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Abstract—A framework is proposed for developing and eval-
uating algorithms for extracting multipath propagation compo-
nents (MPCs) from measurements collected by channel sounders
at millimeter-wave frequencies. Sounders equipped with an omni-
directional transmitter and a receiver with a uniform planar
array (UPA) are considered. An accurate mathematical model is
developed for the spatial frequency response of the sounder that
incorporates the non-ideal cross-polar beampatterns for the UPA
elements. Due to the limited Field-of-View (FoV) of each element,
the model is extended to accommodate multi-FoV measurements
in distinct azimuth directions. A beamspace representation of
the spatial frequency response is leveraged to develop three
progressively complex algorithms aimed at solving the single-
snapshot maximum likelihood estimation problem: greedy match-
ing pursuit (CLEAN), space-alternative generalized expectation-
maximization (SAGE), and RiMAX. The first two are based
on purely specular MPCs whereas RiMAX also accommodates
diffuse MPCs. Two approaches for performance evaluation are
proposed, one with knowledge of ground truth parameters, and
one based on reconstruction mean-squared error. The three
algorithms are compared through a demanding channel model
with hundreds of MPCs and through real measurements. The
results demonstrate that CLEAN gives quite reasonable estimates
which are improved by SAGE and RiMAX. Lessons learned and
directions for future research are discussed.

I. INTRODUCTION

Accurate modeling of the multipath propagation environ-
ment is critical for the design and deployment of wireless
networks, especially at millimeter-wave (mmWave) and Tera-
hertz (THz) frequencies that are part of 5G, 6G and emerging
standards because of the inherently higher spatial and temporal
resolutions at these frequencies. Accurate channel modeling
in turn relies on appropriate and precise measurements of the
propagation environment collected by radio-frequency channel
sounders. Wideband directional sounders at mmWave and

THz frequencies can take on various forms depending on the
beamforming mechanism, such as phased arrays, lens arrays
or mechanically pointed horn antennas [1], [2], which in
turn dictates different approaches for measuring, calibrating
and modeling sounder characteristics. The performance of the
multipath propagation component (MPC) extraction depends
on both the sounder hardware characteristics as well as the
estimation algorithms used for processing the measurements.

Building on initial work based on an “idealized” model for
the National Institute of Standards and Technology (NIST)
SAMURAI1 sounder [3], this paper details a new and com-
prehensive framework for the development and evaluation of
MPC estimation algorithms, leveraging a realistic model for
the sounder measurements that fully incorporates the measured
cross-polar and frequency-dependent beampatterns for array
elements in addition to measurement noise. The non-ideal
measured beampatterns and the inherent forward-backward
ambiguity also necessitates a new formulation for multiple
Field-of-Views (FoVs) to accurately characterize the entire
360 degree FoV in azimuth. These new contributions reported
in this paper are unprecedented and reflect the culmination
of a multi-year effort2 as part of ongoing work by the NIST
NextG Channel Model Alliance, including a recent work on
benchmarking the performance of sounders [4]. The new
contributions are reflected both in the new system (sounder and
channel) model as well as in the development of the algorithms
for processing the measurements.

1Synthetic Aperture Measurement UnceRtainty for Angle of Incidence.
2It reflects the completed work of two sub-groups from the Alliance, one

focused on the measurement aspects and one focused on the algorithmic
aspects; Sayeed actively participated in both the sub-groups.
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Fig. 1. Illustration of the proposed methodology for the development and evaluation of MPC parameter extraction algorithms. A mathematical model for sounder,
incorporating non-idealities, is used to synthetically generate the sounder output - the space-frequency response of the propagation environment - for a given set of
known MPC parameters, which serve as the “ground truth”. The synthetic space-frequency channel response serves as the input to the MPC estimation algorithms,
that also leverage the sounder model.

A. Overview of the Methodology

The proposed framework for developing and evaluating
MPC extraction algorithms is illustrated in Fig. 1. The mea-
surements collected by the sounder are processed by the algo-
rithms to estimate the MPCs of the propagation channel. In the
proposed evaluation of estimation algorithms, the actual chan-
nel measurements are replaced with a realistic mathematical
model for the sounder as illustrated in Fig. 1. A known set of
MPC parameters (“ground truth” (GT)) is provided as an input
to the sounder model which then generates the corresponding
spatial frequency response matrix as the output. The MPC
parameter estimation algorithms, that incorporate the realistic
sounder model, are then applied to the spatial frequency
response matrix generated by the sounder model. A statistical
analysis of the estimated MPC parameters, relative to the GT
values, is provided to evaluate the performances of different
algorithms. Another criterion, based on the normalized mean-
squared reconstruction error, that does not require GT data, is
also considered.

While the framework developed is general, the special
case considered in this paper is the single input multiple
output (SIMO) setting in which the TX of the sounder is
assumed to have a single isotropic antenna, and the RX is
equipped with a uniform planar array (UPA), as in the NIST
SAMURAI system, with a WR-28 waveguide serving as the
UPA element. A UPA at the RX is sufficient to resolve the
MPCs in the 3D azimuth (AZ), elevation (EL), and delay
space; including a UPA at the TX would have significantly
increased computational complexity. A realistic model for
the SAMURAI system is developed to enable an extensive
evaluation of the estimation algorithms based on synthetic
measurements generated from the NIST GT MPC data. The
results on the performance of the MPC estimation algorithms
for real measurements provide additional cross-validation of
the algorithms developed and evaluated using the synthetic
MPC data.

The development in this paper falls under the “narrow-
band scenario” where the bandwidth (1 or 2 GHz) is small
compared to the operating frequency (28 GHz) so that the
array response vectors are assumed to be invariant over the
bandwidth [5]. However, the measured beampatterns used for

each WR-28 UPA element are frequency dependent. Three
algorithms aimed at solving the single-snapshot maximum-
likelihood (ML) estimation problem are considered: CLEAN,
SAGE, and RiMAX. CLEAN and SAGE assume a specular
MPC model, and RiMAX incorporates a diffuse MPC model
as well.

(a)

(b)

Fig. 2. Illustration of the GT MPC data for one TX-RX location. (a) A 3D plot
of LoS, single bounce (1B), double bounce (2B), and diffuse MPCs. The diffuse
MPCs are generated statistically, clustered around each 1B and 2B MPC. (b)
The rays corresponding to specular MPCs.

The GT data used in this paper is provided by NIST [6]
based on propagation measurements, over a wide frequency
range (13.5 GHz to 40 GHz), in a conference room of
dimension 10 m × 19 m × 3 m, for 10 distinct TX-RX
locations, as shown in Fig. 2. Fig. 2(a) shows an illustrative
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example for one TX-RX location, featuring over 450 MPCs
including the direct path, first- and second-order specular
reflections, and diffuse components that are clustered around
each specular MPC [6]. Fig. 2(b) shows the ray-traced model
for the specular paths. For each TX-RX location, three sounder
measurements are synthetically generated, corresponding to
the RX array pointing in three directions, centered on disjoint
120-degree sectors in azimuth.

B. Related Work

Extensive research has been conducted to develop and com-
pare the performance of MPC estimation algorithms, which
can be broadly categorized into three main groups: spectral
subspace-based techniques, parametric subspace-based meth-
ods, and parametric ML-based methods [7], [8]. Multiple
Signal Classification (MUSIC) and Unitary estimation of sig-
nal parameter via rotational invariance techniques (ESPRIT)
belong to the first two groups, respectively, while CLEAN,
SAGE and RiMAX are part of the final category [7], [8].
Subspace-based methods assume knowledge of second-order
channel statistics, which necessarily requires multiple statis-
tically uncorrelated (in the MPC amplitudes) measurements,
or snapshots, so that the resulting covariance matrix of the
measurement data exhibits full rank in the signal subspace
[7], [8]. On the other hand, ML-based parametric approaches,
as those considered in this paper, can be applied to single-
snapshot measurements, which are more feasible in practice.
For this reason, single-snapshot approaches are also sometimes
referred to as “deterministic” and covariance-based multiple-
snapshot approaches as “stochastic.” One technique for ar-
tificially creating multiple snapshots from a single snapshot
for subspace methods is “smoothing”: the single snapshot
is partitioned, possibly with some overlap, in the spatial or
frequency domain, to generate multiple snapshots from which
an estimate for the covariance matrix in the corresponding
domain can be obtained by averaging, albeit at a loss of
angular or delay resolution.

Another difference between various MPC parameter estima-
tion approaches is whether the parameters are estimated jointly
(as in MUSIC and ESPRIT, typically) or sequentially (itera-
tively) as in CLEAN, SAGE and RiMAX. These differences
in attributes also influence which algorithms are evaluated
in the same setting. Performance criteria considered in the
comparison of algorithms include the accuracy in estimating
the MPC parameters (e.g., azimuth, elevation, time delay), ap-
plicability to different array architectures, convergence speed
and computational complexity, as discussed in the review
papers [7], [8]. Studies in [9], [10] report performance results
on RiMAX, SAGE and ESPRIT and investigate the impact of
including diffuse multipath components (DMCs) in the model
which is only accomplished by RiMAX. The comparison of
SAGE and ESPRIT is based on a model with only specular
multipath components (SMCs). The findings highlight the
importance of DMCs, as RiMAX is shown to yield the best
performance [9], [10]. It is also found that SAGE returns more
accurate angular estimates than ESPRIT [10]. In other related
work, MPC estimation algorithms are tested under simulation
scenarios with varying array sizes and signal-to-noise ratio

(SNR) [7], [11]–[13]. Although SAGE is reported to have
higher computational complexity due to its iterative nature,
compared to MUSIC and ESPRIT, it performs better under
low-SNR scenarios and is more robust to channel modeling
errors [12], [14]. The CLEAN algorithm is shown to be an
effective MPC estimation algorithm in the single-snapshot (de-
terministic) setting, however comparison with other techniques
is rare [15].

Generally, most existing studies analyze the estimation
techniques via Monte-Carlo simulations based on simplified
synthetic scenarios limited to first-order specular components
with less than ten MPCs [7], [11]–[14], [16]. Studies that
report results on real measurements are generally limited with
little or no knowledge of the ground truth [7], [8], [11], [12],
[15], [16]. Relatively few papers evaluate algorithms in both
synthetic and real settings [7], [11], [12], [16]. However, it is
crucial to test the algorithms in presence of practically relevant
multipath mechanisms, e.g., first- and higher-order specular
paths, and diffuse components, in addition to the direct path,
as a more realistic representation of a propagation environ-
ment. It is also critical that the performance of algorithms
is investigated with a realistic channel sounder model which
incorporates system non-idealities, such as antenna element
beampatterns. However, none of the studies thus far have
accomplished that.

Table I summarizes the key attributes of the related work
reviewed above in the context of the contributions of this
paper. In particular, none of the related works address three key
innovations in the mathematical framework developed in this
paper: modeling of non-ideal antenna element beampatterns,
fully polarimetric modeling of measurements, and a multi-FoV
formulation, both for simulating the measurement data and for
algorithm design.

C. Summary of Novel Contributions

The focus of this paper is on deterministic, single-snapshot
parametric MPC estimation algorithms: CLEAN, SAGE and
RiMAX. Subspace-based methods, such as MUSIC and ES-
PRIT are not directly applicable in this practically relevant
setting. The proposed framework develops the new mathe-
matical model and description for the three algorithms in
an integrated and complete fashion and as a result provides
an explicit blueprint for implementing the algorithms. The
mathematical development is supported by the numerical
results on the implementation in the most extensive simulation
setting based on previously estimated MPCs at NIST as well
as real measurements taken by the actual SAMURAI system
(which is accurately captured by the mathematical model
developed in this paper) in a representative and carefully
designed environment.

Additional significant and novel contributions of the frame-
work developed in this paper include:

• A realistic model for the sounder measurements, devel-
oped in Sec. II-C, that incorporates the non-ideal and
frequency-dependent beampatterns of UPA elements in
addition to measurement noise. The model is extended to
a fully polarimetric setting in Sec. III-F and measured
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TABLE I
A table summarizing the key attributes of related work in the context of this paper. None of the related works address three key innovations in the mathematical

framework developed in this paper: modeling of non-ideal antenna element beampatterns, fully polarimetric modeling of measurements, and a multi-FoV
formulation, both for simulating measurement data and for algorithm design. Furthermore, unlike related work, the measurement results reported in this paper are

for the NIST SAMURAI system in a controlled environment with accurate measurements of the harmonic parameters of the strong MPCs.

cross-polar beampatterns for the UPA elements (WR-
28 waveguide) are utilized in the numerical results in
Sec. VI.

• An integrated new development of the three algorithms in
Sec. III, encompassing both specular MPCs (CLEAN and
SAGE) and diffuse MPCs (RiMAX), that incorporates
the new realistic system (channel and sounder) model in
algorithm design.

• A multi-FoV formulation developed in Sec. IV, necessi-
tated by the non-ideal element beampatterns, in which
measurements from three UPA orientations are jointly
processed for MPC extraction. The multi-FoV formula-
tion encompasses both the system (channel and sounder)
model as well as algorithm design.

• Identification of two appropriate metrics in Sec. V for
evaluating the MPC extraction algorithms: one that relies
on the knowledge of ground truth MPC parameters for
insight, and one based on the normalized mean-squared
reconstruction error that is more appropriate in practice.
An analysis of the computational complexity of the three
algorithms is also provided.

• Evaluation of the algorithms in Sec. VI for two different
UPA sizes (17×17, 35×35) and two different bandwidths
(1, 2 GHz) at a center frequency of 28 GHz, to test
the robustness of the algorithms with array size and
bandwidth. In particular, the larger array size (35 × 35)
and bandwidth (2 GHz) are approaching the boundary of

the “narrowband” scenario [5] as noted in the results.
• Evaluation of the algorithms using both synthetic and real

measured data. The synthetic evaluation in Sec. VI-A is
based on one of the most extensive and accurate MPC
data sets, consisting of over 400 MPCs with both spec-
ular MPCs (direct path and first-order and second-order
reflections) and diffuse MPCs for 10 different TX-RX
locations. The real measurements used in the evaluation
in Sec. VI-B were taken by the NIST SAMURAI sounder
system in a carefully designed scenario aimed at testing
the resolution capabilities of the sounder with precise and
accurate measurements of the ground truth MPCs.

Notation: The superscript T refers to transpose, ∗ to complex
conjugation, and † =T∗ to complex conjugate transpose.

II. PHYSICAL CHANNEL MODEL AND ITS BEAMSPACE
REPRESENTATION

This section describes an idealized physical model for the
multipath propagation channel for a UPA and its sampled
beamspace representation, induced by key sounder parameters.
The model is extended to a realistic model incorporating
hardware non-idealities in Sec. II-C and to multiple FoVs in
Sec. IV.
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A. Physical SIMO Model for A Uniform Planar Array

In the static scenario, the physical model can be expressed
as a spatial frequency response [17]–[20]

H(f) =

Np∑
n=1

αnaNx(θ
x
n)a

†
Ny
(θyn)e

−j2πτnf (1)

which represents a SIMO channel connecting an omni-
directional single-antenna TX to a RX UPA with omni-
directional antennas, Nx in the x (horizontal) direction and
Ny in the y (vertical) direction. The channel is represented by
the Nx ×Ny spatial frequency response matrix H(f) which
captures the signal propagation over Np paths, with αn, θxn,
θyn, and τn denoting the complex amplitude, spatial frequency
in x direction, spatial frequency in the y-direction, and delay
of the n-th path. The spatial frequencies in (1) are induced
by the physical angles in azimuth (AZ) and elevation (EL),
ϕA
n ∈ [−π, π) and ϕE

n ∈ [−π
2 ,

π
2 ], defined with respect to the

broadside direction, via the relationship:

θx =
dx
λ

sin(ϕA) cos(ϕE) ; θy =
dy
λ

sin(ϕE) , (2)

where dx and dy are the antenna spacings in the x and y
directions, and λ is the operating wavelength. We assume that
dx = dy = d. The vector aNx(θ

x) is an Nx×1 response vector
for the x-direction and aNy(θ

y) is an Ny×1 response vector for
the y-direction. The response vectors take the form of discrete
spatial sinusoids with frequencies θx, θy [17], [19], [20]:

aN(θ)=
[
1, e−j2πθ, · · · , e−j2πθ(N−1)

]T

, θ ∈
[
−d

λ
,
d

λ

]
. (3)

The relationship (2) induces a one-to-one correspondence
between θy ∈

[
− d

λ ,
d
λ

]
and ϕE ∈

[
−π

2 ,
π
2

]
. Similarly, there

is a one-to-one correspondence between θx ∈
[
− d

λ ,
d
λ

]
and

ϕA ∈
[
−π

2 ,
π
2

]
- the principle range of AZ angles. The AZ

angles outside this range, get aliased back into it as

ϕA → −π − ϕA, ϕA∈
[
−π,−π

2

)
;ϕA → π − ϕA, ϕA∈

(π
2
, π

)
.

The ambiguity between the forward and backward hemi-
spheres requires multiple FoVs.

The model (1) is widely used for simulating wireless
channels. It assumes knowledge of the MPC parameters at
perfect (infinite) angle-delay resolution. On the other hand,
any sounder/system in practice has a finite resolution in angle-
delay, which also impacts the statistical characteristics of the
estimated MPC parameters [1], [20]. These challenges are
accentuated at mmWave frequencies due to: i) the lack of
sufficient measurements in different operational environments,
and ii) limited capabilities of existing sounders, e.g., low
spatial resolution and/or mechanical pointing. Fundamentally,
many technical issues need to be addressed for estimating
the angle-delay MPC parameters from sounder measurements,
especially for sounders with antenna arrays for directional
measurements. The “beamspace” channel representation in
angle-delay discussed next provides a useful tool for devel-
oping and comparing MPC extraction algorithms.

B. Beamspace Representation of the Physical Model

A fundamental connection between the measurements made
in practice and the physical model above is revealed by the
beamspace representation of the physical model (1) [19], [20]

Hb(θ
x, θy, τ) =

1

WNxNy

∫ W
2

− W
2

a†
Nx
(θx)H(f)aNy(θ

y)ej2πτfdf

=

Np∑
n=1

αnfNx(θ
x − θxn)fNy(θ

y − θyn)

sinc(W (τ − τn)) (4)

where W is the (two-sided) operational bandwidth and
Hb(θ

x, θy, τ) represents the 3D channel impulse response in
angle-delay space, sinc(x) = sin(πx)

πx and fN(θ) denotes the
Dirichlet sinc function fN(θ) = sin(πNθ)

πNθ . The beamspace
representation maps the spatial frequency response in (1) into
the angle-delay (beamspace) domain through a 3D Fourier
transform. A sampled version of Hb(θ

x, θy, τ) is used, directly
or indirectly, in MPC estimation algorithms:

Hb[i, k, ℓ] = Hb(i∆θx, k∆θy, ℓ∆τ) . (5)

Critically spaced samples are defined by the temporal (delay)
resolution and spatial resolution of the UPA in x and y
directions at the RX:

∆τ =
1

W
; ∆θx =

1

Nx
; ∆θy =

1

Ny
. (6)

Critical spatial sampling induces an equivalent beam-frequency
representation of H(f)

Hb(f) = U †
Nx
H(f)U Ny ⇐⇒H(f) = NxNyU NxHb(f)U

†
Ny

where Hb(f) is the sampled beam-frequency response matrix,
and the matrices U Nx and U Ny represent the spatial Discrete
Fourier Transform (DFT) matrices, whose columns are steer-
ing/response vectors (3) for uniformly spaced spatial frequen-
cies, that map the antenna domain into the angle (beam)
domain: U Nx =

1
Nx

[
aNx(∆θx),aNy(2∆θx), · · · ,aNx(Nx∆θx)

]
and similarly for U Ny . The sampled beam-frequency represen-
tation Hb(f) is an equivalent representation of H(f) over
the bandwidth W and contains all information about it. The
beamspace representation in angle-delay is particularly useful
at mmWave frequencies due to the highly directional nature
of propagation. It is a natural domain for representing channel
measurements made with directional antennas; e.g., phased
arrays, lens arrays or mechanically-pointed antennas [2].

C. Physical Model with Antenna Element Beampatterns

The ideal model in (1) assumes ideal omni-directional
beampatterns for each antenna element at the RX. In practice,
each element has a particular antenna pattern that needs to be
accounted for in the physical model. In this paper, an ideal
omni-directional antenna is assumed at the TX, while a WR-
28 waveguide is used at the RX. Let Gi,k(ϕ

A, ϕE, f) denote
the frequency-dependent far-field beampattern for the i-th
element in the x direction and k-th element in the y direction,
i = 1, 2, · · · , Nx, k = 1, 2, · · · , Ny. Let G(ϕA, ϕE, f) denote
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the Nx × Ny matrix of beampatterns for the UPA elements.
Then the ideal model in (1) gets replaced with

H(f)=

Np∑
n=1

αnG(ϕA
n, ϕ

E
n, f)⊙

[
aNx(θ

x
n)a

†
Ny
(θyn)

]
e−j2πτnf (7)

where ⊙ denotes element-wise product between two matrices
of same size. If all antenna beampatterns are identical, as is
assumed in this paper, then Gi,k(ϕ

A, ϕE, f) = G(ϕA, ϕE, f) for
all (i, k), and the non-ideal model in (7) becomes

H(f) =

Np∑
n=1

αnG(ϕA
n, ϕ

E
n, f)aNx(θ

x
n)a

†
Ny
(θyn)e

−j2πτnf

=

Np∑
n=1

αnH(f ;µn) (8)

where µ = (θx, θy, τ) (or equivalently, µ = (ϕA, ϕE, τ)) and

H(f ;µ) = G(ϕA, ϕE, f)aNx(θ
x)a†

Ny
(θy)e−j2πτf (9)

is the contribution to H(f) defined by µ.
The measured complex frequency-dependent beampattern

G(ϕA, ϕE, f) for a WR-28 waveguide used in this paper had an
initial frequency resolution of 500 MHz and angular resolution
of 1◦ in the range −180◦ ≤ ϕA < 180◦, −90◦ ≤ ϕE ≤ 90◦.
The beampattern was interpolated to any given (ϕA, ϕE) using
the effective aperture distribution function (EADF) technique
[21]. The frequency samples were interpolated to 10 MHz
resolution to match the frequency sampling in the SAMURAI
system. The realistic sounder model in (8) is used for generat-
ing the synthetic frequency response samples in Fig. 1. The 2D
power distribution profile (PDP) in AZ-EL of the beampattern
is computed as

PG(ϕ
A, ϕE) =

∫ fc+
W
2

fc−W
2

|G(ϕA, ϕE, f)|2 df. (10)

Fig. 3 shows the 2D AZ-EL PDPs of the measured beampat-
terns for the three UPA orientations as well as the composite
beampattern due to all rotations, computed over W=1 GHz.
The full coverage in AZ provided by the three orientations is
evident from the composite beampattern.

III. ESTIMATION OF MPCS FROM MEASUREMENTS

Consider the non-ideal model (8) for a static, frequency-
selective SIMO channel. The GT MPC data discussed in Sec. I
consists of the physical MPC parameters

{αn, µn = (θxn, θ
y
n, τn) : n = 1, · · · , Np} (11)

which are plugged into (8) to computationally generate syn-
thetic measurements of H(f), which we denote by Hms(f).
In practice, the measurements are corrupted by noise

Hms(f) = H(f) +W (f) (12)

where the matrix W (f) represents thermal noise. The entries
of the W (f) matrix are statistically independent across the
different antenna pairs, and for each entry, Wi,k(f), is assumed
to be an AWGN (additive white Gaussian noise) process with
unit power spectral density, without loss of generality. The

Fig. 3. The 2D AZ-EL PDPs (dB) of the UPA-element beampattern for the
three different UPA orientations, and the composite PDP. Rotation 1 at 90
degrees, Rotation 2 at 210 degrees, and Rotation 3 at 330 degrees.

estimation algorithms process Hms(f) to generate an estimate
of the MPC parameters

{α̂n, µ̂n = (θ̂xn, θ̂
y
n, τ̂n) : n = 1, · · · , N̂p} . (13)

The sounder makes temporal measurements at the Nyquist rate
over the duration T , resulting in a total of N = T

∆τ = TW
samples. A total of NxNy temporal measurements, each of
size N , are available for each element of the RX UPA to
capture Hms(f). The rest of this section details the algorithms
used for MPC estimation from the noisy channel frequency
response Hms(f) in (12). The ML formulation of the problem
is discussed first, followed by the CLEAN algorithm, least-
squares update of MPC amplitudes, and finally the SAGE and
RiMAX algorithms. An extension of the system model to fully
polarimetric measurements is presented in Sec. III-F.

A. Maximum Likelihood Estimation

For a given Np, the ML estimate of MPC parameters is
given by

{α̂n, τ̂n, θ̂
x
n, θ̂

y
n} =

arg min
αn,τn,θx

n,θ
y
n

∥∥∥∥∥∥Hms(f)−
Np∑
n=1

αnH(f ;µn)

∥∥∥∥∥∥
2

(14)

which operates in a high-dimensional spatio-temporal signal
space of dimension No = NNxNy and is computationally
prohibitive. It essentially represents a non-linear least-squares
optimization problem. The ML estimation in (14) represents a
brute-force search over the 4Np continuous-valued parameters
{αn, θ

x
n, θ

y
n, τn : n = 1, · · · , Np} involving the non-linear,

non-convex likelihood function on No-dimensional spatio-
temporal vectors. For example, for a sounder equipped with
a UPA at the RX of dimension Nx = Ny = 35, a bandwidth
of W = 1 GHz, and measurement duration of T = 100 ns,
the dimension is No = 122500. Estimation algorithms, such
as CLEAN [22], SAGE [23] and RiMAX [24], are aimed
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at taming the computational complexity of ML. It is noted
that knowledge of Np is not assumed by the algorithms in
this paper; an estimate of Np is implicitly obtained via the
“stopping criteria” for the algorithm iterations, as discussed in
Sec. IV-C.

B. CLEAN (Greedy) Estimation: Single MPC update

A simple and often sufficient sub-optimal approach to
MPC parameter estimation is the so-called “greedy” matching
pursuit [25] which sequentially estimates the dominant MPC
components. At the heart of the greedy (similar to CLEAN
[22]) approach is the single MPC update:

{α̂, τ̂ , θ̂x, θ̂y} = arg min
α,τ,θx,θy

∥Hms(f)− αH(f ;µ)∥2 (15)

where H(f ;µ) is defined in (9). It is convenient to rewrite (15)
in vector form. Let h = vec(H) be the vectorized version of
H obtained by stacking the columns of H . Then H(f ;µ)
becomes

h(f ;µ) = G(ϕA, ϕE, f)e−j2πτfa∗
Ny
(θy)⊗ aNx(θ

x) (16)

where ⊗ denotes the Kronecker product [26]. By sampling in
frequency at ∆f = 1

T , (16) can be expressed as

h(µ) = [gN(ϕ
A, ϕE)⊙ aN(θ

τ )]⊗ [a∗
Ny
(θy)⊗ aNx(θ

x)] (17)

θτ =
τW

N
∈ [0, 1) (18)

where gN(ϕ
A, ϕE) is an N -dimensional vector of samples of

G(ϕA, ϕE, f) in frequency, and aN (θτ ) takes the same form
as the spatial response vectors in (3). The vector h(µ) is an
No×1 vector representing the rank-1 channel spatial frequency
response with MPC parameter µ. The one-MPC optimization
in (15) can be expressed as

{α̂, µ̂} = argmin
α,µ
∥hms − αh(µ)∥2 (19)

and the (matched filter) solution is given by

µ̂ = argmax
µ

f(hms, µ) ; f(hms, µ) =

∣∣∣h†(µ)hms

∣∣∣2
∥h(µ)∥2

(20)

α̂ =
h†(µ̂)hms

∥h(µ̂)∥2
. (21)

The numerator and denominator of f(hms, µ) can be ex-
panded as

h†(µ)hms =

N∑
k=1

a†
Nx
(θx)Hms(k∆f)aNy(θ

y)

G∗(ϕA, ϕE, k∆f)ej2πτk∆f

=NxNy

∑
k

Hb,ms(θ
x, θy, k∆f)

G∗(ϕA, ϕE, k∆f)ej2πθ
τk (22)

∥h(µ)∥2 =NxNy∥gN(ϕ
A, ϕE)∥2

=NxNy

N∑
k=1

|G(ϕA, ϕE, k∆f)|2 (23)

f(hms, µ) =

NxNy

∣∣∑
k Hb,ms(θ

x, θy, k∆f)G∗(ϕA, ϕE, k∆f)ej2πθ
τk
∣∣2∑

k |G(ϕA, ϕE, k∆f)|2
.

(24)

That is, the functional f(hms, µ) in the one-step update is
computed in (24) by first computing the beam-frequency
representation of Hms(f) in the spatial dimensions and then
multiplying with the conjugate of the element beampattern
before computing the beamspace representation in τ .

The CLEAN (greedy matching pursuit) algorithm estimates
K MPCs sequentially.

ALG CLEAN (Greedy):

FOR k = 1 : K

µ̂k = argmax
µ

∣∣∣h†(µ)hms

∣∣∣2
∥h(µ)∥2

; α̂k =
h†(µ̂k)hms

∥h(µ̂k)∥2
hms ←− hms − α̂kh(µ̂k)

END (25)

Note that an over-sampled representation of
Hb,ms(θ

x, θy, τ) is computed via (4) and (5) to estimate the
K dominant MPCs in the greedy algorithm (25).

C. Least Squares Reconstruction of MPC Amplitudes

Once the MPC parameters {(α̂k, µ̂k) : k = 1, . . . ,K} for
K dominant MPCs have been estimated (using CLEAN, e.g.),
a least squares (LS) update of the MPC complex amplitudes
can be obtained to further refine their values. The measured
space-frequency response is related to the MPC amplitudes as

hms = Adomα (26)

where hms is the No-dimensional vector of the measured
frequency response, Adom is the No × K matrix whose
columns are space-frequency basis vectors corresponding to
the estimated MPCs:

Adom = [h(µ̂1),h(µ̂2), · · · ,h(µ̂K)] . (27)

The LS estimate for the vector of complex path amplitudes,
α, in (26) is given by

α̂LS =
(
A†

domAdom

)−1

A†
domhms . (28)

Note that A†
domAdom is a K × K matrix and is generally

invertible as long as the estimated basis vectors are sufficiently
distinct in (27) and K < No which is guaranteed due to
multipath sparsity, especially in high-dimensional channels.
An LS update improves the estimate of α since the columns
of Adom are not linearly independent in general; it is also the
best linear unbiased estimator (BLUE) which is efficient from
the perspective of the Cramer-Rao lower bound.

D. SAGE Algorithm

The greedy part of the greedy-LS algorithm in (25) is
identical to the CLEAN algorithm - referred to as CLEAN in
the following. The MPC estimates from the CLEAN algorithm
are used for initializing the iterations in SAGE and RiMAX.
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Let (α̂i
k, µ̂

i
k), k = 1, · · · ,K, denote the MPC parameter

estimates at the i-th iteration and α̂i
kh

(
µ̂i
k

)
the estimated

channel component for the k-th MPC at the i-th iteration. A
simple path-wise iteration of the SAGE algorithm refines the
MPC estimates at the i-th iteration via the following two steps
(k = 1, · · · ,K):

E-step: hi
res,k = hms −

∑
k′ ̸=k

α̂i
k′h

(
µ̂i
k′

)
(29)

M-step: µ̂i+1
k = argmax

µ

∣∣∣h†(µ)hi
res,k

∣∣∣2
∥h(µ)∥2

α̂i+1
k =

h† (µ̂i+1
k

)
hi
res,k∥∥h (

µ̂i+1
k

)∥∥2 . (30)

E. RiMAX Algorithm

The RiMAX method offers refinement over CLEAN and
SAGE algorithms by using a more general model for the
measurements which incorporates diffuse MPCs (DMCs) in
addition to the specular MPCs (SMCs) in CLEAN/SAGE:

hms = hsmc + hdmc +w (31)
hsmc = A(µ)α; hdmc ∼ CN (0,Rdmc) ; w ∼ CN (0, I)

µ = {(θxk, θ
y
k , τk) : k = 1, · · · ,K}; α = [α1, · · · , αK ]T .

In the above hms, hsmc, hdmc and w are vectorized versions
(sampled frequencies) of the measurement channel matrix
Hms(f), the SMC channel matrix Hsmc(f), the DMC chan-
nel matrix Hdmc(f), and the noise matrix W (f). The SMC
matrix is modeled as deterministic (A(µ) taking the form
(27)) and the DMC matrix is modeled statistically through
the covariance matrix Rdmc. The ML estimation problem for
(31) is

(µ̂, α̂, R̂dmc) =

arg min
µ,α,Rdmc

[hms − hsmc]
†
R−1

dan [hms − hsmc] + ln |Rdan|

(32)
Rdan = Rdmc + I

where the subscript dan in Rdan refers to DMC and noise.
The RiMAX algorithm starts with an initialization of hsmc,
using CLEAN or SAGE, as well as Rdmc, and then iteratively
updates the estimates of both the SMC (µ and α) and DMC
(Rdmc) parameters:

SMC update : fixed R̂dmc

(µ̂, α̂) =

argmin
µ,α

[hms − hsmc(µ,α)]†R̂
−1

dan[hms − hsmc(µ,α)]

DMC update : fixed (µ̂, α̂)

R̂dmc =

arg min
Rdmc

[hms − ĥsmc]
†R−1

dan[hms − ĥsmc] + ln |Rdan| .

An appropriate parametric model for Rdmc is often used in
RiMAX. The RiMAX approach has two advantages. First,
over-fitting the data by using too many and possibly weak
SMCs is avoided. Second, estimation of Rdmc also enables

more accurate estimation of weaker SMCs. Furthermore, un-
like the grid-based search often used in CLEAN and SAGE,
the implementation of RiMAX also involves first- and second-
order derivatives of the cost function to refine the MPC
estimates within a grid cell.

F. Polarization Modeling

Thus far, the sounder model and the estimation algorithms
have been developed for a single polarization. For a general
sounder with dual-polarized antennas, each TX-RX measure-
ment is replaced by a 2 × 2 system representing the horizontal
(H) and vertical (V) polarizations:

y = Hx⇐⇒
[

yV

yH

]
=

[
HV V HV H

HHV HHH

] [
xV

xH

]
(33)

where xV and xH are the signals fed to the V and H ports at
the TX antenna, and yV and yH are the corresponding signals
at the RX antenna. The off-diagonal entries of polarization
matrix H are the cross-polarization components representing
the leakage between H and V components. Ideally HV H =
HHV = 0 and in practice |HHV | ≪ |HV V | and |HV H | ≪
|HHH |. The matrix H can be further decomposed as

H =

[
HV V HV H

HHV HHH

]
= GRAGT (34)

=

[
gV V
R gV H

R

gHV
R gHH

R

] [
αV V αV H

αHV αHH

] [
gV V
T gV H

T

gHV
T gHH

T

]
where GT and GR represent the polarization matrices for the
TX and RX antenna and the matrix A represents the polariza-
tion matrix for the MPC complex PG. The cross-polarization
(off diagonal) components are significantly weaker that the
auto-polarization (diagonal) components:

gHV
· = gV H

· (reciprocity) , |gHV
· | ≪ |gV V

· | , |gV H
· | ≪ |gHH

· |
|αHV | ≪ |αV V | , |αV H | ≪ |αHH | . (35)

To keep things simple, it was assumed that only V component
is excited at the TX (xH = 0):

yV = HV V xV , yH = HHV xV (36)[
HV V

HHV

]
=

[
gV V
R gV V

T gV H
R gV V

T gV V
R gHV

T gV H
R gHV

T

gHV
R gV V

T gHH
R gV V

T gHV
R gHV

T gHH
R gHV

T

]
αV V

αHV

αV H

αHH

 .

Thus, both yV and yH are non-zero even when xH = 0
and both need to be processed in general. However, due to
computational considerations, only yV at the RX is utilized by
the estimation algorithms in this work. Furthermore, to model
an “omni-polar” TX antenna, gV V

T = gHV
T = 1 was used

in the generation of sounder output. All four α components
via the model yV = HV V xV , where HV V is given in (36),
were utilized (and were available as part of the NIST synthetic
MPC data described in Sec. I-A). Note that gV V

R and gHV
R

represent the frequency- and angle-dependent beampatterns
and full measured beampatterns for WR-28 waveguide were
used in the generation of sounder outputs and algorithms (gHV

R

is about 15 dB weaker than gV V
R ).
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IV. MPC ESTIMATION FROM MULTIPLE FOVS

In this section, the ML formulation and the CLEAN algo-
rithm are extended for the multiple FoVs. The corresponding
extensions for SAGE and RiMAX directly follow.
A. Array Rotations and Beamforming Coordinates

The coordinate system and the global AZ-EL coordinates,
ϕA
o and ϕE

o, are illustrated in Fig. 4. The global EL angle,

(a) (b)

(c)

Fig. 4. (a) Global AZ-EL coordinates. (b) Global AZ coordinate. (c) Rela-
tionship between global AZ coordinates and the local AZ coordinates for the
rotated UPAs.

ϕE
o ∈ [0, π], is mapped to the array coordinates ϕE as

ϕE =
π

2
− ϕE

o ∈
[
−π

2
,
π

2

]
.

The relationship between the global AZ (Fig. 4(b)) and the
angles seen by the rotated arrays is illustrated in Fig. 4(c).
Let ϕrot denote the array rotation angle (90◦, 210◦, 330◦). The
FoV of the UPA in global AZ coordinates, for a given ϕrot, is

FoV(ϕrot) =
{
ϕA
o ∈

[
ϕrot −

π

2
, ϕrot +

π

2

)}
. (37)

Specifically, in degrees, FoV(90) = [0, 180), FoV(210) =
[120, 300), and FoV(330) = [240, 420) = [240, 60). For a
given global AZ, ϕA

o ∈ [0, 2π), the local AZ angle seen by the
UPA, ϕA, is

ϕA = ϕA
o − ϕrot ∈ [−ϕrot, 2π − ϕrot) . (38)

The rotated AZ coordinates ϕA get mapped into the local
beamforming range −π < ϕA ≤ π as:

ϕA , −π < ϕA ≤ π

ϕA → ϕA − 2π , ϕA > π (39)
ϕA → ϕA + 2π , ϕA ≤ −π . (40)

For a given array rotation (ϕrot), the estimated AZ angle ϕ̂A ∈
[−π, π), is mapped back to the global AZ coordinates as

ϕ̂A
o = ϕ̂A + ϕrot mod (2π) ∈ [0, 2π)

and the estimated EL angle ϕ̂E ∈ [−π/2, π/2], is mapped back
to the global EL coordinates as

ϕ̂E
o =

π

2
− ϕ̂E ∈ [0, π] .

B. Multi-FoV Problem Formulation and Single-MPC Update

The problem formulation is anchored on a global coordinate
system that connects the three views of the rotated UPAs
of the same underlying propagation environment. The global
MPC coordinates in the 3D angle-delay space µo = (ϕA

o, ϕ
E, τ)

induce the local coordinates for the three arrays: µi = (ϕA
o −

ϕrot,i, ϕ
E, τ), i = 1, 2, 3 (90◦, 210◦, 330◦). The ranges of

the global coordinates are ϕA
o ∈ [0, 2π), ϕE ∈ [−π/2, π/2],

τ ∈ [0, T ]. The only coordinate that changes with UPA rotation
is the local AZ coordinate: ϕA

i = ϕA
o − ϕrot,i (mod 2π).

Let hms,i denote the measurement and h(µi,α) =∑
k αkh(µi,k) the corresponding model for the i-th rotation

where µi = (µi,1, µi,2, · · · , µi,K), α = (α1, α2, · · · , αK)
and K represents the number of MPCs in the model. Note
that µi are induced by the global harmonic parameters
µo = (µo,1, µo,2, · · · , µo,K), µo,k = (ϕA

o,k, ϕ
E
k, τk), through

the rotated AZ angles. For multi-FoV formulation, we stack
the measurements and the models into corresponding vectors:

hms =

 hms,1

hms,2

hms,3

 ; h(µo,α) =

 h(µ1,α)
h(µ2,α)
h(µ3,α)

 . (41)

The model vector h(µo,α) can be expressed as

h(µo,α) = H(µo)α

H(µo) = [h(µo,1),h(µo,2), · · · ,h(µo,K)]

h(µo,k) =

 h(µ1,k)
h(µ2,k)
h(µ3,k)

 ; k = 1, 2, · · · ,K . (42)

The multi-FoV ML estimation problem can be expressed as

{α̂, µ̂o}=arg min
α,µo

3∑
i=1

∥∥∥∥∥hms,i−
∑
k

αkh(µi,k)

∥∥∥∥∥
2

= arg min
α,µo

∥hms −H(µo)α∥
2 (43)

which is of the same form as (19) and, similar to (20) and
(21), the single-MPC update is

µ̂o=argmax
µo

∣∣∣h†(µo)hms

∣∣∣2
∥h(µo)∥2

; α̂=
h†(µ̂o)hms

∥h(µ̂o)∥2
. (44)

The LS reconstruction of MPC amplitudes in (28) can be
extended to the multi-FoV setting by replacing Adom with
H(µo) and using the multi-FoV definition of hms in (41). The
multi-FoV extensions for SAGE and RiMAX, in Secs. III-D
and III-E, follow similarly.
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C. Basic Algorithm Design: Key Elements

This section describes the basic algorithm design and the
key elements in running the MPC extraction loop.

The Basic Algorithmic Loop: The basic loop in an MPC
extraction algorithm for SMCs is:

Initialization: Compute the search regions from hms.
WHILE kmpc ≤ Ksearch:

1) Run the CLEAN algorithm with the single-MPC update
within the current search region. Compute the parame-
ters of the candidate MPC: µ̂o,kmpc

and α̂kmpc

2) IF the candidate MPC is valid:
• Do a SAGE update on the MPC parameters
{(α̂k, µ̂k) : k = 1, · · · , kmpc}.

• Do an LS update on the MPC amplitudes {α̂k; k =
1, · · · , kmpc}.

• Compute the new residual for hms.
• kmpc ← kmpc + 1 .

ELSE IF the candidate MPC is not valid (one of the
rejection criteria is met):

• Discard the candidate MPC.
• Go to the next search region. If all the regions in

the current set have been exhausted, recompute the
regions from the current residual hms.

END (IF)
END (WHILE)
Next the key new elements of the basic loop are described:
i) region-based searching, and ii) MPC rejection criteria.
MPC detection (single-MPC update) and the MPC rejection
criteria are the two key elements. Region-based searching can
streamline the process.
Region-based searching: The basic idea is to identify disjoint
regions in the 3D µ space based on the ordered (largest to
smallest) peaks in the 3D AZ-EL-delay power distribution
profile (PDP). Define the following 3D and 1D PDPs:

Pµo
(µo) = Pµo

(ϕA
o, ϕ

E, τ) =

∣∣∣h†(µo)hms

∣∣∣2
∥h(µo)∥2

(45)

Pτ (τ) =

∫ 2π

0

∫ π/2

−π/2

Pµo
(ϕA

o, ϕ
E, τ)dϕEdϕA

o (46)

and the 1D PDPs in AZ and EL, PϕA
o
(ϕA

o) and PϕE(ϕE), are
defined similar to the delay PDP in (46). First, the peaks in
1D PDPs of ϕA

o, ϕE and τ are identified: {ϕA
o,1d,i}, {ϕE

1d,i},
{τ1d,i}. Only peaks that are within a certain threshold (γpeak)
of the largest peak are identified:

Sτ (γpeak) = {τ1d,i : Pτ (τ1d,i) ≥ Pτ,max − γpeak} (47)

and SϕA
o
(γpeak) and SϕE(γpeak) are defined similarly. Now

Sµo
= Sτ×SϕA

o
×SϕE defines the set of all potential joint peaks

in the 3D space, µo = (ϕA
o, ϕ

E, τ). From that set, a (pruned) set
of 3D peaks is identified that are within the threshold γpeak
of the largest 3D peak:

S3d(γpeak) = {µ ∈ Sµo : Pµo(µo) ≥ Pµo,max − γpeak} . (48)

The thresholded 3D peaks in S3d(γpeak) are then sorted in
descending order to define the boundaries of the 3D regions:

µ3d,i = (ϕA
o,3d,i, ϕ

E
3d,i, τ3d,i) ; i = 1, · · · , |S3d(γpeak)| . (49)

The search regions can be 1D (in delay, e.g.), 2D (in delay-AZ,
e.g.) or 3D (in delay-AZ-EL).

The single-MPC update in the basic loop can sometimes
get stuck at a local maximum due to the grid-nature of the
peak search. In such situations, some form of a perturbation
is needed to keep the algorithm going. A simple strategy is to
move to the next region.
MPC rejection criteria: Sometimes there are good reasons
for rejecting a current MPC candidate in the basic loop. After
all, the iterative approach is a computationally efficient (and
sub-optimal) way of solving the ML estimation problem. There
are three main criteria that have been utilized:

1. Power of the candidate MPC: This occurs when the
power of the detected MPC is either below the noise level or
its estimated variance violates the Cramer-Rao lower bound.

2. Closeness of the candidate MPC to previously detected
MPCs: If the current MPC candidate’s harmonic parameters
are too close to those of a previously detected MPC, the result-
ing 3D channel vectors would be close to linearly dependent
and the LS reconstruction may become ill-conditioned. Thus,
some measure of closeness is needed to identify such MPCs;
e.g., if the candidate MPC’s delay, AZ and EL are within half
the sounder resolution.

3. FoV-violation and peak profile distortion: An FoV
violation occurs when the AZ of a candidate MPC lies within
the FoV of a particular array orientation but a different array
orientation yields the largest 3D beamformer (BF) output.
What this suggests is that another MPC has already been
detected near the candidate one and has possibly distorted
the 3D shape of the candidate MPC peak. This issue is more
likely when the AZ estimate is near the FoV boundaries. One
criterion for detecting FoV violation: compare the vector of
relative measured BF outputs (for the three orientations) to the
vector of expected relative values based on the BF gain. For a
given AZ of a candidate MPC, there are three complementary
local AZ values for each of the UPA rotations that would yield
the same value of the BF outputs. Thus, we can compute the
relative expected BF powers for the three orientations for each
of the three complementary AZ hypotheses. If the measured
power vector is closest to the original AZ hypothesis (e.g.,
using the Kullback-Leibler distance), accept the candidate
MPC. Otherwise, reject it.

4. Estimated Relative Variance: In RiMAX implementa-
tion, first-order derivatives of the cost function (43) are also
computed, from which the deterministic Fisher-Information-
Matrix (FIM) can be obtained. If the estimated value of µ is
close to the global minimum of (43), inversion of the FIM
readily provides lower bounds for the variances of the esti-
mated values of the MPC parameters µ, which can, in turn, be
transformed to a lower bound for the variance of the absolute
value of the corresponding estimated path amplitude |α̂|. The
ratio of the resulting variance to the estimated magnitude |α̂|,
the so-called relative variance, provides a criterion to make a
decision on whether to accept or reject the MPC: when the
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variance is deemed too large compared to the magnitude, as
defined by an appropriate threshold, the corresponding MPC
is rejected.
Thresholding parameters: There are two key thresholds that
underlie the proposed framework.

• Peak threshold: The γpeak threshold which determines
the lowest peak below the largest peak in defining the
regions in a region-based search. This is partly related to
the difference between the maximum of a peak and the
largest sidelobes. Empirically, γpeak ∼ 15− 20 dB.

• Detection threshold: The γdet threshold which defines
the weakest MPC amplitude, below the maximum MPC
amplitude, that qualifies for a detected MPC. This thresh-
old depends on the operational SNR for the MPC:
min(SNR) ≤ γdet ≤ max(SNR).

Stopping criteria: Given the iterative nature of all three algo-
rithms, criteria for stopping the iterations are important. The
most relevant stopping criterion is based on the reconstruction
(normalized) mean-squared error (NMSE) defined in (56). For
any well-designed iterative algorithm, the NMSE ought to
be non-decreasing with the number of MPCs extracted; see
Fig. 6(d). Thus, an appropriate “tolerance” threshold (within
(0, 0.1), e.g) could be used as a stopping criterion: if the
NMSE in successive iterations increases, or decreases less
than the threshold, the algorithm stops. Another stopping
criterion is when a sufficient number of new potential MPCs
are rejected, per a rejection criterion, in succession. Both
of these criteria were utilized in the implementations in this
paper. Stopping criteria also implicitly define the number of
MPCs extracted by the algorithm.
Single-MPC versus multi-MPC update: We have described
the algorithmic framework in the context of the single-MPC
update. However, this could also be generalized to a multi-
MPC update, albeit at a higher computational complexity.

V. METRICS FOR PERFORMANCE EVALUATION

In this section, the metrics for evaluation of the MPC
extraction algorithms are discussed. The focus is on two types
of metrics: one that uses the GT data available in this study
(to gain insight), and another that does not rely on GT data
and is hence more appropriate in practice.

A. Path Association - Using Ground Truth

In this section, a procedure is presented for path association
(PA) between the estimated and GT MPC parameters to
assess algorithm performance. The PA procedure associates
Kpa ≤ min(Np,Kdom) GT and estimated MPCs that are
closest in the AZ-EL-delay space according to an appropriate
distance metric. Let Sest = {1, 2, · · · ,Kdom} denote the set
of indices for the Kdom MPCs returned by the algorithm,
Sphy = {1, 2, · · · , Np} denote the set of indices for the
physical GT MPCs, and let Spa = {1, 2, · · · ,Kpa} denote
the set of indices for the estimated MPCs that are associated
with the GT MPCs by the PA procedure. Let p : Spa → Sphy
and q : Spa → Sest denote index mappings for the GT and
estimated MPCs. The objective is to find the mappings p and
q that minimize the cost of PA.

For given p and q, the cost function is defined as

Ctot(p, q) =

Kpa∑
k=1

C(pk, qk) (50)

C(pk, qk) = CϕA,ϕE(pk, qk) + Cτ (pk, qk) + Cα(pk, qk) (51)

and the individual pairwise costs are defined as

Cα(pk, qℓ) =

(
20 log10(|αpk

|/|α̂qℓ |)
σα

)2

(52)

Cτ (pk, qℓ) =

(
τpk
− τ̂qℓ
στ

)2

(53)

CϕA,ϕE(pk, qℓ)=

cos−1
(
ST(ϕA

pk
, ϕE

pk
)S(ϕ̂A

qℓ
, ϕ̂E

qℓ
)
)

σA,E

2

(54)

S(ϕA, ϕE) = [cos(ϕA) sin(ϕE), sin(ϕA) sin(ϕE), cos(ϕE)]T (55)

where CϕA,ϕE represents the geodesic distance between the
two points on the unit sphere. The normalization factors in
the denominator of each of the cost terms, στ , σA,E, and σα,
represent the empirical standard deviations for the correspond-
ing numerators in (53), (54) and (52), respectively. A different
cost function based on individual normalized distances in AZ,
EL and delay is proposed in [3] and gives similar results.

The Hungarian algorithm (“matchpairs” function in MAT-
LAB) is used to find the optimal cost-minimizing map-
pings. The input to the algorithm are all pair-wise costs,
C(pk, qℓ); k = 1, · · · , Np , ℓ = 1, · · · ,Kdom, and an ad-
justable cost value, Cum, for unmatched pairs. The algorithm
returns the mappings for the Kpa associated paths: pk, qk,
k = 1, · · · ,Kpa.

B. Normalized Mean-Square Error (NMSE) and the Number
of Estimated MPCs

The normalized mean-square error (NMSE) between the
original channel measurement and the reconstruction gener-
ated from the estimated MPCs provides a performance metric
that does not require knowledge of GT; the measured channel
serves as a proxy. The reconstructed estimate for hms is
obtained by plugging the MPC estimates {(α̂k, µ̂i,k), i =
1, 2, 3; k = 1, · · · ,K} into (42), and the NMSE is given by

NMSE =

∑3
i=1

∥∥∥hms,i −
∑K

k=1 α̂kh(µ̂i,k)
∥∥∥2

∥hms∥2
. (56)

The numerator (MSE) can be expressed in a compact form
by stacking the measurements for the three rotations: MSE =
∥hms − hrec(µ̂)∥2. The NMSE is expected to be within (0, 1).

The number of estimated MPCs, K = N̂p, is another
important performance metric as it determines how many
salient MPCs have been captured and impacts the NMSE. The
GT values of MPC PGs, sorted in decreasing order, are shown
in Fig. 5(a). The value of the theoretical NMSE, for a given
number K of sorted GT MPCs captured, is given by

NMSE(K) =

∑Np

k=K+1 |αk|2∑Np

k=1 |αk|2
. (57)
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(a) (b)

Fig. 5. (a) The average normalized PG, and (b) the average NMSE for a given
# of sorted MPCs.

The NMSE as a function of a given number (K) of sorted
GT MPCs is shown in Fig. 5(b). Both quantities are averaged
over all 10 measurements. From Fig. 5(b), the value of the
NMSE achieved, on average, by a given number of MPCs,
can be calculated: NMSE (dB) = -10.5 (K=10), -14.8 (K=20),
-18.5 (K=30), -21.7 (K=40), -24.8 (K=50), -27.7 (K=60), -30
(K=70). The value of K, coupled with the values of MPC
PGs, also provides a measure of the dynamic range of the
algorithm; e.g., from Fig. 5(a), K = 100 corresponds to a
range of about 50 dB.

C. Computational Complexity

Generally, in terms of the number of multiplications,
CLEAN has the lowest computational complexity, SAGE has
the next higher complexity, and RiMAX is the most expensive
since the underlying model includes DMCs as well. Consider
CLEAN and SAGE first since both are based on the SMC
model. Let us assume that the same number of MPCs, Ksmc =
N̂p, are extracted by both algorithms. The main computation
in CLEAN for each iteration is given by (44) which has
a complexity of O(N2

oN
os
smc) where No = NNxNy is the

dimension of the signal space and Nos
smc is an oversampling

factor in the AZ-EL-delay space to accurately locate the
maximum value.3 The complexity of computing a critically
sampled 3D beamspace representation, the inner product in
(44), is O(N2

o ). Thus the overall complexity of CLEAN is
O(N2

oN
os
smcKsmc) for Ksmc iterations, the number of MPCs

extracted.
Similarly, the complexity of SAGE, dominated by the M-

step in (30), is O(N2
oN

os
smcK

2
smc) since for each new MPC

all the extracted MPCs are updated through the E-step in (29)
and the M-step in (30).

The complexity of the RiMAX algorithms is governed by
the SMC update and DMC update steps defined in Sec. III-E,
in particular the computation of the inverse and the deter-
minant of the DMC covariance matrix Rdan. While Rdan

is No × No, representing a 3D DMC in AZ-EL-delay, all
current implementations only incorporate the model in the
delay domain due to complexity considerations, assuming a
separable structure: Rdan = INx⊗INy⊗Rτ where the N ×N
matrix Rτ captures the (parametric) DMC model in the delay
domain. Furthermore, Rτ has a Toeplitz structure and its

3In the implementation, first a coarse maximum is calculated using Nos of
2 or 3 and then a local search within a 3D resolution bin centered around the
coarse maximum is computed with a higher Nos of 500 to 1000 corresponding
to oversampling by a factor of 8 to 10 in each dimension.

inverse as well as the determinant can be efficiently computed
using the Cholesky decomposition with O(N2) complexity
(O(N3) in the general case) [27]. Let Kdmc denote the number
of DMC parameters (delay modes) extracted by RiMAX
and let Nos

dmc denote the oversampling factor, or number of
iterations in a gradient-based approach, to accurately estimate
each DMC parameter.

In the SMC update, Rdan is fixed and involves com-
puting the inverse of Rdan and |Rdan| once for the fixed
DMC parameters, both of which have O(N2) complexity.
Then the quadratic form [hms − hsmc(µ,α)]†R̂

−1

dan[hms −
hsmc(µ,α)] needs to be computed for updating the Ksmc

SMC parameters using CLEAN or SAGE, which has a com-
plexity of O(N2

oN
os
smcKsmc) (CLEAN) or O(N2

oN
os
smcK

2
smc)

(SAGE). This update is done for each new DMC pa-
rameters extracted, resulting in an overall complexity for
the SMC update of O(N2

oN
os
smcKsmcKdmc) (CLEAN) or

O(N2
oN

os
smcK

2
smcKdmc) (SAGE).

The DMC udpate consists of computing the quadratic form
involving R−1

dan as well as the determinant |Rdan| for Kdan

DMC parameters (delay modes) extracted. The complexity of
computing quadratic forms with R−1

dan, with fixed SMC param-
eters, is O(N2KdmcN

os
dmc) + O(N2

oKdmcN
os
dmc), where the

first term represents the inverse and the second term represents
the quadratic form. The complexity of computing the deter-
minant is O(N2KdmcN

os
dmc). Thus, the overall complexity of

the DMC update is: O(N2KdmcN
os
dmc) +O(N2

oKdmcN
os
dmc),

which is dominated by the second term.
Comparing the complexity of SMC and DMC steps in Ri-

MAX, we conclude that it is dominated by the SMC step since
it involves the product of Ksmc and Kdmc. Thus, the overall
complexity of RiMAX is given by O(N2

oN
os
smcKsmcKdmc)

(CLEAN) or O(N2
oN

os
smcK

2
smcKdmc) (SAGE).

VI. NUMERICAL RESULTS

In this section, numerical results are presented to demon-
strate the integrated framework for MPC parameter extraction
with CLEAN, SAGE, and RiMAX algorithms developed in
Secs. III-IV, building on the new system (sounder and chan-
nel) model developed in Sec. II-C. Four different sounder
configurations are considered: two configurations defined by
bandwidth W = 1 or 2 GHz, and two defined by the size of the
UPA Nx = Ny =17 or 35. The operational center frequency
for all configurations is fc = 28 GHz. The element spacing is
half-wavelength (3.75 mm) at 40 GHz as in the SAMURAI
system, for which a 17 × 17 UPA is 6 cm × 6 cm and a 35 ×
35 UPA is 12.75 cm × 12.75 cm, with corresponding spatial
resolution in the broadside direction given by ∆ϕ = 9.7◦ and
4.7◦, respectively. Results on two types of data are reported: i)
synthetic measurements generated by the SAMURAI sounder
model from GT MPC data, and ii) real measurements collected
by the SAMURAI sounder in a controlled environment.

A. Synthetic Measurements from Ground Truth MPC Data

A data set provided by NIST is used for generating the syn-
thetic measurements, corresponding to a quasi-deterministic
channel propagation model reduced from hundreds of mea-
surements in a conference room for 10 different TX-RX
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(a)

(b)

(c)

(d)

Fig. 6. (a) The 2D PDPs of the channel for the three UPA orientations. (b)
2D PDPs of the composite channel. (c) 1D PDPs and illustration of peaks for
defining the search regions. (d) The NMSE, residual channel power, and the
power of the selected MPC as a function of the iterations for the three UPA
orientations.

locations [6]; see Sec. I-A. The TX is omni-directional and
the RX is equipped with three sounder arrays pointing in three
distinct directions, centered on disjoint 120-degree sectors in
AZ. Different orientations emphasize different sectors and are
jointly processed for estimating the MPC parameters. A TX
power of 30 dBm is assumed and thermal noise at room
temperature, independent across antennas, is added to the
measurements.4

Fig. 6(a) shows the 2D PDPs for the three UPA orientations
and Fig. 6(b) shows the 2D PDPs for the composite metric (all
orientations combined) for a particular TX-RX location (sce-
nario 1), Nx = Ny = 35, W = 1 GHz. The overall sparsity
of the dominant PDP values is quite evident. The sparsity is
more accentuated in 2D vs 1D, and most in 3D, as expected.

4The unit dBm is power level expressed in decibels (dB) with reference to
one milliwatt (mW): 0 dB = 30 dBm.

Fig. 6(c) shows 1D PDPs for the composite metric and also
illustrates the peaks for defining search regions. Fig. 6(d)
shows the residual NMSE, residual channel power, and the
power of the selected MPC as a function of the iteration index
for the CLEAN algorithm for the three UPA orientations. Note
that different orientations capture different fractions of channel
power, and the NMSE and the residual channel power are non-
increasing with the number of iterations, as expected.

Fig. 7. CDFs of error in AZ, EL, delay and path gain (PG) for the three
algorithms for the 17× 17 array and W = 1 GHz.

The results for the algorithms for the four sounder con-
figurations, aggregated over measurements for all 10 TX-RX
locations, are presented next for the three algorithms: CLEAN,
SAGE and RiMAX. Figs. 7 and 8 show the CDFs of the error
in the estimated MPC parameters after path association for
the 17 × 17 UPA sounder with W=1 GHz and W=2 GHz,
respectively. Figs. 9 and 10 show the corresponding results for
the 35 × 35 UPA.

Fig. 8. CDFs of error in AZ, EL, delay and path gain (PG) for the three
algorithms for the 17× 17 array and W = 2 GHz.

Fig. 11 shows 3D scatter plots of estimated versus GT MPC
parameters for the associated paths for the 35 × 35 array and
W=1 GHz for a representative TX-RX position. The color
coding is based on the error between the PGs of the associated
MPCs. Table II shows the 50 and 90 percentile errors in AZ,
EL, delay and PGs for the four sounder configurations.
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Fig. 9. CDFs of error in AZ, EL, delay and path gain (PG) for the three
algorithms for the 35× 35 array and W = 1 GHz.

Fig. 10. CDFs of error in AZ, EL, delay and path gain (PG) for the three
algorithms for the 35× 35 array and W = 2 GHz.

Some general trends from the figures and the table are noted.
First, generally the CLEAN algorithm gives quite reasonable
estimates of MPC parameters, which are improved upon by
SAGE, with further improvements provided by RiMAX. For
example, as seen in Table II for the larger array (35 × 35)
and larger bandwidth (2 GHz), CLEAN reports for 50% of
MPCs a maximum angular error of 2.79◦, which is improved
by SAGE to 1.15◦, and RiMAX yields the smallest error of
0.59◦. Similarly, the 50% delay error for CLEAN is 1.42 ns,
which is improved to 0.85 ns by SAGE, and RiMAX yields the
smallest error of 0.24 ns. Second, the 50% errors are generally
well-within the sampling resolutions (see (6)) for the sounder
array, whereas the 90% errors are on the order of the sampling
resolutions. Relative to the sampling resolutions, the errors are
larger for the larger UPA size and the larger bandwidth. This
is partly due to beamsquint effects for wideband arrays that
become larger with the product of the fractional bandwidth
and array dimension [5]. The 17 × 17 array with a 1 GHz
bandwidth is the least prone to beamsquint effects as also
evident from errors for the four sounder configurations.

CLEAN SAGE

RiMAX

Fig. 11. 3D scatter plots of estimated MPC parameters and the corresponding
associated GT values for a representative TX-RX location (scenario 1) for the
35 × 35 array sounder and W=1 GHz. The line between the estimated and true
MPCs indicates the amount of geometric (AZ, EL, delay) error between the
two, whereas their color indicates the size of PG error.

TABLE II
The 50% and 90% errors in estimation of MPC parameters for three

algorithms and for the different sounder configurations.

B. Real Measurement Results

In this section, results are presented for the three algorithms
to estimate the location of five cylinders based on real mea-
surements collected by the SAMURAI sounder. The set up is
shown in Fig. 12 which also includes the GT values of the
AZ, EL and delay for the cylinders. Five metal cylinders with
diameter 2.5 cm are placed on an optical table. An optical
tracking system reports the 3D locations of the cylinders and
the TX and RX antennas with an accuracy of 0.01 mm, from
which the GT values are computed. All cylinders have an EL
angle of zero degree. Note that delays of cylinders 2 and 3 are
within the resolution at 2 GHz, and the AZ angles of cylinder
pairs (2,3), (3,4) and (4,5) are within the angular resolution
for the larger array size (35 ×35). Fig. 13 shows the estimated
values of AZ and delay, along with the GT values, for the four
sounder configurations. Table III shows the estimation errors
for all three algorithms and all four sounder configurations, for
the 5 MPCs. The mean errors in AZ, EL and delay, averaged
over the five cylinders are also included. All algorithms yield
good estimates and the angular errors are within the sampling
resolution for the array size. Overall, SAGE improves on
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(a)

(b)

Fig. 12. (a) A photograph of the set up for the cylinder measurements. (b) The
ground truth values of AZ, EL and delay for the 5 cylinders.

Fig. 13. True AZ-delay values for the 5 cylinders and their estimates for the
three algorithms for the four sounder configurations.

CLEAN, and RiMAX yields the most accurate estimates in
AZ. CLEAN yields the smallest delay errors but the errors for
all algorithms are within or close to the sampling resolution
for the sounder bandwidth. The “0” EL estimates for CLEAN
are the closest grid point in the grid-based search.

VII. CONCLUSIONS

The new comprehensive mathematical framework devel-
oped in this paper builds on the initial results in [3] (for
CLEAN in an “idealized” noise-free case), to incorporate the
effects of noise, non-ideal and cross-polar antenna element
beampatterns, and multiple FoVs in both the system (channel
and sounder) model as well as algorithm design. The new
system model for this general realistic setting is leveraged for
developing a new integrated framework encompassing three
ML-based algorithms, with progressively higher complexity
and performance, in the practically relevant single-snapshot
setting: CLEAN, SAGE and RiMAX. CLEAN and SAGE are
based on the purely specular MPC model, whereas RiMAX
also accounts for the diffuse MPCs. The CLEAN algorithm

TABLE III
A table showing the errors between estimated and true MPC parameters values

for the three algorithms for the real measurements.

is foundational as both SAGE and RiMAX get seeded by its
output and utilize it in an iterative fashion.

The developed algorithms are evaluated using synthetic as
well as real measurements. The synthetic sounder measure-
ments generated from the NIST GT data represent one of
the most complex propagation scenarios addressed in existing
literature. The real measurements represent data collected from
the SAMURAI sounder in a highly controlled environment
with accurate measurements of the ground truth. The per-
formance of algorithms is evaluated using two metrics: i)
errors based on MPC association between estimated and GT
parameters, and ii) reconstruction NMSE when no GT data is
available. The evaluation is performed for two different array
sizes and bandwidths to test the robustness of the algorithms.

Some comments on “lessons learned” are in order. First,
while RiMAX generally gives the best performance, for both
synthetic and measured data, the difference in performance of
the three algorithms is not large. Second, the results on the
largest UPA size (35 × 35) and bandwidth (2 GHz) indicate
that they represent the boundary of the widely used “narrow-
band” assumption [5]. Third, the complexity and performance
of the algorithms can vary depending on how the various
algorithmic elements are implemented; see Sec. IV-C. For
example, the LS update and path gain thresholding can serve as
a powerful tool for pruning spurious MPC estimates. Similarly,
checking consistency between the different hypothesized AZ
values, driven by different UPA orientations, also aids in re-
jecting spurious MPCs. Finally, in implementations involving
multiple algorithms, e.g., CLEAN + SAGE, or CLEAN +
SAGE + RiMAX, the nature in which the procedure iterates
between the different models is also important. For example,
iterations across the SMC and DMC components could be
done for each detected MPC, or after a certain number of
MPCs have been detected.

Computational complexity, driven by the high-dimensional
nature of the problem, is also a significant consideration. In
the results, the dimension of the spatio-temporal signal space
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varies from No = 28900 (57800 for 2 GHz) for the 17 ×
17 UPA to No = 122500 (245000 for 2 GHz) for the 35 ×
35 UPA. In particular, in RiMAX, the DMC update requires
computing the inverse of the No × No matrix, Rdan, over
the entire search range of the 3D DMC parameters. This is
why the reported implementations of RiMAX, including this
work, are limited to DMC modeling in the 1D delay domain,
while ignoring spatio-temporal correlations. The estimation of
a spatially and temporally variant DMC model is expected to
improve the performance of RiMAX. Some initial work on
spatial estimation is reported in [28], [29]. Implementing the
algorithm in the beamspace promises very significant compu-
tational advantages by limiting the operations to a lower D-
dimensional subspace, induced by a “dominant” thresholded
version of the 3D PDP in AZ-EL-delay. All computations now
occur in this lower operational dimension D, including matrix
inversions. For example, for a 60 dB thresholding of the 3D
PDP, only 4.5 % of the dimensions are retained (No = 122500
reduces to D = 5493) while retaining 99.7 % of the power.

Initial studies for relaxing the narrowband assumption [30]
suggest that the performance gains of RiMAX can be extended
to scenarios with larger bandwidth and apertures, at the
cost of higher complexity. Generally this requires the use of
frequency-dependent array patterns. The results on addressing
the “beamsquint” effect in [5] suggest an alternative approach
for optimizing the performance versus complexity tradeoff by
using multiple frequency-independent array patterns, as in the
“narrowband” case, corresponding to multiple fixed beams
centered around the true direction.

The framework and results reported in this paper open up
several directions for future research, including: i) application
of machine learning techniques for tuning the algorithmic
parameters and for decision making in the execution of the
algorithms; ii) extension of RiMAX to the full 3D AZ-EL-
delay space, and iii) extension to sounders with large arrays
and bandwidths.
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