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NOMA Based Calibration for Large-Scale
Spaceborne Antenna Arrays

Yujie Lin, Shuai Wang, Xiangyuan Bu, Chengwen Xing, and Jianping An

Abstract—In the parallel calibration for transmitting phased
arrays, the calibration receiver must separate the signals belong-
ing to different antenna elements to avoid mutual interference.
Existing algorithms encode different antenna elements’ radiation
with orthogonal signature codes, but these algorithms are far from
desired for large-scale spaceborne antenna arrays. Considering
the strictly limited resources on satellites, to improve hardware
efficiency of large-scale spaceborne antenna arrays, in this work
inspired by the idea of non-orthogonal multiple access (NOMA)
we design a series of non-orthogonal signature codes for different
antenna elements by Cyclically Shifting an m-Sequence (CSmS)
with different offsets named as CSmS-NOMA signaling. This
design can strike an elegant balance between the performance
and complexity and is very suitable for large-scale spaceborne
antenna arrays. It is shown that no matter how many antenna
elements there are to be calibrated simultaneously, CSmS-NOMA
signaling needs only one calibrating waveform generator and one
matched filter. Hence it is much more efficient than the existing
fully orthogonal schemes. In order to evaluate the achievable
calibration accuracy, a unified theoretical framework is developed
based on which the relationship between calibration accuracy
and signal to noise ratio (SNR) has been clearly revealed.
Furthermore, a hardware experiment platform is also built to
assess the theoretical work. For all the considered scenarios, it
can be concluded that the theoretical, simulated and experimental
results coincide with each other perfectly.

Index Terms—Digital beamforming (DBF), large-scale antenna
array, non-orthogonal multiple access (NOMA), parallel calibra-
tion.

I. INTRODUCTION

Large-scale spaceborne phased arrays are one of the most
important enabling techniques for future high-capacity satellite
communications [1]–[3]. To deploy high gain beams over
targeting areas while maintaining sufficient attenuation else-
where [3], the amplitude & phase relationship among the array
elements must be under full control of the beamformer. For
that purpose, the inherent element imbalance, a.k.a. the array
channel mismatch, has to be calibrated in advance [4]. As a
main cause of channel mismatch, mechanical distortion such
as elemental antennas displacement or array panel warpage
may occur as a result of the tremendous launch impact. Other
uncertainties include the drastic temperature fluctuations in
the outer space, as well as the aging effect of electronic
components. All these factors suggest a pre-launch, on-ground
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calibration alone cannot solve the problem once and for all,
and hence necessitate in-orbit, regular calibrations [5], [6].

Practical in-orbit calibration schemes proposed so far have
various implementation architectures. In some cases, the cali-
brating signals are injected into transmitting elements which
bypass antennas and loop back to receiving elements, thus
the gain and phase drifting of the transceiver channels can be
calibrated [6], [7]. The inner calibration architecture is simple
and highly integrated, but it leaves the antennas uncalibrated.
By contrast, full-path calibration may be realized by placing
probing spaceborne antennas in the near field of the targeted
array, so as to establish an outer calibration loop [8], [9]. Thus
the size, weight and mounting position of the probe becomes
a main concern in the design of an outer calibration scheme.
With the assistance of the Telemetry & Telecontrol system,
it is technically feasible to move the probing antennas to the
ground [10], [11], leading to another architecture namely the
space-ground loop. In this paper we focus on the space-ground
loop case, as it possesses the most generality among the above
mentioned three. Naturally, the calibration method and the
analytical results to be presented are applicable to the inner
and outer architectures, too.

Another way of categorizing different calibration schemes is
from the viewpoint as for how many elements are calibrated at
meantime. Serial approaches deal with one element in a single
measurement iteration [8], [9], [12]–[14]. For the sequential
measurements to properly reveal element imbalance, they must
be finished in a period short enough so that the conditions
such as the thermal state of the array channels, the pointing
angles of the satellite platform and the atmospheric conditions
along the space-ground wireless link remain stationary [10].
However, this requirement is not always easy to fulfill, as serial
calibration schemes, despite their advantage of low complexity,
lack efficiency in nature.

Parallel calibration schemes, on the other hand, seem more
attractive as they are capable of measuring all the array ele-
ments at the meantime [15]. Compared with parallel receiving
array calibration, parallel transmitting array calibration is more
challenging. As the signals radiated by all elements occupy the
same frequency and arrive at the same time, the calibration
receiver must separate them from one another to avoid mutual
interference. An effective approach to this task resembles the
code division multiple access (CDMA) technology [16]–[18],
as it modulates the signals of different antenna elements with
orthogonal signatures, for example, the Walsh codes derived
from Hadamard matrices. The calibration receiver comprises
a group of matched filters (MF), each corresponding to a
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signature code and the associated antenna element. At the
output of the MFs, perfect element separation is guaranteed by
the orthogonality among the signature codes. This orthogonal
multiple access (OMA) based concept constitutes the com-
mon basis for several independent works about parallel array
calibration [6], [10], [11], [19], and a general mathematical
framework can be found in [20]. However, since each element
is assigned with a unique signature code, and the code length
must exceeds the number of elements to ensure orthogonality,
the complexity invested in generating these calibrating signals
at the satellite beamformer and processing them at the ground
station is formidable and it could a hardware killer for resource
limited satellites, especially for the future large-scale space-
borne arrays that comprise hundreds of antenna elements or
even more [21].

In this paper, we will tackle this problem by taking a new
look at the parallel transmitting array calibration task from
a non-orthogonal multiple access (NOMA) perspective. Re-
cently, NOMA and large-scale MIMO technologies for 5G have
attracted intensive interests in the wireless research community
[22], [23]. On the contrary to conventional medium access
protocols such as TDMA, FDMA and CDMA, which allocate
different subscribers with orthogonal signatures in the time,
frequency or code domain, NOMA deliberately breaks the
orthogonality among different subscribers and solve the re-
sultant multi-access interference (MAI) problem by successive
interference cancelation (SIC) or message passing algorithms
(MPAs). Despite the additional complexity at the receiver for
MAI control, many studies have proven NOMA may improve
spectral efficiency, boost system connectivity, and meanwhile
help cut down the transmission latency and signaling overhead.
Inspired by NOMA’s success for wireless network, we design
novel non-orthogonal signature codes and signal processing
techniques that are specially tailored to efficient parallel array
calibration. Unlike existing code domain NOMA strategies for
5G which aims at better utilization of resources or enhanced
flexibility, the motive of our approach is complexity reduction.
Our detailed contributions are listed as follows.

1) In contrast to OMA, our signature codes are generated by
cyclically shifting an m-sequence with different offsets. It
will be shown that as for this scheme termed as Cyclically
Shifted m-Sequence NOMA (CSmS-NOMA), no matter
how many elements are to be calibrated simultaneously,
it only needs one calibrating waveform generator at the
beamformer and one MF at the receiver, as long as the
length of the selected m-sequence is larger than V , i.e. the
amount of array elements. Hence, CSmS-NOMA based
parallel calibration is in general V times more efficient
than its OMA counterpart.

2) At the calibration receiver we use a zero-forcing (ZF)
equalizer to eliminate the MAI caused by inter-element
non-orthogonality. Numerical results shows the ZF-aided
CSmS-NOMA performs almost as well as OMA-based
strategies in terms of calibration accuracy under various
scenarios. Furthermore, in contrast to the MAI controlling
methods like SIC or MPA for existing code domain
NOMA which requires complexity of the order O

(
V 3
)

or even more, we have found a peculiar structure for ZF
equalizer in the CSmS-NOMA context that allows it to
be implemented at a complexity of O (V ).

3) Closed-form formula are derived to characterize the attain-
able root mean squared error (RMSE)s of the amplitude
and phase calibration results, and the analyses of OMA
and CSmS-NOMA based schemes are unified in the
same framework. To the best of our knowledge, it is
the first time that a clear theoretical relationship among
channel mismatch calibration accuracy, signal to noise
ratio (SNR), number of elements and length of signature
codes, is presented.

4) Besides Monte-Carlo simulations, we have built a hard-
ware prototype system for the performance comparison
between OMA and CSmS-NOMA. Extensive numerical
examples have shown the analytical, simulated and exper-
imental data coincide with each other perfectly. It means
that the proposed theoretical results are applicable in prac-
tical hardware platforms in which there are always many
nonideal and unpredicted factors limiting the applications
of theoretical results.

The remainder of this paper is organized as follows and
here the structure of this paper is given first. In Section II
the system model and fundamental concept of OMA-based
strategies are presented. In Section III the proposed CSmS-
NOMA algorithm is discussed in detail. In Section IV the
unified framework for calibration accuracy analysis is pro-
posed. Section V elaborates on the hardware platform. Section
VI compares the performance of OMA and CSmS-NOMA
based calibration algorithms through theoretical analysis, based
on both the computer simulations and hardware experiments.
Section VII concludes the paper.

Notation: Throughout the paper, without other specifications
the light-faced lowercase, bold-faced lowercase and bold-
faced uppercase letters are used to denote scalars, vectors
and matrices, respectively. The symbols IM ∈ RM×M and
OM×N ∈ RM×N stand for the M -by-M identity matrix
and the M ×N all-zero matrix. For vector a ∈ RM×1 or
a ∈ CM×1, a(m) denotes its m-th entry, and of course
1 ≤ m ≤ M . Finally, E(·), var(·), (·)T, (·)H, and det(·)
represent the operators for mean, variance, transpose, conjugate
transpose, and determinant, respectively.

II. SYSTEM MODEL

In the upper-left of Fig.1 it is the diagram of a downlink
digital beamforming (DBF) array that consists of V elemental
antennas. The V digital intermediate frequency (IF) signals
are generated by an field programmable gate array (FPGA),
and then they go through their respective chains of digital
analog converter (DAC), up converter (UC), power amplifier
(PA) and then sent from each antenna element. Finally, the
signal received at the ground-based calibration probe is of the
following mathematical formula

r(t) = Lp

V∑
v=1

āvavbv(t) cos [2πfc(t) + ϕ̄v + ϕv + φv] + n(t),

(1)



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2017 3

Fig. 1. Block diagram of the spaceborne transmitting phased array calibration system.

where Lp the path loss coming from propagation distance. The
complex-valued channel gain (CCG) of channel v is denoted
by ave

jϕv , which reflects the composite effect of DAC, UC,
PA and antenna element on channel v. In addition, āvejϕ̄v is
the complex-valued weight performed by the DBF on antenna
element v. The baseband calibrating waveform transmitted by
this element is denoted by bv(t). Finally, n(t) is the white
Gaussian noise at the calibration receiver, The parameters
{φv|v = 1, 2, · · · , V } in the channel gains are determined by
the structure of the array as well as the relative position of the
array center to the ground-based probe [10].

It is worth noting that calibration aims to determine the chan-
nel mismatch instead of {avejϕv |v = 1, 2, · · · , V } themselves.
In other words, our focus is their relative values. Taking a1e

jϕ1

as the reference without loss of generality, the (V − 1) pairs
of relative values to be determined are{

20 lg

(
av
a1

)
, (ϕv − ϕ1)

∣∣∣v = 2, 3, · · · , V
}
. (2)

In calibration procedure, the DBF may assign uniform weights
on all elements, i.e., āvejϕ̄v = 1. The propagation loss Lp

has no influence on the channel mismatch. The values of {φv|
v = 1, 2, · · · , V } are assumed to be known a priori because in
practice these parameters can be obtained by telemetry systems
[24]. Based these observations, we can let Lp = 1 and {φv =
0|v = 1, 2, · · · , V } in (1) for mathematical convenience, and
thus a much neater form of (1) can be achieved

r(t) =

V∑
v=1

avbv(t− τ) cos [2πfc(t− τ) + ϕv] + n(t). (3)

The calibrating waveforms {bv(t)|v = 1, 2, · · · , V } are
baseband direct sequence spread spectrum (DSSS) signals, i.e.,

bv(t) =

L−1∑
l=0

cv(l)h(t− lTc), t ∈ [0, Ts) (4)

where cv ∈ RL×1 is a length-L signature code which is
assigned uniquely to the vth element. Herein we assume the
signature codes are bipolar sequences, i.e. cv(l) = ±1√

L
for all

v and l, where the factor 1√
L

makes sure cT
vcv = 1. In (4),

h(t) is an energy-normalized rectangular pulse as follows

h(t) =

{
1
Tc
, if t ∈ [0, Tc),

0, otherwise.
(5)

As cv comprises L entries, the entire waveform bv(t) has a
duration of Ts = LTc. In practice, the calibrating waveform is
usually transmitted repeatedly, and thus bv(t) can be regarded
as a periodic signal with period Ts.

As shown in the lower-right of Fig. 1, the received signal
goes sequentially through a low-noise amplifier (LNA), a
quadrature (I/Q) demodulator and a dual-channel rectangular
waveform matched filter (RWMF), and finally the received sig-
nal is transferred into the following complex-valued baseband
signal formula

rB(t) =

V∑
v=1

wv

L−1∑
l=0

cv(l)H(t− lTc − τ) + nB(t), (6)

where {wv = ave
jϕv |v = 1, 2, · · · , V } and H(t) = h(t)∗h(t)

with H(t)|t=Tc = 1. The symbol nB(t) denotes the baseband
complex-valued noise. Assuming perfect synchronization that
the receiver samples rB(t) at the epochs of t = (k + 1) · Tc,
with k = 0, 1, 2, · · · , we obtain the following discrete signal

rB(k) =

V∑
v=1

wvcv(k) + nB(k), (7)

where cv(k) = cv (mod(k, L)) if k > L. Note that nB(k)
is a zero-mean, circularly-symmetric, complex-valued white
Gaussian sequence. Specifically, we have E[nB(k)n∗B(k′)] = 0
for any k 6= k′, and E

[
|nB(k)|2

]
= σ2. rB(k) is then fed to

V parallel channels of digital matched filter (DMF). As shown
in the red dash-line square of Fig.1, the unit impulse response
(UIR) of the vth DMF is

c̃v(k) =

{
cv(L− 1− k), if 0 ≤ k ≤ L− 1,

0, otherwise. (8)

When the signature codes in rB(k) become phase-aligned
with the UIRs of the DMFs, the outputs of all the V DMFs will
yield correlation peaks simultaneously. To gain more insight,
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consider a length-L segment of rB(k), i.e., rB = [rB(0),
rB(1), · · · , rB(L− 1)]T ∈ CL×1. Referring to (6) and (8), we
may find that correlation peaks will appear when the sample
rB(L − 1) enters the DMF bank, and the peak value yielded
by the DMF on the vth channel, say pv , is given by

pv = cT
vrB. (9)

Now stacking the peak values on all the V channels in a vector
p = [p1, p2, · · · , pV ]T, we have

p = CTrB, (10)

where C = [c1, c2, · · · , cV ] ∈ RL×V . Recalling the definition
of rB(k) and rB, rB can be further written as

rB = Cw + nB, (11)

where the vector w = [w1, w2, · · · , wV ]T ∈ CV×1, while the
noise term nB ∈ CL×1 is a length-L segment of nB(k) that
satisfies E{nBn

H
B} = σ2IL. Plugging (11) into (10) leads to

p = Rw + CTnB, (12)

where R = CTC.
Note the predominant idea behind calibration for antenna

arrays is to guarantee the orthogonality between different cali-
brating waveforms transmitted from different antenna elements.
In other words, in nature this problem is exactly a multiple ac-
cess problem. Up to date, mutually orthogonal signature codes
e.g., the Walsh sequences used as the baseband calibrating
waveform, which satisfy R = IV [6], [10], [11], [19], [20].
For strictly orthogonal signature codes, the scheme is named as
orthogonal multiple access (OMA) scheme. Correspondingly,
(12) can be rewritten as p = w + CTnB. As x = CTnB is
zero mean, p is an unbiased estimate of w. A new symbol w̃
is introduced to denote the estimate of w,

w̃ = p = w + x. (13)

Interestingly, here x is also a white noise vector with
E{xxH} = CTE{nBn

H
B}C = σ2IV . Given w̃ =

[w̃1, w̃2, · · · , w̃V ]T ∈ CV×1, the estimated mismatch of ele-
ment 2 ∼ V with respect to the reference element (element 1)
is derived to be{

20 lg

(∣∣∣∣ w̃v

w̃1

∣∣∣∣) , (arg(w̃v)− arg(w̃1))
∣∣∣2 ≤ v ≤ V} . (14)

III. PARALLEL CALIBRATION BASED ON NOMA
TECHNOLOGY

OMA-based designs are incompetent in the case with large-
scale antenna arrays. Finding strictly orthogonal code se-
quences for a large number of antenna elements are very
challenging and costly. Nevertheless, it is desirable to design
calibrating sequences owning the characteristics of OMA-based
designs. Inspired by the idea of NOMA for future 5G ground-
based cellular networks, in the following a novel NOMA based
scheme is proposed for the large-scale spaceborne antenna
array calibration.

In our work the famous m-sequences are used for NOMA
signaling design. Note that both cyclic shifting and ZF works

well with arbitrary codes, not only with m-sequences specifi-
cally. However, if we choose the seed code for cyclic shifting
at will, then the matrix-by-vector product will require much
higher complexity. By constraint, it is well known the periodic
auto-correlation of a normalized m-sequence takes only two
possible values, namely 1 for zero offset, or − 1

L for any other
offsets [18]. This fact can facilitate the following design.

A. Cyclically Shifted m-Sequence Signaling

The signature code assigned to the first element is denoted
as m = [m(0), m(1), · · · ,m(L − 1)]T. In addition, m is
a normalized m-sequence i.e., mTm = 1. Then the q-th
cyclically shifted version of m is defined as mq = [m(L −
q), · · · ,m(L−1),m(0), · · · ,m(L−q−1)]T, where 0 ≤ q ≤
L−1, and by default m0 = m. In CSmS-NOMA, the signature
code allocated to the v-th element is mqv , and for 1 ≤ v ≤ V
we assume q1 = 0 < q2 < q3 < · · · < qV ≤ L−1, without loss
of generality. Recalling (4), the baseband calibrating waveform
of element v can be reformulated as

bv(t) =

L−1∑
l=0

mqv (l)h(t− lTc), t ∈ [ 0, LTc). (15)

As investigated in Section II, {bv(t)|1 ≤ v ≤ V } are all
periodic waveforms with equal period Ts = LTc. Moreover,
mqv is the qv-entries cyclically shifted version of m. Based
on these two facts the following equality holds

bv(t) = b1(t− qvTc), −∞ < t < +∞. (16)

It implies bv(t) can be generated simply via delaying b1(t)
by qvTc. For DBF systems, these delays can be inserted
flexibly and precisely by FPGAs or DSPs. The delaying
strategy is much more convenient than the traditional OMA-
based schemes which produce all the V calibrating waveforms
independently.

At the CSmS-NOMA calibration receiver, in principle, we
may still use the structure as shown in Fig.1, which comprises
V parallel DMFs. However, the cyclic relationship among
{bv(t)|1 ≤ v ≤ V } of (16) provides us with a more efficient
alternative based on only one DMF. To see it, let us first
examine (7) in the CSmS-NOMA setup, that is

rB(k) =

V∑
v=1

wvm
qv (k)︸ ︷︷ ︸

rB(k)

+nB(k), (17)

where rB(k) is the desired signal. Substitute rB(k) in (17) into
a DMF toned to element 1, and thus its UIR can be written in
the following form

u(k) =

{
m(L− 1− k), if 0 ≤ k ≤ L− 1,

0, otherwise. (18)

When rB(L − 1) enters the DMF, the component in rB(k)
corresponding to element 1, namely w1m(k), is matched by
the UIR of (18), and this will contribute a correlation peak
to the output of the filter. Interestingly, q2 samples later, when
rB(L−1+q2) enters the DMF, the component corresponding to
element 2, i.e., w2m

q2(k), will be matched, because mq2(k)
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Fig. 2. The sequential relationships among the correlation speaks of CSmS-
NOMA.

is simply a q2-samples delayed version of m(k). Therefore,
the correlation peak of element 2 will appear q2 samples later
than that of element 1. It is obvious that the correlation peaks
pertaining to element 3, 4, · · · , V appear consecutively, and
their offsets relative to element 1’s peak are q3, q4, · · · , qV
samples, respectively, as illustrated in Fig. 2. By recording
the output of the DMF at appropriate epochs, the receiver
is capable to collect the V peak values {p1, p2, · · · , pV } for
further processing. In other words, CSmS-NOMA enables the
receiver to correlate the V calibrating components sequentially
with only one DMF, instead of simultaneously with V DMFs
as in the OMA-based schemes. In practice, once the first
correlation peak is found, then the following (V −1) ones could
be located precisely, since the relative intervals are predefined.

B. Inter-Element Interference Elimination

As discussed above, CSmS-NOMA achieves complexity
savings at the cost of breaking the orthogonality among the
signature codes. Now we investigate how the non-orthogonal
signature codes impact the calibration accuracy and explore
the possible countermeasure. To begin with, let us examine
the correlation peak of element 1, i.e. p1 = mTrB, where
rB = [rB(0), rB(1), · · · , rB(L− 1)]T ∈ CL×1 could be further
expressed as rB = rB + nB, with rB and nB ∈ CL×1 being
the sampled vectors of the composite calibrating signal and
the noise, respectively. By consulting (17), it is found that
rB = [m,mq2 , · · · ,mqV ]w, where w ∈ CV×1 has been
defined in (11). In the following we focus on the noise-free
part of p1 i.e.,

p1 = mTrB =
[
mTm,mTmq2 , · · · ,mTmqV

]
w, (19)

as the signature codes generated by CSmS-NOMA are no
longer orthogonal, there is no guarantee that mTmq2 =

mTmq3 = · · · = mTmqV = 0. Therefore, though mTm = 1,
we cannot expect p1 = w(1) = w1, since the other (V − 1)
entries of w may contribute unwanted inter-element interfer-
ence (IEI) to p1. When V is large, IEI deviates the calibration
results severely from their true values even in a noise-free case.

For large scale antenna arrays, the optimal transceiver to
combat IEI is called zero forcing (ZF). This technique orig-
inates from the research on multi-user detection (MUD) for
CDMA systems [16], [17]. To see how ZF is adapted to
the CSmS-NOMA setup, let us consider all the V correla-
tion peaks collectively by staking their noise-free parts into
p = [p1, p2, · · · , pV ]T. More particularly, we have

p =


mTm mTmq2 · · · mTmqV

mTm−q2 mTm · · · mTmqV −q2

...
...

. . .
...

mTm−qV mTmq2−qV · · · mTm


︸ ︷︷ ︸

M

w

= Mw. (20)

Note that in the above formula the other (V − 1) entries in p
than p1 can be derived following the lines of (19).

IEI elimination amounts to recovering w from p, and ZF
accomplish this in the most direct way, i.e. by multiplying p
with M−1. In practice, the receiver is only able to obtain p,
which is a noisy version of p, therefore the ZF-based estimate
of w goes like

w̃ = M−1p, (21)

where the inverse matrix M−1 could be precomputed, because
M ∈ RV×V is solely dependent on the CSmS-NOMA
parameters, such as the m-sequence m and the V − 1 offsets
{q2, q3, · · · , qV }. Once w̃ is found, amplitude and phase
mismatch among different elements could be obtained using
(14). It is well known the periodic auto-correlation of a
normalized m-sequence takes only two possible values, i.e., 1
for zero offset, and − 1

L for any other offsets [18]. This property
guarantees a unique structure of M in the following form

M =
1

L


L −1 · · · −1
−1 L · · · −1

...
...

. . .
...

−1 −1 · · · L


V×V

, (22)

regardless of the specific values of V and {q2, · · · , qV }.
After tedious but straightforward mathematical derivations, the

GRMSE
v,1 ≈ 10

ln(10)

√
σ̂2

1µ̂
2
v

µ̂4
1

+
σ̂2
v

µ̂2
1

− 2ρ̂v,1σ̂1σ̂vµ̂v

µ̂3
1

+

(
µ̂v

µ̂1
+
σ̂2

1µ̂v

µ̂3
1

− ρ̂v,1σ̂1σ̂v
µ̂2

1

− 1

)2

, (27)

PRMSE
v,1 ≈ 180

π

√
σ2
v

2a2
v

+
σ2

1

2a2
1

− 2ρv,1σ1σv cos(ϕ1 − ϕv)

2ava1 + ρv,1σ1σv cos(ϕ1 − ϕv)
. (28)
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inverse of M is derived to be

M−1 =


b a · · · a
a b · · · a
...

...
. . .

...
a a · · · b


V×V

, (23)

where a = L
(L+1)(L−V +1) , b = L(L−V +2)

(L+1)(L−V +1) . Based on (23),

the first entry of w̃ can be computed as w̃1 = a
(∑V

v′=1 pv′

)
−

p1(b − a). Although the sum herein requires (2V − 2) real-
valued additions (RAs), yet it can be reused in computing the
other (V −1) entries. Besides this, the computation of w̃1 still
needs 4 more real-valued multiplications (RMs) and 2 more
RAs. Hence invoking (21) to evaluate w̃ calls for 4V RMs
and (4V − 2) RAs in total, that is a lot more efficient than by
ZF without using m-sequence.

As an ending note about ZF, we would like to point out
that ZF eliminates the IEI at the price of noise amplification,
as found in [17]. This observation, interpreted in our context,
suggests ZF-aided CSmS-NOMA is in general more vulnerable
to noise than OMA. The noise enlarging effect (NEE) of
ZF will be further examined in our numerical study in the
following section. Also, we will show that NEE turns out
negligible in most cases, provided the code length has been
properly selected according to the number of elements.

IV. CALIBRATION PERFORMANCE ANALYSIS

In the following analysis, the root mean squared error
(RMSE) (in decibel) of the estimated gain mismatch between
element v ≥ 2 and element 1 is used as calibration accuracy
metrics

GRMSE
v,1 =

√√√√E

{[
20 log10

(∣∣∣∣ w̃v

w̃1

∣∣∣∣)− 20 log10

(
av
a1

)]2
}
,

(24)
and the RMSE (in degree) of the phase mismatch estimate

PRMSE
v,1 =

180

π

√
E
{

[(arg(w̃v)− arg(w̃1))− (ϕv − ϕ1)]
2
}
.

(25)
Given the specific system parameters, such as the SNR, the

number of elements and the signature codes used, etc., the
performance metrics GRMSE

v,1 and PRMSE
v,1 could be assessed by

simulations [15], [19]. Unfortunately, this is far from desired
as these results have close relationship with many involved pa-
rameters. To the best of our knowledge, a theoretical accuracy
analysis is still largely open in the literature. In the following
discourse, we will fill this gap by developing a general frame-
work for computing GRMSE

v,1 and PRMSE
v,1 approximately, which

applies to both OMA-based schemes and CSmS-NOMA-ZF.

A. Theoretical Basis

At the key part of our analytical framework is based on the
following proposition.

Proposition 1. The estimated CCGs of element 1 and ele-
ment v (2 ≤ v ≤ V ) may be written as w̃1 = w1 + x1 and
w̃v = wv +xv , where w1 = a1e

jϕ1 and wv = ave
jϕv stand for

the true values of CCGs. The noise terms x1 = xI,1 + j · xQ,1

and xv = xI,v + j · xQ,v are complex-valued Gaussian RVs.
Specifically, xI,1 and xQ,1 ∈ R1×1 are independent identically-
distributed (i.i.d.) zero-mean Gaussian RVs, with var (xI,1) =
var (xQ,1) = σ2

1/2. The same assumption also applies to
xI,v and xQ,v , except var (xI,v) = var (xQ,v) = σ2

v/2. The
correlation coefficient between xv and x1 is defined as

ρv,1 =
E (xvx

∗
1)

σvσ1
, (26)

and ρv,1 ∈ R1×1. Based on these characteristics, GRMSE
v,1 and

PRMSE
v,1 could be approximated by the two formulas presented at

the bottom of the page, given a2
1/σ

2
1 and a2

v/σ
2
v are sufficiently

large. In (27) the involved variables are equal to

µ̂1 = σ2
1/a

2
1 + 1, σ̂2

1 = σ4
1/a

4
1 + 2σ2

1/a
2
1,

µ̂v = σ2
v/a

2
v + 1, σ̂2

v = σ4
v/a

4
v + 2σ2

v/a
2
v, (29)

and

ρ̂v,1 = [1 + σ2
1/a

2
1 + σ2

v/a
2
v+

2ρv,1σ1σv/a1/av cos(ϕ1 − ϕv)+

σ2
1σ

2
v(0.5 + 0.625ρ2

v,1)/a2
1/a

2
v − µ̂1µ̂v]/σ̂1/σ̂v. (30)

Proof: See the Appendix.

B. RMSE of OMA-Based Calibration

Using (27) and (28) to analyze the performance of OMA
assisted calibration is straightforward. The auto-correlation ma-
trix of the noise term in (13) takes the form E

{
xxH

}
= σ2IV ,

which implies in this case σ2
1 = σ2

v = σ2 and ρv,1 = 0, for
all 2 ≤ v ≤ V . Before invoking (27) and (28) we also need
the SNR at the DMFs’ output, i.e. {a2

v/σ
2
v | 1 ≤ v ≤ V }. By

the definition of MF, the instantaneous SNR of the correlation
peak yielded by the v-th DMF amounts to

a2
v

σ2
=
Ev

N0
, (31)

where N0 is the single-sided noise PSD at the ground station,
and Ev is the energy of the calibrating waveform of element v,
seen by the ground station within the period of [0, Ts). To be
more specific, if the calibrating signal transmitted by element
v bears a power of Sv (Watts) as it reaches the ground station,
then Ev = SvTs. To initialize the RMSE computation, we may
choose an arbitrary positive value as σ2, and then determine
a2
v according to a preset Ev/N0 and (31). From a link budget

perspective, Ev/N0 is dependent on several key parameters in
the way as follows

Ev

N0
=

EIRPv

Lp

(
Gr

Te

)
Ts

kB
, (32)

where EIRPv denotes the Equivalent Isotropic Radiating Power
of element v, Lp stands for the propagation loss, kB = −228
dBw/Hz/K represents the Boltzman constant. As the quotient
of the receiving antenna’s gain Gr divided by the equivalent
noise temperature Te, (Gr/Te) is typically known as the quality
factor of the ground station.
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C. RMSE of CSmS-NOMA Based Calibration

It is worth highlighting that in CSmS-NOMA the noise
components in the estimated CCGs are no longer independent.
Determining the correlation coefficient defined by (26) will
play a critical role in applying (27) and (28) to CSmS-
NOMA-based calibration. Let us reexamine (21), and denote
the noise part in w̃ and p as x and xp, respectively. The auto-
correlation matrix of x is given by

Rx = E{xxH} = M−1RxpM
−1. (33)

where Rxp = E{xpx
H
p} ∈ CV×V is conjugate symmetric.

Let Rxp(y, z) be the (y, z)-th entry of Rxp , by recalling the
derivation of (9) and (10), we have

Rxp(y, z) =

mTE




nB(y − 1)
nB(y)

...
nB(y + L− 2)




nB(z − 1)
nB(z)

...
nB(z + L− 2)


T
m.

(34)

To further simplify (34), we assume y ≤ z (The other half
entries of the matrix {Rxp(y, z)| y > z} could be obtained
via the symmetry of Rxp ). Given 1 ≤ y ≤ z ≤ V , we have

Rxp(y, z) = mT
[

A B
C AT

]
m, (35)

where A = O(z−y)×(L−z+y), B = O(z−y)×(z−y) and C =
σ2I(L−z+y). In finding (35) we have exploited the fact that
{nB(k)|k = 0, 1, · · · } are i.i.d. zero mean Gaussian RVs with
variance of σ2. Once Rxp is achieved, Rx can be computed
immediately based on (33). The diagonal entries of Rx are{
σ2
v |1 ≤ v ≤ V

}
, and the second to the v-th entries in the first

column are {E (nvn
∗
1) |1 ≤ v ≤ V }, thus all the ingredients

we need to compute (26) are ready.

V. HARDWARE PLATFORM

In order to verify the effectiveness of CSmS-NOMA and
confirm our theoretical conclusions derived above, we have
built a hardware platform for real world test. The diagram and
the photograph of the hardware platform are given in Fig.3 and
Fig.4, respectively. The Keysight (a.k.a. Agilent) vector signal
generator E8267D accepts a composite I/Q baseband discrete
calibrating waveform from the PC, via the LAN eXtension
for Instrument (LXI) protocol. Analog I/Q calibrating wave-
forms are restored inside E8267D by a dual-channel DAC,
then passed through a quadrature modulator to produce the
intermediate frequency (IF) calibrating signal. The IF is set to
10.7MHz to make best use of the components at hand. Without
loss of generality, we set the chip rate of the DSSS calibrating
signal at a relatively low level of 100kHz, to fit in for the testing
calibration receiver with limited computational capacity.

The composite I/Q waveform downloaded to E8267D is
generated by a Matlab program running on a PC. The program
first produces the DSSS calibrating waveform corresponding to
each element with normalized amplitude, and then it performs
a weighted sum according to a group of preset CCG values. In

Fig. 3. Topology of the hardware platform.

Fig. 4. Photograph of the hardware platform.

principle, this method is capable of accommodating arbitrary
amount of elements with a single 8267D. It also guarantees an
accurate amplitude & phase relationship (as specified by the
CCGs) at the input of the calibration receiver, as the common
path from E8267D to the calibration receiver impacts all the
individual calibrating signals in a non-discriminatory fashion.

To examine the influence of noise, the IF signal is combined
with the output of a wideband (0Hz-300MHz) noise generator.
The ADC samples at a rate of 40MHz, hence to avoid aliasing
we insert before the ADC input a band-pass filter (BPF) with
center frequency of 10.7MHz and passband width of 2MHz.
Another alternative direction of the BPF output to a spectrum
analyzer (denoted by dash line in Fig.3) is for measuring the
power of the calibrating signal and the in-band noise, so we
can determine the SNR in the experiment.

At the core part of the digital calibration receiver is an
FPGA subsystem, on which we have developed two programs
in Verilog Hardware Description Language (HDL). One is
for OMA-based parallel DMFs, and the other is for CSmS-
NOMA-based single DMF. Both of them may yield element-
specific, complex-valued correlation peaks. With the aid of
ChipScope (a Xilinx online diagnosis software), the peak
values are uploaded to the PC via a Joint Test Action Group
(JTAG) cable. Further processing is finished by the software
Matlab. For OMA-based calibration, the estimates of relative
amplitude & phase among different elements may be extracted
directly from the peak values. While for CSmS-NOMA, an
extra ZF equalizer is required. With the calibration results and
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their preset true values at hand, we may compute empirical
RMSEs following (24) and (25), by replacing the mathematical
expectation therein with arithmetic average. To obtain each
empirical result reported in the next section, 104 independent
experiments are carried out.

VI. CALIBRATION ACCURACY RESULTS

In this section, we investigate the achievable calibration
accuracy by theoretical analysis, computer simulations and
hardware experiment, respectively. The OMA-based strategies
(using Walsh codes) and the proposed CSmS-NOMA approach
are considered in a comparative way. Without loss of generality,
all the elements are assumed to transmit at the same power,
and their uncalibrated phases are assumed to be randomly
distributed over the range of [0, 2π). The RMSEs of relative
amplitude and phase estimates are chosen as the calibration
accuracy metrics. In order to reveal the overall performance,
in each simulation figures the RMSE has been averaged over
all elements.

In Figs. 5 and 6 the calibration accuracy against the MF
output SNR1 Ev/N0, is shown with the number of ele-
ments being 50 while the length of signature codes varying
among {64, 128, 256} for OMA, and {63, 127, 255} for CSmS-
NOMA. It is observed the accuracy of both amplitude and
phase calibration improves monotonically as SNR increases.
For all combinations of parameters, the analytical, the simu-
lated and the experimental data manifest perfect accordance.
Thanks to the orthogonality of signature codes, the precision of
the OMA-based scheme is not affected by the code length, as
long as the code length is larger than the number of elements,
i.e. V ≤ L. For the presented CSmS-NOMA approach, it is
observed if the number of elements is close to the code length
(e.g. 50 v.s. 63), the calibration precision suffers because of the
Noise Enlarging Effect (NEE) of ZF, as mentioned in Section
IV. The Ev/N0 loss induced by NEE is about 1.5dB in the low
SNR, and it becomes less evident within the high-SNR range.
Moreover, no perceivable loss is observed when the length of
m-sequence increases to 127 or 255.

Figs. 7 and 8 are devoted to a further examination of the
proposed CSmS-NOMA, which highlights the NEE-caused
accuracy loss as the number of elements (V ) approaches the
code length (L). Again, it is witnessed the analytical, the
simulated and the experimental results collaborate with one
and another perfectly. In Figs.7 and 8 we have considered
m-sequences of three different lengths, namely 127, 255 and
511. Moreover, the performance of the OMA-based strategy
(512-chip Walsh code) is provided as a benchmark. Note that
we omit the curves for 128 and 256-chip Walsh code, as the
performance of OMA-based strategy is not dependent on the

1As suggested by (32), when all the elements radiate at the same power,
they will exhibit the same Ev/N0 at the calibration receiver.

Fig. 5. RMSE of the gain mismatch estimates v.s. SNR, with fixed number
of elements (V = 50) and various signature code length L.

Fig. 6. RMSE of the phase mismatch estimates v.s. SNR, with fixed number
of elements (V = 50) and various signature code length L.

GRMSE
v,1 =

√√√√{E

[
10 log10

(
|w̃v|/av
|w̃1|/a1

)2
]}2

+ var

[
10 log10

(
|w̃v|/av
|w̃1|/a1

)2
]
. (36)
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Fig. 7. RMSE of the gain mismatch estimates v.s. the number of elemental
antenna (V ) for various signature code length (L), with the SNR fixed at the
level of Ev

N0
= 30dB.

Fig. 8. RMSE of the phase mismatch estimates v.s. the number of elemental
antenna (V ) for various signature code length (L), with the SNR fixed at the
level of Ev

N0
= 30dB.

number of the elements, only if when V ≤ L. It is found as
V approaches L, and especially in the extreme case where
V = L, the accuracy of CSmS-NOMA may degrade to a
considerable extend. It is also found the accuracy degradation
of CSmS-NOMA occurs only when V is close to L, e.g. when
V = 110 for L = 127, when V = 240 for L = 255, or
when V = 500 for L = 511. In other words, if the length of
the m-sequence is chosen as properly larger than the number
of elements, then CSmS-NOMA may perform as well as the
OMA-based calibration.

VII. CONCLUSIONS

NOMA-based parallel calibrations for large-scale space-
borne antenna arrays are investigated in this paper. Following
the idea of NOMA, NOMA-based calibrating baseband se-
quences also named as CSmS-NOMA signaling are proposed,
which is very suitable for large-scale spaceborne antenna array
calibrations. The proposed scheme is easy to implement and
enjoys satisfied performance. It can strike tradeoffs between
calibration complexity and performance. Specifically, at cost of
negligible performance loss resulting from non-orthogonality,
the efficiency of calibrations can be significantly improved.
Furthermore, the calibration performance of the large-scale
antenna array calibrations has be analyzed theoretically. The
proposed algorithm was also run on a hardware platform. Hard-
ware platforms always involve some unpredict and uncontrol-
lable factors introduced by hardware imperfections, which may
prohibit theoretical algorithms’ implementations. We reveals
that our proposed algorithm is robust enough and can achieve
the desired performance on the hardware platform.

APPENDIX
DERIVATION OF GRMSE

v,1 AND P RMSE
v,1

In the appendix, the derivations for (27) and (28) are
discussed in detail. At the beginning, (24) is rewritten into an
alternative form presented at the bottom of this page as (36). As
mentioned above, a prerequisite for (27) and (28) to hold is the
calibration receiver has sufficiently high SNR. In this case, it is
reasonable to expect the estimated gain mismatch approaches

its true value, i.e.,
(
|w̃v|/av

|w̃1|/a1

)2

→ 1. Since lim
x→1

(lnx) = x− 1,
we have

E

[
10 log10

(
|w̃v|/av
|w̃1|/a1

)2
]
≈ 10

ln(10)

{
E

[(
|w̃v|/av
|w̃1|/a1

)2
]
− 1

}
,

(37)
and similarly

var

[
10 log10

(
|w̃v|/av
|w̃1|/a1

)2
]
≈
[

10

ln(10)

]2

·var

[(
|w̃v|/av
|w̃1|/a1

)2
]
.

(38)
To further simplify the mathematical formulation the statis-

tical characteristics of
(
|w̃v|/av

|w̃1|/a1

)2

will be further exploited. As
the squared sum of two independent non-zero mean normally
distributed Random Variables (RVs), 2|w̃v|2/σ2

v obeys non-
central Chi-square distribution, with its degree of freedom
and its non-central parameter (NCP) being 2 and 2a2

v/σ
2
v ,

respectively. Given the “high SNR” assumption, we have
2a2

v/σ
2
v � 1, hence the non-central Chi-square distribu-

tion can be approximated by Gaussian distribution [26], i.e.
(|w̃v|/av)2 ∼ N

(
µ̂v, σ̂

2
v

)
, and (|w̃1|/a1)2 ∼ N

(
µ̂1, σ̂

2
1

)
,

where µ̂v , µ̂1, σ̂v and σ̂1 are defined in (29).
The ratio of two normally distributed RVs (not necessarily

independent), including its probability density function (PDF)
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and numerical characteristics, have been thoroughly studied in
[27] and [28]. Quoting the conclusions therein, we arrive at

E

[(
|w̃v|/av
|w̃1|/a1

)2
]
≈ µ̂v

µ̂1
+
σ̂2

1µ̂v

µ̂3
1

− ρ̂v,1σ̂1σ̂v
µ̂2

1

, (39a)

var

[(
|w̃v|/av
|w̃1|/a1

)2
]
≈ σ̂2

1µ̂
2
v

µ̂4
1

+
σ̂2
v

µ̂2
1

− 2ρ̂v,1σ̂1σ̂vµ̂v

µ̂3
1

, (39b)

where ρ̂v,1 is the correlation coefficient between |w̃v|2/a2
v

and |w̃1|2/a2
1. Note (39) holds on the conditions µ̂1 � σ̂1

and µ̂v � σ̂v [27], [28]. Recalling (29), one may find these
conditions are met as 2a2

v/σ
2
v � 1. According to its definition,

ρ̂v,1 in (39) may be computed by the following formula

ρ̂v,1 =
E[(|w̃v|/av)2(|w̃1|/a1)2]− µ̂1µ̂v

σ̂vσ̂1
.

After a tedious but straightforward derivation, the above
formula may eventually be simplified into (30). In that process
we need to invoke a theorem on the variance of the product of
two correlated Gaussian RVs [29], which reads as: “For two
RVs that obey N

(
µ1, σ

2
1

)
and N

(
µ2, σ

2
2

)
respectively, their

product Y has the variance

V (Y ) = µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 + 2ρµ1µ2σ1σ2 + ρ2σ2

1σ
2
2 ,

where ρ is the correlation coefficient between the two Gaussian
distributed RVs.”Substituting (39) into (37)-(38), and then (37)-
(38) into (36), we finally reach (27), the approximate formula
of GRMSE

v,1 . Now we proceed with the approximate RMSE of
the phase mismatch estimate, namely (28). Again, let us rewrite
the definition of PRMSE

v,1 (25) into an equivalent form, which is
shown at the bottom of this page as (40).

To further simplify (40), we need to evaluate the following
formula

var [(arg(w̃v)− arg(w̃1))− (ϕv − ϕ1)]

= var(arg(w̃v)− ϕv) + var(arg(w̃1)− ϕ1)

− 2cov [(arg(w̃v)− ϕv) , (arg(w̃1)− ϕ1)] . (41)

Recall the definition of w̃v in the Proposition, we have

arg(w̃v)− ϕv = arctan

(
nQ,v cosϕv − nI,v sinϕv

av + nI,v cosϕv + nQ,v sinϕv

)
≈ nQ,v cosϕv − nI,v sinϕv

av + nI,v cosϕv + nQ,v sinϕv
. (42)

The approximation in the above formula will be tight when
the SNR is large enough. In the high SNR case, arg(w̃v) is

close to its true value ϕv , and arctan
x→0

(x) ≈ x. For the term

of nQ,v cosϕv−nI,v sinϕv

av+nI,v cosϕv+nQ,v sinϕv
both its numerator and denominator

are Gaussian distributed, i.e.,

(nQ,v cosϕv − nI,v sinϕv) ∼ N
(
0, σ̂2

v/2
)
, (43a)

(av + nI,v cosϕv + nQ,v sinϕv) ∼ N
(
av, σ̂

2
v/2
)
. (43b)

It is obvious that the correlation coefficient between these
two Gaussian RVs is zero, and thus they are statistically
independent. Furthermore, the statistical characteristics of the
ratio between a Gaussian RV divided by another independent
Gaussian RV have been given in [30]. Therefore, we have the
following equalities

E [arg(w̃v)− ϕv] = 0, (44a)

var [arg(w̃v)− ϕv] ≈ σ2
v/2a

2
v. (44b)

Following a similar logic, referring to (arg(w̃1) − ϕ1) the
following equalities also hold

E [arg(w̃1)− ϕ1] = 0, (45a)

var [arg(w̃1)− ϕ1] ≈ σ2
1/2a

2
1. (45b)

Besides (44b) and (45b), the remaining term in (41) we still
need to compute is the covariance between arg(w̃v)−ϕv and
arg(w̃1)−ϕ1. According to its definition, the covariance in (41)
may be calculated by the first equation as (46) at the bottom
of this page. Plugging (42) into the first equation of (46), the
final equation can be achieved, which takes the form as the
expectation of two RVs’ ratio. In [31], approximate formula
for expectation of this kind has been studied. Invoking the
conclusions therein [30. Section 5.5.4] for (46) leads to

cov [(arg(w̃v)− ϕv) , (arg(w̃1)− ϕ1)]

≈ ρv,1σ1σv cos(ϕ1 − ϕv)

2ava1 + ρv,1σ1σv cos(ϕ1 − ϕv)
. (47)

Substituting (44b), (45b) and (47) into (41), and then putting
(41) into (40), finally (28) can be achieved. Thereby the proof
for the approximate formula of PRMSE

v,1 has been finished.
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