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Abstract—This paper studies multi-agent deep reinforcement
learning (MADRL) based resource allocation methods for multi-
cell wireless powered communication networks (WPCNs) where
multiple hybrid access points (H-APs) wirelessly charge energy-
limited users to collect data from them. We design a distributed
reinforcement learning strategy where H-APs individually de-
termine time and power allocation variables. Unlike traditional
centralized optimization algorithms which require global in-
formation collected at a central unit, the proposed MADRL
technique models an H-AP as an agent producing its action based
only on its own locally observable states. Numerical results verify
that the proposed approach can achieve comparable performance
of the centralized algorithms.

I. INTRODUCTION

Recently, radio frequency (RF) based energy harvesting

(EH) techniques have attracted a significant attention ow-

ing to its capability for charging devices remotely [1]–[4].

Wireless powered communication networks (WPCNs) [5], [6],

which jointly design the wireless charging and communication

protocols, have been regarded as a promising solution for

extending the life of the energy-constrained mobile users at

the network. In the WPCNs, a hybrid access points (H-APs)

broadcasts an RF signal to devices in the downlink, and the

devices harvest the energy to transmit information signals in

the uplink. Thus, it is important to carefully design resource

management algorithms for joint optimization of information

and energy transmission.

There have been intensive studies on resource management

in the WPCNs for various scenarios with multiple users [7],

[8], and H-APs [9]–[11], which focus on charging small

devices such as wireless sensors and internet of things (IoT)

devices. Most of existing works, however, assume centralized

computations where instantaneous full channel state informa-

tion is required and the information exchange in large networks

thus incurs prohibitive backhaul overhead. To avoid such

difficulties, the work [11] investigated distributed resource

optimization approaches. However, they adopted an additional

central coordinator that schedules computations of multiple H-

APs. Such an assumption would not be practical in the WPCN

which mainly relies on ad-hoc networking configurations, e.g.,

IoT systems. This motivates the development of distributed
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resource management policies for the WPCN without addi-

tional centralized units, which is, in general, challenging for

conventional optimization methods.

This paper investigates a deep reinforcement learning (DRL)

approach for the WPCN which allows distributed calculations

at individual H-APs. The DRL has been recently applied

to solve resource allocation problems in various wireless

systems [12]–[19]. The work in [12] mitigates the end-to-

end outage probability in an EH enabled cognitive radio

networks through RL based Q-routing. A multi-agent DRL

(MADRL) architecture has been extended in [18] and [19].

In the MADRL framework, a network entity responsible for

individual computations can be modeled as an agent that

determines an action, i.e., a resource management policy, using

locally observable states along with interactions with other

agents. The work in [18] employed the MADRL method to

develop distributed computation strategies of power allocation

solutions in an ad-hoc setup. Also, [19] presented MADRL-

based spectrum sharing schemes for vehicular networks, which

adopted a distributed execution process of centrally trained

agents. The agents are thus optimized with the aids of central-

ized computations, but their real-time realizations are carried

out individually. Such a concept might not be feasible for

practical WPCNs where no central coordinator is allowed

even in the training step due to arbitrarily deployed H-APs.

Therefore, for the WPCN scenarios, it is essential to develop a

new MADRL framework that enables decentralized inferences

both in the training and execution steps.

This paper proposes a MADRL-based distributed resource

allocation strategy for maximizing the sum-rate performance

in the multi-cell WPCN where the agents implemented at the

H-APs are trained and executed in a distributed manner. To

this end, each agent is realized by its own deep neural network

(DNN) that can be individually learned without knowing

global information of the system. In particular, an agent

leverages locally observable knowledge which can be sensed

from other cells, i.e., power of interference and energy signals.

Such a local state can be successfully maintained in a fully

distributed manner. To prevent egoistic resource allocation

strategies, we design a local reward so that each H-AP can

individually determine its networking policy with distributed

coordination among other H-APs during the training.

Consequently, the proposed MADRL approach accom-

plishes not only the distributed training with the aid of a

simple interaction among the agents, but also the distributed

execution using only locally observable information. Further-

more, the proposed strategy can reduce computational com-

plexity compared with the conventional centralized algorithm

in [10]. Numerical results verify that the proposed distributed

resource allocation policy achieves comparable performance

of conventional centralized computation systems with lower

computational complexity. The contributions of this paper are

http://arxiv.org/abs/2010.09171v1
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Figure 1. Illustration of the N cell WPCN operation

Table I
LIST OF SYMBOLS

Symbol Definition

h
(t)
ij

Channel gains from user i to H-AP j

g
(t)
ij

Channel gains from H-AP i to H-AP j

b
(t)
ni

Binary number indicating if H-AP i receives WIT signal

I
(t)
nji

WIT interference from cell j in interval n

D
(t)
nji

Cross-link WET interference from cell j in interval n

τ
(t)
i

Duration of the WET operation at H-AP i

p
(t)
i

Transmit power of user i

s
(t)
i

State of H-AP i at time slot t

s
(t)
i,I Internal state of H-AP i at time slot t

s
(t)
ji,E External state of H-AP i at time slot t sensed from cell j

Ê
(t)
ji

Estimation of the harvested energy

Î
(t)
ji

Estimation of the WIT interference

D̂
(t)
ji

Estimation of the cross-link WET interference

summarized as follows:

• The MADRL-based distributed optimization method is

proposed for multi-cell WPCN systems. An RL refor-

mulation of the sum-rate maximization is introduced by

carefully designing actions, states, and rewards suitable

for the WPCN.

• An efficient interaction mechanism among H-APs is

developed to accomplish decentralized training and ex-

ecution of agents.

• The effectiveness of the proposed approach is demon-

strated in comparison of traditional centralized optimiza-

tion algorithms and state-of-the-art MADRL solutions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-cell WPCN scenario in [10] where

N users wish to communicate with their corresponding H-

APs. The symbols which are used throughout the paper are

summarized in Table I. The H-APs first charge the users

by transmitting energy-carrying RF signals in the downlink

wireless energy transfer (WET) phase, and the users harvest

the energy from the received signals. Then, by exploiting the

harvested energy, the users transmit their information signals

to the H-APs in the uplink wireless information transmission

(WIT) phase.

We briefly explain the operation of the multi-cell WPCN

system, as shown in Fig. 1. The WPCN process is carried out

in the time-slotted manner where at time slot t of duration T ,

H-AP i first performs the WET in the downlink of duration

τ
(t)
i . Then, the WIT of user i is conducted in the uplink during

Figure 2. Network architecture of MA-A2C

the remaining T − τ
(t)
i . Then, assuming N cells, as illustrated

in Fig. 1, the total system block is divided into N+1 intervals.

Since the operation of the overall system is different at each

interval, the rate and the harvested energy performance should

be carefully characterized. To this end, an ordering µi of the

H-APs is defined as τµ1 ≤ · · · ≤ τµN
. Then, the duration of

interval n (n = 1, · · · , N + 1) becomes τ
(t)
µn
− τ

(t)
µn−1 with

τµ0 , 0 and τµN+1 , T . Assuming the time-slotted block

fading model, at time slot t, the uplink channel from user i

to H-AP j (i, j = 1, · · · , N ) is denoted by h̃
(t)
ij . Based on the

Jake’s model [18], the channel coefficient follows a first-order

complex Gauss Markov process h̃
(t)
ij = ρh̃

(t−1)
ij +

√

1− ρ2e
(t)
ij

where ρ = J0(2πfdT ) stands for the time correlation of

the channel, J0(·) is the zeroth-order Bessel function of the

first kind, fd represents the maximum Doppler frequency and

e
(t)
ij ∼ CN (0, 1) indicates the channel innovation process that

is independent of h̃
(t)
ij . In a similar way, we define the channel

coefficient g̃
(t)
ij from H-AP i to H-AP j as the Gauss Markov

process.

At interval n, H-AP i with τ
(t)
µn

> τ
(t)
i receives the WIT

signals transmitted from users, whereas those with τ
(t)
µn
≤ τ

(t)
i

transfer the energy in the downlink. For convenience, let b
(t)
ni

be a binary number indicating the mode of H-AP i at interval

n such that b
(t)
ni = 1 if H-AP i receives the WIT signal and 0

otherwise. Notice that b
(t)
ni is not an optimization variable and

is straightforwardly determined by the time allocation vari-

ables. For b
(t)
ni = 1, H-AP i experiences WIT interference from

other user j with b
(t)
nj = 1 and cross-link WET interference

from H-AP j with b
(t)
nj = 0.

Let us denote p
(t)
i and P as the uplink transmit power of

user i and the downlink power at the H-APs, respectively.

Also, we define h
(t)
ij , |h̃

(t)
ij |

2 and g
(t)
ij , |g̃

(t)
ij |

2 as the channel

gains from user i to H-AP j and from H-AP i to H-AP j,

respectively. Then, the instantaneous WIT interference I
(t)
nji

from user j to H-AP i and the instantaneous cross-link WET

interference D
(t)
nji from H-AP j to H-AP i at interval n are

respectively expressed as

I
(t)
nji = h

(t)
ji p

(t)
j b

(t)
nj and D

(t)
nji = βg

(t)
ji P (1− b

(t)
nj ) (1)

with the attenuation factor β.1 Since the uplink data transmis-

1If the WET signals are shared among H-APs, the WET interference D
(t)
nji

is perfectly canceled as β = 0. Otherwise, we have 0 < β < 1 [10].
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sion of user i at interval n is carried out when b
(t)
ni = 1, the

corresponding achievable data rate R
(t)
ni can be written by

R
(t)
ni =(τ (t)µn

−τ (t)µn−1
)b

(t)
ni log

(

1+
h
(t)
ii p

(t)
i

σ2+
∑

j 6=i(I
(t)
nji+D

(t)
nji)

)

, (2)

where σ2 equals the noise power. The multi-user WIT in-

terference I
(t)
nji appears in (2) since all users share the same

time-frequency resources. Then, the total achievable rate of

user i over N +1 intervals is denoted by R
(t)
i =

∑N+1
n=1 R

(t)
ni .

On the other hand, user i harvests the energy of the received

RF signals when b
(t)
ni = 0. The contribution of H-AP j on the

harvested energy of user i at interval n is given as

E
(t)
nji = △

(

Ph
(t)
ij (1− b

(t)
ni )(1− b

(t)
nj )
)

, (3)

where the function △(x) defines the input-output relationship

of EH circuits for a given input power x and 1− b
(t)
nj appears

since H-AP j can only affect the EH performance of user i if

it radiates the downlink WET signals. The harvested energy

of an ideal EH model is given as △(x) = ηx with η ∈ (0, 1]
being the energy harvesting efficiency. Also, the non-linearity

of practical EH circuits is modeled as [20]

△(x)=
a3(1− exp (a1x))

1 + exp (−a1x+ a2)
, (4)

where ak for k = 1, 2, 3 are fitting parameters. Thus,

the total harvested energy at user i over all intervals is

written by E
(t)
i ,

∑N+1
n=1 (τ

(t)
µn
− τ

(t)
µn−1)

∑N
j=1 E

(t)
nji. Notice

that the transmit EH consumption of user i cannot exceed

the total harvested energy, which incurs the EH constraint

(T − τ
(t)
i )p

(t)
i ≤ E

(t)
i .

Now, we jointly optimize the time allocation {τ
(t)
i } and

the uplink power allocation {p
(t)
i } to maximize the sum-rate

performance. The problem is formulated as

max
{τ

(t)
i

},{p
(t)
i

}

1

T

N
∑

i=1

R
(t)
i , s.t. (T − τ

(t)
i )p

(t)
i ≤ E

(t)
i ∀i. (5)

Problem (5) has been recently solved in [10] based on tradi-

tional optimization techniques. Due to the combinatorial nature

of the H-AP ordering, i.e., binary numbers in (2) and (3),

the sum rate maximization was carried out with an ordering

τ1 ≤ · · · ≤ τN in [10]. Therefore, the ordering should be

additionally optimized in the outer loop, resulting in exhaus-

tive search of size N ! whose computational complexity may

become prohibitive for a large N . Furthermore, the conven-

tional method in [10] is based on the centralized computation

where a central process unit is needed for the optimization of

(5). To address these issues, in this paper, by applying the RL

technique, we propose a distributed optimization approach for

(5) where H-AP i individually obtains its solutions τ
(t)
i and

p
(t)
i while as well as the ordering in a single formulation.

III. PROPOSED MADRL APPROACH

This section presents the multi-agent advantage actor-critic

(MA-A2C) method which handles (5) in a distributed manner.

The A2C is a policy gradient based DRL technique which

parameterizes a policy and updates the parameters of the policy

to maximize the expected reward by the gradient method [21],

[22]. The A2C framework consists of an actor unit and a critic

unit, which can be realized by DNN for a DRL setup. The actor

determines a policy for an action of an agent, i.e., a solution of

(5), based on the states observed from the environment such

as the channel gains. Utilizing the current policy, the critic

estimates the expected reward value and helps the update of

the actor. The A2C has been widely adopted for handling RL

tasks with a large action set, possibly having infinitely many

action candidates [21], [23]. Such a property is suitable for our

formulation (5) which requires to find numerous combinations

of the optimization variables τ
(t)
i and p

(t)
i , ∀t, i. Furthermore,

in designing distributed RL strategies, a large action set is

inevitable since it should allow agents to determine their

own actions individually. This motivates us to apply the A2C

approach to our WPCN formulation (5) which requires the

optimization of N2 dimensional space at each time slot.

Now we explain how the A2C can estabilsh the distributed

optimization of the WPCN. To this end, we present a multi-

agent structure for the A2C framework as illustrated in Fig.

2, where each agent is regarded as an H-AP responsible for a

distributed decision of its resource allocation solution by using

only locally observable information. Agent i consists of an

actor DNN and a critic DNN, each of which is represented by

the parameters θi and φi, respectively. The actor DNN of agent

i characterizes the conditional probability of the action a
(t)
i for

a given state s
(t)
i denoted by the stochastic policy πθi(a

(t)
i |s

(t)
i )

where the action a
(t)
i is defined as a tuple (τ

(t)
i , p

(t)
i ) of the

time duration and the uplink power.

The critic DNN of agent i models the value function

V
πθi

φi
(s

(t)
i ) under the policy πθi which will be exploited for the

optimization of the actor DNN [22]. To be specific, we design

the crtic DNN as a standard fully-connected DNN with a

feedforward structure. On the other hand, for efficient learning

of the joint stochastic policy πθi(a
(t)
i |s

(t)
i ), we construct the

actor DNN, where the input state is first pre-processed by

several hidden layers, and then it is followed by two individual

branches. Each of two branches determines the power and time

allocation variables, respectively. In the following, we address

the relationship between the problem in (5) and the MA-A2C

structure by formulating the action, the state and the reward.
A. Action

To construct a finite action set, we discretize the continuous

variables τ
(t)
i and p

(t)
i . Specifically, for agent i, the action

spaces Ti for the time allocation τ
(t)
i and P

(t)
i for the power

allocation p
(t)
i are respectively defined as

Ti =

{

k(T − ǫτ )

KT − 1
for k = 0, 1, · · · ,KT − 1

}

(6)

P
(t)
i =

{

kE
(t)
i

(KP − 1)(T − τ
(t)
i )

for k = 0, 1, · · · ,KP − 1

}

where a small positive number ǫτ is introduced to avoid the

case of p
(t)
i →∞, and KT and KP are the quantization level

of time and power allocation, respectively. The size of the

overall action space becomes KT KP .

The output of the actor DNN reflects the probability mass

function of the elements in Ti and P
(t)
i , and the action is then

randomly sampled based on this probability mass function. It

is worthwhile to note that a specific value of E
(t)
i is required
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for the decision of p
(t)
i at time slot t. This can be achieved as

follows: First, all the H-APs transmit the WET signals in the

downlink with the time duration τ
(t)
i generated from the actor

DNN. Then, H-AP i can measure E
(t)
i from the received signal

strength. With the estimated EH constraint E
(t)
i at hands, the

agents can determine the uplink power p
(t)
i from the stochastic

policy πθi(a
(t)
i |s

(t)
i ).

B. State

The state s
(t)
i of agent i at time slot t is constructed as a

concatenation of the internal observation s
(t)
i,I and the external

information s
(t)
ji,E sensed from all other cells j 6= i. Here, the

internal information s
(t)
i,I is defined as a collection of a

(t−1)
i ,

H
(t−1)
ii , H

(t)
ii , and R

(t−1)
i , which can be easily attained by

an interaction between H-AP i and user i. In contrast, s
(t)
ji,E

contains Ê
(t)
ji , Î

(t)
ji , and D̂

(t)
ji defined as

Ê
(t)
ji =ηP

N+1
∑

n=1

(τ (t−1)µn
−τ (t−1)µn−1

)h
(t)
ij (1−b

(t−1)
ni )(1−b

(t−1)
nj ), (7)

Î
(t)
ji =

N+1
∑

n=1

(τ (t−1)
µn

− τ (t−1)
µn−1

)h
(t)
ji p

(t−1)
j b

(t−1)
nj , (8)

D̂
(t)
ji = β

N+1
∑

n=1

(τ (t−1)
µn

− τ (t−1)
µn−1

)g
(t)
ji (1 − b

(t−1)
nj ), (9)

where Ê
(t)
ji stands for the estimation of the harvested energy

∑N+1
n=1 E

(t)
nji in (3), and Î

(t)
ji and D̂

(t)
ji represent the WIT

interference
∑N+1

n=1 I
(t)
nji and the cross-link WET interference

∑N+1
n=1 D

(t)
nji in (1) incurred by the jth interfering cell over all

intervals, respectively. These quantities are measured over the

current channel gains h
(t)
ji and g

(t)
ji following the past action

a
(t−1)
j of the jth interfering cell. As a consequent, agent i can

infer the actions of other agents j, ∀j 6= i, from its local state

s
(t)
i measured in a distributed manner.

The acquisition mechanism of the estimates (7)-(9) is given

as follows: First, to get Ê
(t)
ji for j 6= i, H-AP j transmits the

WET signal at the beginning of time slot t by using its previous

action a
(t−1)
j , whereas other H-APs remain silent. Then, all

the users readily obtain Ê
(t)
ji by observing the received signal

power. Such a procedure is repeated N times by changing the

transmitting H-APs. Likewise, the interference levels Î
(t)
ji and

D̂
(t)
ji are obtained at H-AP i. Such a process needs no active

data sharing among the agents, but depends on the sensing

mechanism at the H-APs and users. Consequently, agent i can

build its state s
(t)
i in a fully distributed manner.

C. Reward

We present the reward r
(t+1)
i of agent i at time slot t + 1

which should be maximized during the training process of the

proposed MA-A2C scheme. Since our original target of (5)

is to improve the overall data rate, the reward r
(t+1)
i can be

designed to include the current rate R
(t)
i . At the same time, we

consider some penalizing terms since agent i could degrade

the network performance when it focuses only on its local

rate R
(t)
i . To this end, we adopt the concept of a price for the

power p
(t)
i incurring interference to other cells [18].

As a result, the reward r
(t+1)
i is written by

r
(t+1)
i = R

(t)
i −

N
∑

j 6=i

(R
(t)
j\i −R

(t)
j ), (10)

where the second term stands for the price preventing a naive

decision p
(t)
i = E

(t)
i /(T − τ

(t)
i ). Here, R

(t)
j\i reflects the data

rate of user j achieved without interference from cell i as

R
(t)
j\i=

N+1
∑

n=1

(τ (t)µn
−τ (t)µn−1

)b
(t)
nj log

(

1+
h
(t)
jj p

(t)
j

σ2+
∑

k 6=i,j

(I
(t)
nkj+D

(t)
nkj)

)

.

D. Learning and Implementation

We discuss a learning strategy for the proposed MA-A2C

structure. The loss functions of the critic and actor DNNs of

agent i are respectively formulated as [21]

Li,C =
(

(r
(t+1)
i + γV

πθi

φi
(s

(t+1)
i ))− V

πθi

φi
(s

(t)
i )
)2
,

Li,A = − logπθi(a
(t)
i |s

(t)
i )δ

(t)
i ,

where γ ∈ (0, 1] denotes the discounting factor of the

future rewards in the current time slot and δ
(t)
i , (r

(t+1)
i +

γV
πθi

φi
(s

(t+1)
i )) − V

πθi

φi
(s

(t)
i ). Here, Li,C is set as the mean

square error of the value function V
πθi

φi
(s

(t)
i ) and Li,A accounts

for the cross-entropy of the stochastic policy πθi(a
(t)
i |s

(t)
i ).

The critic and actor DNNs of agent i are trained to minimize

Li,C and Li,A, respectively, based on the gradient descent

(GD) algorithm. For agent i, the update rules of the critic

DNN φi and the actor DNN θi are written as [21]

φi ← φi + αCδ
(t)
i ▽φi

V
πθi

φi
(s

(t)
i ), (11)

θi ← θi + αAδ
(t)
i ▽θi log πθi(a

(t)
i |s

(t)
i ), (12)

where αC and αA are the learning rate for the critic and the

actor, respectively. The updates in (11) and (12) are carried out

with a single state sample s
(t)
i , and thus no parallel computing

capability is required.

We now explain the distributed training and execution

processes of the proposed MA-A2C method. First, for the

training, agent i needs its current state s
(t)
i , future state s

(t+1)
i ,

and reward r
(t+1)
i to proceed the GD updates (11) and (12).

As mentioned in Sec. III-B, the current state s
(t)
i is readily

obtained from the distributed sensing mechanism. Similarly,

the future state s
(t+1)
i can be collected at the beginning of

time slot t + 1. Then, the updates in (11) and (12) are in

fact performed right before the determination of the current

actions. Finally, to compute the local reward in (10), R
(t)
j and

R
(t)
j\i are locally calculated at H-AP j and then forwarded to

H-AP i through backhaul connections. As a consequence, the

distributed learning of the critic and actor DNNs is conducted

by means of the locally sensed information as well as the

knowledge obtained by other H-APs.

Algorithm 1 summarizes the proposed distributed training

procedure. The final goal of the algorithm is to implement

individual updates in (11) and (12), which require r
(t+1)
i and
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Algorithm 1 Distributed Training Algorithm

Initialize s
(t)
i , φi and θi, ∀i and set t = 0

repeat

H-AP i, ∀i takes a
(t)
i using its actor and s

(t)
i .

H-AP i, ∀i calculates R
(t)
i\j using a

(t)
i and sends it

to H-AP j, ∀j 6= i.
H-AP i, ∀i gets r

(t+1)
i in (10) and s

(t+1)
i as in

Sec. III-B.

H-AP i, ∀i updates φi and θi from (11) and (12)

based on r
(t+1)
i and s

(t+1)
i .

t← t+ 1
until convergence

s
(t+1)
i at H-AP i. First, to obtain the reward r

(t+1)
i , each H-

AP takes the action a
(t)
i using its actor and previous state s

(t)
i .

From a
(t)
i , H-AP i calculates R

(t)
i\j and sends it to other H-APs

j, ∀j 6= i. In this way, H-AP i can get r
(t+1)
i by collecting the

received information R
(t)
j\i, ∀j 6= i. Next, to build s

(t+1)
i , H-

AP i broadcasts the WET signal using the previous action a
(t)
i .

Then, user j, ∀j 6= i, measures the received signal power to

obtain Ê
(t)
ji . Î

(t)
ji and D̂

(t)
ji are attained with a similar process as

discussed in Sec. III-B. Consequently, the reward r
(t+1)
i and

the state s
(t+1)
i can be constructed in a distributed manner.

This process is repeated during the training.

The critic DNNs are discarded after the training. With

the trained actor DNN at hand, the H-APs can decide the

resource allocation strategy from the optimized stochastic

policy function πθi(a
(t)
i |s

(t)
i ). In the real-time execution step,

it suffices for H-AP i to know the local state s
(t)
i for the

individual decision. This leads to a distributed optimization of

the multi-cell WPCN with arbitrary channel gains.

IV. SIMULATION RESULTS

We present numerical results to verify the proposed MA-

A2C. The distance between an H-AP and its user and the

distance among the H-APs are also set to 10 m and 15 m,

respectively [10], while the Rayleigh fading is assumed for

small-scale channel gains. The path loss exponent is set to 3,

and the maximum Doppler frequency and the duration of each

time slot are respectively given by fd = 10 Hz and T = 20 ms

[18]. The H-APs utilize constant power budget P = 30 dBm.

The WET signal cancellation factor and the noise power are

fixed as β = −50 dBm and σ2 = −50 dBm, respectively [10].

The critic DNN is constructed with four hidden layers each

with 200, 200, 100 and 70 neurons. For the actor DNN, we

consider two hidden layer with 200 neurons for the shared part,

where two hidden layers with 200 neurons for each branch are

subsequently connected. The hyperbolic tangent is applied as

activations to all hidden layers.2 Meanwhile, the linear and

softmax functions are applied to output layers of the critic

DNN and the actor DNN, respectively. The size of the action

sets for the power and time variables are given as KP =
KT = 20, which corresponds to the size of the output layers

for each branch of the actor DNN. The learning rate and the

2We have numerically found that the hyperbolic tangent activations perform
better than the rectifier linear unit or sigmoid activations.
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Figure 3. Convergence of the distributed training process with N = 5

discount factor are fixed to αC = αA = 10−5 and γ = 0.5,

respectively. The training process lasts 105 time slots, and it

is followed by the testing of the trained DNNs with 104 time

slots. Both the training and testing performance are averaged

over 50 randomly initialized DNNs. Simulations are realized

by Python and Tensorflow.

Fig. 3 depicts the convergence behavior of the training

process of the proposed MA-A2C method with N = 5 cells

for various EH models. The linear EH model is evaluated with

η = 0.5. The fitting parameters of the non-linear model in (4)

are set to a1 = 1.5×103, a2 = 3.3 and a3 = 2.8×10−3 [20].

The following benchmarks are considered for the comparison.

• Projected gradient decent (PGD) [10]: A PGD based

alternating optimization algorithm is applied for deter-

mining locally optimum solutions p
(t)
i and τ

(t)
i at each t

with the algorithm precision 10−2.

• Baseline [18]: The multi-agent deep Q-network architec-

ture, which requires the centralized training process, is

modified for our WPCN scenario.

• Naive: The users exhaust all the harvested energy with a

simple equal time allocation strategy τi = T/2, ∀i.

We first observe that the average sum-rate performance of

the proposed MA-A2C gradually converges to that of the

locally optimal PGD algorithm. On the other hand, the baseline

method, which relies on the centralized DNN implemented

at each H-AP, fails to achieve the local optimal performance

within 105 time slots. This implies that the proposed MADRL

architecture is crucial for achieving the optimal performance of

the multi-cell WPCN. In addition, we can see that regardless

of the EH models, the proposed MA-A2C shows a similar

convergence behavior. In fact, the updates (11) and (12) can

be realized by observable state-action-reward tuples. Thus, the

proposed method can adapt to arbitrary EH models.

Fig. 4 compares the average sum-rate with various N
for different EH models. Regardless of the EH models, the

performance gap between the proposed MA-A2C and the

PGD gets smaller as N increases. It should be emphasized

that the PGD is a centralized process, while our proposed

scheme is based on a decentralized approach. Also, without the

knowledge of specific EH models, our proposed scheme only

exploits the measurable sensing information. The proposed

MA-A2C becomes more efficient with a large N by means of
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Figure 4. Average sum-rate performance with respect to N
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Figure 5. Average CPU running time with respect to N

distributed coordinations among the agents. This verifies the

effectiveness of the proposed local state and the distributed

learning strategy. In addition, we can also see that the MA-

A2C outperforms the baseline scheme over all N , verifying

the effectiveness of the distributed MADRL structure.

Fig. 5 exhibits the average CPU execution time of the

proposed MA-A2C and the conventional PGD methods. The

results are evaluated in Matlab R2019b on a PC equipped with

an Intel Core i7-9700K @3.60 GHz processor with 16 GB

RAM. Thanks to the distributed operations, H-APs optimized

with the proposed MA-A2C can determine resource allocation

variables in parallel, resulting in the same time complexity for

all N . On the other hand, the PGD algorithm needs centralized

optimization process coordinating, and thus its complexity

rapidly increases as N grows. This verifies the effectiveness

of the distributed optimization structure for a large N .

V. CONCLUSION

This paper has proposed a distributed optimization strategy

for multi-cell WPCNs. A key idea is to develop a MA-A2C

architecture so that each H-AP can determine its resource al-

location solution in a distributed manner. To this end, we have

carefully designed state variables at the H-APs by collecting

locally observable statistics. Numerical results have verified

the effectiveness of the proposed distributed optimization

method. An extension to an energy-efficient design of multi-

cell WPCN with the MA-A2C framework or a general multi-

user setup would be an important future work.
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