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Abstract—Traditional approaches in the analysis of downlink Gaussian broadcast channel (BC). Over the past decade, the
systems decouple the precoding and the channel estimationcapacity of a multi-antenna Gaussian BC has been determined
problems. However, in cellular systems with mobile users,hese and shown to be achieved by using dirty paper coding (DPC)

two problems are in fact tightly coupled. In this paper, this . , -
coupling is explicitly studied by accounting for channel training in [4], [S], [6], [7], [8]. Subsequently, the order growth the

overhead and estimation error while determining the overal SUm capacity gain with the number of antennas and the signal
system throughput. The paper studies the problem of utilizig to noise ratio (SNR) have been characterized In [9]} [10]. An
imperfect channel estimates for efficient linear precodingand overview of the capacity results in multi-user multiplgpirt

user selection. It presents precoding methods that take iot multiple-output (MIMO) channels can be found [ 11].

account the degree of channel estimation error. Informatio- Alth h dirt dina is k tob it hi
theoretic lower and upper bounds are derived to evaluate the ough dirty paper coding IS known 1o be capacity achiev-

performance of these precoding methods. In typical scenass, NG With perfect CSI, there are several issues when attexgpti

these bounds are close. to apply it directly to a cellular system. First, practicgsems
Index Terms—Cellular downlink, channel estimation, linear Nave to cope with rapidly changing channels so that channel
precoding, wireless communication estimates are valid only for a very short time, making the
application of DPC a fraught problem. Furthermore, we are
I. INTRODUCTION mainly concerned with systems that have a large number

Ef base-station antennas. In such systems, the use of DPC

Here is a rich and varied literature in the domain of mu o~

. . . .might turn out to be prohibitively complex. In contrast, rgan

tiple antenna cellular systems. Ever since the introdactio oo )
antenna systems with linear precoding offers a much more

of multi-antenna systems, almost every combination ofrante : . . . o
. . . ractical route to provide high rate wireless communicedio

nas with physical settings has been modeled and analyzgd,.” . o . .

stimation error is an inevitable issue for the linear pdszb

The bulk of this literature, however, has focused on develo
ing strategies for frequency division duplex (FDD) systemsyStem (as well as for DPC) and so the paper concentrates
this question. Detailed investigation of DPC perfornenc

and not without good reason. FDD systems have dominatae ! . . ;
2T ) I L with channel estimates obtained from TDD pilots remains a
deployment, while interest in deploying time division dexpl :
. uestion for further research.
(TDD) systems has grown only in recent years. Although TD . . . . .
s . Given that we use linear precoding, the goal of this paper is
and FDD seem like interchangeable architectural schenres fo : . .
. to analyze a multi-antenna downlink TDD system with channel
cellular systems, there are some fundamental differeres t . . S .
training and estimation error factored into the net thrqugh

need to be isolated and studied in detail. The goal of thlzepape pression. One of the primary differences between TDD and

is to bring the understanding of TDD systems closer to tha D systems is the means through which channel training

of FDD systems today. . ST
It is now well established that multiple antennas at thiegg]nr]%snul::]lganeSSt:)Tat;?:inls é%rlldizc;ggdblgclf ?rgmsytit:rﬂzéé
transmitter and receiver in a point-to-point communiaatio ) 9 9 . .
to the basestation. In TDD systenthannel reciprocity can

system can greatly |mpr0_ve the OV?ra” throughput Of. tl}?e used to train on reverse link and obtain an estimate of the
system [[2], [3]. In a multi-user setting, this gain requires

channel state information (CSI) and precoding stratedias tchannel at the ba_se-statlon, see f(_)r examiple [12), [13@]‘[
use this CSI at the basestation. Given this CSlI, the chamnrel ChannEI _remprocﬂy has been validated through eXpe“ﬂ-‘e’.“
pacity problem can be formulated in terms of a multi-anten &euprocny thus eliminates the need for a feedback meshani

a ) o .
rZalong with forward training) to be developed. In literayr
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rates for narrow-band operation is approximatgly 20 us. estimation process.
This leads to short coherence time in symbols26f— 80
symbols, which clearly motivate our joint study of channeA. Prior Work
training, channel estimation and precoding.

Our analytical framework considers a downlink system with

a large number of base-station antennas (along the lingmof P . . X
causally and perfectly at the transmitter. Given that tietimg

framework studied in[[21]). In this framework, our focus i S . .
1) 'lePC to practice is by no means a trivial task, various al-

As is already well known, DPC[]23] can be used as a
recoding strategy when the interference signal is known no

not on systems specified by current standards such as WiMax ~ . . . )
and LTE that use only — 4 antennas. Instead, our focusernatlve precoding methods with low complexity have been

is on possible future generations of wireless systems wh d,le[l‘dE]atsllsﬂlir]r,]I[%]psgr?gn(s:tiiezrItﬂgvs?d;?gtgge(;gg[54],

an antenna array with a hundred or more antennas at it b hieved with | tational .
base-stations is an attractive approach. Preliminanjlddias capacily can be achieved with fower computationa com[yex!
cd)mpared to DPC. There are also opportunistic scheduling

studies show that for20 antennas we need a space occupi€ . . .
by a cylinder of one meter diameter and one meter high: haﬁghemesﬂZB] with lower complexity compared to DPC which

wavelength circumferential spacing df) antennas in each canthachleve sum _:ate tt::atth asymptt)otlcaflly scale1s_h|dery_|c?II
of three rings, each ring spaced vertically two Wavelengtﬁtg te sum ca;?]a(;l yI Wl 9 %3”1 I'?r ° tuhsers_. .f.e e)éls N9
apart. With such systems, TDD offers a significant advanta rature on schedu IhdII ] I's ows Ihe signiicante o
over FDD operation. In FDD systems, the forward trainin pportunistic scheduling towards maximizing the sum rate i

overhead needed increases with the number of base-sta Adot\)/vpllilnk. tioned bef in EDD ¢ limited
antennas. This overhead also increases the (limited) é&db SISsetrtliigyhr;]serl])elzoerrlwestucﬁecg?r’w Igreat dezﬁ S:?;é?"y'[]n;ﬁg'
needed to gain CSI at the basestation which is often negleclé".

when FDD systems are analyzed. In contrast to this, in t ited-feedback frameworK [15]( 11 6]L 1171l L8 L3I,

paper, we account for all channel training overhead incurreé™= !n .th's framework, perfect CS.I IS ass“”?ed at the users
in the throughput analysis we present. and limited-feedback to base-station is studied.[In [1fi§ t

The main contributions of this paper are: authors show thgt, at high SNR, the fe_edbac_k rate requined_pe
’ user must grow linearly with the SNR (in dB) in order to obtain
o We determine a method of linear precoding and usgte full MIMO BC multiplexing gain. The main result in [18]
selection that maximize net throughput for realistic TDOs that CSI feedback can be significantly reduced by explpiti
systems. That is, channel estimation and the consequenilti-user diversity. In[[19], the authors design a jointICS
errors are taken into account. guantization, beamforming and scheduling algorithm taiatt
« Our results allow us to optimize the training period irpptimal throughput scaling. However, all these papersrassu
such TDD systems. In other words, we determine thgerfect channel knowledge at the users and do not study TDD
optimal trade-off between estimating the channel argystems. The effect of training in multi-user MIMO systems
using the channel. using TDD operation is studied in [21]. The authors limit the
« We provide achievable schemes and upper bounds stady to homogeneous users and zero-forcing precoding. Our

the system throughput for the suggested precoding apdper is motivated from and builds on this work on TDD
user selection schemes. We demonstrate that in typiegktems.

scenarios these bounds are close and therefore allow
one to accurately estimate the sum rate of the sug- :
. Notation
gested schemes. The bounds also show that the developed )
schemes give significant improvement over other schemeg/Vé use bold face to denote vectors and matrices. All vectors

. . . . . T *
in the literature (in particular the one given [A]21]). are column vectors. We uge)” to denote the transposg)
to denote the conjugate ar{d)’ to denote the Hermitian of

It is important to emphasize that we do not limit oUeciors and matriceslt(A) denotes the trace of matria
study to only those systems with a large number of basgsg o -1 genotes the inverse of matrik. diag{a} denotes a
station antennas. We focus on such systems in the first Paqonal matrix with diagonal entries equal to the compésien
of the paper and develop simple precoder optimization that , >~ denotes element-wise greater than or equalB{g.

takes advantage of large number of base-station antenngsy v,.r1 stand for expectation and variance operations,
However, the design is applicable to systems with |'m'te|%spectively.1{,} denotes the indicator function.
number of base-station antennas. In the second part of the

paper, we study a modified version of the precoder presented o

in [22] that do not assume a large number of base-statibn Organization

antennas even for the design. In[22], a precoding matrix The rest of this paper is organized as follows. In Section
for downlink systems is obtained using an iterative aldonit [I] we describe the system model and the assumptions. We
which attempts to determine one of the local maxima of trensider two transmission methods. First, we considemsira
sum rate maximization problem when CSI is available at theission method with channel training on reverse link only in
base-station and the users. Since, in our setting, the baSeetion[Ill. Next, we consider a transmission method which
station obtains CSI through training and thus may not tsends forward pilots in addition to reverse pilots in Settio
perfect, we modify this algorithm to account for error in thEV] In Section[M, we provide an upper bound on the sum
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rate for communication schemes using linear precoding
the base-station. We compare the performance of the vari
schemes considered through numerical results in SeEtibn Y

and provide our concluding remarks in Section]VII.

Il. SYSTEM MODEL

gho

Let the forward and reverse SNRs associated wkitth
user bepk and p;,, respectively. These forward and reverse
SNRs account for the average power at the base-station and
the users, and the propagation factors (including pathdasds
shadowing). These propagation factors change at a mudrlarg
time-scale compared to fading. Hence, in the analysisgthes
parameters are treated as constants. For simplicity ofionta
we ignore the time index. On the forward link, the signal
received by the:-th user is

ol = /ol nfs’ 12/ 1)

whereh? is the k-th row of the channel matrl)H andsf

is the M x 1 signal vector. The additive noise/ is i.i.d.
CN(0,1). The average power constraint at the base-station
during transmission i&[||s’||?] = 1 so that the total transmit
power is fixed irrespective of its number of antennas. The
received power depends on the channel norm and hence on
the number of antennas at the base-station. On the reverse
link, the vector received at the base-station is

x"=H'E"s" + 7" (2)
wheres” is the signal-vector transmitted by the users and

— ding([V/7 V/7 - \/ARI")

components of the additive noise vectdr are i.i.d.
. The power constraint at thieth user during trans-
SSIOF’I is given byE[|[st|?] = 1 where s is the k-th
component ok".
Remark 1: We primarily focus on short coherence intervals.
The need to study short coherence intervals arises from the
high mobility of the users. In this setting, it is importahat

The system model consists of a base-station withan- we account for channel training overhead and estimatiar.err
tennas ands single antenna users. The base-station comm@ur goal is to account for these factors in the net throughput
nicates with the users on both forward and reverse links agd develop schemes that achieve high net throughput. For
shown in FigurdIl. The forward channel is characterized lytaining schemes of practical importance, we look at seisem
the K x M matrix H and the forward SNRs. The systemyith low computational requirements. As mentioned earlier
model incorporates frequency selectivity of fading by gsinwe consider linear precoding techniques at the base-statio
orthogonal frequency-division multiplexing (OFDM). The-d  Remark 2: The performance metric of interest is the achiev-
ration of the coherence interval (defined later) in symbsls aple weighted-sum rate. The motivation behind looking at
chosen for one OFDM sub-band. For simplicity, we considgfeighted-sum rate is that weights are used by higher layer
OFDM sub-bands as parallel channels and concentrate on @Rgtocols such as the Proportional Fair scheduling alyorit
OFDM sub-band (where channel matrix is fixed and there ghd the Max-Weight scheduling algorithm in order to achieve
no multi-path). The details of OFDM (including cyclic prefix goals such as efficient fair sharing of throughput (Propogl
are completely omitted, as this is by no means the focus [ir) and queue stabilization (Max Weight). For example, in
the paper. Further, we make the following assumptions.  the case of Max Weight they are fixed to be queue lengths

1) Rayleigh block fading: The channel undergoes RayleidB3]. The weights are passed to the physical layer, which

fading over blocks ofl" symbols called the coherencehas the task of maximizing the weighted-sum rate with given
interval during which the channel remains constant. heights. It is this latter task and the performance achisvigu
Rayleigh fading, the entries of the channel matlix which the paper is concerned. Thus, in a real system, these
are independent and identically distributed (i.i.d.) zeraveights are adaptively controlled by the high-layer altjon
mean, circularly-symmetric complex Gauss@aN (0,1) to perform a given network utility maximizatioh [34].
random variables. By assumption, every user knows the system parameters
2) Reciprocity: The reverse channel between any user asuth as the weights, the forward SNRs, the reverse SNRs and
the base-station (at any instant) is a scaled version tbk achievable strategy. In typical systems, these paeamet
the forward channel. change on a much larger time-scale compared to the coherence

3) Coherent uplink transmission: Time synchronization isterval and stays constant during many OFDM symbols.

present in the system. Typical shadow fading assumptions lead to the conclusian th
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omputation in the algorithm are optimized for improved performancee Th

\ optimal precoding is identified in the course of an asymptoti
analysis, taking the number of base-station antennas totinfi
Next, we provide the details of the algorithm and our analysi

Training Symbol¢7") Data Transmission . .
A. Channel Estimation
Channel reciprocity is one of the key advantages of time-

Fig. 2. Different phases in a coherence interval division duplex (TDD) systems over frequency-division tixp
(FDD) systems. We exploit this property to perform channel
estimation by transmitting training sequences on the sever

significant SNR changes occur only over distancedfneters |ink. Every user transmits a sequence of training signals of

and above. Further, in communications standards like LTE; symbols duration in every coherence interval. Theh

there are protocols that describe how SNRs are estimated ggd transmits the training sequence vegfor ,/,L_ We use

passed to base-stations. We do not address these in this paRehonormal sequences which implidéz,b» = §;; whereg,;

i.e., in our system model SNRs are assumed to be constahhe Kronecker delta. ! ' '

and known for the time-scale of interest. The symbol time Ramark 4: The use of orthogonal sequences restricts the
of the LTE OFDM symbol is71.3 us. If a mobile moves maximum number of users to', i.e., K < 7.

with the speed of50 miles/hour, then its SNR value will  The training signal matrix received at the base-station is
change after the transmission of approximat&l¢00 OFDM

symbols whereas the channel coefficients will change within Y =V H'E"®T + V"

approximately20 OFDM symbols. In a typical Proportional yhere @ = [1, 4, ... 1] (TT¥ = I) and the components
Fair algorithm, weights are kept fixed over a periodlof 10— of vr are i.i.d.CA/(0,1). The base-station obtains the linear

seconds. Hence, the number of OFDM symbols that will Rgjnimum mean-square error estimate (LMMSE) of the chan-
transmitted in this time interval is again much larger thia@ t g

coherence interval. These typical numbers clearly sugbast

Coherence Interval (T)

T
the overhead associated with learning system parameters isﬂ _ dia VPOIT" VPKT" Y. (3)
negligible compared to the channel training overhead, whic B g pirt T 1+ pheTT '

is accounted for in this paper.
The estimatd] is the conditional mean df given'Y. There-
I1l. TRAINING ON REVERSEL INK ONLY fore, H is the MMSE estimate as well. By the properties of
conditional mean and joint Gaussian distribution, theneste

In this section, we consider a transmission scheme thgt;g independent of the estimation er = H — H [35].
consists of three phases as shown in Fidlire 2 - traininghe components ofl are independent and the elements of
computation and data transmission. In the training ph&&e, {is r-th row are CN (0, i7" /(1 + pir™)). In addition, the

users transmit training sequences to the base-station en égmponents ofI are independent and the elements ofitth
reverse link. The base-station performs the required cempyy arec A/ (0,1/(1+ py7")).

tations for precoding in the computation phase. We assume
that this causes a one-symbol delay in order to emphasge
the delay in computation/control. In practice, this delayai , , )
system dependent parameter. In the data transmission,phasi€xt, we describe a generalized zero-forcing (ZF) pre-
the base-station transmits data symbols to the selected.us&°ding. This precoding consists of two steps: ffrecoder
Remark 3: In this transmission method, the users do ndtarameter optimization, andif user selection. The precoder

obtain any information regarding the instantaneous cHannR@T@Meters are non-negative constants .., px, which are

The base-station obtains an estimate of the instantanelRgr optimized over long-teffisystem parameters such as the
channel. This is very different from the usual setting whet¥€ights, the forward SNRs and the reverse SNRs. The user se-

the users also have estimates of channel gains. As a réwlt, gction algorithm is denoted by (H) = {51, S>,...,Sx} C

analysis is very different as well, {1,2,.. ._7K}, ie., based on the channel estimdik the
Our goal is to obtain a simple precoding method that caf€duling algorithm selects usess, Sa, ..., Sy. Thus, the

achieve high weighted-sum rate. The capacity region of tHSE' Selection is dependent on short-term channel variatio

system described in Sectibn Il is not known even in the singleBefOre pfoceed'”Q' we introduce the notation required to

user setting. In addition, capacity achieving schemes nanqescnbe the precoding method. Let

general be very complex to implement in practice. Therefore De — di -4 1 -1T

our approach is to obtain variants of well-studied simple § = dilag {Psl Ps, -+ PsN} '

algorithms in the perfect CSI setting that is applicableha t N , .

imperfect CSI setting, and analyze the system performance.l,‘et Hs be theN x M matrix formed fromH as follows: The

particular, we consider MMSE channel estimation, oppdsbunl'th row (1 <4 < N) corresponds to thé;-th row of matrix

tic selection of users based on channel gains, and geretaliz 1gyictyy speaking, these long-term parameters are cotsstarour system

zero-forcing (described later) precoding. The paramatsesl model.

Generalized Zero-Forcing Precoding



H. Similarly, defineHg andHg. Let Hpg = DgHg. Now, wherey is the scalar random variable given by

the generalized zero-forcing precoding matrix is defined as I
N X_.Qn[(HDSHgS) }) . ®)
Hpg (HDSHDS)
Aps = . (4) Suppose that the-th user is among the selected users. The
\/rﬁ [(ﬂDsﬂTDs)l] signal received by thé-th user is
_ _ v _ v =g a+ 2] ©
This precoding matrix is normalized so that whereg? is the row corresponding th-th user in matrixG.
Tr (ATDSADS) -1 From [1), we obtain
. .. . T _ f eT 4 f flTA (10)
The matrixDy is introduced to optimally allocate “resources” & \V PkPk X€k T\ P D ADS
to users. This is required as our system consists of heteroggere ﬁ}f is the k-th row of H and e, is the N x 1
neous users. column-vector withk-th element equal to one and all other

Let q denote the _vector of (coded) information symbolgjements equal to zero. Substitutiig](10) [ (9) and adding
that have to transmitted to th& selected users. Then, theyng subtracting mean from, we obtain

transmission signal-vector is given by

fo_ fo R f _E
s; = Apsq. (5) Ty ik B Xl @k + 1/ oo (X — E[X]) ak
[ RT f
Clearly, the base-station transmit power constraint can be +\ e by Apsq + 2, (11)

satisfied irrespective of the valuesof, ..., px by imposing

the conditionsE[||¢,||?] = 1,Vn € {1,...,N}. _ _
This generalized zero-forcing precoding method requiresidiere the effective noise

choice of thep; values and a user selection algorithm. Next, —.r_ /¢ _E / F BT A f

we characterize the achievable throughput with this prisgpd " prpe (X —EDd) g + y/ pi; by Apsa+ 7.

method, and then explain the precoder optimization and theAccording to our system model, each user knows the
user selection algorithm. systems parameters. However, the users do not know the

instantaneous channels, which is the main overhead that is
. often neglected. Hence, the user performs the following:
C. Achievable Throughput g P . 9
. . . . 1) It computes the expected value (over instantaneous
In this section, we obtain an achievable throughput for — channel distribution) of its “effective” channel given by
the system under consideration (by building on techniques (p{pk)l/QE [x]. In other words, this is the expected gain
in [36]). Given a user selection algorithm, we denote the multiplying its information symbol.
probability of selecting thek-th user asy;,. The throughput  2) |t computes the variation of the effective channel around
derived depends on the user selection strategy through the jig expected value given bvﬁpkvar{x}- This con-

= Vol EDdar + 2

random variabley (defined later) and the probabilities of tributes to the “effective” noise variance.

selecting the users. Recall thit is the numl?[e_r of antennas at  3) |t computes remaining terms that contribute to effective
the base-station is the number of usergy, is the forward noise variance, which includes the interference due to
SNR associated with thé-th user andpj, is the reverse other information signals given by! /(1 + p;7") and

SNR associated with the-th user. Let the weight associated the additive noise variance (which is unity).

with the k-th user be’ll}k. The base-station performs MMSE 4) It computes the effective SNR from the above compu-

channel estimation as described in Seclion 1ll-A. For cleann tations, and uses it in the decoding.

estimation, the training period used7$ > K symbols. In the following theorem, we formalize the above by showing

From [1), the signal-vector received at the selected US@kgy the effective noise is uncorrelated with signal andthise

(according to our system model the user knows whether itfist to obtain achievable weighted-sum rate.

selected or not) is Theorem 1: Consider the precoding method described
< = E@HSADqurzf (6) abqve. Then: the foIIovymg weighted-sum rate is achievable

during downlink transmission:

where K P
E
¥ . ¥ I ¥ T RZ = Z YWk 1Og2 1+ 7 pklpk [X] 5
Eg = diag VPsy \Psy -\ Psy : k=1 1+ py, (W—"—pkvar{x})
(12)
The effective forward channel inl(6) is wherey is the scalar random variable inl (8).

G - E'HA Proof: The expected value of any term on the right-hand
T TSTSADS 3 side of [I1) is zero. The noise ternf is independent of all
= EJ (D;lﬂps + HS) Aps other terms and

= E{Dg'x+E[HsAps, (7) E {Z;{ q} =0, E [z{;

q,I:I} —0, E [B{

q,I:I} = 0.



Using the law of iterated expectations, we have 1) The performance metric of interest is the achievable
weighted-sum raté?y, in (I2). However,Ry, is a func-
E [qu;@ (x —E [X])} =E {quH (ExX] -E[x]) =0, tion of the user selection algorithm. To overcome this,
we simply consider the case of selecting all users to
qa, ﬂ” =0, obtainpy, ..., px. Hence, this can be performed before
the user selection.
2) We would like to choose non-negative values for

E {qquA%Sﬁ,’;} —F [qquAESE [ﬁ;;

E [(X—E[X])qquAgSBZ} = p1,...,px such thatRy in (I2) is maximized. How-
- - ever, this is a hard problem to analyze as closed-form
E [(X—E[X])qkq ApgE [hk q, HH =0. expression for the expectation and the variance terms

Hence, any two terms on the right-hand side (11) are in (I2) is unknown. We consider the asymptotic regime

. o 4 M/K > 1 as this is appropriate in this section.
uncorrelated. The effective noisg is thus uncorrelated with R /k 7'>>A f E.p ph bl h icall
the signalg,. The effective noise has zero mean and variance emark 7. Apart rom ma |_ngt € problem mat ematically

tractable, the asymptotic regimle /K >> 1 is of interest due
var {2,’:}

1+ plE {BzADSE {qu’ﬂ’ ﬁ} A%sﬁﬂ to the following reasonsi) the system constraints’ < 7",
7" < T place an upper bound oA, independent of the

+P£Pk"ar {x} number of antennas, and)(the base-station can be equipped
— 1, 1 n ) with many antennas each powered by its own low-power
B Pr\T1+ prT” Pevataxy J- tower-top amplifier[[211].

) From the weak law of large numbers, it is known that
Remark 5: The effective noiset/ is uncorrelated with the

signalgy, and in general not independent. Note that we do not lim %ZZT =1Ig
need independence in the proof.
In order to obtain a set of achievable rates, we conside¢fereZ is the K' x M random matrix whose elements are
(T — 7" — 1) parallel channels where noise is independehtd- CA/(0, 1). Therefore ZZ' can be approximated by/ I ;.
over time as fading is independent over blocks. Using the fddence, the random variabje in (8) can be approximated as
that worst-case uncorrelated noise distribution is indepat
Gaussian noise with same variance, we obtain the achievable X~
weighted-sum rate given i (112). This completes the pramf.
The proof assumes that the users know if they are selected
or not. In Sectiof III-E, we discuss how this assumption caghere
be relaxed with a small reduction in net achievable rate. piT" !
Remark 6: The value_s{E_[X] andvar{x} do not depend on i\
short-term channel variation&[y] andvar{x} depend only !
on slowly changing parameters, namely on the weights, tBebstituting[(IB) in[(12), we get
reverse SNRs and the user selection strategy. These slowly

(13)

changing parameters stay constant over a large period éampr K bim:
ing many coherence intervals. We assume that these param- Ry =~ J(p) = Zwi log, | 1+ Kli
eters are known at the base-station and corresponding. users i=1 S a;p;
The value<E[x] andvar{x} can be accurately estimated via a j=1
Monte-Carlo simulation in the beginning of each period. dthe \yhere

estimates can be produced either by users themselves oe by th M p{

base-stations. In the latter case, the base-station wikk ha b = f 1
. L+ p; (L4 pi7")
pass the valueE[y| andvar{x} to the corresponding users, . . } i
which would assume only a small overhead. Alternativelg or’der this approximation, we can find the optimal values for
can generate a look up table ffy] andvar{x} for a grid P1:---.Px that maximize/(p) as described below.

of parameter values. For intermediate cases, the corrdampn _ 11€0rem 2: An optimal SO'”“T}’* of the objective func-
values can be found by interpolation. tion maxp, J(p) is of the formcp* wherec is any positive
real number an®* = [p} p5 ... D)7 is given by

D. Optimization of Precoding Matrix 7 = max {0’ (% _ bi) } _ (14)
We introduced the parameters, . . ., px in the generalized . Y Y (%l ' .

zero-forcing precoding to handle the heterogeneity ofsuse;rhe positive real number” is unique and given by

i.e., differences in the weights, the forward SNRs and the K

reverse SNRs associated with users. In this section, odr goa Zaiﬁ =1

is to obtain these parameters as a function of the weighds, th i=1

forward SNRs and the reverse SNRs. We make the following Proof: The proof idea is to introduce an additional

simplifications to achieve our goal. constraint to obtain a convex optimization problem. We show



that the introduction of the additional constraint doesaffgct inaccurate. In addition, brute-force search over subdetsars
the optimal value of the optimization problem. is computationally complex. In the second part of this paper
Note thatw;, > 0, b > 0 anda; > 0. Let a = for the general setting, we consider schemes that use kpatia
[a1 az ... ax]T. We consider the optimization problem separability/orthogonality of channels.
In the user selection strategies presented below, we nged no
. assume any designated channel for informing users whether
subject to p = 0. they were selected or not. We will show that this does not

Since J(p) = J(cp) for any ¢ > 0 and p* # 0, p* result in a significant loss of data rate.
such thata”p* = ¢ is an optimal solution to[{15) ,if and Let us consider a selection scheme with a designated

only if * = (1/c)p* is an optimal solution to the convexchannel for_alerting_the s_ele<_:ted users. Lebe the average
optimization problem amount of |nformat|0n (in bits) that can be.tran.smltted to
the j-th user during one coherence interval in this scheme.
The averaging is conducted over multiple coherence inkgrva
in which the user can be selected or not. Denote/pyhe
corresponding quantity for the same user selection scheme,
but without the designated channel.

In order to solve[(T6), we introduce Lagrange multipliarg Theorem 3:

RE for the inequality constraintg = 0 andv € R for the I >1; - 1.
equality constraina”p = 1. The necessary and sufficient
conditions for optimality are given by Karush-Kuhn-Tucke{)r n
(KKT) conditions [37]. These conditions are

maximize J(p) (15)

K

minimize — Z w; log (1 + b;p;) (16)
=1

subjectto p > 0,a’p =1.

Proof: Let D; be the random variable indicating whether
ot thej-th user was selected in a given coherence interval.
The valueD; = 1 indicates that the user was selected and

pr=-0, alp* =1, A*>=0, D; = 0indicates that it was not. Letp, .. p, be aprecoding
7 matrix. This matrix depends on the valuéy,..., Dk. In
sk —% wlbl * * - . . .
iP; =0, N A +via; =0, i=1,... K. particular thej-th column ofAp, . p, is the all-zero vector
_ _ P o if D; = 0. Denote byg’ the symbol that is transmitted to the
This set of equations can be simplified to j-th user at time instance Then, the signal received by the
w; 1 j-th user is
D :max{O, (— — —)},
vta; b; qf
K w; 1 xh = \/Pg'thDl,...,DK : + 2}, (18)
Zai max < 0, - — =1. a7 ¢
P v*a, b; qx

Since the left-hand of{17) is an increasing functiorljn*, Wherez] is Gaussian noise. Denate = («] *%,...,27) and

this equation has a unique solution, which can be easily = (qTT+2 .,qu). If the designated channel is available,

computed numerically using binary search. This compldtes twe havé
prOOf. | Ij = I(Xj; qJDJ)
The optimizedp™ given by [1%) is substituted in[](4)
to obtain the optimized precoding matrix. We remark th
this precoder design is only asymptotically optimal whe
M/K — oo. However, we use this optimized precodin
matrix even when number of usei§is comparable to number
of base-station antenndg. We denote the scheme where w

AE is important to note that this mutual information is oveet
ﬁommunication channel defined Hy [18), which includes not
nly the MIMO transmission, but also the random variables
;. Note also thatD; and q; are independent. Similarly, if
éhe designated channel is absent, we have

use optimizedp; values for precoding by Scheme-1 and the ]J’, = I(x;;9;).
scheme where we uge = 1 for precoding by Scheme-0. In ) ) ) )
both the schemes, we select all the users. Using the chain rule for mutual information, we obtain

, I = I(xj5q5) + 1(x5; Djla;) = Ij + 1(x;; Djlay).

E. User Selection Srategy ) . . .

. . , SinceD; is a binary random variable, we have

We consider a simple user selection strategy based on oppor-

tunistic selection of users based on scaled estimated ehann I(x;; Djlq;) <1,
gains of users (details given later). We ignore the spatiphs
rability/orthogonality of channels due to the followingas®n.
As mentioned earlier, the transmission method in this secti
is of interest in the large number of base-station antennas 1, = [(q;; D;) + I(x;j;q;|D;) = I(x;;q;|D;)
setting. In this setting, the spatial separability/ortbioglity of I e p D. o
channel play a less important role. Also, the channel estima o (%53 ;) Pr(D; ) (19)
at the base-station is expected to be poor. The predictionTdfese equalities follows from the fact thagt and D; are in-
channel orthogonality based on this poor estimate is géyeralependent random variables and from the f&at;; q;|D; =

and the assertion follows. [ ]
It is worth noting that applying the chain rule, we obtain



0) = 0. In (@9), the mutual informatiovmo (x;;4q;) is Net achievable sum rate accounts for the reduction in
over the channel defined ifil(9), that is over the MIMO (thachievable sum rate due to training. In every coherencevite
dimensions are time, not antennas) channekfected users, of 7" symbols, firstr” symbols are used for training on reverse
which is different from the channdl (1L8). link, a symbol is used for computation and the remaining
Another important concern is the practical realization dff’ — 7" — 1) symbols are used for transmitting information
the user selection scheme. One possible way is to desi&ymbols as shown in Figufé 2. The training lengthcan be
a criterion that would allow each user to decide whether ¢hosen such that net throughput of the system is maximized.
was selected or not for each coherence interval. For instanEor N < K, the sum rate overhead associated with user
one may try to use the power of the received sigralas selection would be</T. Thus, the net achievable sum rate is
such criterion. We believe that this is a poor approach, whidefined as

incorporates a hard decision, which results in rate loss. %
ANifi : T—71"-1 Do Wi
A significantly better way is to assume the channel model ., — max Ry — 1y gy ==L (21)
(I8) in which we always “transmit” signalg; independent (K T T

Z = diag

on whether thej-th user was selected or not. This is equiv- . , ,
alent to data transmission via a fading channel of the forﬁlf'b.Je(.:t N < K, 7" < 1;_ land7" > K. In 21), we
xj = const - ¢;D; + noise. For recovering the transmitted OPUMiZ€ over bothV and 7. _ ) _

symbols, we propose to use an error correcting code, which?) Heterogeneous Users: In this section, we consider the
approaches the capacity of this fading channel. In contrdQfloWing heuristic user selection strategy for heteragers

to the previous hard decision approach, the probabiliti€S®"s- . . _

Pr(D; = Olz;),Pr(D; = 1,q;]z;) for all possible values Letz{,z5,...,z5 be the rows of the matrix

of ¢;, and passed to the decoder. It is not dificult to construct T

an LDPC code approaching capacity of this fading channel, 14 pir" L+ pgt” ] f

using, for instance, the EXIT function technique described \/ it \/ pheT"

[38], [39]. A decoder of such an LDPC code will update

the probabilitiesPr(D; = Ofx;), Pr(D; = 1,gj|z;) USING \where F is the estimated channel given byl (3). Note that
intermediate decoding results from each iteration (sebff89 7 is normalized such that the entries are independent and
details of this technique). identically distributed. In every coherence interval, teers

1) Homogeneous Users: First, we consider the special casyre ordered such that
where the users are statistically identical. In this honnege!s
setting, the forward SNRs from the base-station to all thesus Py llziy 1P = Plgyllziyl1? > - > Pl 12{5) I7
are equal (given by/) and reverse SNRs from all the users
to the base-station are equa| (given f{j)) Furthermore, the and the firstN users under this Ordering are selected. The
weights assigned to all the users are unity, i®,,= 1. The Vvalue Ny, is used forNV that maximize the net achievable
need for explicit user selection arises due to the ZF bas#@ighted-sum rate defined below. The intuition behind this
precoding used. With perfect channel knowledge at the bas&ategy is thatpy,, is nearly proportional to the average
station = H) and no user selection\( = K), the ZF power assigned to thé-th user andea)H2 captures the
precoding diagonalizes the effective forward channel dhd énstantaneous variation in power. Similar to the homogeseo
users see same effective channel gains. case, the net achievable weighted-sum rate is given By \(&1).

We use the following simple heuristic rule at the baselenote the scheme where we use this user selection strategy
station. In every coherence interval, the base-statioactel along with optimizeg; values for precoding by Scheme-2. We
those N users with largest estimated channel gains. This rudovide numerical results showing the improvement obthine
is motivated by the expectation terfi[x] appearing in the by using this strategy in SectignVI.
achievable weighted-sum rate IN112). e}, b, ..., ﬁ(T}f)
be the norm-ordered rows of the estimated channel médrix
Then, the matridfs is given byFs = [hy) by ... h)”

F. Optimal Training Length

and the achievable sum rate [0]12) becomes We consider the problem of finding the optimal training
o length in the homogeneous setting when the user selection
of (1£pCTT) E2 [n)] strategy given in Sectioh II[IE is used. The objective is to
Ry, = Nlog, | 1+ ) p— - maximize the net achievable sum rate given byl (21). For
L+ p/ (W + #Var{”}) given values ofM, K, T, p’ and p”, it seems intractable to
(20)  obtain a closed-form expression for the optimal trainimggké.
Here, the random variable Therefore, we look at the limiting cases — 0 andp”™ — oo
1\ — 4 to understand the behavior of the optimal training lengttiwi
— 2
n= (Tr {(UUT) D reverse SNR.

_ _ ) In the limit p” — 0, we can approximate the net rate as
whereU is the N x M matrix formed by theN rows with

largest norms of & x M random matrixZ whose elements T—-7"-1 pfpr
are i.i.d.CN(0,1). Rnet~ ——5——Nlog, (1+ 1+pr ] ) -

a




Computation

We use the fact thabg(1l + =) ~ « asx — 0 to obtain the Forward Pilotgr )

approximation

(e H N\l
Rnet ~ dliTT (22)
T Reverse Pilofs™) Data Transmission
where d; is a positive constant. It is clear thdi[22) is Coherence Interval (T)

maximized whenr” = (T —1)/2 if we assumel’ > 2K
andT is odd. In the limitp" — oo, we can approximate the
net rate as

Fig. 3. Reverse and Forward Pilots

T—7"-1
Bnet ~ d27T that the users can estimate the effective gains. It is hard to

aecount for the overhead when base-station send quantized
€ . . ) L
information about the effective channel gains. In additjuilot
ed channel training is conventional in wireless systems
erefore, we focus on sending pilots in the forward link.
is leads to a transmission method consisting of four phase
K) should be spent for training when reverse SNR is very high.rever?%e.pllots, computa}tmn_ phase, forvyard pilots anda dat
transmission - as shown in Figurk 3. In this scheme, the users

This conclusion is similar to the result ih [36] for MIMO. btain effecti h | qai fimat L th o
In summary, we developed a new precoding method referfgyf? OPtain eliective channel gain estimates at the expense o

to as generalized zero-forcing precoding. It consists o$er u increased training overhead.
selection component and an optimization component. The

user selection component is performed using opportunisfic Channel Estimation and Precoding
selection heuristics. The optimization component is pengxl

whered, is a positive constant. This expression is maximiz
by the minimum possible training length which#$ = K.
The approximations suggests that nearly half the cohere
time should be spent for training when the reverse SNR is v
low and the minimum possible number of symbols (which i

. fimizati bl ling f ot As explained in Section =R, the users transmit orthogona
using a convex-optimization problem resufting from a r Ve}II aining sequences on the reverse link. From these training

asymptotics of large number of base-station antennas. %uences the base-station obtains the MMSE estimate of
resulting precoding is simple and therefore has significaﬂ]t '

. . . e channel. The base-station uses this channel estihate
practical value. We demonstrate the improvement obtained

. . fbrm a precoding matrix to perform linear precoding. LAt
net throughput through humerical examples in Sen_ V_I' denote any precoding matrix which is a function of the channe
The net throughput improvement results from all optimiz

ae'stimate, i.e.A = f(ﬂ). The precoding functiorf(-) usually
t(%pends on the system parameters such as forward SNRs,
o §8verse SNRs and weights assigned to the users. We require
and better channel estimation. The more subtle parameters,a_, . precoding matrix is normalized so tiaf ATA) = 1.
the number of selected usehs and the precoder parametersy . . smission signal-vector is given by = Aq, where

p1,---,PK- The role of the precoder parameters is to také: 41 > ... qx]” is the vector of information symbols for

adv?hntage _ofh![ongt;]terrp syst(ejms?\lar\r’ametzrsthand statlstm:g'\sl e users. The net achievable rate derived later in thigoseist
ash c Wg:g si ef tr(])rwar tys.ar: K edrevetrse ¢ id for any precoding function. Next, we describe a paitc
whereas the role of the parametdt is take advantage o ecoding method.

o 4 r
the sk:jort-tertr_‘n _ch?_nne_l v:rlatlogs. tln O:Jr aptproach, .S'h$ tp In [22], the following approach was suggested for finding a
precoder optimization is dependent on long-term varia] good precoding matrifA. Let h; be thei-th row of the channel

is not dependent oV. The choice of " would depend on matrix H and leta; be thej-th column of precoding matrix

precoder parameters and Is therefore more involved. Howevx The sum rate of the broadcast channel can be written in
since it is a single parameter, this optimization can be leghd

the form
M
V. TRAINING ON REVERSE AND FORWARD L INKS h;a;|?
) ) ] o R A):Zlog2 1+ = Tl 5| 5 |-
In this section, we consider a transmission method which gt o*Tr(AAT) + 3, [hjay|

sends forward pilots in addition to reverse pilots in Settio

IVE. In this section, we do not limit our approach to Iargéret

number of base—;ta_tion antennas. . . b; = [hja,|? and¢; = o2Tr (AAT) + Z Ihja|2.
In the transmission method considered in the previous oy

section, the users do not obtain any knowledge about the

instantaneous channel. Every user can be provided witiaparfurther, letA andD be diagonal matrices defined as

knowledge about its effective channel gain in one of the
g g {[(HA)M (HA )22 (HA)MM]T} (23)

following two ways. {) The base-station can send quantized A = diag ..
information of the effective channel gains to the usei. ( “ 2 M
The base-station can send forward pilots to the users $oq

°There has been some parallel work[inl[40]. The authors censicb-way b1 by T
training [41] and study two variants of linear MMSE precalas alternatives D =diag { . ] (24)
to linear zero-forcing precoder used [n[21]. ci1(by +c1) em(bar + ear)
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In [22], it is shown that the equatior%w =0 imply can be computed offine and implemented using look-up
Y tables. We do not provide the details of this in the paperc&in
A = ((¢*Tr (D))l + H'DH) 'H'A. (25) the precoding is linear, the online computational compjexi
This equation allows one to use the following iterative algdS low.
rithm for determining an efficienA:
1) Assign some initial values to matrices and D, for B. Forward Training

instanceA = I, D = I . The key idea behind sending forward pilots is that users can
2) Repeat steps 3 and 4 several times use these pilots to compute effective channel gains to highe
3) ComputeA according to[(25); accuracy and reduce the variance of the effective noiseheé\t t
4) ComputeA andD according to[(28) and_(24). same time, we have to spend time for sending forward pilots

This approach can be extended for the scenario when oalyd a priori it is not clear whether one can obtain any gaimfro
an estimatet of the channel matrid and the statistics of using forward pilots. This motivates us to consider vagabl
the estimation erroH is available. In this case, we would likenumber of forward pilots, which can be used for numerical
to maximize the value of the average sum rate defined by optimization in practical systems. Further, since the siseed

R(ﬂ,A) _ Eﬁ[R(ﬂ+ﬁ,A)]. not estimate the entire channel matrices, we allow for pilot
B lengths smaller than the number of users.
Since the statistics oH is assumed to be known, we can The base-station transmitd forward pilots so that every

generateL samplesH® i = 1,..., L, according to the user can obtain estimate of its effective channel gain. &Sinc
statistics. DefineH (") = H + H®. Then, the average ratewe are interested in short coherence intervals, we contider
can be approximated a3(H, A) ~ case with very few forward pilots. Note thaf can be less
L M W@ a2 than the number of users. For this reason, we do not restrict
1 Zzlogz (1 + b, ay| _ ) ) to orthogonal pilots in forward training. The forward p#ot
L= 2Tr (AAT) +37, ., |h§7)az|2 are obtained by pre-multiplying the vectocél),...,q,(ff)

. ) D oac . . with the precoding n_watrix. In the case pf one forward pilot
\élve_d{?f'f][eAd ggdg(_ as in [23) ?nd!IZ_IAf) lfts'rt‘r? the mat(;')_(rsl:f = 1), we consider the forward pilots obtained from
() instead ofH. Using arguments similar to those used i e vectorql()l) = [1,1..]7. In the case ofrf = 2,

, we obtain that the equation&Z- = 0 imply
A

we consider the forward pilots obtained from the vectors
L at? = v2[1,0,1,0..]7 andq'’ = v2[0,1,0,1..]7. Itis
S HOAD —HOTDOH® — ?Tr(DW)A =0. (26) straightforward to extend this to any number of forward silo
i=1 We denote the vector of forward pilots received by fhéh
Let user byx}. Thek-th user uses’ to computeE [gxx|x}] since
L . N . variance ofgy, — E [gxx|x}] contributing to effective noise is
V= ZH(Z)TD(Z)H@ +0°Tr (D(Z))IMa smaller that the vaEriarch] of the corresponding term without
i=1 forward pilotsgir — Elgik]-
and
L
7= HOAW, C. Achievable Throughput
=1 We use similar techniques (proof is more involved) as in
From [26), we have that the previous section to obtain net achievable throughput fo
A—V-IT @27) the transmission method with reverse and forward pilotsoFr

(D), the signal-vector received at the users falusers) is
This allows us to use the following iterative algorithm for
determiningA.:

1) Assign some initial values to matrices” and D@, \where

for instanceA” = 1,,,D@ = I, .

2) Repeat steps 3 and 4 several times B — diag{ {\/p? \/;5 o \/E} } )

3) ComputeA according to[(27);

4) ;:I(()ir)nputeA( »andD® according tol(2B) and(24) USIN9\we denote the effective forward channel [n](28) By =

instead ofL. E’HA with (i, j)-th entryg;,.
Remark 8: In numerical simulations (including the ones in Theorem 4: For the transmission method considered, the

Section[ V), we have observed thdt = 50 is sufficient. ¢qiowing downlink weighted-sum rate is achievable during
Further, for typical examples} to 8 iterations are enough. yansmission:

Thus, the number of required iterations is small for nunagric

x/ = EfHAq + z/ (28)

convergence in most cases. However, similaf2d), there is K IE [grox| %] |2
no theoretical guarantee on the convergence of the alguorithis = ZwkE c 1+ S E [lgul?x] i_ var{ g, X }
Remark 9: The precoding matrix is obtained using numeri- k=1 7k Jhal 1%, I3

cal techniques. It should be noted that the precoding nestric (
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whereC'(0) = log, (1 + 0). As before, we denote the forward pilots received by Akt
Proof: In every coherence interval, theth user receives user usingx}, . Let

the vectorx}. In the data transmission phase, it receives o L wp
CJ - 2(13))(1(17]’ q]|xk)7
¥

vl = gk + ngi%’ +2 . o .
ik wherep(q;) is the pdf ofg;. The sum capacity is defined by
= E[grelxyp) e + (grx — E [gre|x}])ar C=0C+...+Ck.
. f
+;gk1ql + 5% In SectiondTlI,[TV, achievable rates for different communi
, f cation scenarios were derived. The following simple theore
= Elgrlxi]ar + 2 (30) ' defines an upper bound df.
where the effective noise Theorem 5:
f 3 f i p!|h7a;?
2, = (grk — E[gru[xPDar + D gridi + 2. log, ( S ) (31)
itk = L+, Plf|h§‘F<'1‘l|2
The joint distribution ofx} and G is known to all users as it Proof: Let G = HA. Then,
depends on the long-term statistics alone (and not the eéhann o — I(ay: q;1%7)
realization). In[(3D), the noise teray is uncorrelated with the IoT ey s 4

signal g,.. Note that these terms are not independent, and we < max(z;G; gj|xP)
do not need independence in the proof. Following the steps pla;)
used in the proof of Theorefd 1, we obtain the achievable rate = max{I(:vJ, ¢1G,x}) + I(G; ¢;1x5) }
given in [29). [ ] P(25)
Remark 10: It is (computationally) easy to generate i.i.d. = gg(i?)d(fjvaﬂG)

computing conditional expectations can be computatignall —
intensive especially for continuous random variables. How
ever, in our setting, we can take advantage of the fact t
f is independent of all other random variables. For example
con5|der the setting” = X + Z, whereZ is an mdependent

: ; 2 : ) G and thereford (z;; q; |G, x}) = I(z;;¢;|G). [
random variable with probability density functiofy(z). | (w53 451G %) (2):4;|G)

order to comput&[X|Y — y], we can generate i.id. samples It is easy to see that the same bound is valid if no forward
pL =Y 9 p pilots are available to users. In general this upper bound is
of X, say{z;};~,, and compute

valid for any particular scheme of generating precodingixat

samples from the joint distribution of? and gi;. Even then
K 1 < p_] | a] |2 )
089

1+ Zt;ﬁj Pt |h‘ ay[?

re we used the facts th& and ¢; are independent and
fereforel (G (G;gj|xh) = 0, and thatx}, is a noisy version of

L. o A. Hence, the bound can be used in all communications
o i Tifz(y — i) ; : . . . .
EXY =y| ~ - scenarios considered in the previous sections. In this way,
ity fz(y — i) can obtain an upper bound on the sum rate of any specific

This idea can be extended to our scenario. Irrespectiveigf trtcommunication scenario and any specific precoding method.

numerical techniques exist, as it is possible to sample frdm the numerical results presented in the next section, we

the joint distribution. demonstrate that the gap between our achievable rateederiv
We define net achievable weighted-sum rate as in the previous sections, and the corresponding upper bound

is quite narrow.
T-—7m—7f-1 d

Riet = max Rs. Instead of using a specific p_recoding method in_Theorem
T T B, we can try to use a precoding matux that maximizes
which is consistent with the earlier definition. (31), under assumption that onHM, the statistics oft, H,

In summary, we developed a technique that uses the charardlH, and forward SNRg] are available at the base-station.
estimate to obtain a precoding matrix that is “good” in exped his would give us an upper bound that is not dependent
tation for many channel realizations around this estimate. on a specific precoding method. In the case that such an
demonstrate the performance improvement through nunterigaper bound is close to the achievable sum rate of some
examples in Sectiop VI. specific precoding method, we could claim that we have not
only closely identified the sum rate of that specific precgdin
method, but also that the scheme itself is close to optimal
linear precoding.

As in the preV|ous sections, we assume that an estimaterhe problem of finding a precoding matri that provably
H, the statistics offI, H, and H, and forward SNR9{ are maximizes[(3lL), especially in the case when the true channel
available at the base station. Using this information,ltase- matrix H is not available, looks to be very hard. We suggest
station computes a precoding matex The signal received the following approximate approach. The algorithm desatib
by users is in Section[IV-A allows us to find, approximatehA that

x = EfHAq + z. provides a local maximum foE5[R(H + H, A)]. Running

V. UPPERBOUND ON SUM RATE
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the algorithm several times, with distinct random matrifoes o Sopeme 2

A and D in step 1, we can find several, say a hundre M g Seteme 0
local maxima ofEg[R(H + H, A)]. Let C-UB-Opt be the

maximum of these local maxima. Though, strictly speakin
C-UB-Opt is not the global maximum d [R(H+H,A),

it is likely that there is no linear precoding method that Vaou
significantly outperform C-UB-Opt. In the next section, we

Net Achievable Weighted-Sum Rate
D~

will use C-UB-Opt as a scheme independent upper bound - o
some communication scenarios. - G 1
07
2r 1
VI. NUMERICAL RESULTS ﬁ;
Scheme-UB refers to the upper bound obtained by assum B 18 imber of Base-ation Aoternas oy o 0

perfect knowledge of the effective channel matrix at the

users. Note that this is a _SChefme d_ependent u_pper bOUffiQ.-e. Net achievable weighted-sum rate for a system wittusers
We have conducted extensive simulations for various system

parameters, and the observations provided are based an thes

simulations. However, we provide only few representative; — - Now onwards. we do not compare with DPC as our

numerical results here. focus is on linear precoders with channel imperfectionsci
the gap between the Scheme-2 sum rate and Scheme-2 upper
A. Training on Reverse Link Only bound is relatively small, the restriction to training owveese
We consider this transmission method in the communicati§iRk only is not significant for the SNRs considered here. We
regime when SNRs are low. Scheme-0 denotes ZF precodffgperve that the user selection strategy used in Scheme gi
method and Scheme-1 denotes the generalized ZF precg@hificant improvement over existing Scheme-0. In Fiddre 5
ing method with optimizedp; values but no user selection.We plot the number of users selected by Schen?€;2 versus
Scheme-2 denotes the method where user selection is ud@jnumber of users presefit for different SNRs (mentioned
along with Scheme-1. Scheme-1 and Scheme-2 are technicffieéie plot) andM = 16.
developed in this paper. Scheme-0 refers to the scherhelin [212) Heterogeneous Users: We consider coherence inter-
1) Homogeneous Users: For homogenous users, Scheme-%al 7' = 30 symbols and12 users with forward SNRs
is identical to Scheme-0. First, we keep the training segeen{0,0,0,5,5,5,5,5,5,10,10,10} dB. The reverse SNR asso-
length equal to the number of users, i.el, = K. This ciated with every user is considered to iedB lower than its
setting clearly is the minimum channel training overheaRrward SNR. All users are assigned unit weights. We plot the
In Figure[4, we plot sum rate versus the number of usenst achievable sum rate versi$ for this system in Figure
K ={1,2,...,M} for M = 16 when forward SNRy/ = 0 [B. The improvement obtained using modified ZF precoding
dB and reverse SNR” = —10 dB. In addition to Scheme- with optimizedp; values is significant. We remark that the
0 and Scheme-2 sum rates, we plot upper bound obtairggiformance gain due to user selection is very significarwh
according to Theoreifl 5, Scheme-2 performance when CSkli¢ number of users are comparable to the number of base-
available at the base-station, and the DPC upper bound. Htation antennas.
reduction in sum rate due to lack of full CSI at base-station 3) Optimal Training Length: We consider a homogeneous
is significant. As expected, the performance of DPC is sigystem with)M = 32 antennas at the base-statidd, = 8
nificantly better compared to linear precoder especiallgnvh users and coherence intervalBf= 30 symbols. For Scheme-
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TABLE |

N
IS

. . . COMPARISON OFVARIOUS SCHEMES
12r ' ol (dB) 5 10 15 20 25 30
E‘:e 100 ZF-FPQ) 0.65 | 1.93 4.95 8.54 12.12 | 13.68
£ ZF-UB 1.22 | 2.89 6.42 11.97 | 19.10 | 27.62
i 8- 1 ZF-Sch-FPQ) 3.87 | 7.32 | 11.37 | 15.06 | 17.88 | 19.08
:; o | | | ZF-Sch-FP{) 2,59 | 5.38 | 9.39 | 13.27 | 19.64 | 26.22
tg ZF-Sch-FPg) 3.50 | 6.64 | 10.21 | 15.09 | 20.19 | 26.69
§ ar 1 ZF-Sch-UB 4.74 | 8.42 | 13.39 | 19.33 | 25.83 | 32.71
o SVH-FP() 3.27 | 6.38 | 10.74 | 15.69 | 21.87 | 27.16
SVH-FPQ) 3.71 | 6.95 | 10.98 | 16.17 | 21.33 | 27.15
0 TR . . R SVH-UB 5.30 | 9.54 | 14.78 | 20.97 | 27.49 | 34.07
Forward SINR (dB) Mod-SVH-FP() | 3.33 | 6.54 | 10.62 | 16.92 | 22.44 | 29.45
Mod-SVH-FPQ) | 3.51 | 7.27 | 11.22 | 15.42 | 20.54 | 26.67
Fig. 7. Optimal training length versus forward SNR Mod-SVH-UB 534 | 971 | 15.28 | 21.57 | 28.25 | 35.06
% —%—ZF-Sch ‘ ‘ 40 i
-6 ZF-Sch-UB X —»—ZF-Sch-FP(0)

—©~Mod-SVH-FP(1)
—#—ZF-Sch-UB
—$—Mod-SVH-UB

w
o

35p

N
3]
T

301

251

N
o
T

201

[
3
T

15F

Net Sum Rate (bits/s/Hz)

i
o
T

10f

Net Achievable Sum Rate (bits/s/Hz)

5 . . . .
Forward SINR (dB) 5 10 15 20 25 30
Forward SINR (dB)

Fig. 8. Net sum rate versus forward SNR Fig. 9. Net rate versus forward SNR faf = K = 8

2, we obtain the optimal training length and the net sum\y, consider a system with = 8 users,M = 8 antennas
rate for different values of forward SNR through brute-reg; he base-station, reverse training length76f = 8 and

optimization. For every forward SNR considered, we take thenarence interval off = 30 symbols. We consider the
reverse SNR to be 10 dB lower than the correspondingforwqfqbwing example. We keep the value of reverse SNR
SNR. We plot the optimal training lengths in Figlile 7 and nefg |ower than the forward SNR. For the different methods
sum rates in Figurl8. The behavior of optimal training léngtnsigered, we obtain the achievable sum rate for forward
with reverse SNR is as predicted in Sectlon lll-F//2 in - gNRs ranging frons dB to 30 dB. These sum rates are given
low SNR regime ands in high SNR regime. In Figurel 8, we j,, Table[VI-B. We plot the methods ZF-Sch-Fp@nd Mod-
denote ZF \{vith user selection (scheduling) by ZF-Sch and t@“?/G-FP(l) in Figure[®. We observe significant improvement
corresponding upper bound by ZF-Sch-UB. in net rate by utilizing forward pilots at high forward SNRs.
In addition, it is interesting to note that we perform reasuy

B. Training on Reverse and Forward Links close to the upper bound by using one or two forward pilots.
We consider this transmission method for moderate to high
SNRs. We use FRj to denote a precoding method using VII. CONCLUSION

number of forward pilots. Note that RP(denotes training We develop a general framework to study downlink TDD
on reverse link only. We denote results obtained with zersystems that account for channel training overhead andchehan
forcing by ZF, zero-forcing with user selection by ZF-Sdie t estimation error. In contrast to the limited-feedback fearark
approach in[[22] by SVH and the modified algorithm given ifor FDD systems, we account for all channel training ovethea
Section IV-A by Mod-SVH. We compare the performance af the overall system throughput. In the first part of the
different methods using numerical examples. For the algori paper, we focus on downlink systems with large number
Mod-SVH, we use the valué = 50 in the simulations and of antennas at the base-station. We clearly demonstrate the
5 iterations. We observe that theSdterations is enough to advantage of TDD operation in this setting. In particulathw
provide numerical convergence (i.e., a reasonable ernandio increasing number of base-station antennas, the TDD operat

in our examples. helps in improving the effective forward channel without



14

affecting the training sequence length required. We prtesen[18]
generalized zero-forcing precoding method in this settiflg
use a combination of convex optimization based techniqde 39
opportunistic user selection to maximize the overall syste
throughput. In the second part of the paper, we consider t[t%g]
general setting, i.e., we do not limit focus to downlink gyst
with large number of base-station antennas. We present2g
linear precoding method than results from an approach to
find a local maximum for a non-convex optimization probler[kz]
that is related to the system throughput. Through simulatio
we show that these precoding schemes provide good ovef%!l
system throughput.

[24]
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