-scale image clas-
sification [[14} [17]]. Neural networks learn hierarchical rep-
resentations using layers of neurons [7]].

Recently, fully convolutional networks (FCN) generalize
CNN s for arbitrary input sizes [29]. This generalization en-
ables the use of classification networks such as VGG [37]
or ResNet [18] for semantic segmentation. In this gener-
alization, each layer comprises a grid of individual repre-
sentations, one representation for each receptive field. As
semantic segmentation deals with large images, [46] intro-
duced dilated convolutions to enlarge the receptive field and
the authors of [4}[31]] proposed to learn the upsampling for
large label maps.

2.2. Adversarial adaptation

Adversarial adaptation draws inspiration from Genera-
tive Adversarial Networks (GAN) [[16]]. In training a GAN,
a generator outputs data samples while trying to confuse a
discriminator that classifies between generated and real data
samples.

Analogous to using a discriminator to align generated
and real data samples, adversarial training uses an adversary
to align representations from multiple domains in a neural
network. In other words, a domain classifier serves as an
adversary and learns to discriminate source from target rep-
resentations. Another model learns to confuse the domain
classifier, which encourages alignment between the source
and target representations. As the representations from mul-
tiple domains become more aligned, the neural network will
generalize better to new domains [6].

2.3. Domain adaptation

Ganin et al. [15] propose adversarial adaptation to align
the representations. This work has been extended in [40]
and [41] for image classification. Another adversarial ap-
proach to domain adaptation is to transfer the style of an
image from source to target domain [28, |9, 48]].

UADA has been applied to semantic segmentation. For
example, [[19] builds on the work of [40] and applies a do-
main classifier on the representations learned by an FCN.
UADA aims for alignment at the representation level. Later
works have focused on combining alignment at the repre-
sentation level with alignment at the logit level, [10], or
alignment at the output level, [35]. We focus on UADA
for semantic segmentation models that use normalization
layers. Normalization layers pose specific challenges for
UADA that we will address in this work.

2.4. Normalization

Using normalization layers in a neural network speeds
up training and reduces sensitivity to initialization of the
parameters and hyperparameters [22, 24} 36 18]
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Figure 2. Diagram depicting the two alternating steps during
UADA. In the first step, we train the domain classifier using the
domain loss. In the second step, we train the segmentation model
using the segmentation and confusion loss. (see Equation|2))

Perhaps the earliest attempt was local response normal-
ization by Krizhevsky et al. [25]. Ioffe and Szegedy in-
troduced the batch normalization layer that normalizes all
representations in a batch [22]. During training, the internal
activations in the many layers may shift. Batch normaliza-
tion normalizes the inputs to zero mean and unit variance.

Batch normalization has the disadvantage that predic-
tions depend on all samples in a batch. To alleviate this
dependency, other normalization layers, such as instance
normalization [42] and layer normalization [3|] are pro-
posed. For a representation grid of size N (Sample size) X
H (Height) x W (Width) x C(Channels) in a CNN, these
layers normalize over the following axes:

e Batch normalization normalizes over N, H, W
e Instance normalization normalizes over H, W
e Layer normalization normalizes over H, W, C

In this work, we compare our proposed normalization
layer with two forms of batch normalization and with in-
stance normalization. We do not consider layer normaliza-
tion, as batch normalization is known to outperform layer
normalization in CNNs [3]. In Section[3.2] we propose our
Domain Agnostic Normalization, compare to other layers
in Section [5.1] and show the benefits for domain agnostic
testing in Section[5.2]

3. Method: Domain Agnostic Normalization
for unsupervised domain adaptation

In this section, we present the details of our proposed
Domain Agnostic Normalization layer. First, in Section[3.1]
we introduce notation and set up UADA. Second, in Section
we address the problems of conventional normalization
in UADA and propose Domain Agnostic Normalization.

3.1. Domain adaptation

We aim to learn a segmentation model that takes an im-
age, X € RHXWXC and segments the image to a label

map, Y € REXWXK Here, (' is the number of input chan-
nels, K is the number of output classes and H and W
are height and width, respectively. We train using labeled
source data, (X, Y;), and unlabeled target data, X;.

Figure [2] displays a diagram of the UADA model. The
model consists of three major blocks. First, the representa-
tion learner parametrizes the representations using a CNN,
Z = R(X;0,). This representation learner can contain an
arbitrary number of normalization layers. We learn the pa-
rameters of the representation learner using both the source
(labeled) and target (unlabeled) domain. Second, the seg-
menter maps the representations to a class prediction for
each pixel, Y = S(Z;0,). We learn the parameters of the
segmenter using the source domain. We assume that all do-
mains have the same classes. So during testing, we re-use
the segmenter on any domain (Domain Agnostic testing,
Figure [T). Finally, the domain classifier assigns a proba-
bility, p, that a representation comes from an image in the
target domain, p = D(z;0y). We learn the parameters of
the domain classifier using the images from both the source
and target domain.

Training UADA requires two alternating steps as con-
fusing the representations opposes the learning of a do-
main classifier. In the first of alternating steps, we min-
imize the domain loss, Lgom (Xs, X¢; 65, 04), to learn the
parameters of the domain classifier. As we have two do-
mains, the domain loss is a binary cross entropy loss. In
the second of alternating steps, we minimize the segmen-
tation loss, Lsegm (Xs,Ys;0r,605), and the confusion loss,
Leonf(Xt;6r,04). The segmentation loss is a multi-class
cross entropy for the K output classes. The confusion loss
encourages the segmentation model to confuse a target rep-
resentation for a source representation. In other words, the
confusion loss assumes a low value when the domain clas-
sifier predicts a low value of p for any target representation.
Therefore, the confusion loss follows:

‘Cconf (Xta 97*3 ed) = - Z

ZGR(Xt;Gr)

log(1 = D(z;04)) (1)

In total, we train unsupervised adversarial domain adap-
tation using the following alternating steps:

n;in Liom(Xs, Xt;0r,04q)
d

min ['segm(Xsy Y;; 97”7 95) + Aﬁconf(Xt; 07’7 ed)

0 @
A trades off the segmentation loss and the confusion loss.
Figure [2]displays a diagram for this alternating scheme.

3.2. Domain Agnostic Normalization layer

In this section, we propose our Domain Agnostic Nor-
malization (DAN) layer for UADA. First, we outline a ma-
jor problem with batch normalization, the most commonly
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Figure 3. Diagram for our Domain Agnostic Normalization layer.
We transform the source representations, xs, using the source
statistics, ps and os. We transform the target domain and all
unseen domains using the source statistics as fixed parameters.
Hence, the dotted line indicates that no gradients flow during back
propagation.

used normalization layer [22]. Second, we address these
problems and propose DAN.

Batch normalization introduces dependencies between
all representations in a batch. For each batch, batch nor-
malization calculates the statistics on all representations and
applies these statistics to any representation. This depen-
dency makes the supervision on any image depend on the
representations of any other image in the batch. When do-
ing multi-domain training, batches contain images of mul-
tiple domains. Now this dependency makes the supervi-
sion on one domain depend on representations in another
domain. For multi-domain training using only labeled do-
mains, this dependency poses no problem. For a represen-
tation in one image, the supervision from its own prediction
would be stronger than the implicit supervision of other im-
ages via the statistics. For multi-domain training also using
an unlabeled domain, as in UADA, however, this depen-
dency creates havoc on the representations of the unlabeled
domain. These representations get only supervision from
other images via the statistics and have no supervision from
a prediction to outweigh this influence. Such a learning pro-
cedure would counteract segmentation performance on the
target domain. Our experiments in Section 4] will confirm
this detrimental effect.

The incompatibility of conventional batch normalization
and UADA motivates our requirements for a new normal-
ization layer:

1. A normalization layer that introduces no dependency
between source and target representations. Learning
representations can only depend on information from

one domain.

2. A normalization layer that applies the same transfor-
mation to any domain. Minimizing the confusion loss
in Equation [T|should concern the differences in learned
representations and not the differences in normaliza-
tion transformations. Moreover, as we use the same
transformation on any domain, we do not need to fine-
tune our model when we test on unseen domains (Do-
main Agnostic testing, Figure [I).

To satisfy these requirements, we propose our Domain
Agnostic Normalization layer. Figure [3]shows a diagram of
DAN. During training, DAN makes the following steps:

1. For the source domain, our normalization layer oper-
ates like batch normalization. We calculate the statis-
tics on all representations of the source domain per
batch and transform the representations using these
statistics.

2. For the target domain, our normalization layer trans-
forms the representations using the statistics from the
source as fixed parameters. This fixation of parameters
causes no gradients to flow during backpropagation,
so our normalization layer introduces no dependencies
across domains.

During testing, we use the same transformation on all
domains, the source domain, the target domain, and any un-
seen domains. This transformation uses the statistics for
the source domain that we aggregate during training. Other
works have proposed to re-estimate the statistics for each
new domain [26]. Our DAN remains agnostic to the do-
main at test time and does not require the additional effort
of re-estimating the statistics.

4. Experiments

In this section, we outline three sets of experiments that
demonstrate the benefit of DAN in UADA.

Our first set of experiments compares the alternatives for
DAN in UADA. We run experiments using four normaliza-
tion layers:

e Conventional batch normalization introduces a depen-
dency between representations from source and target
domain. When the target domain has no labels, we
expect that batch normalization decreases the perfor-
mance on the target domain.

e Split batch normalization [1l]] applies one conven-
tional batch normalization layer per domain. This split
removes the dependencies between domains. How-
ever, split batch normalization does not apply the same
transformation to each domain.



e Instance normalization [42]] normalizes the represen-
tations per image and introduces no dependencies at
all. Instance normalization, however, calculates the
statistics using [ x W representations per layer in-
stead of the NV x H x W representations that batch nor-
malization uses. This smaller sample introduces more
stochasticity.

e Domain Agnostic Normalization introduces no depen-
dencies between representations across domains and
applies the same transformation in each domain.

Our second set of experiments demonstrates the benefits
of DAN on two adaptation tasks:

e Adaptation from synthetic to real data, from GTAS to
Cityscapes. We run this experiment to confirm that we
reproduce state of the art in UADA, [19, 10} [35]. We
compare to these works in Section[5.1]

e Adaptation from real to real data, from Cityscapes to
Mapillary. So far as we know, we are the first work
to report on this adaptation task. We value this adapta-
tion task as Cityscapes is shot in one country using one
camera, whereas Mapillary is shot in multiple coun-
tries using multiple cameras (Section provides the
details per data set).

Our third set of experiments evaluates the final models
of both adaptation tasks on unseen domains. The main ben-
efit of DAN occurs in domain agnostic testing. DAN acts as
a fixed transformation during testing. One might wonder if
this fixation generalizes to unseen domains. Therefore, we
evaluate the segmentation model that we adapt from GTAS
to Cityscapes on two unseen domains, Mapillary and Apol-
loscape. We evaluate the segmentation model that we adapt
from Cityscapes to Mapillary on the unseen domain, Apol-
loscape. To the best of our knowledge, we are the first to
evaluate these adaptation tasks on unseen domains.

4.1. Data sets

Cityscapes[12] contains images from 50 cities in and
around Germany. Images show scenery over several
months, all in good weather conditions. The dense labels
consist of nineteen categories of the urban scene, e.g. road,
sidewalk, car, bus and traffic sign. All images are shot us-
ing the same car and camera. Sample sizes: training, 2975;
validation, 500.

GTAS[33]] contains images rendered from the Grand
Theft Auto computer game. Images are taken in the ficti-
tious city Los Santos. The dense labels follow the class def-
initions of the Cityscapes data set. Sample sizes: training,
9000; validation, 3000.

Mapillary[30] contains images from all around the
world. Images are taken in varying weather conditions,

seasons, and time of day. Images are shot using different
devices such as mobile phones, action cameras and profes-
sional equipment. The dense labels cover 66 classes, but
we use only the 19 classes that overlap with Cityscapes and
GTAS. Sample sizes: training, 18000; validation, 2000.
Apolloscape[21]] contains images from Beijing, China.
Images are taken in bright weather conditions and are shot
using the same car and camera. We use only the 19 classes
that overlap with Cityscapes and GTAS. The labeling pro-
cess was partially automated, which introduces artefacts.
Sample size: we use 8327 images from the validation set.

4.2. Performance metric

We follow the evaluation in [[19} 35| i47]] and report re-
sults on 19 classes. We consider mean intersection over
union (mIOU) as our figure of merit. Intersection over
union (IOU) represents the number of pixels predicted cor-
rectly per class divided by the total number of predicted and
true pixels for that class. mIOU averages the IOU over all
classes. Perfect segmentation would achieve 100 % mIOU.

We assess the confusion of source and target represen-
tations using a retrieval curve, as in [35]]. Per target rep-
resentation, we consider a number of nearest representa-
tions (horizontal axis) and average the number of source
representations retrieved (vertical axis). Perfect alignment
occurs when half of the nearest representations are source
representations and half of the nearest representations are
target representations. In other words, for any m target rep-
resentations, perfect alignment occurs when 3 representa-
tions come from the source domain and % representations
come from the target domain. The more two sets of rep-
resentations are aligned, the closer their retrieval curve lies
to the perfect alignment curve. In all retrieval curves in this
work, we sample five thousand source and five thousand tar-
get representations from images in the respective validation
sets.

4.3. Implementation details

In all models, the segmentation model trains for 17
epochs. Adversarial adaptation learns from two data sets at
the same time. We define an epoch when, in expectation, we
sampled the smallest data set once. Due to computational
limits, we resize all images and labels to size 384 x 768.
For the purposes of this work, we consider a new data set to
be a new domain.

For training, we use stochastic gradient descent with mo-
mentum. Learning rate and momentum are set at 0.01 and
0.9, respectively. We half the learning rate after 9 and 16
epochs. The batches contain two images per domain. The
network uses pre-trained parameters from ResNet-50 [18],
trained on ImageNet [13]. To stabilize the training of the
domain classifier, we use instance noise [2]. All experi-
ments run in Tensorflow 1.6 [1]].



Table 1. Analyzing batch normalization on multi-domain train-
ing. The units are % mIOU. The batch constituents column indi-
cates the domains of images in the batch, G refers to GTAS and
C refers to Cityscapes. In this experiment, we train models using
only the GTAS labels.

Normalization || Batch Tested on
layer constituents | GTAS ‘ Cityscapes
Batch norm (G, G) 62.1 34.8
Batch norm G,G,C, 0O 61.2 22.1
DAN (G,G,C,0) | 619 35.0

Table 2. Comparing normalization layers on adaptation GTAS
-+ Cityscapes. Numbers represent performance on the target do-
main. Gap reduction indicates the difference between source-only
and UADA. Norm. abbreviation normalization. All units are %
mlOU.

Normalization layer | Source UADA Gap
only reduction

No norm. 26.5 28.4 1.9

Batch norm. [22] 34.8 29.6 5.2

Instance Norm. [42] 30.3 31.4 1.1

Split batch norm. [[11]] 34.8 354 0.6

DAN J[ours] 34.8 38.2 34

5. Results
5.1. Comparing normalization layers

First, we report experimental results on single domain
training using conventional batch normalization and our
normalization layer. In Section [3.2] we reasoned that con-
ventional batch normalization degrades the performance on
the unlabeled target domain in unsupervised domain adap-
tation. This degradation is undesirable for UADA, where
we aim for segmentation performance on the target domain.

Table([T|reports the results for this experiment. A source-
only model on GTAS using conventional batch normaliza-
tion achieves 62.1 % mIOU on the GTAS and 34.8 % mIOU
on Cityscapes. When we include the unlabeled images
from Cityscapes in the batches, the performance changes to
61.2 % mIOU on GTAS and 22.1 % mIOU on Cityscapes.
These results confirm that conventional batch normaliza-
tion degrades the performance on the unlabeled target do-
main, Cityscapes, by 12.7 points mIOU. When we change
the conventional batch normalization layer to our DAN, the
model achieves 61.9 % mIOU on GTAS and 35.0 % mIOU
on Cityscapes. These numbers are comparable to single do-
main training and confirm that multi-domain training using
our DAN does not degrade the performance on the unla-
beled target domain.

The retrieval curve in Figure ] shows another view on
the effects of batch normalization in unsupervised domain
adaptation. We compare the retrieval curves for using con-
ventional batch normalization or DAN when we include im-
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Figure 4. Retrieval curve to show the effect of conventional batch
normalization on the representations. Per target representation, we
consider a number of nearest representations (horizontal axis) and
average the number of source representations retrieved (vertical
axis). Perfect alignment occurs when half of the nearest represen-
tations are source representations and half of the nearest represen-
tations are target representations; the more aligned the representa-
tions are, the closer their curve lies to the perfect alignment curve.
We explain retrieval curves in Section[4.2]

ages from an unlabeled domain in the batch. The curve
for conventional batch normalization in multi-domain train-
ing (green) lies below the source-only curve (black) and
the curve for multi-domain training using DAN (blue).
This difference shows that conventional batch normaliza-
tion learns representations for the unlabeled domain that
are less aligned with the representations from the labeled
domain. This decrease in alignment opposes unsupervised
domain adaptation, where we aim for perfect alignment of
the representations in both domains.

Next, we compare DAN with four alternatives: conven-
tional batch normalization, no normalization, split batch
normalization, [11], and instance normalization, [42]. Ta-
ble [2] shows the results for UADA using the five normal-
ization layers. Conventional batch normalization degrades
the performance on the target domain, as we also observed
in Table [l Instance normalization introduces more noise
during training and we observe that even the performance
on source-only is lowest of the three normalization layers.
Split batch normalization does not apply the same transfor-
mation to each domain and has the lowest gap reduction.
Finally, we observe that the gap reduction using DAN ranks
highest at 3.4 points mIOU.
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Figure 5. Example results for images from the Cityscapes and Mapillary validation sets. Per image, we show predictions from a model
trained on source-only (GTAS) and UADA (GTAS » Cityscapes) using DAN. The supplementary material contains more example results.

Table 3. Hyperparameter analysis Comparing target perfor-
mance for ranging values of A. CS abbreviates Cityscapes. Num-
bers represent target performance in units % mIOU

valueof A [107°[107* | 1073 | 1072 [ 107!
GTAS > CS 33.6 | 34.6 | 38.2 | 34.6
CS > Mapillary | 42.6 | 43.0 | 45.0 | 37.6

Table 4. GTAS - Cityscapes. First row, source, indicates a model
trained on GTAS only. We also report performance on two unseen
domains, Mapillary and Apolloscape. All units are % mIOU.

GTAS » Cityscapes

Tested on
GTAS | Cityscapes | Mapillary | Apolloscape
Method || (Source) | (Target) | (Unseen) | (Unseen)
Source 62.2 34.8 37.1 25.3
UADA 62.7 38.2 38.5 274

5.2. Unsupervised adversarial domain adaptation

In this experiment, we evaluate UADA using DAN. We
consider two adaptation tasks, compare with related works
and report results on unseen domains, Mapillary and Apol-
loscape. We found the values for A using a hyperparameter
sweep and report results in Table[3]

Table [] reports the results for adapting from GTA5 to

Table 5. Comparison with three recent works in UADA. The
first column indicates at what level the adversary operates. Image
size indicates number of pixels in height X width. Performance
units are % mIOU.

GTAS5 - Cityscapes

Adversarial adaptation level |Norm.| Image |Target
layer size perf.
Representation No X 25.5
Representation and logit No X 28.9
Representation and output No |512 x 1024| 37.1
1351
Representation [ours] Yes | 384 x 768 | 38.2

Cityscapes. These results show that we improve 3.4 points
mlIOU on the target domain. A source-only model achieves
62.1 % mIOU on GTAS and 34.8 % mIOU on Cityscapes.
UADA achieves 62.7 % mIOU on GTAS and 38.2 % mIOU
on Cityscapes. Referring back to Figure ] we observe that
the retrieval curve for the adapted model (yellow) lies closer
to the perfect alignment curve, which confirms that UADA
aligns the representations. We plot segmentation outputs of
both models on the Cityscapes validation set in Figure
We observe that the source-only model, trained on GTAS,
makes incorrect predictions in large areas of the Cityscapes
images. The plots for UADA clearly show less of these er-



Table 6. Cityscapes ~ Mapillary. The first row, source, indicates a
model trained on Cityscapes only. We also report performance on
an unseen domain, Apolloscape. All units are % mIOU.

Cityscapes + Mapillary
Tested on
Cityscapes Mapillary Apolloscape
Method (Source) (Targer) (Unseen)
Source 63.6 432 25.8
UADA 64.0 45.0 27.1

rors. In Table 5] we compare our results to recent publica-
tions on this adaptation task. Despite using lower resolu-
tion, training UADA using DAN achieves the highest per-
formance, 38.2 % mlIOU, on the target domain.

Table[]shows that the performance improves on two un-
seen domains, Mapillary and Apolloscape. For Mapillary,
the source-only model achieves 37.1 % mIOU and UADA
improves the performance to 38.5 % mIOU. For Apol-
loscape, the source-only model achieves 25.3 % mIOU and
UADA improves the performance to 27.4 % mIOU. These
results show that by adapting from GTAS to Cityscapes, the
performance improves 1.4 points mIOU on Mapillary and
2.1 points mIOU on Apollo. Appendix [5] shows segmen-
tation outputs of both models on an unseen domain, Map-
illary. Again on this unseen domain, we observe less in-
correct predictions when comparing the unadapted with the
adapted model.

Finally, we reproduce the benefits of DAN on a second,
real world adaptation task: from Cityscapes to Mapillary.
Both domains are real and have less domain gap. Con-
sequently, we expect a smaller improvement compared to
synthetic to real adaptation. Table [6] reports the results for
this adaptation task. We observe that the source domain
improves from 63.6 to 64.0 % mIOU. The target domain
improves 1.8 points from 43.2 to 45.0 % mIOU. For this
second adaptation task, we evaluate the source-only model
and the adapted model on the unseen domain, Apolloscape.
The performance on Apolloscape improves 1.3 points from
25.8 to 27.1 % mlIOU. Although these improvements are
less than adapting from a synthetic to a real domain, this
experiment again shows the improved generalization capa-
bility for unseen domains, which is a chief aim in pattern
recognition.

6. Discussion

Our experimental results demonstrate that UADA with
our normalization layer improves segmentation perfor-
mance on source, target and unseen domains. In this sec-
tion, we highlight some points for discussion.

In training UADA, the A hyperparameter plays a critical
role for the performance on the target domain. The A bal-

ances the segmentation and confusion loss, see Equation 2]
In Table |3} we report the target performance on both adap-
tation tasks using different values for \. We observe that
1) the performance drops more than 2 points mIOU when
we change A from the optimal value; 2) the optimal value
differs between the adaptation tasks. However, in unsuper-
vised domain adaptation, we would have no labels for the
target domain to evaluate these numbers. One might thus ar-
gue that tuning the hyperparameters alludes to overfitting on
the target labels. Therefore, we evaluate the model on un-
seen domains, i.e. the domains that we never used training
nor setting the hyperparameters. For both adaptations tasks
in Tablesdand [6] we observe an improvement in the perfor-
mance on unseen domains. These improvements show that
training with the optimal X\ value for the target domain also
improves performance for unseen domains.

The domain classifier operates at the level of the rep-
resentations, which might not suffice to reduce the do-
main adaptation gap. An adapted model from GTAS to
Cityscapes achieves 38.2 % mIOU, while a model trained
and evaluated on Cityscapes achieves 63.6 % mIOU. This
gap shows the need for further improvement. The first col-
umn in Table[5]shows at what level the adversaries operate.
Contemporary work focuses on extending the adversaries
to multiple levels, [35 [10]. These works show a promis-
ing direction of research and we believe that our DAN will
facilitate further improvements.

7. Conclusion

In this work, we present a Domain Agnostic Normaliza-
tion (DAN) layer for unsupervised adversarial domain adap-
tation (UADA). Unlike conventional batch normalization,
for which we show that it significantly reduces performance
on UADA, our DAN layer learns normalization statistics
only over the labeled domain and applies it to unlabeled
and unseen domains. Consequently, DAN unlocks the ben-
efits of normalization for UADA and we present in-depth
experiments to demonstrate its advantage. Despite training
at less than half of the original resolution, we surpass state-
of-the-art performance on a common benchmark, i.e. adapt-
ing from GTAS to Cityscapes, achieving 38.2 % mIOU on
the target domain. As a model trained with DAN remains
domain agnostic when testing, we also report 1.4 and 2.1
points mIOU improvement on two unseen domains, Mapil-
lary and Apolloscape, respectively. We reproduce these im-
provements on a second adaptation task, i.e. adapting from
Cityscapes to Mapillary. Again, we show a performance
improvement on an unseen domain, Apolloscape. All to-
gether, we demonstrate that using DAN allows for improved
performance on unseen domains, which is the chief aim of
pattern recognition.
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