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Abstract

With the introduction of caching capabilities into small cell networks (SCNs), new backaul man-

agement mechanisms need to be developed to prevent the predicted files that are downloaded by the at

the small base stations (SBSs) to be cached from jeopardizing the urgent requests that need to be served

via the backhaul. Moreover, these mechanisms must account for the heterogeneity of the backhaul that

will be encompassing both wireless backhaul links at various frequency bands and a wired backhaul

component. In this paper, the heterogeneous backhaul management problem is formulated as a minority

game in which each SBS has to define the number of predicted files to download, without affecting the

required transmission rate of the current requests. For the formulated game, it is shown that a unique

fair proper mixed Nash equilibrium (PMNE) exists. Self-organizing reinforcement learning algorithm

is proposed and proved to converge to a unique Boltzmann-Gibbs equilibrium which approximates the

desired PMNE. Simulation results show that the performance of the proposed approach can be close to

that of the ideal optimal algorithm while it outperforms a centralized greedy approach in terms of the

amount of data that is cached without jeopardizing the quality-of-service of current requests.

Keywords - small cell networks, Caching, heterogeneous backhaul, resource allocation, game

theory, reinforcement learning.
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I. INTRODUCTION

To cope with the continuously increasing wireless traffic and meet the stringent quality-

of-service (QoS) of emerging wireless services, significant changes to modern-day cellular

infrastructure are required [1]. One promising approach is to deploy small base stations (SBSs)

that can provide an effective way to boost the capacity and coverage of wireless networks [2].

However, in order to benefit from this deployment of SBSs, several technical challenges must

be addressed, in terms of interference management, resource allocation, and more importantly,

backhaul management [2], [3], [4].

Indeed, the short-range and low-power heterogeneous SBSs must be connected to the core

network through the backhaul infrastructure of the currently deployed wireless networks [2].

However, due to the dense deployment of SBSs coupled with the dramatically increasing traffic,

the narrow band of the radio frequency spectrum in the range of 300 MHz-3 GHz has to be

shared by a large number of SBSs and used as both backhaul and access links, resulting in

a congested backhaul. These capacity limitations of the backhaul links have pushed mobile

network operators to exploit the available millimeter wave spectrum even though its deployment

is still limited by the blockage and the atmospheric absorption. Thus, depending on the cost for

the network operators and the geographical locations of the SBSs, different types of backhaul

connections must coexist in 5G systems [2]. The types of backhauls that are being considered

include a heterogeneous mix of wireless backhauls such as millimeter wave (mmW) and the

conventional sub-6 GHz as well as wired connections via cable or fiber optical links [5], [6].

The use of such heterogeneous backhaul solutions has attracted significant attention in academia

and industry recently [2], [3] and [6]. Thus, if not properly managed, such capacity-limited and

heterogeneous backhaul links can lead to significant delays when the SBSs are serving a large

number of requests. One of the recently proposed solutions to cope with the backhaul bottleneck

in small cell networks (SCNs) is via the use of distributed caching at the cellular network edge

[7], [8], [9], [10]. Distributed caching in SCNs is based on the premise of equipping SBSs

with storage devices as well as exploiting the available storage at the user equipments (UEs)

to reduce the load on the backhaul links. In particular, the SBSs can predict user requests for

popular content and, then, download this content ahead of time to serve users locally, without



3

using the backhaul.

Different caching solutions for SCNs have been proposed. The authors in [7] propose a

greedy algorithm that assigns a complete file or an encoded chunk of a file to a given SBS

while minimizing the total delay. In [8], the problem of caching coded segments at the SBSs

while taking into account the random mobility of users is addressed. The work in [9] proposes

a geographical cache placement algorithm to maximize the probability of serving a user by

the SBSs. In [10], the authors propose a caching strategy that creates MIMO cooperation

opportunities between the SBSs. In [11], a joint routing and caching problem is formulated in

order to maximize the fraction of content requests served locally by the deployed SBSs. Energy

efficiency of cache-enabled networks is analyzed in [12]. Using tools from stochastic geometry,

the authors study the conditions under which the area power consumption is minimized with

respect to the base station transmit power, while ensuring a certain QoS in terms of coverage

probability. Similarly, in [13], an online energy efficient power control scheme is developed for

a single energy harvesting SBS equipped with caching capabilities. The authors in [14] and [15]

propose new caching approaches while taking into account the multicast opportunities that allow

the base stations to serve part of the requests via a single multicast transmission. However, most

of these works focus solely on the data being cached without taking into account the fact that

such requests will be shared with other requests for data that devices require immediately rather

than in the future.

Beyond caching in small cells, we note that there has been considerable works on caching

in the computer science community. The idea of caching was initially introduced for central

processing units and hard disk drivers and then was extended to web browsers and operating

systems [16]. Different approaches were considered for replacing the cached content such as as

removing the least recently used or the least frequently used content [16]. The closest caching

models to the considered one in this paper, is caching in content delivery networks and content

centric networks [17], [18]. The idea consists in storing data at the closest proxy servers of

the content delivery networks to the end users, known as the network edge. The aim from

this approach is to balance the load over the servers, reduce the bandwidth requirements and

thus reduce the users service time [19]. The content centric networks rely on the same idea of

caching with more intelligent forwarding strategies. Indeed, the content files are identified by
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name instead of their location, allowing to spread the content all over the Internet network in a

smart way [20], [21]. Recently, the idea of caching was introduced in cellular networks to deal

with the capacity-limited backhaul in small cell networks [22], [18]. Despite the similarities with

caching in the Internet, the network structure of SCNs is significantly different from Internet

architecture. Thus, new challenges arise in SCNs such as accounting for channel characteristics

and interference, that make the previously proposed approaches for the Internet not applicable,

as discussed in [7], [8], [9], [10]. This led to the recent emergence of a large literature that aims

to address the caching problem while taking into account the specific characteristic of SCNs, as

discussed previously.

Moreover, several works [3], [4], and [23], [24], [25] have addressed the backhaul management

problem in order to satisfy the required transmission rate of the SBSs. The main challenge

is determine the backhaul resource blocks that should be allocated to each demanding SBS

allowing the SBSs to satisfy the QoS requirement of their served users. The authors in [3],

propose a backhaul allocation approach using matching theory in order to allocate the required

data rate to each SBS while considering mmW backhaul capabilities. In [4], an evolutionary

game model for dynamic backhaul resource allocation is proposed while taking into account the

dynamics of users’ traffic. The authors in [23] propose a fair resource allocation model for the

out-band relay backhaul links, enabled with channel aggregation. The aim of this approach is

to maximize the throughput fairness among backhaul and access links in LTE-Advanced relay

system. In [24], a backhaul resource allocation approach is proposed for LTE-Advanced in-band

relaying. This approach optimizes resource partitioning between relays and macro users, taking

into account both backhaul and access links quality. In [25], an economic model is proposed to

allow spectrum providers to lease the backhaul resources to different operators dynamically, by

using novel pricing mechanisms.

Despite being interesting, the SCN caching strategies proposed in existing works [7], [8], [9],

[10], [11], [12], [13], [14], [15] do not consider the impact of downloading predicted files on the

other urgent non-predicted files nor do they account for the heterogeneity of the cellular backhaul

links. In fact, in a cache-enabled system, when an SBS receives a request, if it could not predict

it in advance and the requested file is not available in its cache, then the request is considered

as being urgent and it must be served instantaneously from the backhaul. Meanwhile, the SBS
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has to also download predicted files in order to be cached for serving locally the upcoming

predicted requests. However, due to the limited capacity of the heterogeneous backhaul links,

downloading the predicted files in order to be cached can affect the QoS experienced by the

users that are served directly through the backhaul. This results from the fact that the capacity

of the radio links that connect the SBSs to the UEs is usually higher than the backhaul capacity

due to the hyper-dense nature of SCNs [2]. On the other hand, existing backhaul allocation

approaches such as in [3] and [4] also do not account for the impact of caching on the required

backhaul rate by each SBS. Such existing approaches may allocate backhaul for downloading

predicted files whereas shifting the download of these files to off-peak hours can ensure the

required transmission rate for serving the current requests. Moreover, due to the uncertainty in

the prediction of the requests, the predicted files may or may not be requested by the users in the

future, which makes them less critical than actual demands. The impact of this criticality factor on

the backhaul usage and users’ current requests has indeed been ignored in the existing literature

[7], [8], [9], [10], [11], [12], [13], [14], [15]. The differentiation of request types is important

for practical scenarios in which the caches should be refreshed over short time periods due to

the high popularity fluctuation of the most popular files that is in the order of hours. Moreover,

it allows the SBSs to deal with traffic load in offline caching models in which new peaks of

traffic might emerge when all the SBSs refresh their caches simultaneously. In addition to the

traffic variation, the SBSs have limited computing and communication resources which make it

difficult for them to process large amounts of data and thus the caches must be refreshed more

frequently. When such online caching policies are used at the SBSs, new backhaul management

frameworks should be deployed to define when the predicted files should be download by the

SBSs so that this additional traffic does not jeopardize the QoS of the users requesting files that

are not cached at the SBSs and need to be served instantaneously.

The main contribution of this paper is to propose a novel distributed backhaul management

approach in a wireless cellular network having caching capabilities and a heterogeneous backhaul.

In particular, we propose a novel framework using which the SBSs can determine the number

of predicted files to download at each time stage, without affecting the download rate of the

current critical requests. We consider a SCN with different coexisting backhauls including wired

links, mmW and sub-6 GHz bands that can only support a limited number of files at each time
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period. The problem is then formulated as a minority game (MG), in which the SBSs are the

players that must decide independently, on the number of predicted files to download while taking

into account other SBSs’ decisions. We study the properties of the game and prove that there

exists a unique fair proper mixed Nash equilibrium (PMNE) in which all SBSs have an equal

chance of using the backhaul. Moreover, we propose a self-organizing reinforcement learning

(RL) algorithm with incomplete information that allows the SBSs to reach a Boltzmann-Gibbs

equilibrium without communicating with one another. Also, we provide a formal proof of the

convergence of the RL algorithm to a unique Boltzmann-Gibbs equilibrium which approaches

the PMNE in the formulated game. The proposed approach allows the SBSs to take their

decisions autonomously and manage the optimization operations locally without coordinating

with one another or with a centralized entity. In fact, having such self-organizing SBSs is of

high importance in 5G systems due to the high density of SBSs and the capacity-limited backhaul

links [2], [3], [4]. To our knowledge, this is the first work that jointly considers SCN backhaul

management with caching by taking into account the impact of having predicted and current

user requests on the backhaul allocation in cache-enabled SCNs. Simulation results show that

the amount of cached data can be 50% higher compared to the centralized algorithm due to

the reduction of information exchange. Moreover, the performance of the proposed algorithm

will match the performance of the optimal, ideal centralized algorithm in more than 85% of the

cases, under properly chosen parameters.

The rest of this paper is organized as follows. Section II presents the system model. In section

III, we formulate the problem as an MG and study its properties. In Section IV, a distributed RL

algorithm is proposed and its convergence to a unique Boltzmann-Gibbs equilibrium is proved.

Section V provides the simulation results and Section VI concludes the paper.

II. SYSTEM MODEL

Consider a small cell network composed of a set M of M micro base stations (MBSs) and

a set N of N SBSs. Each SBS can be connected to the MBSs via one or many backhaul links

of different types which can be cable, mmW band or sub-6 GHz band. Such heterogeneous

backhauls have been proposed recently as a solution to improve SCN performance as discussed

in [2]. An illustration of the system model is given in Fig. 1. The wireless link is divided into two
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Wired backhaul

Micro base stations

Predicted requests
Current requests SBS

mmW backhaul links Sub-6 GH backhaul links

Fig. 1: System model.

sets of backhaul resource blocks denoted by K1 and K2 for mmW band and sub-6 GHz band,

respectively. Then, depending on the required rate by each SBS, the backhaul resource blocks

are allocated to the SBSs. The wired link of maximum capacity Cmax is assumed to be shared by

many SBSs. The maximum achievable backhaul rate for a given SBS over the wireless backhaul,

is subject to different effects such as interference between the transmitting MBSs when using

sub-6 GHz band and atmospheric attenuations when using the mmW band. Indeed, since mmW

bands operate at high frequencies, an antenna at a given MBS is able to provide high directional

gain and thus the signals do not interfere with one another. However, the transmission rate over

the mmW band is limited by rain and atmospheric attenuations as well as the distance between

the transmitting MBS and the receiving SBS. For mmW, the path loss is given by [6]:

LmmW
mn = β + α10log10(δmn) + X ,

where α is the slope of the fit, δ is the distance between the MBS and the served SBS, β is the

path loss for 1 meter of distance, and X is the deviation in fitting which is a Gaussian random

variable with zero mean and variance ζ2. The signal-to-noise ratio (SNR) at a receiving SBS n

in the mmW band is given by:

γmk1n =
10log10(Pmk1n)− LmmW

mn

N1

, (1)
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where Pm1 denotes the transmission power of the MBS m serving SBS n over backhaul resource

block k1 ∈ K1 and N1 is the variance of the receiver’s Gaussian noise. For sub-6 GHz bands,

the rate of an SBS is usually limited by the interference experienced from the other transmitting

MBSs. The signal-to-interference-plus-noise (SINR) at a receiving SBS n in the sub-6 GHz band

is given by:

γmk2n =
Pmk2n|hmk2n|2

N2 +
∑

i∈M,i 6=m Pik2n|hik2n|2
, (2)

where Pm2 denotes the transmission power of the MBS m serving SBS n over backhaul resource

block k2 ∈ K2. In addition, hmk2j and N2 represent, respectively, the channel state of the link

between MBS m and SBS j over backhaul resource blocks k2 and the variance of the receiver’s

Gaussian noise. For the wired backhaul, even though the transmission is interference-free, the

achievable capacity by a given SBS is limited by the number of SBSs that are served using the

same link since all the served SBSs share the wired capacity Cmax.

An SBS is assumed to have current requests that is not willing to cache and predicted requests

that it has to download and cache to serve these popular requests locally without using the

backhaul links. The SBSs define the set of predicted files using an underling caching policy that

accounts for the available storage space, files popularity and different systems parameters such

as users’ mobility and SBSs’ geographical positions. The set of current requests is composed

of all the files that do not belong to the predefined set of predicted files and for which the

SBSs receive requests. Hence, downloading the files to serve the predicted requests during high

traffic times will affect badly the backhaul rate of the SBS for serving the current requests

due to congestion in the wired backhaul or interference in the wireless backhaul. Assume that,

at a given time period, an SBS needs a rate Rn to serve all the current requests and rate

Dn(sn) to download sn files to serve the predicted requests. In order to serve the requests, a

backhaul allocation algorithm is used to assign each backhaul resource block to a given SBS.

Without loss of generality, we assume that an algorithm such as the one proposed in [3] for

mmW and sub-6 GHz backhaul resource blocks is used in this context. The algorithm results

in an assignment of SBSs to the backhaul resource blocks that aims to satisfy the required rate

by each SBS. However, the requested rate by each SBS depends on the number of files that

each SBS requests. Thus, the output of the backhaul allocation algorithms is a function of the
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global rate R = [R1, ..., RN ] that is required for serving the current requests, and the requests

profile of predicted files requested by the SBSs denoted Fc = [Fc,1, ...,Fc,N ] of cardinalities

[s1, ..., sN ], and is given by a matrix ηk(Fc, R) ∈ {0, 1}M×N , for each backhaul resource block

k ∈ K , K1 ∪K2. An entry ηmkn(Fc, R) of the matrix ηk(Fc, R) equals 1 if MBS m allocates

backhaul resource block k to SBS n, and equals 0 otherwise. We use fc =
∑

n∈N sn to denote

the cardinality of the set Fc, which corresponds to the total number of predicted files that all the

SBSs decide to download. Given the backhaul resource blocks assignment algorithm, the total

achievable backhaul rate for SBS n is given by:

rn =
∑
m∈M

[
cmn(Fc, R) +

∑
k∈K

ωklog(1 + γmkn(ηmkn(Fc, R)))
]
, (3)

where ωk is the bandwidth capacity of backhaul resource block k. Since an SBS perceives only

the interference from the MBSs transmitting over the same resource blocks, we rewrite the

interference as a function of the outcome of the backhaul assignment algorithm ηmkn(Fc, R).

cmn is the wired allocated capacity by MBS m to SBS n. The wired backhaul link’s capacity

is assumed to be shared between all the SBSs based on the remaining traffic load that could no

be served through the wireless backhaul. The allocated wired backhaul by MBS m to SBS n is

given by, cmn = σn(Fc, R)c′m, where c′m is the available wired backhaul capacity at MBS m and

σn(Fc, R) =
∑

f∈Fc,n qf+Rn∑
n∈N

[∑
f∈Fc,n qf+Rn

] is the traffic load of SBS n over the total traffic load of all

the SBSs, where Fc,n the set of predicted files that is requested by SBS n and qf the maximum

required data rate by an SBS n to serve each file f ∈ Fc,n which could depend on the type of

the application, and the paid price by the users requesting that file for the service. Hence, the

backhaul capacity cmn(Fc, R) = σn(Fc, R)c′m that is assigned to each SBS n is proportional to

the traffic load of SBS n as compared to the traffic load of other SBSs.

Based on the total capacity of the heterogeneous backhaul and the number of urgent requests,

each SBS has to decide, without a direct communication with the other SBSs, on the number

of predicted files to download without reducing the transmission rate of the current requests in

the network. This problem is formulated in the next section, as a minority game.
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III. PROBLEM FORMULATION

The considered problem is characterized by two main properties which are the limited capacity

of the backhaul links and the possibility of delaying the predicted requests in cache-enabled small

cell networks. Moreover, the achievable reward by the SBSs in such networks is dependent on the

chosen actions by all other SBSs. The most suitable tool to can account for all these properties

is the class of minority games. In minority games, the SBSs are enforced to cooperate without

any coordination between the SBSs. Such algorithms are important for 5G networks in which

the SBSs will be deployed ultra-densely and the capacity-limited backhaul links make it difficult

to support any additional coordination load.

A. Backhaul Management Minority Game (BMMG)

We formulate the problem of backhaul management as a one stage MG, in which the SBSs

are the players and each of them has to determine the number of predicted files that must be

downloaded from the core network at a given time period, without coordinating with the other

SBSs. We consider that, regardless of the traffic load, the SBSs must serve the urgent requests

whenever they receive them but they have to decide whether to download or not files that can be

cached to serve the predicted requests. Depending on the traffic load, assume that the maximum

number of predicted files that can be downloaded at a given time period without affecting the

service of the current requests is given by φ ∈ [0, F ], where F is the cardinality of the set

of files F from which users can pick their requests. It should be noted that the value of φ

is fixed for the considered time period but can vary from a given time stage to another one.

Moreover, the statute of a given request can evolve over time, from a predicted request to an

urgent request. Since we consider a one stage MG, there is no need to account for the evolution

of the requests as the statute’s changes are implicitly considered by defining the static sets of

current and predicted requests at each time period. However, we do not make any restriction

on the cooperation between the SBSs. Thus, when determining the caching policy, a given file

can be divided into small chunks each of which will be cached at a different SBS. Each file

chunk will be considered by a SBS as a complete files in our model and will add it to the set

of predicted files. In this model, the storage space is allocated more efficiently and a user can

be served by multiple SBSs at the same time.
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In an MG, each SBS n has to select a strategy sn from a set Sn = {0, 1, .., Fn}, where Fn

corresponds to the number of files for which the SBS n predicts requests and these files must be

cached at the SBS. Note that even by caching the predicted files, these files may not be requested

by the users in the future which can result in a waste of backhaul capacity if the critical urgent

requests are not prioritized. Moreover, the files in the set of predicted files can become current

requests if the SBSs are not able to cache these files before the users request them. In this case,

the files are removed from the set of predicted requests and added to set of current requests to

serve them instantaneously. The capacity φ represents the limit starting from which the utility

of the players will begin to decrease. Indeed, assuming that all the files have the same size, if

the SBSs decide to download a large number of predicted files, this will reduce the allocated

backhaul rate per SBS and hence degrade the QoS of the requests that are currently being served

from the backhaul, as these urgent files will not be served on time. This is equivalent to deciding

on the number of backhaul resource blocks that an SBS needs to use at each time period, as the

higher is the number of files an SBS decides to download, the higher is the number of backhaul

resource blocks that must be assigned to that SBS. Thus, an SBS delays the service of its own

current requests if the total number of predicted files that are requested by the SBSs exceeds φ.

The formulated game is classified as a minority game [26], due the limited number of predicted

files that can be supported by the backhaul links, as well as the nature of the SBSs’ utility.

Essentially, in an MG, players are always better off when they select the action selected by the

minority group. The size of the minority group is determined by the maximum system resources

that can be allocated to the players. In our context, an SBS would prefer not to request predicted

files if more than φ predicted files are requested by the SBSs, in which case the set of SBSs not

requesting files will constitute the minority group. Similarly, the SBSs would prefer to request

predicted files if less than φ files are requested by the other SBSs. The minority group in this case

corresponds to the SBSs that choose to request predicted files. The main challenge in this game

is that the SBSs do not communicate with one another and if they all think that the backhaul

will be congested, none of the SBSs will requests files and the backaul will be underused. On

the other hand, if all the SBSs think that the other SBSs will not request predicted files, the

backhaul will be congested and the utility of the SBSs decreases.
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The utility of an SBS n when it decides to download sn predicted files, is given by:
un(sn,Fc) = −Rn −Dn(sn) +

∑
m∈M

(
cmn(Fc, R) +

∑
k∈K

ωklog(1 + γmkn,t(ηmkn(Fc, R)))
)
, if fc ≥ φ,

un(sn,Fc) = Rn +Dn(sn)−
∑

m∈M

(
cmn(Fc, R) +

∑
k∈K

ωklog(1 + γmkn,t(ηmkn(Fc, R)))
)
, if fc ≤ φ,

(4)

where fc is the total number of requested predicted files by all the SBSs. This utility represents

the difference between the allocated backhaul rate for SBS n and the rate it requires to serve

all the current requests and the sn predicted requests. The required rate for serving the current

requests and predicted requests can be given by Rn =
∑

f∈F ′n
Lf

xf
and Dn(sn) =

∑sn
f=1

Lf

xf
,

respectively, where xf is the minimum time during which the request of the f th file should be

served and F ′n is the set of current files of SBS n. We point out here that we do not consider

the specific files as we assumed that every SBS defines a priority order for requesting the files

from the MBSs. Thus, the set of the first sn files is unique. The required rate is the fraction

between the required time for serving the file and the size of the file Lf .

Note that when the maximum backhaul capacity is reached, i.e. fc ≥ φ, the higher is the

number of requested files by the SBSs, the lower is the number of assigned backhaul resource

blocks and wired capacity to the SBSs. Thus, the utility of a given SBS is a decreasing function

of the total number of the requested files by the SBSs. Moreover, in order to avoid underusing the

backhaul, the utility obtained by an SBS that chooses not to request predicted files when fc ≤ φ,

is defined as an increasing function of the number of requested files until all the backhaul is

efficiently allocated, i.e., fc = φ. The exact value of φ can be determined based on the backhaul

assignment algorithm provided in [3] based on the maximum number of files that are supported

by all the SBSs. In fact, since the SBSs always start by caching the files for which the SBSs

expect receiving the requests sooner as compared to other requests, then the value of φ is unique.

As shown in (3), it should be noted that the data rate that is achieved by every SBS depends

not only on the requested rate by all the SBSs for serving the predicted requests but also on the

set of current files that is requested by the SBSs. Thus, the utility of each SBS also depends on

the strategies selected by all other SBSs.

Having defined the utility functions, the goal is to find a solution for the defined game. For

this, we distinguish between the pure strategy and proper mixed strategy cases.
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1) Pure Strategies: In the pure strategy game, each SBS selects its strategies deterministically,

i.e., with probability 1 or 0. The pure Nash equilibrium is defined as follows [27].

Definition 1. Let sn be the strategy selected by SBS n ∈ N and s−n = [s1, ..., sn−1, sn+1, ..., sN ]

the strategy profile of all the other SBSs except SBS n. A strategy profile s∗ = [s∗1, .., s
∗
N ] is a

pure Nash equilibrium (PNE) if:

∀n, sn ∈ Sn, un(s∗n, s
∗
−n) ≥ un(sn, s

∗
−n). (5)

In MG literature, results on the existence of PNEs were provided when the number of strategies

is the same for all the players and equal to two [26], [28]. However, in the formulated BMMG,

each SBS has a larger set of strategies which changes from an SBS to another SBS. For the

BMMG, we can derive the following result:

Theorem 1. There exists a PNE obtained when the total number of predicted files that are

requested by the SBSs at the considered time stage, equals φ.

Proof. A PNE is the state in which none of the SBSs can improve its utility by unilaterally

changing its strategy. Denoting s∗n the strategy chosen by SBS n in the PNE. When an SBS

changes its strategy from s∗n to sn, two cases can be considered: sn > s∗n and sn < s∗n. Thus, at

the PNE, the two following conditions must be satisfied:{
un(s∗n, φ) ≥ un(sn, φ+ (sn − s∗n)) if sn > s∗n, (6)

un(s∗n, φ) ≥ un(sn, φ− (s∗n − sn)) if sn < s∗n. (7)

From (4), we can deduce that if the SBS selects another strategy sn > s∗n, then un(s∗n, φ) ≥

un(sn, φ+ (sn− s∗n)). This is because the utility is a decreasing function of the total number of

requested files when fc ≥ φ, which is the case when φ+ (sn − s∗n) > φ.

On the other hand, assuming φ > 0 and sn < s∗n, we have un(sn, φ) ≥ un(sn, φ − (s∗n − sn)).

This is due to the fact that the utility is increasing by increasing the number of requested files

when the total number of requested files does not exceed φ, which occurs when SBS n chooses

a strategy sn < s∗n.

From these two cases, we can conclude that fc = φ is a PNE.

In the pure strategy case, we can notice that any combination of strategies that satisfy
∑N

n=1 sn =
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φ is a PNE, resulting in a large number of equilibria. Thus, in the repeated BMMG it is difficult to

capture the frequency with which each SBS downloads predicted files over a large time horizon.

In fact, for a given available backhaul capacity, a subset of SBSs may keep requesting a large

number of files with probability 1 at each time period, while other SBSs never download any

predicted files. In order to ensure fairness between the SBSs, in terms of backhaul usage over a

large time duration, we consider the proper-mixed strategy case in which each SBS n selects one

of the strategies si ∈ Sn with a given probability p
(n)
i ∈ (0, 1), thus allowing a fairer backhaul

use as shown next.

2) Proper-Mixed Strategies: In the mixed strategy game, an SBS n ∈ N can play the strategies

in Sn with a probability profile p(n) = [p
(n)
1 , ..., p

(n)
Fn

], where p(n)i ∈ (0, 1) [27]. The expected utility

for an SBS n when choosing each of the strategies c and d are given respectively, by:

ūn(c,p−n) =
G∏
i 6=n

(1− pi)un(c, 1) +
G∑
i 6=n

pi

G∏
j 6={i,n}

(1− pj)un(c, 2) + ...+
N∏
l 6=n

plun(c,G). (8)

ūn(d,p−n) =
G∏
i 6=n

piun(d, 1) +
G∑
i 6=n

(1− pi)
G∏

j 6={i,n}

pjun(d, 2) + ...+
G∏
l 6=n

(1− pl)un(d,G), (9)

where G is the cardinality of the set G, pi is the probability that SBS i downloads its assigned

file, and p−n is the probability profile of all SBSs except SBS n. The desirable solution concept

in such systems is the proper mixed Nash equilibrium that can be defined as follows.

Definition 2. A proper mixed Nash equilibrium (PMNE) specifies an optimal mixed strategy

p(n)∗ for each SBS n ∈ N such that:

ūn(p(1)∗, ...p(n−1)∗,p(n)∗,p(n+1)∗, ...,p(N)∗) ≥ ūn(p(1)∗, ...,p(n−1)∗,p(n),p(n+1)∗, ...,p(N)∗),

(10)

where ūn is the expected utility of SBS n when the used probability profile by all the SBSs is

p = [p(1), ...,p(N)].

Even though proving the existence and uniqueness of the PMNE is possible when the number

of players is two and the number of strategies is also equal to two, it is very challenging to extend

this results to the case of multiple players and strategies even for MGs [26], [28]. The main

challenge in finding the mixed strategies equilibrium is in the computation of the equilbria due to
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complexity of the system of equations that should be solved to find the different probabilities per

player. In order to solve the BMMG, we reduce the problem to a minority game with multiple

players, each of which has two strategies. We study this simplified game and then map the results

to the original backhaul management MG.

B. Simplified Backhaul Management Minority Game (SBMMG)

To cast the backhaul management problem as a simplified minority game, we introduce an

additional set V =
⋃
n∈N Vn of V virtual SBSs. In fact, for each real SBS n that has a strategy

set composed of Fn predicted files, we consider one real SBS n and create a set Vn of Fn − 1

virtual SBSs. In this modified model, each real and virtual SBS n ∈ G = N ∪ V is assigned

one predicted file, i.e., sn = 1, and has to decide whether to download or not that predicted

file. The strategy set for all the SBSs becomes a binary set S = {c, d}, in which the strategy

c corresponds to requesting and caching the file, and d corresponds to not requesting the file

from the MBSs. The set of current requests for the real SBSs is the same while it is empty for

the virtual SBSs and consequently Rn = 0, ∀n ∈ V . The utilities for an SBS n of choosing a

strategy c or d when the total number of predicted files that will be requested by all virtual and

real SBSs equals fc, are given by: un(c, fc) = −Rn −Dn(sn) +
∑

m∈M

(
cmn(Fc, R) +

∑
k∈K ωklog

(
1 + γmkn(ηmkn(Fc, R))

))
,

un(d, fd) = −un(c, fc + 1),
(11)

where fd =
∑

n∈N Fn−fc is the number of predicted files that the SBSs decide to not download.

In this SBMMG formulation, the number of requested files corresponds to the number of

SBSs using strategy c. In an MG, a player is better off if it chooses the strategy chosen by the

minority. In our context, the SBS gets a positive utility, i.e. serves the predicted file without

affecting the QoS of the current requests, if the total number of predicted files that is requested

by all the SBSs does not exceed φ. On the other hand, if the SBS chooses not to download

the predicted file while the total number of requested files does not exceed φ, the SBS gets a

negative utility. This represents the regret of not downloading the file when it is possible and

waisting backhaul.

Remark 1. Note that this problem formulation is equivalent to the BMMG as the SBSs still
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take their decision independently. Moreover, in the BMMG, the decisions taken by one SBS do

not depend on the identity of the SBS itself but on the mean number of requested files. Thus,

introducing a set of virtual SBSs that take decisions independently on their real related SBSs,

keeps the model valid.

Next, we study the proper mixed Nash equilibrium.

1) Proper-Mixed Strategies: In this section we start by studying the formulated SBMMG and

then extend the results for the BMMG. In particular, we are interested in finding the PMNE

where all the SBSs take their decision probabilistically and do not have the incentive to deviate

from their chosen strategy. In contrast to existing works on minority games [26] which provide

conditions for the existence of mixed equilibria when φ = F−1
2

with F = 2k + 1 and k ∈ N0,

here, we need to extend the results for any φ and F ∈ N0. For the SBMMG, we have the

following result.

To define the mixed strategies of the SBSs, we use the indifference principle [29] that provides

the condition that allows the players to reach a mixed strategy Nash equilibrium. For this, each

player should be indifferent amongst each of the actions he puts non-zero weight on, yet he mixes

them so as to make every other player is also indifferent. By using the indifference principle, a

PMNE exists when the expected utility of requesting the predicted file is equal to the expected

utility of not requesting that file, i.e., un(c,p−n) = un(d,p−n). By substituting un(d, fd) based

on its definition in (9) and equating the utilities (10) and (11), we get:
G∏
i 6=n

(1− pi)un(c, 1) +
G∑
i 6=n

pi

G∏
j 6={i,n}

(1− pj)un(c, 2) + ...+
N∏
l 6=n

plun(c,G) = 0. (12)

However, a PMNE may not be fair in the sense that some SBSs will request their file with

higher probability compared to the other SBSs. In order to allow the SBSs to equally use the

available backhaul, we are interested in looking for a fair PMNE.

Proposition 1. In the SBMMG, there exists a unique fair PMNE where all the SBSs select

strategy c with the same probability p.

Proof. When all the SBSs choose strategy c with the same probability p, the utilities of selecting

one of the strategies c and d write as follows:
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ūn(c,p−n) =
G−1∑
k=0

(
G− 1

k

)
pk(1− p)G−(k+1)un(c, k + 1). (13)

ūn(d,p−n) =
G−1∑
k=0

(
G− 1

k

)
pk(1− p)G−(k+1)un(d,G− k). (14)

Using the indifference principle and (9), there exists a PMNE when:
G−1∑
k=0

(
G− 1

k

)
pk(1− p)G−(k+1)un(c, k + 1) = 0. (15)

To prove that pi = p, ∀i ∈ N , is a solution for (15), assume the case where all the SBSs except

SBS n deviate from their mixed strategy and choose a pure strategy c with probability σi = 0,

∀i 6= n. Then, from (13) and (14), we have:

ūn(c,σ−n) = un(c, 1) > un(d,G) = ūn(d,σ−n). (16)

This comes from the fact that un(d,G) = −un(c, 1) and un(c, 1) > 0. Similarly, assume that all

the SBSs except SBS n select strategy c with probability πi = 1, ∀i 6= n. From (13) and (14),

we have:

ūn(d,π−n) = un(d, 1) > un(c,G) = ūn(c,π−n). (17)

From (16) and (17), we have: ūn(c,σ−n)− ūn(d,σ−n) > 0,

ūn(c,π−n)− ūn(d,π−n) < 0.
(18)

By using the intermediate value theorem, we deduce that there exists a probability profile p =

[p1, ..., pG], with pi = p, ∀i ∈ G, and p ∈ (0, 1) solving (12). Since, the utility of selecting

strategy c in (13) is a decreasing function of p and the utility of selecting strategy d in (14) is

an increasing function of p, then, the two utilities meet in only one point which is p.

From Proposition 3, we can deduce the following:

Corollary 1. There exists a unique fair PMNE for the BMMG, where each SBS n ∈ N , chooses

a strategy profile pn = [B(1, Fn, p),B(2, Fn, p), ...,B(i, Fn, p), ...,B(Fn, Fn, p)]. Here, B(i, Fn, p)

is the binomial distribution and the probability p is the same for all the SBSs in N .



18

Proof. Since at the fair PMNE in the SBMMG, each virtual/real SBS downloads one file with

probability p, then the related real SBS n in the BMMG, will decide to download each file from

the Fn files with an independent probability p. The probability of selecting i files is hence given

by the binomial distribution B(i, Fn, p).

The result in Corollary 1 does not follow directly from existing works on MGs [26] since

those works are restricted to games with the same binary set of strategies for all the players,

which is not the case in the BMMG. Moreover, the formulated BMMG has the independence

characteristic, given in Remark 1, which is the main parameter that allows the introduction of

the set of virtual SBSs and thus the derivation of Corollary 1.

While analytically characterizing the uniqueness and properties of the PMNE is possible,

the next step is to develop a practical algorithm that enables the SBSs to reach this PMNE

or its neighborhood. To this end, we will next develop a reinforcement learning algorithm that

converges to a refinement of the fair PMNE which is known as the Boltzmann-Gibbs equilibrium

(BGE) [30]. The BGE is a special case of the ε-Nash equilibrium which is a solution concept

in which the players are within ε of the sought equilibrium. In other words, at an ε-equilibrium

no deviating SBS can improve its expected utility by a small amount ε.

IV. SELF-ORGANIZING LEARNING ALGORITHM

To find an approximation of the PMNE, we propose an algorithm based on RL in which the

players do not need to know any information about the actions of the other players. At each

time period, the SBSs need to only observe an estimation of their utility and select their strategy

accordingly. In contrast to works that use RL approaches such as [31], in which the convergence

to a BGE and the uniqueness are not ensured, in this work we prove that the RL algorithm

converges to a unique BGE that approaches the PMNE of the formulated SBMMG. First, we

need to define the notion of a smoothed best response.

Definition 3. The smoothed best response function β(κn)
n : [0, 1](G−1)×2 → [0, 1]2, with parameter

κn > 0, is defined as follows:

β(κn)
n (p−n) =

(
β(κn)
n (c,p−n), β(κn)

n (d,p−n)
)
, (19)
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and ∀ a ∈ {c, d}, β(κn)
n (a,p−n) is given by the Boltzmann-Gibbs distribution:

β(κn)
n (a,p−n) =

exp
(
κnūn(a,p−n)

)
exp

(
κnūn(c,p−n)

)
+ exp

(
κnūn(d,p−n)

) . (20)

Here, we note that depending on the value of the parameter κn, the smoothed best response of

SBS n changes. In fact, as κn → 0, the smoothed best response of SBS n converges to the uniform

probability distribution, i.e., β(κn)
n (p−n) = (1/2, 1/2), irrespective the strategies adopted by all

the other players. However, when κn →∞, the smoothed best response is a uniform probability

distribution over the pure strategies that are best responses to the strategies adopted by all the

other players. The parameter κn represents the exploitation/exploration rate that enables the small

base station to make a decision about whether to just exploit by always selecting the action with

the maximum utility in the current stage, or fold in some exploration and try other actions

to discover more information about the network that can be used to achieve better long-term

rewards. During the exploitation period, the SBSs do not stop the learning process as they will

still use the reward received at the reached sub-slot, to adapt its behavior in the future sub-slots.

However, the SBSs may be blocked at local minima which prevent them from reaching the

highest possible utility. At the exploration phase, the SBSs determines which action to choose

so that the SBSs learn perfectly the best actions that will allow them to determine how behave

in the future. Eventually, when everything to know is learned by th SBSs, there is no need to

continue the exploration, and the SBSs must act optimally according to the best learned and

possible policy. The desired algorithm must allow the exploration probability to decrease as the

SBSs gather enough information and the network is better known. This can enable for learning

the optimal policy by the end of the time period. The value of κn is commonly chosen to be 1
t
,

where t is the current sub-slot.

Now, we define the Boltzmann-Gibbs equilibrium (BGE) which is also known as the logit

equilibrium as follows:

Definition 4. The strategy profile p∗ = [p∗1, ...,p
∗
G] is a BGE with parameter κk > 0 of the game

if ∀ n ∈ G,

p∗n = β(κn)
n (p∗−n). (21)
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In an SCN, the decentralized nature of the operations at the SBSs makes it difficult for each

SBS to communicate with all the other SBSs and get access to their selected strategies. Thus, the

SBSs cannot compute the exact value of their utility at a given time period. Hence, we assume

that the utilities of the SBSs are subject to random error and an SBS n can only observe an

estimation ũn(an(t)) of its utility function un(an(t),a−n(t)) for selecting action a at time t when

all the other SBSs select the actions given in a−n. The estimated utility is given as follows:

ũn(an(t)) = un(an(t),a−n(t)) + εn,an(t)(t), (22)

where ∀n ∈ G, an(t) ∈ {c, d}, and εn,an(t) is a random variable that represents the distribution

of the observation error on the instantaneous utility when SBS n selects action a. Its expected

value is assumed to be 0, i.e., E
[
εn,an(t)

]
= 0. The variable t is used to denote the number of the

current sub-slot as a given time period is divided into multiple sub-slots based on the classical

wireless frame structure. It should be noted that a time period is the required time for the SBS

to receive via the backhaul all the files it decides to download. To estimate the instantaneous

utility, an SBS does not require any communication with the other SBSs nor with a centralized

entity. The value of ũn(an(t)) can be computed based on the received power from the serving

macro base station as well as the perceived interference power from all the other macro base

stations when serving other SBSs over the same backhaul resource blocks.

Knowing the estimated value of the utility at each time period as well as the selected action,

each SBS can estimate the achievable expected utility for each of the actions in its strategy set.

Based on these estimations, the SBS selects the action with the highest expected utility. As a

consequence of the Boltzmann-Gibbs distribution, by adapting the parameters κ, the SBSs can be

pushed to explore new actions and not always select the ones achieving the highest performance.

This allows the SBSs to try all their set of actions looking for any possible improvement of

the expected utility. In what follows, we present a decentralized RL algorithm for backhaul

management in which the SBSs simultaneously learn both utilities and strategies. First, we

denote the estimate of the expected utility of an SBS n by:

ûn(t) =
(
ûn(c, t), ûn(d, t)

)
, (23)

where ûn(a, t) is the estimate of ûn(a,p−n(t)). The expected utility is updated at each time

period based on the instantaneous observations ũn(t) while the probability of selecting each
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action is a function of the estimated smoothed best response function. Before providing the RL

algorithm, we define the estimate best response function β̃
κn

n : R2 → R+ based on the estimated

utility function ûn as follows:

β̃
κn

n (ûn(t)) =
(
β̃κnn (c, ûn(t)), β̃κnn (d, ûn(t))

)
, (24)

with ûn(t) = [ûn(c, t), ûn(d, t)] and

β̃κnn (a, ûn(t)) =
exp(κnûn(a, t))

exp(κnûn(c, t)) + exp(κnûn(d, t))
, (25)

where a ∈ {c, d}.

As first proposed in [32], any RL algorithm can be defined as follows (∀n ∈ G, ∀a ∈ {c, d}):
ûn(a, t) = û(a, t− 1)+

+α(t)1{an(t)=a}

(
ũn(a(t))− ûn(a, t− 1)

)
,

pn(t) = pn(t− 1) + λn(t)
(
β̃
(κn)
n (ûn(t))− pn(t− 1)

)
,

(26)

where, (ûn(0),pn(0)) ∈ R2 × [0, 1]2, is an arbitrary initialization of player n. For instance,

ûn(0) = (0, 0) and pn = (1/2, 1/2), can be defined as the initial values. Moreover, the following

conditions must be satisfied for all (j, n) ∈ G2:

lim
T→∞

T∑
t=1

αn(t) = +∞, lim
T→∞

T∑
t=1

α2
n(t) < +∞,

lim
T→∞

T∑
t=1

λn(t) = +∞, lim
T→∞

T∑
t=1

λ2n(t) < +∞, (27)

lim
t→∞

λn(t)

αn(t)
= 0.

and either, 
∀n ∈ G, λn(t) = λ(t), or,

∀n ∈ G \ {G}, lim
t→∞

λn(t)

λn+1(t)
= 0. (28)

It should be noted that the proposed RL algorithm is (26) does not require any assumption on

the dynamics of the channel state as it is able to capture the changes of both channel and users’

demands. In fact, in contrast to other learning algorithm, the SBSs in the proposed algorithm

decide whether to download predicted files or not based on the estimation of their utility that
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is computed using the channel and traffic statistics from a number of previous sub-slots with

different channel state and demand profiles. For RL algorithms that follow (26), there is no

guarantee of convergence to an equilibrium even if the algorithm has a steady point [33], [32].

Moreover, most works that are able to prove convergence to an equilibrium such as [31], cannot

guarantee the uniqueness of this equilibrium. For the studied SBMMG, we provide the following

result on the convergence of the algorithm in (26) to a unique BGE.

Theorem 2. The algorithm in (26) converges to a unique BGE with parameter κn, ∀n ∈ G, in

the SBMMG and we have:  limt→∞ pn(t) = p∗n,

limt→∞ ûn(a, t) = ūn(a,p∗−n).
(29)

Proof. The proof is given in the Appendix.

The main challenge is to prove that the proposed algorithm converges to a unique point for

the formulated game and show that this point corresponds to the BGE. In contrast to most of

work that use similar RL algorithms, we do not only prove that the algorithm converges but

we also ensure that the reached equilibrium is unique for the formulated game. To this end, we

first write (26) as an approximated ordinal differential equation and prove that it admits at least

one rest point. Then, to show the uniqueness of the rest point, we prove that the defined ordinal

differential equation is a contraction which in turn guarantees the uniqueness of equilibrium.

Since a BGE is a special case of ε-Nash equilibrium, the BGE is an approximate equilibrium

of the fair PMNE that is within ε of the PMNE. Here, we provide a bound for the utility

improvement an SBS can obtain by unilaterally deviating from the BGE.

Proposition 2. At the BGE, assume the strategy profile of the SBMMG with parameters κn > 0

is p∗. Then, p∗ is an ε-equilibrium with ε = 1
κn

ln(1).

Proof. This result follows directly from [34] based on the definition of the best response β(κn)
n (p∗−n)

which writes as follows:

β(κn)
n (p∗−n) = arg maxp−n∈[0,1]2

[
ūn(pn,p

∗
−n)−H(β(κn)

n (p∗−n))
]
,

where H(β(κn)
n (p∗−n)) = 1

κn

(
p∗nlog(p∗n) + (1 − p∗n)log(1 − p∗n)

)
, and the following property of



23

the entropy function H(β(κn)
n (p∗−n)):

H(β(κn)
n (p∗−n))−H(p−n) ≤ H(p0n),

where, p0n = (1
2
, 1
2
) is the initial uniform distribution over the set of strategies. Thus, we can

deduce the following:

ūn(pk,p
∗
−k)− ūn(β(κn)

n (p∗−n),p∗−k) ≤ 1

κn

(
H(β(κn)

n (p∗−n))−H(pn)
)
≤ − 1

κn
log(

1

2
),

≤ 1

κk
log(2).

The BGE is equal to the fair PMNE when ε = 0. Thus, by putting κn →∞ while satisfying

the condition given in the Appendix, we can make sure to approach the fair PMNE.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a 2 km × 2 km area which is covered by two MBSs and

five SBSs. The SBSs are connected to the MBSs via a heterogeneous backhaul having a total

capacity of 1 Gbps unless stated otherwise. In order to ensure fairness between the SBSs, we

always set the minimum number of backhaul resource blocks equal to the number of SBSs.

Then, without loss of generality, we use a matching algorithm similar to the one proposed in

[3], for allocating backhaul capacity. The total number of predicted files is set to 150 randomly

distributed over the SBSs. All statistical results are averaged over 100 independent runs. We

assume that the channel is static over a large number of sub-slots knowing that the expected

utility is only averaged over the possible strategies. Based on the required number of iterations for

the convergence of the algorithm in Fig 5, we can deduce that such an assumption is reasonable

for our model as the channel is known to be static for 10000 iterations in practical 4G systems.

However, to avoid the overhead due to the frequent cache updates, the algorithm can be run over

both strategies and channel statistics. For instance, to operate over slower time scales, the utility

function can be redefined as the expectation over all the channel realizations over a given time

duration Et[ũ(an(t), h(t))].

Once the utilities defined based on the backhaul allocation algorithm, we use the proposed

RL algorithm, abbreviated by BMRL, with αn(t) = 1
t

and λn(t) = 1
t2

, to reach the BGE. The
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algorithm is run until convergence for different configurations. To show the performance gain

of the proposed framework, we compare the decentralized BMRL with a centralized greedy

algorithm (CGA). In CGA, a central entity receives information from all the SBSs regarding the

number of their current and predicted requests. It is also aware of the capacity of the backhaul

links. At each iteration, the central entity allows some SBSs to download a fixed number of

predicted files. The chosen SBSs at each iteration are determined based on a fairness rule,

i.e., the SBSs that have the lowest number of downloaded predicted files are selected. We also

compare the BMRL with an ideal and optimal centralized algorithm (OCA) which is similar to

CGA in which there is no information exchange between the SBSs and the central entity. The

CGA is optimal as it never exceeds the capacity of the backhaul and guarantees fairness between

the SBSs. Even though, CGA is not realistic or practical, it allows benchmarking the proposed

approach against an ideal and optimal scheme.

In our simulations, we use the backhaul allocation algorithm proposed in [3] for all sce-

narios and the comparison between the different approaches is with respect to the impact of

downloading predicted files on the served urgent requests by the SBSs when using the three

different algorithms. In this sense, the “optimal” centralized algorithm is considered as optimal

because it has complete knowledge of the actions of the SBSs and their local information without

accounting for the impact of the used algorithm in [3]. Having such information, the centralized

entity is able to determine the global optimal solution given the outcome of the algorithm in [3].

In Fig. 2, we assess the impact of the parameter κn on the achievable utility by the SBSs in the

BMRL. Fig. 2 shows the the variation of the difference between the available backhaul capacity

and the required capacity for serving all the predicted files that are requested by the SBSs,

while increasing the number of predicted files in the network. Note that the available backhaul

capacity is the same for all the configurations while the number of SBSs having predicted files

is being increased. By increasing the number of files in the network, the allocated backhaul

to each SBS decreases resulting in a decreasing average utility. In Fig. 2, we can see that the

parameter κn has a significant impact on the performance of the proposed algorithm. In fact,

when the value of κn is high, the SBSs tend to choose more frequently the actions that are best

responses to the actions of the other SBSs. Hence, when the backhaul capacity allows to serve

all the predicted files, i.e., the total number of files is up to 60 in Fig. 2, higher values of κn
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Fig. 2: Difference between the available backhaul capacity and the required capacity for serving

the requested files with respect to the number of files and κn.

(κn = 0.005 and κn = 0.017) allow the BMRL to achieve the same performance as the OCA.

In this case, BMRL is also as good as CGA due to the available backhaul that can support the

extra exchanged packets in CGA. In contrast, decreasing the value of κn will lead the SBSs to

play all the actions uniformly. In this case, the performance of the BMRL is close to OCA and

much higher than CGA when the predicted files cannot all be served through the backhaul. In

fact, by increasing the number of files, more backhaul is allocated for the information exchange

resulting in a decreasing performance in CGA. Thus, by properly choosing the values of the

parameter κn, we can achieve optimal performance at a lower signaling overhead compared to

CGA.

In Fig. 3, the performance of the BMRL is compared with OCA in three different cases:

• Case 1: The available backhaul capacity is higher than the required capacity to serve the

current requests, but the extra backhaul capacity can only be used to serve up to 60 predicted

files.

• Case 2: The backhaul capacity (50 Mbps) is lower than the required capacity to serve the

current requests.
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Fig. 3: The difference between the available backhaul capacity and the required capacity for

serving the predicted files that are requested by the SBSs with respect to the number of files.

• Case 3: The backhaul capacity (3 Gbps) is sufficient to serve all the current requests and

up to 150 predicted files.

For cases 2 and 3, choosing relatively high values of κn allows one to achieve exactly the

same performance as the OCA. In Case 2, by choosing κn = 0.001, the SBSs download all

their predicted files with a high probability approaching pn = 1. On the other hand, in case 3,

by putting κn = 1, none of the SBSs requests a predicted file and the probability of requesting

a predicted file approaches pn = 0. Finally, in case 1, when the capacity of the backhaul is

not sufficient for serving all the predicted files, κn should be chosen carefully depending on

the backhaul capacity and the approximate total number of files in the network. For this case,

κn = 0.001 according to Fig. 2.

Fig. 4 shows the total amount of predicted data that is requested by the SBSs in BMRL,

OCA, CGA and a centralized random fair algorithm (RFA) in which neither the capacity of the

backhaul nor the requests profile of the SBSs are known to the central entity. We can observe

that the backhaul usage in BMRL is similar to the backhaul usage in OCA in 85 % of the cases

while it outperforms CGA and RFA by up to 50% in terms of the amount of cached content

and the rate with which the current requests are served, respectively. In fact, when the available
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Fig. 4: Amount of requested predicted data with respect to the backhaul capacity.

backhaul capacity is higher than the total number of predicted files in the network (up to 60

predicted files), in CGA, BMRL and OCA all the predicted files are requested. The backhaul

usage in the RFA is lower compared to the other algorithms, because the capacity of the backhaul

is selected randomly at each iteration and since the backhaul is allocated fairly to the SBSs,

each SBS downloads the predicted file with probability pn = 0.5. This results in an inefficient

backhaul usage whether the backhaul is available or not. When the capacity of the backhaul

is not sufficient to support all the predicted files, the amount of downloaded content in CGA

decreases by increasing the number of files in the network which is due to the extra packets

that are transmitted over the backhaul for coordination with the central entity. In this same case,

both OCA and BMRL allow the SBSs to download files without exceeding the capacity of the

backhaul. Note that in Fig. 4, the values of κn were chosen based on the maximum amount of

files that can be downloaded without exceeding the capacity of the backhaul.

Fig. 5 presents the number of iterations needed for convergence to the BGE. Fig. 5 shows

that the BMRL requires only 2 iterations to converge when no backhaul is available for serving

the predicted requests (Case 2). Around 532 iterations, are needed when there is an available

backhaul for downloading all the predicted files. Fig. 5 shows that, for Case 3, the number of

iterations decreases with the number of predicted files until reaching 111 iterations. In Case 1,
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Fig. 5: Number of iterations for convergence to the logit equilibrium.

the number of iterations decreases in the beginning since all the files can be served (similarly

to Case 3) and the number of iterations increases again when it is not possible to serve all the

files due to the SBSs’ probabilities of using the backhaul that variate largely before reaching the

equilibrium. The number of iterations can be considered as quite reasonable compared to other

works that use RL approaches for SCNs such as [31], in which the number of iterations that is

required for convergence exceeds 5000. Moreover, given that the duration of a single time slot

is around 1 ms and the mean required time for one iteration is 100 ns, the number of iterations

that is required for the convergence of the algorithm is acceptable for the game we consider.

VI. CONCLUSION

In this paper, we have proposed a novel backhaul management approach for cache-enabled

small cell networks, while taking into account the heterogeneity of the backhaul links. We

divided the requests of each SBS into predicted requested that can be served locally by the

SBSs and current requests that must be served instantaneously from the backhaul. We have

formulated a minority game in which the SBSs have to define the number of predicted files

to download at each time period without deteriorating the QoS of the current requests. We
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have proved the existence of multiple pure Nash equilibria and the existence of a unique fair

mixed Nash equilibrium allowing all the SBSs to use the backhaul evenly. Moreover, we have

proposed a self-organizing reinforcement learning algorithm that reaches a unique Boltzmann-

Gibbs equilibrium that approximates the PMNE. Simulation results have shown that the proposed

algorithm outperforms the centralized greedy algorithm and its performance is exactly the same

as the performance of the ideal and optimal algorithm in more than 85 % of the cases. The

impact of the caching and replacement policies at the SBSs, on the number of predicted files as

well as the whole backhaul management approach, is left for future work.
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[12] B. Perabathini, E. Baştuğ, M. Kountouris, M. Debbah, and A. Conte, “Caching on the edge: a green perspective for 5G

networks,” in IEEE International Conference on Communications, London, UK, June 2015.



30

[13] A. Kumar and W. Saad, “On the tradeoff between energy harvesting and caching in wireless networks,” in IEEE

International Conference on Communications, Workshop on Green Communications and Networks, London, UK, June

2015.

[14] B. Zhou, Y. Cui, and M. Tao, “Optimal dynamic multicast scheduling for cache-enabled content-centric wireless networks,”

in IEEE International Symposium on Information Theory, Hong Kong, June 2015.

[15] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Multicast-aware caching for small cell networks,” in IEEE Wireless

Communications and Networking Conference, 2014, pp. 2300–2305.

[16] L. A. Belady, “A study of replacement algorithms for a virtual-storage computer,” IBM Systems journal, vol. 5, no. 2, pp.

78–101, 1966.

[17] S. Borst, V. Gupt, and A. Walid, “Distributed caching algorithms for content distribution networks,” in IEEE International

Conference on Computer Communications, 2010, pp. 1–9.

[18] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, “Cache in the air: exploiting content caching and delivery

techniques for 5g systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139, 2014.

[19] J. Wang, “A survey of web caching schemes for the internet,” ACM SIGCOMM Computer Communication Review, vol. 29,

no. 5, pp. 36–46, 1999.

[20] A. Araldo, M. Mangili, F. Martignon, and D. Rossi, “Cost-aware caching: optimizing cache provisioning and object

placement in icn,” in IEEE Global Communications Conference (GLOBECOM), 2014, pp. 1108–1113.

[21] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of information-centric networking,” IEEE

Communications Magazine, vol. 50, no. 7, pp. 26–36, 2012.
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APPENDIX

The proof of the convergence of the algorithm in (26) to a unique BGE can be decomposed

into two parts. We first start by proving that the algorithm converges surely to a BGE and then

prove that the algorithm admits a unique steady point which corresponds to the unique BGE.

Since a minority game is a special case of congestion games and based on [35, Theorem 3.1],

we can deduce that the formulated SBMMG admits a potential function. On the other hand,

based on [32, Theorem 7] and knowing that the SBMMG accepts a finite number of BGEs,

then the algorithm in (26) admits at least one steady point and converges with probability 1 to

a BGE.

In order to prove the uniqueness of the steady point of the algorithm in (26) we analyze the

Robin-Monro iteration form of (26) [36]. The limiting ordinal differential equations (ODE) of

the Robin-Monro equations write as follows: ˙̂un(a, t) = Ep

[
ũn(a(t))

]
− ûn(a, t),

ṗn(t) = β̃
(κn)
n (ûn(t))− pn(t− 1),

(30)

Given the existence of at least one fixed point for the ODE function:

ṗn = β(κn)
n (p−n)− pn, (31)

then, we have:

p∗n = β(κn)
n (p∗n), (32)

and by replacing with (22) and (32) in ˙̂un(a, t), we get:

˙̂un(a, t) = Ep∗

[
un(a(t),p∗−n)

]
+Ep∗

[
εn,an(t)(t)

]
− ûn(a, t), (33)
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which reduces to solving the ODE:

˙̂un(a, t) = un(a(t),p∗−n)− ûn(a, t), (34)

Now, we prove the existence of a unique fixed point for the ODE (34). Given Banach fixed point

theorem which says that a contraction has a unique fixed point, it is sufficient to prove that the

ODE in (34) is a contraction in order to prove the uniqueness of the fixed point un(a(t),p∗−n)

given by:

ūn(c,p−n) =
G−1∑
k=0

(
G− 1

k

)
pk(1− p)G−(k+1)un(c, k + 1), (35)

with pn = β(κn)
n (p−n).

Definition 5. (Contraction): A map function g : X → X is said to be a θ-contraction if

∃ 0 < θ < 1 such that:

|g(x1, x2)| ≤ θ|x1 − x2|. (36)

Consider the difference |ūn(c,p−n)− ūn(c,p′−n)|, we have:

|ūn(c,p−n)− ūn(c,p′−n)| =

|pn
∑G−1

k=0

(
G− 1

k

)
pk(1− p)G−(k+1)un(c, k + 1)−

p′n
∑G−1

k=0

(
G− 1

k

)
(p′)k(1− p′)G−(k+1)un(c, k + 1)| =∣∣∣∑G−1

k=0 un(c, k + 1)(pn − p′n)

(
G− 1

k

)
(p′)k(1− p′)G−(k+1)

∣∣∣
≤ |(pn − p′n)

∑G−1
k=0 un(c, k + 1)|,

≤ |
∑G−1

k=0 un(c, k + 1)||pn − p′n|.

(37)

By replacing with the best response functions we get:

|pn − p′n| = |β
(κn)
n (c,p−n)− β(κn)

n (c,p−n)|

=
∣∣∣ exp

(
κnun(a,p−n)

)
exp

(
κnun(c,p−n)

)
+exp

(
κnun(d,p−n)

) − exp

(
κnun(a,p−n)

)
exp

(
κnun(c,p−n)

)
+exp

(
κnun(d,p−n)

)∣∣∣ (38)

After some numerical computation we get:

|pn − p′n| ≤ κn||p− p′||∞ (39)
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by replacing in (37) we have:

|ūn(c,p−n)− ūn(c,p′−n)| ≤ κn|
G−1∑
k=0

un(c, k + 1)|||p− p′||∞.

Since we have un(c,p−n)un(d,p−n) ≤ 0, we can conclude that un(p) is an ∞-contraction and

admits a unique fixed point if κn ≤ |
∑G−1

k=0 un(c, k + 1)|. Following the results from stochastic

approximation algorithms and considering the Lyapunov function V (p) = ||p− p∗||∞ for ODE

(31), we deduce that p∗ is the unique globally asymptotically stable point of (31). Thus, the

formulated SBMMG admits a unique fixed point which is the BGE of the game.
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