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Abstract—Industrial plants suffer from a high degree of
complexity and incompatibility in their communication infras-
tructure, caused by a wild mix of proprietary technologies. This
prevents transformation towards Industry 4.0 and the Industrial
Internet of Things. Open Platform Communications Unified
Architecture (OPC UA) is a standardized protocol that addresses
these problems with uniform and semantic communication across
all levels of the hierarchy. However, its adoption in embedded
field devices, such as sensors and actors, is still lacking due
to prohibitive memory and power requirements of software im-
plementations. We have developed a dedicated hardware engine
that offloads processing of the OPC UA protocol and enables
realization of compact and low-power field devices with OPC
UA support. As part of a proof-of-concept embedded system we
have implemented this engine in a 22 nm FDSOI technology.
We measured performance, power consumption, and memory
footprint of our test chip and compared it with a software
implementation based on open62541 and a Raspberry Pi 2B. Our
OPC UA hardware engine is 50 times more energy efficient and
only requires 36 KiB of memory. The complete chip consumes
only 24 mW under full load, making it suitable for low-power
embedded applications.

Index Terms—OPC UA, Internet of Things, FDSOI, industrial
automation, field devices

I. INTRODUCTION

The communication infrastructure in most industrial plants
consists of multiple hierarchical layers and is highly segre-
gated. Especially the lower layers with control systems and
field devices employ a wild mix of largely proprietary com-
munication technologies [1]. Examples include analog current
loops, serial protocols such as HART, IOLink, or Modbus
RTU, but also technologies based on Ethernet like ProfiNet or
Modbus TCP. Apart from the difficulty to maintain such com-
plex and heterogeneous systems, the compartmentalization and
incompatibilities between these technologies severely restrict
the flow of information. This leads to problems with current
trends such as Industry 4.0 and Industrial Internet of Things [2]
which demand safe and secure access to information and meta-
information from all layers to further optimize performance,
efficiency, and yield of industrial processes.

OPC UA (Open Platform Communications Unified Archi-
tecture) is a platform-independent communication standard [3]
with extensive capabilities for semantic information modeling
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that directly addresses these problems. It functions as a mid-
dleware on top of universal and established transport protocols
such as Ethernet and uses a client-server model with standard-
ized services such as read-write access to data, discovery of
servers and their capabilities, subscription to value changes,
authentication, and encryption. The data exchange between
devices is enriched with semantic representations by the OPC
UA information model, which describes the attributes and re-
lationships of objects on the server. For example, an OPC UA
enabled pressure sensor could convey the measurement unit,
measurement range, sensor type, serial number, manufacturer,
and even measurement quality metrics in addition to just the
raw pressure value. Instead of an arbitrary list of values, this
information is structured with an object oriented view using
typed references that describe the properties of the equipment.

The OPC UA information model is based on a generic
meta-model, called namespace 0, that provides a powerful
and common vocabulary for semantic descriptions [4]. Vendor-
independent interoperability is achieved by standardizing this
meta-model as well as domain-specific extensions and by
embedding the model into the devices.

OPC UA has been widely adopted and all major vendors
of industrial equipment offer products that support OPC UA
to various degrees. But, up until now, OPC UA has only
penetrated the upper layers in the communication hierarchy
and few examples of embedded OPC UA field devices exist,
e.g. [5]. We believe this is largely due to the complexity and
resource requirements imposed by software implementations
of the protocol.

These software implementations often require a complete
operating system with a networking stack and virtual memory
management, and thus can have a significant memory (several
hundred kilobytes) and power (several hundred milliwatts)
footprint. Powerful application-class SoCs with memory con-
trollers and external DRAM are usually needed to support
these software implementations. This can incur significant
overhead in terms of cost, PCB area, and energy consumption,
which prevents adoption of OPC UA in space or energy con-
strained applications. For instance, field devices in explosion
hazardous environments must be as power efficient as possi-
ble to avoid hot surfaces and are heavily space constrained
by costly enclosures. Additionally, most OPC UA software
implementations are unsuitable for hard real-time applications
due to jitter caused by interactions of the operating system
and applications running on the shared hardware.

We present a dedicated hardware engine that implements
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Fig. 1. Simplified block diagram of the test chip. Colors mark the power domains that can be measured separately on package level. SRAM in the VDD06
domain uses a separate rail for the bitcells that is connected to VDD08.

an OPC UA server as part of a compact and low-power em-
bedded system. Because processing of the OPC UA protocol
is completely offloaded, this approach also has the potential
to satisfy hard real-time constraints. To evaluate our OPC UA
hardware solution and to provide a proof-of-concept system
for OPC UA enabled field devices, we have implemented this
engine on a 22 nm test chip. To the best of our knowledge,
this constitutes the first ever ASIC implementation of an OPC
UA server for field devices.

II. SYSTEM ARCHITECTURE

The block diagram in figure 1 gives an overview of the test
chip architecture. The chip features all major components re-
quired for an industrial field device with OPC UA capabilities.
It is derived from the concept that has been described in [6].

A. Core Subsystem

The main component in the core subsystem is a 32-bit
RISC-V CPU with support for IMCXpulpv2 instructions [7].
Five independent SRAM banks are attached to an AXI inter-
connect structure that assigns priority to the CPU for SRAM0
and SRAM1 for storing application code and data, priority for
the Ethernet DMA to SRAM2 and SRAM3, and priority to the
OPC UA engine for SRAM4 to store the information model
of the field device. Standard serial peripherals such as UART,
SPI, and I2C are attached to the CPU so that applications can
interact with external sensor and actor devices. A dedicated
SPI slave is used to configure the chip after power up and
initialize the volatile main memory from an external source.

B. Ethernet Subsystem

The Ethernet subsystem implements a tri-mode MAC, sup-
porting 10, 100, and 1000 MBit/s, as well as packet processing
for IPv4, ICMP, and UDP. A DMA transfers data between
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Fig. 2. Internal architecture of the OPC UA Engine with details shown for
one S3 stage.

buffers in the IPv4 block and the main SRAM, without
requiring the CPU to act on every sent or received packet. An
SGMI interface with an LVDS SerDes provides a connection
to external gigabit PHYs. The SerDes is clocked from an
all-digital PLL on top level that has 8 phase outputs and
an internal DCO running at 2.5GHz. We also included an
RMI interface to evaluate emerging Ethernet solutions which
are tailored to long-reach industrial field communications, e.g.
Advanced Physical Layer based on 10BASE-T1L.

C. OPC UA Engine

Details of the internal architecture of the OPC UA engine
are shown in Figure 2. The engine implements the func-
tionality of an OPC UA server with the Nano Embedded
Device profile, but offers support for three sessions in the
shown configuration. The design offers extensive design-time
configuration options, for example, the size of the internal
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SRAM, message fragmentation support, the number of parallel
sessions, and the supported OPC UA session features.

OPC UA requests are sent and received by a transport stage
that is attached to the peripheral bus of the system. This bus
interface also allows to the CPU to access internal registers that
control operation of the engine. The transport stage directly
handles basic operations to establish sessions and to advertise
the supported protocol versions, buffer sizes, and transport
layer capabilities.

More complex requests are forwarded to one of the available
S3 (security, segmentation, and services) stages. Each S3 stage
can maintain and serve one distinct OPC UA sessions. S3
stages are compromised of three major components that are
interconnected with a multi-mastered address bus. A low-
level communication processor handles message reception
and transmission, with emphasis on message segmentation
or “chunking”. The second major component is the SRAM
message buffer where message assembly takes place.

OPC UA service requests (e.g. read node) are encoded
akin to serialized object-oriented data structures, implying
that message fields present for any single service request
type may differ radically depending on parameters. The third
component, a specialized, high-level OPC UA stream pro-
cessor, interprets these service requests and formulates the
reply message. The processor uses a Harvard architecture and
natively handles OPC UA’s numerous data types and their
highly irregular encoding. This includes multi-part types (e.g.
the ”LocalizedText” type, composed of two strings), variable
encoding types (e.g. ”NodeID”), and even user-defined data
types (”Structures”). To save space, the instruction set uses
variable-length encoding. The processor supports copy oper-
ations of all OPC UA data types between up to 16 streams,
most prominently the address space and the message. Logical
comparison between OPC UA data types is supported along
with simple branching and call/return mechanics together with
a hardware stack-pointer. The instruction set supports creating
indexes on stream positions, allowing a service program to
seek specific positions in a data stream. The development
of service programs was simplified with a custom assembler
written in Python, which translates the instruction sequences
into synthesizable Verilog code. This is represented in figure
2 as the instruction ROM.

The namespace interface allows service programs to access
an object or node in the OPC UA information model. It
understands the structure of the namespace image in the main
memory, which uses a custom binary encoding to reduce its
memory footprint [8]. The namespace interface autonomously
performs the node lookup in the main memory (SRAM4) and
returns the requested data to the stream processor.

Communication between the transport stage, the S3 stages,
and the main memory is scheduled with a fair and deter-
ministic scheme that provides the basis for hard real-time
guarantees of the OPC UA engine. Further details regarding
the processing structure of the OPC UA engine are discussed
in a previous publication [9].

Fig. 3. Annotated photo of the SemantIC test chip.

III. TEST CHIP IMPLEMENTATION

Figure 3 shows a photo of the test chip, which has been
fabricated in a GLOBALFOUNDRIES 22 nm FDSOI technol-
ogy [10]. We leverage the body biasing feature of the FDSOI
technology with a closed-loop, on-chip adaptive body bias
(ABB) generator. Together with appropriately characterized
standard cell and SRAM libraries, this guarantees robust
performance at minimal leakage over all PVT corners [11].
Implementation and signoff of the test chip has been carried
out for the full industrial temperature range, from −40 °C to
125 °C.

The ABB generator applies a forward bias to the core
subsystem and enables us to implement the RISC-V CPU
with 250MHz at only 0.6V. This reduced supply voltage
necessitates dual-rail SRAM, where the bitcells are supplied
from the top level with 0.8V. Peripherals operate from the
same 0.6V supply but at a reduced clock frequency of 100
MHz. The rest of the chip, including the OPC UA engine,
operates without adaptive body bias.

Because the OPC UA engine processes messages serially,
this block has a low toggle activity. Figure 4 shows an
activity profile of the OPC UA engine during processing of
a read node message (the write node activity profile is nearly
identical). The average activity during this window is only
4.7%. Additionally, the engine can be completely clock-gated
while waiting for new OPC UA messages to arrive. Therefore
our goal was to minimize leakage and we restricted synthesis
of the OPC UA engine to use only HVT cells. With this
we were able to close timing in the final implementation at
50MHz with over 98% HVT cells.

The complete macro of the OPC UA engine with three S3
stages occupies 200 000 µm2. This includes 24 KiB internal
SRAM for the message buffers and 269 kGE (kilo gate
equivalents) for the remaining logic, with 78 kGE per S3 stage.

We used the open-source ICGlue1 generator to construct the
hardware description of the top level chip hierarchy and the
configuration register files that control the ADPLL, ABB gen-

1www.icglue.org

https://www.icglue.org
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Fig. 4. Activity profile of the OPC UA engine during a read node operation
captured from a netlist simulation. The average activity is 4.7%.

erator, and IO cells. ICGlue also generates documentation and
software abstractions for these registers which accelerates chip
design and verification, but also bring up and measurement in
the lab.

IV. MEASUREMENT RESULTS

We measured power consumption of four chip samples at
room temperature with an Agilent B2962A power supply,
which supports high precision current and voltage sensing.

All measurements related to the OPC UA engine were
performed with the minimal namespace 0 from open625412,
a popular OPC UA software implementation, and a custom
device information model with three 32-bit values. Using
our optimized binary format this model occupies only 36
KiB in SRAM4. For our scenario of embedded sensor and
actor field devices, read and write requests represent the most
relevant OPC UA services. Therefore, we stimulated the OPC
UA engine by running an application on the CPU that uses
prerecorded OPC UA messages to establish a session and then
continuously reads or writes the last node in our device model.
We measured the power consumption during the read node
requests for three different operating frequencies and over
a voltage sweep of the VDDOPC08 domain and calculated
the energy for each point as shown in figure 5. The engine
processes a read node (write node) request within 1219 µs
(1186 µs) at 25MHz, 935 µs (910 µs) at 33MHz, and 657 µs
(638 µs) at 50MHz. Note that these latencies don’t scale
exactly with the frequency of the OPC UA engine due to the
access synchronization with the main memory, which runs at
a fixed frequency. With the nominal supply voltage of 0.8V
the engine requires 273 nJ to process a read node request and
266 nJ to process a write node request.

In table I we give further measurement data to characterize
the power consumption of the complete system. We ran the
CoreMark benchmark on the CPU to evaluate the energy effi-
ciency of the core subsystem. To stimulate network load and

2www.open62541.org
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Fig. 5. Energy consumption of the OPC UA engine for a read node request.

measure the power consumption of the Ethernet subsystem,
we used an external PC and ran a flood ping to the test chip
in SGMII mode.

TABLE I
TEST CHIP POWER CONSUMPTION

Scenario VDDOPC08 VDD08 VDD06 VDD18 Units

0 Leakage 121 390 342 144 µW
1 Idle, clocks on 0.418 3.23 1.08 15.98 mW

2 CoreMark - 3.87 2.30 - mW
3 Read node 0.426 3.28 - - mW
4 Write node 0.427 3.28 - - mW
5 Flood ping - 4.18 - 16.44 mW

The total power consumption of the test chip Ptotal

can be calculated by summing the OPCUA read power
P3,V DDOPC08, the power in the core subsystem P2,V DD06,
the power of toplevel components P5,V DD08, and the IO cells
P5,V DD18. Additionally, we need to account the differential
power of OPC UA activity in SRAM4 with P3,V DD08 −
P1,V DD08, and CPU activity in SRAM0 and SRAM1 with
P2,V DD08 − P1,V DD08. With this, Ptotal = 24.04mW rep-
resents the active power of the complete system under load.
Only 1.8 % of this are due to the OPC UA engine.

For a comparison we could not find published data for OPC
UA software implementations concerning power and energy
consumption in an embedded field device. Thus we decided to
run our own reference measurements with the open62541 soft-
ware stack and a Raspberry Pi 2B. The Raspberry Pi platform
is widely available, easy to set up with open62541, and also
used in several embedded industrial products. This particular
board uses a quad-core Arm Cortex-A53 SoC (BCM2837), a
1 GiB LPDDR2 DRAM (EDB8132B4PB), and a USB hub
with integrated Ethernet PHY (LAN9514). We configured
Linux to run with a fixed CPU frequency and enabled only
the bare minimum of processes required to run open62541.
Next, we compiled open62541 in version v1.0.5 with the
recommended options to minimize memory consumption. The
top utility reported 480 KiB of resident memory occupied by

https://www.open62541.org
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TABLE II
RASPBERRY PI 2B POWER CONSUMPTION

Scenario 600 MHz 900 MHz Units

SoC idle 1.186 1.198 W
SoC idle, LAN9514 disabled 0.392 0.420 W
SoC idle, network load 1.231 1.247 W
OPC UA read node 1.269 1.316 W
OPC UA write node 1.271 1.327 W

Estimated SoC read node power1 18.9 34.2 mW
Estimated SoC write node power1 20.0 40.1 mW

1 Assuming worst-case 50 % efficiency of the DC-DC converters

Read request
latency / s

Read request
energy / J

System power /
 mW

Memory footprint /
 KiB

723 13.66 438 480

482

16.48

448 480
657

0.273 24.1 36

Software on RPi at 600 MHz
Software on RPi at 900 MHz
SemantIC at 50 MHz

Fig. 6. Comparison of the SemantIC test chip versus the open62541 software
implementation on a Raspberry Pi 2B.

open62541 while handling one OPC UA session. Such a large
memory footprint would be prohibitive for most embedded
SoCs without external DRAM.

We present the power consumption of the Raspberry Pi,
measured at the 5 V input of the USB connector, in the
first half of table II. To account for losses in the DC-DC
converters we conservatively assume operation at their worst-
case efficiency of 50 %. To compare these numbers directly
with our OPC UA engine, we subtract the power while serving
the read or write node request from the idle power with
network load. These estimated values representing only the
CPU and DRAM power are shown in the second half of
table II. The software stack with the SoC running at 600MHz
processes a read node (write node) request in 723 µs (700 µs)
and 482 µs (466 µs) at 900MHz. In summary we estimate that
the SoC needs 13.66 µJ (13.98 µJ) at 600MHz and 16.48 µJ
(18.69 µJ) at 900MHz for reading (writing) a node.

We summarize the main results as a comparison between
our hardware implementation and the software in figure 6. The
OPC UA engine delivers comparable performance at 50MHz
but is 50 times more energy efficient. On a system level, we
estimate that the SoC (without the LAN9514 PHY) draws
438.5mW under load, 18 times more than our complete chip.
The memory footprint is reduced by a factor of 13 to only 36
KiB, which is compatible with embedded platforms.

As an outlook for future improvements, we performed a

trial synthesis of the OPC UA engine with cell libraries
characterized for adaptive reverse body bias3. This methods
is very effective at reducing leakage [12], and would help
scenarios with low duty cycles where the OPC UA engine
remains mostly idle. Our preliminary results indicate that the
OPC UA engine could be implemented at 50MHz and 0.55V
with only 50 µW leakage, a reduction by more than half.

V. CONCLUSION

We have presented the first ever ASIC implementation of an
OPC UA server in a modern technology and provided detailed
analysis of our test chip. Measurements prove that our OPC
UA hardware engine is superior to a popular software imple-
mentation in terms of power, energy, and memory consump-
tion, while incurring only moderate cost in terms of silicon
area. There is further potential for future implementations to
consider low-power optimization of the complete system, for
example, by using adaptive reverse body bias. We believe that
dedicated hardware engines like ours are highly attractive and
probably the only solution to bring OPC UA into every field
device.
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