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Abstract

This paper focuses on the performance analysis of a class of limited peak-to-average power ratio

(PAPR) precoders for downlink multi-user massive multiple-input multiple-output (MIMO) systems.

Contrary to conventional precoding approaches based on simple linear precoders such as maximum

ratio transmission (MRT) and regularized zero-forcing (RZF), the precoders in this paper are obtained by

solving a convex optimization problem. To be specific, these precoders are designed so that the power

of each precoded symbol entry is restricted, and the PAPR at each antenna is tunable. By using the

Convex Gaussian Min-max Theorem (CGMT), we analytically characterize the empirical distribution of

the precoded vector and the joint empirical distribution between the distortion and the intended symbol

vector. This allows us to study the performance of these precoders in terms of per-antenna power, per-user

distortion power, signal-to-noise and distortion ratio (SINAD), and bit error probability. We show that

for this class of precoders, there is an optimal transmit per-antenna power that maximizes the system

performance in terms of SINAD and bit error probability.
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I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems are recognized among the key enabling

technologies for next-generation communication systems [1]–[3]. However, there are still major imple-

mentation issues to address for massive MIMO systems to be a reality. First, the number of antennas

that can be supported is limited by the transceiver’s form factor. In practice, this issue can be handled

by moving the operating frequency to mmWave frequency bands [4]. Second, it requires equipping

each antenna with a dedicated radio frequency (RF) chain, which allows the pass-band communication

signals to be processed in the base-band [5], thereby leading to a prohibitively high cost and power

consumption, calling into question the practicality of such systems. One possible solution is to reduce

the number of RF chains by employing hybrid-precoding [6], [7]. However, the work in [8] shows that

the power consumption of some hybrid precoding architectures still scales with the number of antennas,

and proposed as a solution a linear and highly energy efficient reflect-array and transmit-array antennas

scheme. Aside from power consumption, it is of interest to control the power of each RF chain allowing

for cheap system modules. In light of this observation, the work in [9] proposed a precoder with fewer

RF chains that constrains the power of each signal entry to be below a certain threshold.

The proposed precoder in [9] reminds the conventional regularized zero-forcing precoder (RZF) [10],

in that it builds on the regularized least squares (RLS) method to minimize a penalty of the residue sum

of squares (RSS). The main difference with RZF is that it constrains the absolute value of the precoded

vector to not exceed a certain threshold. Referred to as the RLS-based precoder with limited peak-to-

average power ratio (PAPR), the precoder in [9] allows for achieving the two sought-for goals, that is a

lower number of RF chains together with a limited PAPR, making it possible to use inexpensive power

amplifiers.

A. Contributions and related works

Performance analysis of non-linear precoders. In this paper, we carry out a rigorous, asymptotic

characterizaton of the performance of multi-user downlink transmission when an RLS precoder with

limited PAPR is employed. More precisely, we study the asymptotic behavior of the per-antenna power,

per-user distortion power, signal-to-noise and distortion ratio (SINAD), and bit error probability when

the number of antennas and the number of served users grow large at the same pace. A similar problem

has been recently studied in [11], [12] where asymptotic expressions for the distortion error and a lower

bound on the achievable rate have been derived. Compared to these works, our contribution differs

as follows. On a methodological level, while the works in [11], [12] are based on the non-rigorous

replica method, the main tool in our work is the recently developed Convex Gaussian Min-max Theorem
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(CGMT) [13] framework. Using the CGMT, our analysis goes beyond the performance metrics studied

in [11], [12]. Particularly, we assume BPSK modulation while [11], [12] rely on Gaussian signaling.

Furthermore, we derive accurate characterization of the joint distribution between the transmitted symbol

vector and the distortion error. This characterization allows us to analyze the bit error probability and a

tight approximation of the SINAD. On an operational level, we derive several insights from our analysis

by studying the obtained asymptotic expressions in different regimes describing small numbers of served

users or small/large values of the power control parameter. Particularly, we show that the performance of

the RLS precoder with limited PAPR is not always better when the transmit per-antenna power increases,

for higher transmit power may also imply higher distortion power. In other words, there is an optimal

per-antenna transmit power that maximizes the performance in terms of SINAD and bit error probability.

It can be achieved by properly setting the power control parameter.

Convex Gaussian Min-max Theorem. The main ingredient of the proof of our main results is the Convex

Gaussian Min-max Theorem (CGMT). This framework has been initiated by Stojnic [14] before being

formally developed in [13] and [15]. It has been applied to characterize the asymptotic behavior of convex-

optimization-based estimators with application to high-dimensional regression problems as well as binary

classification problems. In this line, the work in [15] applied the CGMT to quantify the performances

of several estimators including the Least Absolute Shrinkage and Selection Operator (LASSO). As far

as wireless communications are concerned, the CGMT has been applied to characterize the performance

of non-explicit decoders. In this context, under the assumption of real Gaussian channels, the CGMT

was used to derive closed-form approximations of the bit error probability of convex-optimization-based

decoders termed box relaxation decoders under Binary Phase Shift Keying (BPSK) signaling [16], [17]

as well as M-ary Pulse Amplitude Modulation (M-PAM) signaling [18]. All these works have focused

on the design of non-linear algorithms from the decoder perspective. The application of the CGMT for

the design of non-linear precoders has not, to the best of our knowledge, been studied, which motivates

our work.

B. Paper Organization

In Section II, we introduce the system model and formulate the problem. Then, in Section III we state

our main results characterizing the statistics of the precoded vector and the distortion, based on which we

get the asymptotic behavior of the studied specifications and performance metrics, namely, the transmit

per-antenna power, the per-user distortion power, the received SINAD, and the bit error probability. In

Section IV, numerical simulations are provided to confirm the accuracy of our results before concluding

the paper in Section V. For the readers’ convenience, the proofs are deferred to Section VI-X.
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C. Notations

For simplicity, we make use of the following notations onwards.

Our work is to characterize the behaviors of the RLS-based precoder with limited PAPR, in the large

dimensional regime where m,n → ∞ with a fixed ratio δ = m/n, and to keep the notations short

we simply write n → ∞. We say that an event ξ holds with probability approaching 1 (w.p.a.1) if

limn→∞P[ξ] = 1. If a sequence of random variables Xn converges to a constant X, we write Xn
P→ X.

For any vector x, we use xi or [x]i to denote its i-th element. We also use the notation ‖ · ‖ to denote

the Euclidean norm, and the notation (x)+ to denote max(x, 0). We write f(x) as O(g(x)) if there are

constants M such that |f(x)| ≤Mg(x) for all x going to the limiting value in the analysis.

The empirical distribution of a vector t ∈ R
m is given by 1

m

∑m
i=1 δti where δti is the Dirac delta

mass at ti. For q ∈ N, a function f : Rq → R is said to be pseudo-Lipschitz of order k if for all x and y

in R
q, |f(x)− f(y)| ≤ C(1+‖x‖k−1+‖y‖k−1)‖x−y‖. The Wasserstein−k distance [19] between two

measures µ and ν is defined as Wk(µ, ν) =
(

infρ E(X,Y )∼ρ|X − Y |k
)

1

k where the infimum is over all

random variables (X,Y ) such that X ∼ µ and Y ∼ ν marginally. A sequence of probability distributions

νp converges in Wk to ν if Wk(νp, ν) → 0 as p → ∞. An equivalent definition of the convergence in

Wk is that, for any f pseudo-Lipschitz of order k, limp→∞ E[f(Xp)] = E[f(X)] where the expectation

is with respect Xp ∼ νp and X ∼ ν.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a conventional multiuser downlink, slow narrow band transmission between a base station

equipped with n transmit antennas and m single antenna user terminals. The precoding scheme is a

function that maps the user information symbols, collected in s = [s1, s2, ..., sm]T = {±1}m and assumed

to be drawn uniformly from the BPSK constellation, into an n-dimensional signal x = [x1, x2, ..., xn]
T .

Since the signal here is BPSK, we assume a real wireless channel and additive noise. Letting hk denote

the channel vector between the base station and user k, the received signal at the k-th user writes as

yk = hT
k x+ zk, (1)

where zk is the additive noise, assumed to follow a Gaussian distribution with mean zero and variance

σ2. Stacking the received signals into a vector y = [y1, · · · , ym]T yields

y = Hx+ z,

where z = [z1, · · · , zm]T and H = [h1, · · · ,hm]T .
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The main goal of precoding is to remove the effect of the channel by minimizing the error between the

channel-distorted received vector Hx and the information vector s. To meet this requirement, the non-

linear least squares precoder proposed in [12] is formulated as the solution to the following regularized

least squares problem:

x̂ = arg min
x∈Xn

‖Hx−√
ρs‖2 + λ‖x‖2, (2)

where ρ is a positive power control factor, λ is a positive regularization parameter and X being a predefined

set containing admissible values for the precoded signal. The formulation in (2) defines a whole class of

precoded vectors for different choices of the set X and parameter λ. For example, if X = R and λ > 0,

we obtain the RZF precoding given by

x̂RZF =
√
ρ
(

HTH+ λIn
)−1

HT s,

which for λ = 0 reduces to the zero-forcing (ZF) precoding (assuming m > n)

x̂ZF =
√
ρ
(

HTH
)−1

HT s.

When X = [−
√
P ,

√
P ], the precoder in (2) does not admit a closed-form expression, characterizing the

performance of the precoder is a challenging task. In this paper, we aim to study its performance in the

large dimensional regime in which the number of antennas n and the number of users m grow large at

the same pace. More formally, in our analysis, we rely on the following assumptions.

Assumption 1. The number of antennas n and the number of users m grow to infinity at a fixed ratio

δ := m
n

.

Assumption 2. The channel matrix H has independent and identically distributed Gaussian entries with

zero mean and a variance equal to 1
n

.

We are interested in characterizing the performance of the precoder in (2) with respect to the following

specifications and performance metrics.

Per-antenna power: We define the per-antenna transmit power as

Pb :=
‖x̂‖2
n

. (3)

Per-user distortion error power: By expressing the received signal at user k as

yk =
√
ρsk + hT

k x̂−√
ρsk + zk, (4)

the distortion error observed by user k is represented by the quantity hT
k x̂−

√
ρsk. We define the per-user

distortion error power as

Pd :=
‖Hx̂−√

ρs‖2
m

. (5)
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Average per-user SINAD: From (4), we can easily see that the SINAD at user k is given by

SINADk =
ρ

Esk

∣

∣hT
k x̂−√

ρsk
∣

∣

2
+ σ2

.

We define the average per user SINAD as:

SINAD =
1

m

m
∑

k=1

E [SINADk] . (6)

Average per-user SINAD upper bound and lower bound: From Jensen’s inequality, we can easily

check that the expected value of the SINAD at user k can be upper bounded and lower bounded as

E[SINADk] ≤ E

[

ρ
∣

∣hT
k x̂−√

ρsk
∣

∣

2
+ σ2

]

, (7)

E[SINADk] ≥
ρ

E

[

∣

∣hT
k x̂−√

ρsk
∣

∣

2
]

+ σ2
. (8)

From (7) and (8), we can prove that the following quantities define upper and lower bounds for the

average per-user SINAD:

SINADup =
1

m

m
∑

k=1

E

[

ρ

|hT
k x̂−√

ρsk|2 + σ2

]

, (9)

SINADlb =
ρ

E
[

1
m

∑m
k=1 |hT

k x̂k −
√
ρsk|2

]

+ σ2
. (10)

In practice, we predict the SINAD lower bound in (10) to provide a tight approximation for the SINAD.

Indeed, under Assumption 2, all users experience the same channel statistics, we expect that

Esk

∣

∣hT
k x̂−√

ρsk
∣

∣

2

is asymptotically close to 1
m

∑m
k=1

∣

∣hT
k x̂−√

ρsk
∣

∣

2
. This latter term should converge to its expectation

E

[

1
m

∑m
k=1

∣

∣hT
k x̂−√

ρsk
∣

∣

2
]

, and hence substituting it by its expectation leads to SINADlb. Therefore,

in Section IV, we compare the empirical SINAD with our approximation for SINADlb and validate its

accuracy.

Bit error rate and bit error probability: The bit error rate (BER) is defined as

BER :=
1

m

m
∑

i=1

1{sign(yi)6=si}, (11)

where 1{·} denotes the indicator function. Another related quantity of interest is the bit error probability

Pe, which is defined as the expectation of the BER, i.e.,

Pe := E[BER] =
1

m

m
∑

i=1

P[sign(yi) 6= si]. (12)
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Although both the RZF and ZF precoding admit a closed-form expression, the PAPR at each RF chain

is not restricted. Taking the definition in [9], the per-antenna PAPR is defined as follows:

PAPRi :=





1

J

J
∑

j=1

|xi(j)|2




−1

max
j∈[J ]

|xi(j)|2, (13)

where x(j) is the j-th realization of the transmit vector, and J is the number of samples. We claim that

lim
J→∞

E





1

J

J
∑

j=1

|xi(j)|2


 = lim
n→∞

E

[

1

n

n
∑

i=1

|xi(j)|2
]

, (14)

which means the average PAPR over antennas equals that over time. The above result, verified by

simulations, follows because the channel statistics over all antennas are the same, so there is no reason

that one antenna experiences more power than any other one. As illustrated later in the following sections,

the limiting of the per-antenna power represented by the right-hand side of (14) can be tuned to any

target value by properly choosing the power control parameter. Moreover, by construction, the entries of

the precoded vector are in the set X =
[

−
√
P ,

√
P
]

, where P is carefully chosen so that the peak value

of the precoded vector is restricted. As a consequence, the studied precoder achieves a PAPR that is less

than P/E where E is the target power value. (2) will be thus referred to as the RLS-based precoder with

limited PAPR and for simplicity termed as limited PAPR-RLS precoder.

III. MAIN RESULTS

A. Distributional characterization of the precoded vector and the distortion error

A major result of our study is the theoretical characterization of the empirical distributions of the

elements of the precoded vector x̂ and the joint empirical distribution of the distortion error vector given

by

ê = (Hx̂−√
ρs)

and the transmitted symbol s. As shown next, both of these distributional characterizations will be

instrumental in sharply characterizing the convergences of the specifications and performance metrics

introduced in the previous section.

Theorem 1 (Distributional characterization of the precoded vector). Consider the following max-min

optimization problem:

φ = max
β≥0

min
τ≥0

τβδ

2
+
ρβ

2τ
− β2

4
+ Y (β, τ), (15)

where

Y (β, τ) =
β

α

(

EH∼N (0,1)

[

(H −
√
Pα)21{H≥

√
Pα}

]

− 1

2

)

,
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with α = 1/τ + 2λ/β.

(i) The optimization problem in (15) admits a unique finite saddle-point (β⋆, τ⋆) if and only if λ > 0

or λ = 0 and δ > 1.

(ii) When λ = 0 and δ > 1, the saddle point (β⋆, τ⋆) of (15) is given by

τ⋆ = argmin
τ≥0

(

τδ

2
+

ρ

2τ
+ Ỹ (τ)

)2

+

, (16)

β⋆ =
(

τ⋆δ +
ρ

τ⋆
+ 2Ỹ (τ⋆)

)

+
, (17)

where

Ỹ (τ) := τ

(

E

[

(H −
√
P

τ
)21{H≥

√
P

τ
}

]

− 1

2

)

.

Moreover, φ reduces to

φ =

(

τδ

2
+

ρ

2τ
+ Ỹ (τ)

)2

+

.

(iii) Let x̂ be the solution of (2), and consider its associated empirical density function

µ̂(x̂) :=
1

n

n
∑

i=1

δx̂i
.

Further, let the function θ : R → [−
√
P ,

√
P ],

θ(γ) :=



















−
√
P ifγ ≤ −

√
Pα⋆

γ
α⋆ if −

√
Pα⋆ ≤ γ ≤

√
Pα⋆

√
P ifγ ≥

√
Pα⋆

,

where α⋆ = 1/τ⋆ + 2λ/β⋆. Assume either λ > 0 or λ = 0 and δ > 1. Then, under Assumption 1

and Assumption 2, for any pseudo-Lipschitz function f of order k, it holds that

1

n

n
∑

i=1

f(x̂i)
P→ EH [f(θ(H))] ,

where H ∼ N (0, 1). Particularly, the empirical density function µ̂(x̂) converges in Wasserstein−k
distance to θ(H).

Proof. See Section VI-C.

Theorem 2 (Distributional characterization of the distortion). Consider the setting of Theorem 1. Let

f : R2 → R be a pseudo-Lipschitz function of order 2 and let α⋆ = 1/τ⋆ +2λ/β⋆. Assume either λ > 0

or λ = 0 and δ > 1. Then, under Assumption 1 and Assumption 2, the following convergence holds true:

1

m

m
∑

i=1

f([ê]i , si)

P→EH,S

[

f

(

β⋆

2

√

(τ⋆)2δ − ρH −√
ρS

τ⋆δ
, S

)]

,

(18)
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where H is a standard normal scalar variable and S a discrete binary variable taking 1 and −1 with

equal probabilities. Equivalently, letting

µ̂(e, s) :=
1

m

m
∑

i=1

δ([e]i,si),

then µ̂(e, s) converges in Wasserstein−2 distance to the distribution of (β
⋆

2

√
(τ⋆)2δ−ρH−√

ρS

τ⋆δ
, S).

Proof. See Section VI-D.

B. Characterizations of specifications and performance metrics

As an application of Theorem 1 and Theorem 2, we derive closed-form approximations for the

specifications and performance metrics defined in Section II:

Corollary 1 (Convergence of the average SINAD upper and lower bounds). Consider Assumption 1 and

2, then SINADup converges to:

SINADup → SINAD
⋆
up

:=EH,S







ρ

(β⋆)2

4

(

(
√

(τ⋆)2δ−ρ)H−√
ρS

)2

(τ⋆δ)2 + σ2






,

(19)

and SINADlb converges to:

SINADlb
P→ SINAD

⋆
lb :=

ρ
(β⋆)2

4δ + σ2
. (20)

Proof. Function x 7→ ρ
x2+σ2 is a Lipschitz function. Applying Theorem 2 yields:

1

m

m
∑

k=1

ρ

|ek|2 + σ2

P→EH,S







ρ

(β⋆)2

4

(

(
√

(τ⋆)2δ−ρ)H−√
ρS

)2

(τ⋆δ)2 + σ2






.

(21)

Finally, since x 7→ ρ
x2+σ2 is bounded by

ρ
σ2 , the convergence in (19) follows from the dominated

convergence theorem. To prove (20), we use the fact that x 7→ x2 is a pseudo-Lipschitz function of

order 2. Hence, we may again use Theorem 2 to obtain

1

m

m
∑

k=1

|ek|2 P→ (β⋆)2

4δ
.

To prove the convergence in (20), it suffices to check that 1
m

∑m
k=1 |ek|2 is bounded. Indeed, if this is true

then one can in a similar way as before use the dominated convergence theorem to prove the convergence
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of the expectation of 1
m

∑m
k=1 |ek|2 to its probability limit. Using the fact that x̂ minimizes the cost in

(2), the following inequality holds:

1

m
‖Hx̂−√

ρs‖2 + λ

m
‖x̂‖2 ≤ 1

m
‖√ρs‖2

and hence,

1

m
‖Hx̂−√

ρs‖2 ≤ ρ.

Recalling that 1
m

∑m
k=1 |ek|2 = 1

m
‖Hx̂−√

ρs‖2 we establish that 1
m

∑m
k=1 |ek|2 is bounded.

Corollary 2 (Convergence of the per-antenna power and the per-user distortion error power). Under

the setting of Theorem 1, the per-antenna and the per-user distortion error power satisfy the following

convergences:

Pb
P→ P ⋆

b := δ(τ⋆)2 − ρ, (22)

and

Pd
P→ P ⋆

d :=
(β⋆)2

4δ
. (23)

Proof. Note that Pd = 1
m

∑m
k=1 |ek|2. The convergence of Pd to its probability limit has been established

in the proof of Corollary 1. The convergence of Pb to the limit in (22) follows directly by applying

Theorem 1 along with the first-order optimality condition for the variable τ .

Corollary 2 allows us to provide an interpretation of the parameters τ⋆ and β⋆. From the convergences

stated in this Corollary, it appears that τ⋆ is related to how much power is devoted to the precoded

vector x̂, while β⋆ allows for quantifying the amount of distortion experienced by the PAPR precoder.

The control factor ρ can always be adjusted to fix the power P ⋆
b to a given feasible value. However, this

would lead to varying the coefficient β⋆ which determines the distortion level. More details on the role

of the control factor ρ on the performance will be given in this section and in section IV.

Corollary 3 (Convergence of the bit error probability). Under the setting of Theorem 1, the bit error

probability defined in (12) converges to

Pe→P ⋆
e := Q





√
ρ− β⋆√ρ

2τ⋆δ
√

(β⋆)2

4
(τ⋆)2δ−ρ
(τ⋆)2δ2 + σ2



 .

Proof. The symbol sk is decoded erroneously if

hT
k x̂−√

ρ+ zk ≤ −√
ρ
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when sk = 1 and

hT
k x̂+

√
ρ+ zk ≥ √

ρ

when sk = −1. So

Pe =
1

2
P
[

hT
k x̂−√

ρsk + zk ≤ −√
ρ | sk = 1

]

+
1

2
P
[

hT
k x̂−√

ρsk + zk ≥ √
ρ|sk = −1

]

.

(24)

Using Theorem 2 along with the Portemanteau Lemma [20], we prove that

Pe →

1

2
P

[

β⋆

2

√

(τ⋆)2δ − ρH −√
ρS

τ⋆δ
+ σZ ≤ −√

ρ|S = 1

]

+
1

2
P

[

β⋆

2

√

(τ⋆)2δ − ρH −√
ρS

τ⋆δ
+ σZ ≥ √

ρ|S = −1

]

(25)

=Q





√
ρ− β⋆√ρ

2τ⋆δ
√

(β⋆)2

4
(τ⋆)2δ−ρ
(τ⋆)2δ2 + σ2



 . (26)

where in (25) Z follows a standard normal distribution with mean zero and variance 1.

It is important to note that although a BPSK modulation is assumed, (26) is different from the

asymptotic bit error probability Pe = Q(
√
2SNR). The reason lies in the fact that the latter relation

holds in the case of additive Gaussian noise that is independent of the transmitted symbols. In our case,

we have not only noise but also the distortion ê which is correlated with the transmitted symbols, as

evidenced by Theorem 2.

C. Special cases: RZF and ZF precoding (P → ∞)

The analysis of the RZF and ZF precoding in multi-user downlink systems has been the focus of

several studies in the literature. Among these studies, we cite the work in [21] which considered this

problem with sophisticated channel models involving different correlations across users. However, to the

best of our knowledge, none of the existing works studied the bit error probability approximation (all

the focus being on the asymptotic characterization of the SINAD). In the sequel, we show that by taking

P → ∞ in the asymptotic expressions of Theorem 1, we can simplify the expression (20) to reach the

same results for the asymptotic SINAD performance obtained in the literature. Additionally, we obtain

new asymptotic approximations for the bit error probability. For the sake of scientific rigor, since our

proofs in Theorem 1 and Theorem 2 relied on the assumption of finite values of P , we do not claim the

convergence in probability of the specifications and performance metrics to the limits of their asymptotic
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equivalents when P → ∞, although we believe this to be the case. A rigorous proof of the convergence

would require us to re-consider the case where P → ∞ separately. However, we do not provide such

a proof since the analysis of the RZF or the ZF can be conducted using tools from random matrix

theory [22] and is thus less worthy of consideration.

Theorem 3 (P → ∞ and λ > 0). For a given value of P , denote by τ⋆(P ) and β⋆(P ) the solutions to

the max-min problem in (15). Assume λ > 0, then as P → ∞, the following convergences hold true:

lim
P→∞

τ⋆(P ) =

√
ρ

√

δ − 1
(1+λs⋆)2

, (27)

lim
P→∞

β⋆(P ) =
2
√
ρ

s⋆
√

δ − 1
(1+λs⋆)2

, (28)

where s⋆ is given by:

s⋆ =

√

(δ − λ− 1)2 + 4δλ− δ + λ+ 1

2δλ
. (29)

Particularly, in this regime, the asymptotic values of the per-antenna power, the distortion power, the

SINAD lower bound SINAD
⋆
lb, and the bit error probability converge to

lim
P→∞

P ⋆
b =

ρ

δ(1 + λs⋆)2 − 1
, (30)

lim
P→∞

P ⋆
d =

ρ

(s⋆)2δ(δ − 1
(1+λs⋆)2 )

, (31)

lim
P→∞

SINAD
⋆
lb =

(s⋆)2δ(δ − 1
(1+λs⋆)2 )

1 + σ2

ρ
(s⋆)2δ(δ − 1

(1+λs⋆)2 )
, (32)

lim
P→∞

P ⋆
e = Q





√
ρ(δs⋆ − 1)

√

σ2δ2(s⋆)2 + ρ
(1+λs⋆)2−1



 . (33)

Proof. See Section IX-A.

Theorem 4 (P → ∞, λ = 0 and δ > 1). For a given value of P , denote by τ⋆(P ) and β⋆(P ) the

solutions to the max-min problem in (15). Assume λ = 0 and δ > 1. Then as P → ∞,

lim
P→∞

τ⋆(P ) =

√

ρ

(δ − 1)
, (34)

lim
P→∞

β⋆(P ) = 2
√

ρ(δ − 1). (35)
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Particularly, in this regime, the asymptotic values of the per-antenna power, the distortion power, the

SINAD lower bound SINAD
⋆
lb, and the bit error probability converge to

lim
P→∞

P ⋆
b =

ρ

δ − 1
, (36)

lim
P→∞

P ⋆
d = ρ(1− 1

δ
), (37)

lim
P→∞

SINAD
⋆
lb =

ρ

ρ(1− 1
δ
) + σ2

, (38)

lim
P→∞

P ⋆
e = Q

( √
ρ

√

ρ(δ − 1) + σ2δ2

)

. (39)

Proof. By setting λ = 0 in equation (176) of the proof of Theorem 3, we directly obtain (34) and (35),

from which the approximations in (36)-(39) follow easily.

D. Limiting cases

The expressions derived so far are useful to characterize the performance of the limited PAPR precoder

in terms of the design parameters, that is the ratio of m to n, and the power control parameter ρ. To

gain more insight into the impact of these parameters on the performance of the limited PAPR precoder,

next we study the following limiting cases.

Theorem 5 (The number of users much smaller than the number of antennas (m ≪ n)). For a given

value of δ, denote by τ⋆(δ) and β⋆(δ) the solutions to the max-min problem in (15). Assume λ > 0. Then

as δ → 0, the following convergences hold true:

lim
δ→0

τ⋆(δ)
√

ρ
δ

= 1, (40)

lim
δ→0

β⋆(δ)(1 + 1
λ
)

2
√
ρδ

= 1. (41)

Particularly, in this regime, the asymptotic values for the per-antenna power, the distortion power, the

SINAD lower bound SINAD
⋆
lb, and the bit error probability converge to

lim
δ→0

P ⋆
b = 0, (42)

lim
δ→0

P ⋆
d =

ρ

(1 + 1
λ
)2
, (43)

lim
δ→0

SINAD
⋆
lb =

ρ
ρ

(1+ 1

λ
)2
+ σ2

, (44)

lim
δ→0

P ⋆
e = Q(

√
ρ

(λ+ 1)σ
). (45)
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Proof. See Section X-A.

Theorem 6 (The number of antennas much smaller than the the number of users (m≫ n)). For a given

value of δ, denote by τ⋆(δ) and β⋆(δ) the solutions to the max-min problem in (15). Assume λ ≥ 0. Then

as δ → ∞, the following convergences hold true:

lim
δ→∞

τ⋆(δ)
√

ρ
δ

= 1, (46)

lim
δ→∞

β⋆(δ)

2
√
ρδ

= 1. (47)

Particularly, in this regime, the asymptotic values for the per-antenna power, the distortion power, the

SINAD lower bound SINAD
⋆
lb, and the bit error probability converge to

lim
δ→∞

P ⋆
b = 0, (48)

lim
δ→∞

P ⋆
d = ρ, (49)

lim
δ→∞

SINAD
⋆
lb =

ρ

ρ+ σ2
, (50)

lim
δ→∞

P ⋆
e =

1

2
. (51)

Proof. See Section X-B.

Theorem 5 and Theorem 6 allow us to understand the behavior of the limited PAPR precoder when the

number of available antennas largely exceeds the number of users or vice versa. As an important remark,

we note that, interestingly, in both cases, all performance metrics do not asymptotically depend on P .

In other words, considering the regimes where δ → 0, or δ → ∞, regardless of the maximum power at

each antenna, the performance is almost the same. However, the results depend on λ when δ → 0 and

do not depend on λ when δ → ∞. This behavior can be attributed to the fact that the limited PAPR

precoder becomes close to the RZF precoder when δ → 0 and to the ZF precoder when δ → ∞. Below,

we provide arguments supporting these claims.

Case 1 (δ → 0). In this case, the limited PAPR precoder solving (2) becomes close to the RZF precoder

if the latter satisfies the per-antenna constraint. It turns out that when δ → 0, the Frobenius norm of

HT scales as
√
m and so does the per antenna power of the RZF 1, which leads to the RZF becoming

asymptotically feasible with respect to the optimization problem (2). However, in this case, it is advisable

1Here we used the fact that ‖x̂RZF‖ ≤ 1

λ
‖HT

s‖ and that ‖HT
s‖ can be approximated by

√

tr(HTH) with high probability

when m → ∞
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Fig. 1: The theoretical per-antenna power, distortion power, SINAD lower bound and bit error probability

versus δ, for σ = 0.05 and different parameter combinations.

to select a small regularization parameter. The reason lies in that a sufficient number of degrees of freedom

are available to find x such that ‖Hx−√
ρs‖2 is as small as desired. Using a large regularization

parameter will thus increase the bias, thereby deteriorating the performance.

Case 2 (δ → ∞). In this case, we argue that the limited PAPR precoder solving (2) becomes close to

the ZF precoder. This explains why the performances do not depend on either P or λ.

Towards this goal, it will suffice to show that

(i) The per-antenna power of the ZF precoder converges to zero as δ → ∞, and thus the ZF precoder

becomes feasible with respect to the optimization problem in (2).

(ii) Denoting the optimal cost in (2) by Ĝ, then as δ → ∞,

1

m
Ĝ− 1

m
‖Hx̂ZF −√

ρs‖2 P→ 0. (52)

To prove (i), we use concentration results of random matrices [23] to show that as δ → ∞ the spectral

norm ‖ n
m
(HTH) − Ip‖ converges in probability to zero. Hence, the precoding vector x̂ZF can be
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approximated by x̃ZF := n
m

√
ρHT s in the sense that ‖x̂ZF − x̃ZF‖ converges to zero in probability.

Denote by h̃i the i-th row of HT . Then, the i-th entry of x̃ZF can be bounded as

|[x̃ZF]i| ≤
√
ρ

√

n

m

√
nh̃T

i s√
m

.

Since
√
nmax1≤i≤n |h̃T

i s|√
m

is stochastically bounded, we conclude that with probability approaching 1, all

entries of x̂ZF are less than any fixed positive threshold ǫ. Letting ǫ <
√
P establishes the first statement

(i).

To validate (ii), we use the following pair of inequalities

‖Hx̂ZF −√
ρs‖2

m
≤ Ĝ

m
≤ min

−
√
P≤xi≤

√
P

i=1,··· ,n

‖Hx−√
ρs‖2

m
+
λPn

m
. (53)

From (i), the absolute value of the entries of the ZF precoder are less than
√
P . Hence, with probability

approaching 1,

min
−
√
P≤xi≤

√
P

‖Hx−√
ρs‖2

m
=

1

m
‖Hx̂ZF −√

ρs‖2.

To continue, we substitute x̂ZF by its expression into
∥

∥Hx̂ZF −√
ρs
∥

∥

2
, then we apply the quadratic

forms convergence results [24] to conclude that

1

m
‖Hx̂ZF −√

ρs‖2 − ρ
m− n

m

P→ 0.

Plugging the above convergence into (53), we can deduce that as δ → ∞, the left-hand side and the

right-hand side of (53) are asymptotically equivalent to 1
m
‖Hx̂ZF − √

ρs‖2, which proves the desired

convergence in (52).

Numerical illustration. Figure 1 plots the theoretical values for all the studied performance metrics

versus δ. As expected from Theorem 5 and Theorem 6, the per-antenna power goes to zero as δ tends

to zero or δ tends to infinity. Moreover, the performance in terms of bit error probability and SINAD

becomes the best when δ is close to zero due to the excess in the number of spatial degrees of freedom.

Theorem 7 (Power control parameter ρ → 0). For a given value of ρ, denote by τ⋆(ρ) and β⋆(ρ) the

solutions to the max-min problem in (15). Then the following statements hold true:

1) Assume λ > 0. Then, as ρ→ 0, the following convergences hold

lim
ρ→0

τ⋆(ρ)
√
ρ

√

δ− 1

(1+λs⋆)2

= 1, (54)

lim
ρ→0

β⋆(ρ)
2
√
ρ

s⋆
√

δ− 1

(1+λs⋆)2

= 1, (55)
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Fig. 2: P ⋆
b versus ρ, for different P values. n = 256, δ = 1, λ = 0.01 and σ = 0.05. (Markers show the

simulated results averaged over 50 realizations of random quantities H, s and z.)

where s⋆ is the same as in (29). Particularly, in this regime, the asymptotic values for the per-antenna

power, the distortion power, the SINAD lower bound SINAD
⋆
lb, and the bit error probability converge

to:

lim
ρ→0

P ⋆
b
ρ

δ(1+λs⋆)2−1

= 1, (56)

lim
ρ→0

P ⋆
d
ρ

(s⋆)2δ(δ− 1

(1+λs⋆)2
)

= 1, (57)

lim
ρ→0

SINAD
⋆
lb

ρ
σ2

= 1, (58)

lim
ρ→0

P ⋆
e

1
2 − 1√

2π

√
ρ(δs⋆−1)

√

σ2δ2(s⋆)2+ ρ

(1+λs⋆)2−1

= 1. (59)

2) Assume λ = 0 and δ > 1. Then, as ρ→ 0, the following convergences hold:

lim
ρ→0

τ⋆(ρ)
√
ρ√

δ−1

= 1, (60)

lim
ρ→0

β⋆(ρ)

2
√
ρ
√
δ − 1

= 1. (61)

Particularly, in this regime, the asymptotic values for the per-antenna power, the distortion power,
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Fig. 3: The per-antenna power, distortion power, SINAD lower bound and bit error probability versus ρ

for σ = 0.05 and different parameter combinations.

the SINAD lower bound SINAD
⋆
lb, and the bit error probability converge to:

lim
ρ→0

P ⋆
b
ρ

δ−1

= 1, (62)

lim
ρ→0

P ⋆
d

ρ(δ−1)
δ

= 1, (63)

lim
ρ→0

SINAD
⋆
lb

ρ
σ2

= 1, (64)

lim
ρ→0

P ⋆
e

1
2 − 1√

2π

√
ρ√

ρ(δ−1)+σ2δ2

= 1. (65)

Proof. See Section X-C.

Theorem 8 (Power control parameter ρ → ∞). For a given value of ρ, denote by τ⋆(ρ) and β⋆(ρ) the
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solutions to the max-min problem in (15). Then, as ρ→ ∞, the following approximations hold true:

τ⋆(ρ) =

√

ρ

δ
+

P

2
√
δρ

+O

(

1

ρ

)

, (66)

β⋆(ρ) = 2
√

ρδ − 2

√
2P√
π

+O

(

1√
ρ

)

. (67)

Moreover, in this regime, the asymptotic values for the per-antenna power, the distortion power, the

SINAD lower bound SINAD
⋆
lb, and the bit error probability can be approximated as:

P ⋆
b = P +O

(

1√
ρ

)

, (68)

P ⋆
d = ρ− 2

√

2Pρ

πδ
+O(1), (69)

SINAD
⋆
lb = 1 + 2

√

2P

πδρ
+O

(

1

ρ

)

, (70)

P ⋆
e = Q

(
√

2P

πδ(P + σ2)

)

+O

(

1√
ρ

)

. (71)

Proof. See Section X-D.

Theorem 7 and Theorem 8 allow us to shed light on the behavior of the limited PAPR precoder when

the control parameter ρ goes to either zero or infinity. As an interesting remark, we note that in the case

where ρ→ 0, the performance becomes independent of P but dependent on the regularization parameter

λ. In this case, we claim that the limited PAPR precoder becomes close to the RZF. This is because as

ρ → 0, the entries of the RZF precoder tend to zero and thus the RZF becomes feasible with respect

to the optimization problem in (2). On the other hand, when ρ → ∞, the performance depends on P

but not on the regularization parameter. To explain such behavior, we argue that, in this case, the limited

PAPR precoder becomes close to the non-linear least squares (LS) precoder given by:

x̂LS = arg min
−
√
P≤xi≤

√
P
‖Hx−√

ρs‖2. (72)

To see this, it suffices to note that for all x, the term ‖Hx−√
ρs‖2 becomes dominant in the minimization

of (2) since for all feasible x,

‖Hx−√
ρs‖2≥‖Hx̂ZF −√

ρs‖2=ρ
∥

∥(I−H(HTH)−1HT )s
∥

∥

2

while the second term λ‖x‖2 remains bounded by Pn as ρ grows large.

By combining the observations in both regimes (ρ → 0 and ρ → ∞), we get a more precise idea of

the role of the control parameter ρ on the per-antenna power P ⋆
b . Setting ρ to small values makes the
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Fig. 4: Impact of the regularization parameter λ for different P values. n = 512, δ = 0.84, ρ = 2 and

σ = 0.05. (Markers show the simulated results averaged over 50 realizations of random quantities H, s

and z. We do not show simulated results for Pe because they require too many runs to simulate such a

low Pe. )

per-antenna power close to zero while using large values for ρ leads the precoder to use the maximum

allowed power at each antenna. Such behavior is illustrated in Figure 2, which plots P ⋆
b against ρ for

several values of P . As can be seen, by varying ρ, the per-antenna power varies accordingly, becoming

small for small ρ values and close to the maximum allowed power for very large ρ values. Note that,

unlike RZF and ZF, the value of ρ that achieves a fixed asymptotic per-antenna power P ⋆
b can not be

determined in an explicit form. In this respect, when it comes to comparing precoders, it is necessary

to require the same P ⋆
b value. This can be done for each precoder by using the value of ρ that achieves

the target P ⋆
b . A plot like the one in Figure 2 can be used to determine numerically the corresponding

values of the power control parameter.

By expanding ‖Hx−√
ρs‖2 in (72) and neglecting the quantities independent of ρ or x, we may claim
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that for large ρ values, the precoder in (72) would be close to the one bit-precoding x̃ :=
√
P sign(HT s).

Such a finding, although making sense, calls into question the main interest behind solving the opti-

mization problem in (2) to obtain the limited PAPR precoder. If for ρ → ∞, its behavior would be

equivalent to the precoder x̃ which uses the maximum allowed power, one can rightly think that it should

be less complex and more efficient to use x̃ rather than solving the involved problem in (2). Such a

conclusion would be correct if more power necessarily implies better performance. As evidenced later

in the simulation section, it is possible for a precoder using a lower per-antenna power to perform better

than the one-bit precoding scheme given by x̃ (See Figure 7 and Figure 8).

Numerical illustration. Figure 3 plots the theoretical values for all studied specifications and performance

metrics against ρ. In agreement with the results of Figure 2, the per-antenna power is an increasing function

of ρ, approaching P when ρ tends to infinity. However, when ρ becomes very large, the distortion power

increases, resulting in the saturation of the SINAD and the bit error probability. Interestingly, there is an

optimal finite ρ, and hence an optimal P ⋆
b for which the performances in terms of SINAD and bit error

probability are maximized.

IV. NUMERICAL SIMULATIONS

In this section, we numerically investigate the performance of the limited PAPR precoders under

different settings. We study the following specifications and performance metrics: the average per-user

SINAD defined in (6), the average per-antenna power, the average per-user distortion power, and the bit

error probability. We compare the results with the theoretical predictions derived in Section III. In all the

figures below, solid lines represent the theoretical predictions, while markers show the simulated results

averaged over 50 realizations of random quantities H, s and z.

A. Impact of the regularization parameter λ

Figure 4 illustrates the behavior of various specifications and performance metrics with a varying

regularization parameter for P = 8, 10 and 12. We note that the per-antenna power decreases with λ,

since a large λ value would penalize the term ‖x‖2 in (2) more. However, as it can be seen from the plot

of the bit error probability, setting λ to smaller values does not always translate into better performance.

Indeed, a non-zero optimal value of λ exists, which is small for a large P , but becomes larger as P

decreases. This shows that regularization is more important when P is small to compensate for the bias

caused by restricting the per-antenna power of the precoded vector. In a second experiment, we investigate

whether this behavior still holds when all precoders have the same average per-antenna power. For that,

we fix P at 50, and then use our asymptotic results to tune the power control factor ρ to the value
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achieving the target P ⋆
b . Figure 5 illustrates the obtained performances in terms of distortion power, the

average per-user SINAD, and the bit error probability. Similar to Figure 4, we note that the optimal

regularization parameter for low P ⋆
b is larger than that for higher P ⋆

b .

B. Impact of the number of users to the number of antennas ratio (δ)

In Figure 6, we investigate the impact of the number of users to the number of antennas ratio δ on the

performance of the limited PAPR precoder. As in Figure 5, for each plot, we leverage our asymptotic

analysis to set the power control parameter ρ at the value ensuring the target asymptotic per-antenna

power P ⋆
b . As expected, we note that the power distortion increases with δ. This is because a higher δ

translates into serving more users and thus causes higher distortion error levels. However, it is curious to

note that the distortion error reaches very high levels as P ⋆
b becomes of an order of magnitude of P . To

explain this, we refer to the findings of Theorem 8 and Figure 2, which suggest that a higher value of ρ

is required to reach higher values of P ⋆
b . But, when ρ is large, the distortion error automatically increases

as it becomes difficult to approximate
√
ρs by Hx when x is constrained to a compact set. An important

consequence of this behavior is that the SINAD performance and the bit error probability do not always

improve by increasing the average per-antenna power P ⋆
b . As shown in Figure 6, the performance is

worse for P ⋆
b = 10 than for P ⋆

b = 3. This is because, for P ⋆
b = 10, the higher transmit power could not

compensate for the higher distortion caused by using a higher value for ρ.

C. Comparison between precoders with optimal regularization

Figure 7 demonstrates the performance variation with Pb for P = 25, 30, and 35, when the regular-

ization parameter λ is set to the value optimizing the SINAD. As in Figure 5 and Figure 6, ρ is tuned to

achieve the target P ⋆
b . As an important remark, we note that there exists a P ⋆

b for which the performances

in terms of bit error probability and SINAD are optimal. This value is below P . Indeed, as P ⋆
b approaches

P , the distortion power significantly increases, resulting in a large performance deterioration. In a final

experiment, we compare in Figure 8 the bit error probability performances of the limited PAPR precoder

using optimal regularization with the one-bit precoding x̃Pb
=
√

P ⋆
b sign(H

T s). Complexitywise, the

one-bit precoding possesses an explicit form and thus is more computationally efficient than the limited

PAPR precoder which is based on solving a convex optimization problem. However, when it comes to

bit error probability performance, we can easily see that the limited PAPR precoder is more efficient for

all values of P ⋆
b . As expected from Theorem 8, the performance gap is small when P ⋆

b approaches P

but becomes much more pronounced when the limited PAPR precoder uses the optimal value of P ⋆
b .
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Fig. 5: Impact of the regularization parameter λ for different P ⋆
b values. P = 50, n = 256, δ = 1 and

σ = 0.05. Herein, the value of ρ is tuned for each setting to achieve the target P ⋆
b . We do not show

simulated results for Pe because they require too many runs to simulate such a low Pe.
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b values. P = 50 n = 256, λ = 0.002 and σ = 0.05. The value of ρ
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b . We do not show simulated results for Pe because they

require too many runs to simulate such a low Pe.
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Fig. 7: The distortion power, SINAD and bit error probability versus Pb, for different P values. n = 256,

δ = 1 and σ = 0.05. The control parameter ρ is tuned to achieve the target P ⋆
b and the regularization

parameter λ is set to the value that maximizes the SINAD.
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Fig. 8: The bit error probability versus Pb given P = 25 (Pb increased by increasing the underlying ρ ).

Here we assign λ values which make optimal SINAD’s, n = 256, δ = 1 and σ = 0.05.

V. CONCLUSION

In this paper, we studied the asymptotic behavior of the limited PAPR precoder for multi-user com-

munication systems in the regime in which the number of antennas and that of users grow large at

the same pace. Contrary to the previous studies in [9] and [11], we rely on the CGMT framework and

present approximations for other important performance metrics including the bit error probability and

the average per user SINAD. To get more insights, we particularized our results to specific regimes in

which the number of antennas is much larger than that of users, or the power control parameter takes very

small or very high values. As a major outcome, our analysis demonstrates the existence of an optimal

transmit power that maximizes the SINAD, and the bit error probability performances.

VI. PROOF OF MAIN RESULTS

A. The CGMT framework

In this section, we prove the main results in section III. The main technical ingredient is the CGMT.

Before delving into the technical details of the proof, we provide a brief overview of the CGMT tool.

The CGMT is a mathematical framework that allows us to study the asymptotic behavior of high-

dimensional optimization problems that can be written in the form of

Φ(G) := min
w∈Sw

max
u∈Su

uTGw + ψ(w,u), (73)

where G ∈ R
m×n is a standard Gaussian matrix, ψ is a real-valued function possibly random but

independent of G, and Sw and Su are two compact sets. The problem defined in (73) is known as
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the primary optimization problem (PO). The CGMT infers the behavior of the PO by considering the

following associated auxiliary optimization problem (AO):

φ(g,h) := min
w∈Sw

max
u∈Su

‖w‖gTu− ‖u‖hTw + ψ(w,u), (74)

where g ∈ R
m and h ∈ R

n two standard Gaussian vectors. More formally the CGMT is stated as follows:

Theorem 9 (CGMT). Consider the optimization problems in (73) and (74) The following statements

hold true:

• For all t ∈ R,

P [Φ(G) ≤ t] ≤ 2P [φ(g,h) ≤ t] . (75)

• If additionally Sw and Su are convex and ψ is convex-concave, then for all t ∈ R,

P [Φ(G) ≥ t] ≤ 2P [φ(g,h) ≥ t] . (76)

Particularly, for any ν ≥ 0 it holds that:

P [|Φ(G)− ν| ≥ t] ≤ 2P [|φ(g,h) − ν| ≥ t] .

According to the first statement in Theorem 9,

P [Φ(G) ≤ t] ≤ 2P [φ(g,h) ≤ t] .

Equivalently stated, this implies that a high-probability lower bound of the AO cost is also a high

probability lower bound of the PO. Such a result holds even when the sets or the function ψ are not

convex.

However, the main interest in the CGMT lies in the second statement of Theorem 9, which affirms

that under convexity conditions of the PO, the AO can be used to infer properties on the PO’s asymptotic

cost. More precisely, if for some ν, the AO cost concentrates around ν, so does cost of the PO. Moreover,

as shall be shown next, under appropriate strong-convexity conditions with respect to the solutions of

the AO, the CGMT shows that concentration of Lipschitz functions of the solution of the AO implies

concentration of that of the PO.

In the sequel, we make use of the CGMT framework to analyze the performance of the PAPR precoding

scheme. As a first step, we express the PAPR precoding problem as a PO problem.
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B. Relating the PAPR precoding problem to POs

Formulation of the POs. For X = [−
√
P ,

√
P ], the solution of the regularized least squares problem is

given by

x̂ = arg min
x2
i≤P

1

n
‖Hx−√

ρs‖2 + λ

n
‖x‖2, (77)

where compared to (2), we normalized the optimization cost by 1
n

. Using the following identity:

‖z‖2 = max
u∈Rm

uT z− ‖u‖2
4

,

which holds for any vector z ∈ R
m, we can write the optimization problem in (77) as

min
x2
i≤P

max
u

√
nuTHx

n
−

√
ρuT s√
n

− ‖u‖2
4

+
λ‖x‖2
n

. (78)

The above problem is in the form of the PO, except that the constraint set over u is not bounded. From

first-order optimality conditions, we can easily check that the optimal u is given by

u⋆ = 2

(

1√
n
Hx−

√
ρs√
n

)

.

Hence,

‖u⋆‖ ≤ 2
√
P ‖H‖+

√
ρ
√
m√
n

.

Also, using standard inequalities of the spectral norm of Gaussian matrices, we can prove that ‖H‖ ≤ B
with probability approaching 1 for some positive constant B. All this shows that ‖u⋆‖ is bounded with

probability approaching 1. Thus the analysis would not thus change if we instead consider the following

problem:

min
x2
i≤P

max
u∈Su

√
nuTHx

n
−

√
ρuT s√
n

− ‖u‖2
4

+
λ‖x‖2
n

, (79)

where Su = {u ∈ R
m, ‖u‖ ≤ B} for some B > 0 is a high-probability upper bound on 2‖u⋆‖. Our

interest is to characterize the asymptotic behavior of the solutions in x and u to (79), which perfectly

agrees with the conditions required by the CGMT. For that, we introduce the following cost functions:

Cλ,ρ(x) = max
u∈Su

√
nuTHx

n
−

√
ρuT s√
n

− ‖u‖2
4

+
λ‖x‖2
n

, (80)

Vλ,ρ(u) = min
x2
i≤P

√
nuTHx

n
−

√
ρuT s√
n

− ‖u‖2
4

+
λ‖x‖2
n

, (81)

and consider the following primary problems:

Φλ,ρ(H) := min
x2
i≤P

Cλ,ρ(x), (82)

Φ̃λ,ρ(H) := max
u∈Su

Vλ,ρ(u). (83)
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Since the objective function in (79) is convex in x and concave in u, then

Φλ,ρ(H) = Φ̃λ,ρ(H), (84)

and the solutions x̂PO and ûPO to (79) are given by 2:

x̂PO := arg min
x2
i≤P

Cλ,ρ(x), (85)

ûPO := arg max
u∈Su

Vλ,ρ(u). (86)

Formulation of the AOs. With the PO problems in (82) and (83), we associate the following AO

problems:

φλ,ρ(g,h) := min
x2
i≤P

Lλ,ρ(x), (87)

φ̃λ,ρ(g,h) = max
u∈Su

Fλ,ρ(u), (88)

where Lλ,ρ(x) and Fλ,ρ(u) are given by

Lλ,ρ(x) := max
u∈Su

1

n
‖x‖gTu− 1

n
‖u‖hTx−

√
ρuT s√
n

− ‖u‖2
4

+
λ‖x‖2
n

, (89)

Fλ,ρ(u) := min
x2
i≤P

1

n
‖x‖gTu− 1

n
‖u‖hTx−

√
ρuT s√
n

− ‖u‖2
4

+
λ‖x‖2
n

. (90)

Similarly, we define the solutions x̂AO and ûAO as

x̂AO := arg min
x

x2
i≤P

Lλ,ρ(x), (91)

ûAO := arg max
u∈Su

Fλ,ρ(u). (92)

The objective of the CGMT is to prove that the properties of the solutions of the PO defined in (85) and

(86) can be transferred to the solutions of the AO defined in (91) and (92). This can be performed by

using the following inequalities which directly follow as a direct application of Theorem 9.

• For all t ∈ R and any compact sets S̃x and S̃u,

P

[

min
x∈S̃x

Cλ,ρ(x) ≤ t

]

≤ 2P

[

min
x∈S̃x

Lλ,ρ(x) ≤ t

]

, (93)

P

[

max
u∈S̃u

Vλ,ρ(u) ≥ t

]

≤ 2P

[

max
u∈S̃u

Fλ,ρ(u) ≥ t

]

. (94)

• If the sets Sx and Su are convex, we have for all t ∈ R,

P

[

min
x∈Sx

Cλ,ρ(x) ≥ t

]

≤ 2P

[

min
x∈Sx

Lλ,ρ(x) ≥ t

]

, (95)

P

[

max
u∈Su

Vλ,ρ(u) ≤ t

]

≤ 2P

[

max
u∈Su

Fλ,ρ(u) ≤ t

]

. (96)

2Note that the objective in (79) is strictly convex in x and strictly concave in u. Hence, the solutions x and u are unique.
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Particularly, the above inequalities can be used to prove concentrations of the optimal cost of the PO.

Interestingly, they can also lead to transfer concentrations of the optimal solution of the AO to that of the

PO, under some strong-convexity properties on the AO problem. It is thus a key step before delving into

the technical proofs of Theorem 1 and Theorem 2 to analyze the behavior of the AO problems in (87)

and (88). This is the main purpose of the following Lemmas, the proof of which is deferred to Section

VII and VIII to avoid disrupting the flow of the proof. Particularly, Lemma 1 establishes the uniqueness

and the existence of the solutions to the asymptotic AO problem introduced in Theorem 1. Lemma 2 and

Lemma 3 provide the technical ingredients to study the asymptotic behavior of the solutions x̂AO and

ûAO in (91) and (92).

Lemma 1 (Behavior of the asymptotic optimization problem). Define φ as the following deterministic

max-min problem:

φ := max
β≥0

min
τ≥0

D(β, τ) :=
τβδ

2
+
ρβ

2τ
− β2

4
+ Y (β, τ), (97)

where Y (β, τ) is given by

Y (β, τ) := β
√
PE

[(√
Pα− 2H

)

1{H≥
√
Pα}

]

− β

2α
E

[

H21{−
√
Pα≤H≤

√
Pα}

]

(98)

=
β

α

(

E

[

(H −
√
Pα)21{H≥

√
Pα}

]

− 1

2

)

(99)

and 3 α = 1/τ + 2λ/β . Then the following statements hold:

1) The function β 7→ D(β, τ) is strictly concave.

2) The above optimization problem possesses a unique finite saddle point (β⋆, τ⋆) if and only if λ > 0

or λ = 0 and δ > 1. Moreover, in both cases β⋆ > 0.

3) The solution τ⋆ satisfies the following equation:

(τ⋆)2δ − ρ = 2PP
[

H ≥
√
Pα⋆

]

+
1

(α⋆)2
E

[

H21{−
√
Pα⋆≤H≤

√
Pα⋆}

]

. (100)

4) Assume λ = 0 and δ > 1. Then the saddle point (β⋆, τ⋆) of (97) is given by:

τ⋆ = argmin
τ≥0

(

τδ

2
+

ρ

2τ
+ Ỹ (τ)

)2

+

, (101)

β⋆ =
(

τ⋆δ +
ρ

τ⋆
+ 2Ỹ (τ⋆)

)

+
, (102)

and (97) reduces to:

φ := min
τ≥0

(

τδ

2
+

ρ

2τ
+ Ỹ (τ)

)2

+

.

3The compact expression in (99) is easily obtained by noticing that E
[

H2
1{−

√
Pα≤H≤

√
Pα}

]

= 1− 2E
[

H2
1{H≥

√
Pα}

]

.
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where

Ỹ (τ) =
√
PE

[(√
P

τ
− 2H

)

1{H≥
√

P

τ
}

]

− τ

2
E

[

H21{−
√

P

τ
≤H≤

√
P

τ
}

]

(103)

= τ

(

E

[

(H −
√
P

τ
)21{H≥

√
P

τ
}

]

− 1

2

)

. (104)

Moreover, τ⋆ is the unique solution to the following equation:

τ2δ − ρ = 2PP

[

H ≥
√
P

τ

]

+ τ2E
[

H21{−
√

P

τ
≤H≤

√
P

τ
}

]

. (105)

Proof. See Section VII.

Lemma 2. Let φ be the deterministic max-min problem defined in (97), and denote by (β⋆, τ⋆) its

associated saddle point. Define xAO as follows:

[xAO]i :=



















−
√
P , hi ≤ −

√
Pα⋆

hi

α⋆ , −
√
Pα⋆ ≤ hi ≤

√
Pα⋆

√
P , hi ≥

√
Pα⋆

,

where α⋆ = 1/τ⋆+2λ/β⋆ , hi’s are independent standard Gaussian random variables. Then, the following

statements hold true:

1) There exists a function L̂λ,ρ(x) such that

• The function x 7→ L̂λ,ρ(x) is λ
n

-strongly convex for λ > 0 and locally strongly convex in a

neighborhood of xAO when λ = 0 and δ > 1.

• The following convergences holds true:

sup
x

x2
i≤P

∣

∣

∣
L̂λ,ρ(x)− Lλ,ρ(x)

∣

∣

∣

P→ 0,

and

min
x

x2
i≤P

L̂λ,ρ(x)− φ
P→ 0.

2) Let x̃AO be a minimizer of L̂λ,ρ. Then, for any ǫ > 0, with probability approaching 1,

1

n
‖x̃AO − xAO‖ ≤ ǫ,

and

L̂λ,ρ(x
AO) ≤ min

x
x2
i≤P

L̂λ,ρ(x) + ǫ. (106)

Proof. See Section VIII-A.
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Lemma 3. Consider the setting of Lemma 2. Then, the following statements hold true:

1) With probability approaching 1, we have

∣

∣

∣
φ̃λ,ρ(g,h) − φ

∣

∣

∣

P→ 0. (107)

2) Define F̃λ,ρ(u) as

F̃λ,ρ(u) =
1

n
‖xAO‖gTu− 1

n
‖u‖hTxAO −

√
ρ√
n
uT s− ‖u‖2

4
+
λ

n
‖xAO‖2, (108)

then F̃λ,ρ is 1
2 -strongly-concave, and

∣

∣

∣
max
u

F̃λ,ρ(u)− φ
∣

∣

∣

P→ 0. (109)

3) Denote by ũAO the maximizer of F̃λ,ρ:

ũAO = argmax
u

F̃λ,ρ(u),

let uAO be given by

uAO =
β⋆(
√

(τ⋆)2δ − ρg −√
ρs)

τ⋆δ
√
n

,

then for any ǫ > 0, with probability approaching 1,

‖uAO − ũAO‖ ≤ ǫ. (110)

Proof. See Section VIII-B.

C. Proof of Theorem 1

With Lemma 2 at hand, we are now ready to develop Theorem 1. Let f be a Lipschitz function. For

x ∈ R
n we define

F (x) =
1

n

n
∑

i=1

f(xi)

and κ = EH [f(θ(H))]. For any ǫ > 0, define the set

S =
{

x ∈ R
n, x2i ≤ P | |F (x)− κ| ≥ 2ǫ

}

.

Consider the following ’perturbed’ PO and AO problems

ΦS(H) = min
x∈S

Cλ,ρ(x),

and

φS(g,h) = min
x∈S

Lλ,ρ(x).
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To prove the third statement of Theorem 1, it suffices to show that with probability approaching 1,

ΦS(H) > Φλ,ρ(H). (111)

Using the CGMT, and as shown in [15], it suffices to find constants φS and η such that with probability

approaching 1, the following statements hold true:

1) φS ≥ φ+ 3η,

2) φλ,ρ(g,h) ≤ φ+ η,

3) φS(g,h) ≥ φS − η.

Indeed, if the three statements above are satisfied, then from (93),

P
[

ΦS(H) ≤ φS − η
]

≤ 2P
[

φS(g,h) ≤ φS − η
]

,

while from statement 3)

P
[

φS(g,h) ≤ φS − η
]

→ 0.

Hence, with probability approaching 1,

ΦS(H) ≥ φS − η,

and thus, from Statement 1),

ΦS(H) ≥ φ+ 2η. (112)

On the other hand, we can in a similar way use (95) together with Statement 2), to show that with

probability approaching 1,

Φλ,ρ(H) ≤ φ+ η. (113)

Combining (112) with (113) yields the desired relation in (111).

In the remaining, we consider finding φS and η values for which the aforementioned statements hold.

Proof of Statement 2). From Lemma 2, it holds that with probability approaching 1,

φλ,ρ(g,h) ≤ φ+ η,

which shows that Statement 2) holds for any η > 0.

Proof of Statement 3). As a first step, we show that Statement 3) holds if for an appropriate choice of

ǫ̃, it holds that

∀x ∈ S, a

8n

∥

∥x− xAO
∥

∥

2 ≥ ǫ̃. (114)

To see this, recall that from Lemma 2, the function L̂ is a
n

-strongly convex in a neighborhood of xAO.

Moreover, for some ǫ sufficiently small, we have proved in (106) that:

L̂λ,ρ(x
AO) ≤ min

x
L̂λ,ρ(x) + ǫ.
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Hence, from Lemma 4,

∀x, a
8n

‖x− xAO‖2 ≥ ǫ =⇒ L̂λ,ρ(x) ≥ min
x2
i≤P

L̂λ,ρ(x) + ǫ.

Consequently, if for every x ∈ S , (114) holds, then

∀x ∈ S, L̂λ,ρ(x) ≥ min
x2
i≤P

L̂λ,ρ(x) + ǫ̃ ≥ φλ,ρ(g,h) +
ǫ̃

2
.

Hence,

min
x∈S

Lλ,ρ(x) ≥ φλ,ρ(g,h) +
ǫ̃

2
.

With this inequality at hand, we use the fact that for any η > 0, we have with probability approaching 1

φ(g,h) ≥ φ− η.

Hence, for any η ≤ ǫ̃
4 , we obtain

min
x∈S

Lλ,ρ(x) ≥ φ+
1

2
ǫ̃− η,

and hence, Statement 3) holds with φS = φ+ 1
2 ǫ̃.

Proof of (114). In what follows, we will thus consider proving (114). As a first step, we use the weak

law of large numbers to prove the following convergence:
∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(xAO
i )− κ

∣

∣

∣

∣

∣

P→ 0.

Equivalently, for any ǫ̂ > 0, with probability approaching 1, we have

∣

∣F (xAO)− κ
∣

∣ ≤ ǫ̂. (115)

To continue, let x ∈ S , then,

|F (x) − κ| ≥ 2ǫ.

Hence, using (115) yields

∣

∣F (x) − F (xAO)
∣

∣ ≥ |F (x)− κ| −
∣

∣F (xAO)− κ
∣

∣ ≥ 2ǫ− ǫ̂. (116)

Since f is pseudo-Lipschitz of order k, there exists a constant C such that:

∣

∣F (x) − F (xAO)
∣

∣

≤ C

n

n
∑

i=1

(1 + |xi|k−1 +
∣

∣xAO
i

∣

∣

k−1
)
∣

∣xi − xAO
i

∣

∣ (117)

≤ C√
n
‖x− xAO‖



1 +

√

√

√

√

1

n

n
∑

i=1

|xi|2(k−1) +

√

√

√

√

1

n

n
∑

i=1

|xAO
i |2(k−1)



 . (118)
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Since the absolute values of elements of x and x are bounded by
√
P , then

max





√

√

√

√

1

n

n
∑

i=1

|xi|2(k−1),

√

√

√

√

1

n

n
∑

i=1

|xAO
i |2(k−1)



 ≤ P
k−1

2 .

Hence,
∣

∣F (x)− F (xAO)
∣

∣ ≤ C√
n
‖x− xAO‖

(

1 + 2P
k−1

2

)

.

When combined with (116), this shows that

a

8n

∥

∥x− xAO
∥

∥

2 ≥ a

8C2

(2ǫ− ǫ̂)2

(1 + 2P
k−1

2 )2
.

which proves (114) for ǫ̃ = a
8C2

(2ǫ−ǫ̂)2

(1+2P
k−1
2 )2

.

Proof of Statement 1). Recall that from the proof of Statement 3) we have

φS = φ+
1

2
ǫ̃.

Hence, with η ≤ 1
6 ǫ̃, we have

3η ≤ 1

2
ǫ̃⇒ φ+ 3η ≤ φ+

ǫ̃

2
= φS.

D. Proof of Theorem 2

Let f̃ : R2 → R be a Lipschitz function. For (u, s) ∈ R
m × R

m, we define the function F̃ as

F̃ (u, s) =
1

m

m
∑

i=1

f(

√
n

2
ui, si).

For H ∼ N (0, 1) and S a discrete variable taking 1 or −1 with equal probabilities, we define X(H,S)

as

X(H,S) =
β⋆(
√

δ(τ⋆)2 − ρH −√
ρS)

2τ⋆δ
.

Fix ǫ > 0 and define the set S̃ as

S̃ =
{

u ∈ Su|
∣

∣

∣
F̃ (u, s)− EH,S [f(X(H,S), S)]

∣

∣

∣
≥ 2ǫ

}

.

With this definition, it is easily observed that the proof of Theorem 2 reduces to showing that with

probability approaching 1, the solution ûPO /∈ S̃. To prove the desired result, we introduce the following

’perturbed’ PO:

Φ̃S̃(H) = max
u∈S̃

Vλ,ρ(u) (119)

and its associated AO:

φ̃S̃(g,h) = max
u∈S̃

Fλ,ρ(u). (120)
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Obviously, the proof of Theorem 2 is equivalent to showing that with probability approaching 1,

Φ̃S̃(H) < Φ̃λ,ρ(H). (121)

As in the proof of Theorem 1, it suffices to find φ̃S and η for which the following statements hold:

1′) φ̃S ≤ φ− 3η,

2′) φ̃λ,ρ(g,h) ≥ φ− η,

3′) φ̃S̃(g,h) ≤ φ̃S + η.

Indeed, if the above statements hold then Statement 2′) and (96) imply that with probability approaching

1,

Φ̃λ,ρ(H) ≥ φ− η. (122)

Similarly, using (94) and Statement 3′),

Φ̃S̃(H) ≤ φ̃S + η. (123)

Combining (122) and (123) with Statement 1′) yields (121). In what follows, we exploit Lemma 3 to

show that the above statements are true. The proof shares similarities with that of Theorem 1. However,

for the sake of completeness, we provide all the details.

Proof of Statement 2′) Recall that φ̃λ,ρ(g,h) is given by

φ̃λ,ρ(g,h) = max
u∈Su

Fλ,ρ(u).

It follows from Lemma 3 that
∣

∣

∣

∣

max
u∈Su

Fλ,ρ(u)− φ

∣

∣

∣

∣

P→ 0.

Hence, for any η > 0, with probability approaching 1,

φ̃λ,ρ(g,h) ≥ φ− η,

which shows that Statement 2′) is true.

Proof of Statement 3′) To begin with, we show that to prove Statement 3′), it suffices to show that for

an appropriate choice of ǫ̃,

∀u ∈ S̃, ‖u− ũAO‖2 ≥ 2ǫ̃. (124)

Indeed if (124) holds true, then we can exploit the fact that F̃λ,ρ is 1
2− strongly concave to obtain

1

2
‖u− ũAO‖2 ≥ ǫ̃ =⇒ F̃λ,ρ(u) ≤ max

u
F̃λ,ρ(u)− ǫ̃. (125)

Hence, if (124) holds true then, in view of (125),

∀u ∈ S̃, F̃λ,ρ(u) ≤ max
u

F̃λ,ρ(u)− ǫ̃.
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Now, using the fact that F̃λ,ρ(u) ≥ Fλ,ρ(u), we have

∀u ∈ S̃ Fλ,ρ(u) ≤ max
u

F̃λ,ρ(u)− ǫ̃,

and hence,

φ̃S̃(g,h) ≤ max
u

F̃λ,ρ(u)− ǫ̃.

With this inequality at hand, we use the fact that for any η > 0, with probability approaching 1, it holds

that

max
u

F̃λ,ρ(u) ≤ φ+ η.

We thus obtain

φ̃S̃(g,h) ≤ φ+ η − ǫ̃,

and hence Statement 3′) holds with φ̃S = φ− ǫ̃.

Proof (124). In a first step, we show that for any ǫ̂, with probability approaching 1,

∣

∣

∣
F̃ (ũAO, s)− κ̃

∣

∣

∣
≤ 2ǫ̂, (126)

where

κ̃ := E [f(X(H,S), S)] .

Now we invoke the weak law of large numbers to prove that with a probability approaching 1,

∣

∣

∣F̃ (uAO)− κ̃
∣

∣

∣ ≤ ǫ̂. (127)

Since f is pseudo-Lipschitz of order 2, there exists a constant C such that

1

m

m
∑

i=1

∣

∣

∣

∣

f(

√
n

2
ũAO
i , si)− f(

√
n

2
uAO
i , si)

∣

∣

∣

∣

(128)

≤ C
√
n

m

m
∑

i=1

(

1 + ‖
[

√
n

2
ũAO
i , si

]T ‖2 + ‖
[

√
n

2
uAO
i , si

]T ‖2
)

|ũAO
i − uAO

i | (129)

≤ C

( √
n√
m

+
n

2m
‖ũAO‖+ n

2m
‖uAO‖+ 2

√
n

m
‖s‖
)

‖uAO − ũAO‖. (130)

From Lemma 3, it follows that with probability approaching 1,

‖uAO − ũAO‖ ≤ ǫ̂

C
.

As ‖ũAO‖ and ‖uAO‖ are bounded in probability and
√
nm‖s‖ is bounded, the following inequality

holds with probability approaching 1,

1

m

m
∑

i=1

∣

∣

∣

∣

f(

√
n

2
ũAO
i , si)− f(

√
n

2
uAO
i , si)

∣

∣

∣

∣

≤ ǫ̂. (131)
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With this, we can prove (126) by using the following inequality

∣

∣F (ũAO, s) − κ̃
∣

∣ ≤
∣

∣F (ũAO, s)− F (uAO, s)
∣

∣ +
∣

∣F (uAO, s)− κ̃
∣

∣

along with (127) and (131).

Having proven (126), we are now ready to complete the proof of (124). Take u ∈ S̃ . Then,

∣

∣

∣
F̃ (u, s) − κ̃

∣

∣

∣
≥ 2ǫ.

We can thus lower bound F̃ (u, s) − F̃ (uAO, s) as

∣

∣

∣
F̃ (u, s)− F̃ (uAO, s)

∣

∣

∣
≥
∣

∣

∣
F̃ (u, s)− κ̃

∣

∣

∣
−
∣

∣

∣
F̃ (uAO, s)− κ̃

∣

∣

∣
≥ 2ǫ− ǫ̂. (132)

On the other hand, following the same arguments used to obtain (130), there exists a constant K such

that F̃ (u, s) − F̃ (uAO, s) is upper bounded as

∣

∣

∣
F̃ (u, s)− F̃ (uAO, s)

∣

∣

∣
≤ K‖u− uAO‖ ≤ K‖u− ũAO‖+Kǫ̂, (133)

where in the last inequality, we exploited Lemma 3 to use the fact that ‖ũAO−uAO‖ ≤ ǫ̂ with probability

approaching 1. Combining the inequalities in (132) and (133), we have for all u ∈ S̃

‖u− ũAO‖2 ≥
(

2ǫ− ǫ̂

K
− ǫ̂

)2

.

Hence (124) holds true, with ǫ̃ =
( 2ǫ−ǫ̂

K
−ǫ̂)

2

2 .

Proof of Statement 1′) Recall that from the proof of Statement 3′) we have

φ̃S = φ̄− ǫ̃.

Hence, with η < ǫ̃
3 , we have

φ̃S < φ̄− 3η.

VII. PROOF OF LEMMA 1

1) The function β 7→ −β2

4 is strictly concave. We can readily check that β 7→ minτ≥0
τβδ
2 + ρβ

2τ +Y (β, τ)

is concave. Hence, β 7→ D(β, τ) is strictly concave.

2) Noting that Y (β, τ) ≤ 0, it can be easily seen that:

lim
β→∞

min
τ≥0

D(β, τ) ≤ lim
β→∞

−β
2

4
+ min

τ≥0

τβδ

2
+
ρβ

2τ
. (134)

Using the fact that minτ≥0
τβδ
2 + ρβ

2τ = β
√
ρδ, we thus get:

lim
β→∞

min
τ≥0

D(β, τ) = −∞.
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This implies that β⋆ is bounded. To prove that this maximum is bounded below zero, we exploit

the fact that:

lim
β→0

inf
τ≥0

∂D(β, τ)

∂β
= inf

τ≥0

τδ

2
+

ρ

2τ
> 0, (135)

which follows by noticing that limβ→0 infτ≥0
∂Y (β,τ)

∂β
= 0. Indeed, due to (135), for any β in the

vicinity of zero, and all τ > 0,

β
∂D(β, τ)

∂β
≥ 0.

Hence β = 0 does not satisfy the first order optimality condition and hence could not be the one

that maximizes infτ≥0
∂D
∂β

.

Next, we prove that τ⋆ is bounded. For that, we consider separately the cases λ > 0 and {λ = 0, δ > 0}.

Case 1: λ > 0. Note that since D(β, τ) is concave in β and convex in τ ,

τ⋆ = argmin
τ≥0

D(β⋆, τ).

As β⋆ 6= 0, we can easily check that for λ > 0,

lim
τ→∞

D(β⋆, τ) = ∞.

Hence, necessarily τ⋆ is bounded.

Case 2: λ = 0 and δ > 1 In this case, α = 1
τ

and Y (β, τ) simplifies to:

Y (β, τ) = β
√
PE

[(√
P

τ
−H

)

1{H≥
√

P

τ
}

]

− βτ

2
E

[

H21{−
√

P

τ
≤H≤

√
P

τ
}

]

. (136)

If δ > 1, we can obviously see that:

lim
τ→∞

D(β⋆, τ) = lim
τ→∞

β⋆τ

2

(

δ − E

[

H21{−
√

P

τ
≤H≤

√
P

τ
}

])

= ∞. (137)

which again shows that τ⋆ is bounded.

3) Equations (100) and (105) follow directly by writing the first order optimality condition for the

variable τ .

4) When λ = 0 and δ > 1, the asymptotic deterministic max-min problem in (97) simplifies to:

φ = min
τ≥0

max
β≥0

τβδ

2
+
ρβ

2τ
− β2

4
+ βỸ (τ),

where Ỹ (τ) is given by (103). Taking the maximum over β yields the desired.
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VIII. PROOF OF LEMMA 2 AND LEMMA 3

A. Proof of Lemma 2

Asymptotic equivalent for the AO. Recall the function Lλ,ρ(x) defined in (89). We note that the variable

u appears in the objective of (89) through a linear term and through its magnitude, which suggests that one

can first optimize over its direction for fixed amplitude. Formally, we proceed as follows. Let β = ‖u‖2.

The contribution of the terms involving u in (89) can be expressed as:

uT

(

1

n
‖x‖g −

√

ρ

n
s

)

− ‖u‖2
4

− 1

n
‖u‖hTx.

Obviously, the direction of u that optimizes the above expression is the one that aligns with
(

1
n
‖x‖g −

√

ρ
n
s
)

.

Hence, (89) simplifies as:

Lλ,ρ(x) = max
Cβ≥β≥0

ℓλ,ρ(x, β) (138)

with ℓλ,ρ(x, β) defined as:

ℓλ,ρ(x, β) =
β‖g‖√
n

∥

∥

∥

∥

‖x‖g√
n‖g‖ −

√
ρs

‖g‖

∥

∥

∥

∥

− β

n
hTx− β2

4
+
λ‖x‖2
n

. (139)

To continue, we consider proving that

sup
x

x2
i≤P

∣

∣

∣

∣

∣

∥

∥

∥

∥

‖x‖g√
n‖g‖ −

√
ρs

‖g‖

∥

∥

∥

∥

−
√

‖x‖2
n

+
ρm

‖g‖2

∣

∣

∣

∣

∣

→ 0. (140)

For that, we use the relation |√a−
√
b| = |a−b|√

a+
√
b

which holds for any positive a and b with min(a, b) > 0

to get:

∣

∣

∣

∣

∣

∥

∥

∥

∥

‖x‖g√
n‖g‖ −

√
ρs

‖g‖

∥

∥

∥

∥

−
√

‖x‖2
n

+
ρm

‖g‖2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∥

∥

∥

‖x‖g√
n‖g‖ −

√
ρs

‖g‖

∥

∥

∥

2
−
(

‖x‖2

n
+ ρm

‖g‖2

)

∣

∣

∣

∣

∥

∥

∥

‖x‖g√
n‖g‖ −

√
ρs

‖g‖

∥

∥

∥
+
√

‖x‖2

n
+ ρm

‖g‖2

≤

∣

∣

∣

2
√
ρsTg‖x‖√
n‖g‖2

∣

∣

∣

√
ρm

‖g‖
. (141)

It follows from the weak law of large numbers that:

sTg

‖g‖2 → 0.

Using the above convergence together with (141), we thus prove (140).

Define function x 7→ L̂λ,ρ(x) as:

L̂λ,ρ(x) = max
Cβ≥β≥0

ℓ̂λ,ρ(x, β) (142)

with ℓ̂λ,ρ(x, β) given by:

ℓ̂λ,ρ(x, β) :=
β‖g‖√
n

√

‖x‖2
n

+
ρm

‖g‖2 − β

n
hTx− β2

4
+
λ‖x‖2
n

. (143)
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It follows from (140) that:

sup
0≤β≤Cβ

sup
x

x2
i≤P

∣

∣

∣
ℓλ,ρ(x, β)− ℓ̂λ,ρ(x, β)

∣

∣

∣
→ 0.

Hence, for any ǫ > 0, with probability approaching 1, for all feasible x and β, it holds that:

ℓ̂λ,ρ(x, β) − ǫ ≤ ℓλ,ρ(x, β) ≤ ℓ̂λ,ρ(x, β) + ǫ.

Taking the supremum in the above inequalities yields,

L̂λ,ρ(x) − ǫ ≤ Lλ,ρ(x) ≤ L̂λ,ρ(x) + ǫ.

Since ǫ is taken independently of x and β, we thus obtain:

sup
x

x2
i≤P

∣

∣

∣
L̂λ,ρ(x) −Lλ,ρ(x)

∣

∣

∣
→ 0. (144)

Associated with L̂λ,ρ(x), we define the following asymptotic equivalent AO given by:

φ̂λ,ρ(g,h) = min
x

x2
i≤P

L̂λ,ρ(x).

It follows from the uniform convergence in (144) that:

φλ,ρ(g,h) − φ̂λ,ρ(g,h) → 0. (145)

Simplification of φ̂λ,ρ(g,h). To further simplify L̂λ,ρ(x), we use the following variational expression

for the square-root term

√

‖x‖2

n
+ ρm

‖g‖2 ,

√

‖x‖2
n

+
ρm

‖g‖2 = min
τ≥0

τ

2
+

‖x‖2

n
+ ρm

‖g‖2

2τ
. (146)

At optimum, the optimal τ satisfies: τ =
√

‖x‖2

n
+ ρm

‖g‖2 . Since with probability approaching 1, m
‖g‖2 = 1,

the value of the optimal τ is larger than
√
ρ

2 . Similarly, as
‖x‖2

n
≤ P , the value of τ is less than

√
2P + 2ρ. Hence, nothing changes in (146), if we further constrain τ to lie in the interval [

√
ρ

2 , Cτ ]

where Cτ which can be set to any value fixed value larger than
√
2P + 2ρ. This leads to the following

equivalent formulation for φ̂λ,ρ(g,h):

φ̂λ,ρ(g,h) = min
x

x2
i≤P

max
0≤β≤Cβ

min√
ρ

2
≤τ≤Cτ

τβ‖g‖
2
√
n

+
β‖g‖
2τ

√
n

(‖x‖2
n

+
ρm

‖g‖2
)

− β

n
hTx− β2

4
+ λ

‖x‖2
n

. (147)

For convenience, we perform the change of variable τ ↔ τ
√
δ, which leads to:

φ̂λ,ρ(g,h) = min
x

x2
i≤P

max
0≤β≤Cβ

min√
ρ

2
√

δ
≤τ≤Cτ√

δ

τβ
√
δ‖g‖

2
√
n

+
β‖g‖
2τ

√
δn

(‖x‖2
n

+
ρm

‖g‖2
)

− β

n
hTx− β2

4
+ λ

‖x‖2
n

. (148)
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It can be checked by studying the hessian matrix that the objective function in (148) is jointly-convex in

(x, τ) and concave in β. Hence, we may use the Sion’s min-max theorem to permute the min-max and

find

φ̂λ,ρ(g,h) = max
0≤β≤Cβ

min√
ρ

2
√

δ
≤τ≤Cτ√

δ

min
x

x2
i≤P

τβ
√
δ‖g‖

2
√
n

+
β‖g‖
2τ

√
δn

(‖x‖2
n

+
ρm

‖g‖2
)

− β

n
hTx− β2

4
+ λ

‖x‖2
n

. (149)

For fixed β and τ , the minimization over x reduces to solving the following separable optimization

problem:

min
x

−
√
P≤xi≤

√
P

1

n

n
∑

i=1

(

β‖g‖
2τ

√
δn

+ λ

)

x2i − βhixi. (150)

Solving (150) for fixed β and τ , the elements of the optimal x′ = x′(τ, β) are given by:

x
′

i =



















−
√
P if hi < −

√
Pα̃

hi

α̃
if −

√
Pα̃ ≤ hi ≤

√
Pα̃

√
P if hi ≥

√
Pα̃

,

where α̃ = ‖g‖
τ
√
δn

+ 2λ
β

. Replacing x by its optimal value in (150) yields:

min
x

−
√
P≤xi≤

√
P

1

n

n
∑

i=1

(

β‖g‖
2τ

√
δn

+ λ

)

x2i − βhixi =
1

n

n
∑

i=1

v̂i,

where v̂i is given by:

v̂i :=



















βP‖g‖
2τ

√
δn

+ λP + βhi
√
P ifhi ≤ −

√
Pα̃

−βh2
i

2α̃ if −
√
Pα̃ ≤ hi ≤

√
Pα̃

βP‖g‖
2τ

√
δn

+ λP − βhi
√
P ifhi ≥

√
Pα̃

.

With this, we can express φ̂λ,ρ(g,h) as:

φ̂λ,ρ(g,h) = max
0≤β≤Cβ

min√
ρ

2
√

δ
≤τ≤Cτ√

δ

τβ
√
δ‖g‖

2
√
n

+
βρm

2τ
√
δn‖g‖

− β2

4
+

1

n

n
∑

i=1

vi. (151)

Let (β̂n, τ̂n) be the saddle point in the above optimization problem. Since, the objective function is strictly

convex in τ and strictly concave in β over the domain
{

(β, τ) ∈ [0, Cβ ]× [
√
ρ

2
√
δ
, Cτ√

δ
]
}

, this saddle point

is unique. Specifically, this implies that function L̂ admits a unique minimizer x̃AO which is given by:

x̃AO
i =



















−
√
P ifhi ≤ −α̂

√
P

hi

α̂
if − α̂

√
P ≤ hi ≤ α̂

√
P

√
P ifhi ≥ α̂

√
P

,

where α̂ = ‖g‖
τ̂n

√
δn

+ 2λ
β̂n

.
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Asymptotic limits of (β̂n, τ̂n) and φ̂λ,ρ(g,h).

Call R(β, τ) the objective in (151). From the weak law of large numbers, it can be readily seen that:
{

τβ
√
δ‖g‖

2
√
n

+
βρm

2τ
√
δn‖g‖

}

− β2

4
→ τβδ

2
+
βρ

2τ
− β2

4
. (152)

Using the same argument, it can be easily checked that:

1

n

n
∑

i=1

v̂i → Y (β, τ) := β
√
PE

[(√
Pα− 2H

)

1{H≥
√
Pα}

]

− β

2α
E

[

H21{−
√
Pα≤H≤

√
Pα}

]

, (153)

where α = 1
τ
+ 2λ

β
and the expectation is taken with respect to the distribution of the standard normal

variable H .

Putting (152) and (153) together, the objective R(β, τ) converges pointwise to

D(β, τ) :=
τβδ

2
+
ρβ

2τ
− β2

4
+ Y (β, τ).

The objective R(β, τ) is concave in β and convex in τ . The convergence is thus uniform over compacts

and we thus obtain:

φ̂λ,ρ(g,h) → max
0≤β≤Cβ

min√
ρ

2
√

δ
≤τ≤Cτ√

δ

D(β, τ). (154)

Furthermore, using the strict convexity and concavity of D(β, τ) on
{

(β, τ) ∈ R+ × R+ | 0 ≤ β ≤ Cβ,
√
ρ

2
√
δ
≤ τ ≤ Cτ√

δ

}

,

we also have

(β̂n, τ̂n) → (β, τ) := arg max
0≤β≤Cβ

min√
ρ

2
√

δ
≤τ≤Cτ√

δ

D(β, τ).

Unbounded asymptotic AO. Consider the unbounded asymptotic optimization problem:

φ := max
β≥0

min
τ≥0

D(β, τ).

From Lemma 1, the above optimization problem possesses a unique finite saddle point (β⋆, τ⋆). For all

β ≥ 0, it takes no much effort to check that τ 7→ D(τ, β) is decreasing on the interval [0,
√

ρ
δ
]. Hence,

τ⋆ ≥
√

ρ
δ
. From this, we conclude that by choosing Cβ ≥ 2β⋆ and Cτ ≥ 2

√
δτ⋆, we have β = β⋆ and

τ = τ⋆, and consequently,

φ = max
Cβ≥β≥0

min√
ρ

2
√

δ
≤τ≤Cτ√

δ

D(β, τ).

Hence, the convergence in (154) can be equivalently expressed as:

φ̂λ,ρ(g,h) → φ. (155)

On the behavior of function L̂(x). For λ > 0, it can be readily seen that function L̂ is λ
n
−strongly

convex. The objective here is to prove that when λ = 0 and δ > 1, function L̂ is a
n
− strongly convex

on a neighborhood of xAO for some a > 0.
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Starting from (142) and (143), for λ = 0, L̂ simplifies to:

L̂(x) = max
0≤β≤Cβ

βa(x)− β2

4

where a(x) is given by:

a(x) :=
‖g‖√
n

√

‖x‖2
n

+
ρm

‖g‖2 − 1

n
hTx. (156)

To prove that L̂ is strongly convex on a neighborhood of xAO, it suffices to check that there exists c > 0

such that with probability approaching 1,

a(xAO) > c. (157)

Indeed, if (157) holds true, then we can find a ball B centered at xAO with radius r
√
n such that

a(x) ≥ c

2
, ∀x ∈ B.

Since a(x) is positive for x ∈ B, optimizing L̂ with respect to β ∈ [0, Cβ ] yields 4:

L̂(x) = (a(x))2 , ∀x ∈ B.

By Lemma F.14 in [25], function x 7→ a(x) is γ
n

-strongly convex on the ball B for some γ > 0.

Particularly the hessian of a satisfies:

∇2a ≥ γ

n
In.

Computing the Hessian of L̂, we obtain:

∇2a(x) = 2a(x)∇2a(x) +∇a(x)∇a(x) ≥ c
γ

n
In, ∀x ∈ B.

This proves that L̂ is cγ
n

-strongly convex on a neighborhood of xAO. It remains thus to show (157).

Proof of (157). From the weak law of large numbers, the following convergences hold true:

1

n
‖xAO‖2 → 2PP

[

H ≥
√
P

τ⋆

]

+ (τ⋆)2E
[

H21{−
√

P

τ⋆ ≤H≤
√

P

τ⋆ }

]

and

1

n
hTxAO → 2

√
PE

[

H1{H≥
√

P

τ⋆ }

]

+ τ⋆E
[

H21{−
√

P

τ⋆ ≤H≤
√

P

τ⋆ }

]

.

Using the first order optimality condition in (105), we can write the first convergence as:

1

n
‖xAO‖2 → δ(τ⋆)2 − ρ.

4Here we used the fact that a(x) is bounded in probability on B so that Cβ can be chosen larger than a fixed upper bound

of {a(x),x ∈ B}
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Next, we use the facts that
‖g‖√
n
→

√
δ and ρm

‖g‖2 → ρ to obtain:

‖g‖√
n

√

‖xAO‖2
n

+
ρm

‖g‖2 → δτ⋆. (158)

Using again (105), we can easily check the following equality

δτ⋆ =
ρ

τ⋆
+

2P

τ⋆
P

[

H ≥
√
P

τ⋆

]

+ τ⋆E
[

H21{−
√

P

τ⋆ ≤H≤
√

P

τ⋆ }

]

. (159)

Using (159) and (158), we thus obtain:

a(xAO) → a,

where

a =
ρ

τ⋆
+

2P

τ⋆
P

[

H ≥
√
P

τ⋆

]

− 2
√
PE

[

H1{H≥
√

P

τ⋆ }

]

. (160)

It follows from (159) that:

ρ

τ⋆
= δτ⋆ − 2P

τ⋆
P

[

H ≥
√
P

τ⋆

]

− τ⋆E
[

H21{−
√

P

τ⋆ ≤H≤
√

P

τ⋆ }

]

.

Plugging the above relation into (160) yields:

a = δτ⋆ − τ⋆E
[

H21{−
√

P

τ⋆ ≤H≤
√

P

τ⋆ }

]

− 2
√
PE

[

H1{H≥
√

P

τ⋆ }

]

.

To continue, we use the fact that

1{−
√

P

τ⋆ ≤H≤
√

P

τ⋆ } = 1−
(

1{H≥
√

P

τ⋆ } + 1{H≤−
√

P

τ⋆ }

)

to obtain:

a = δτ⋆ − τ⋆ + 2τ⋆E
[

H21{H≥
√

P

τ⋆ }

]

− 2
√
PE

[

H1{H≥
√

P

τ⋆ }

]

.

Finally, using the fact that

H21{H≥
√

P

τ⋆ } ≥
√
PH

τ⋆
1{H≥

√
P

τ⋆ }

we can easily check that:

2τ⋆E
[

H21{H≥
√

P

τ⋆ }

]

− 2
√
PE

[

H1{H≥
√

P

τ⋆ }

]

≥ 0.

Since δ > 1, δτ⋆ − τ⋆ ≥ 0. We thus conclude that a > 0, which shows (157).

Putting all things together. The proof of the first item of Lemma 2 follows directly from the above

analysis. Indeed, considering function L̂λ,ρ in (142), we proved in (144) that:

sup
x

∣

∣

∣
L̂λ,ρ(x)− Lλ,ρ(x)

∣

∣

∣
→ 0.

Based on (155), we have:

min
x

x2
i≤P

L̂λ,ρ(x) → φ.
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To prove the second item in Lemma 2, we let t̂ = min(
√
Pα⋆,

√
Pα̂) and use the fact that:

∣

∣

[

x̃AO
]

i
−
[

xAO
]

i

∣

∣

≤ max

(

|hi|
∣

∣

∣

∣

(

1

α̂
− 1

α⋆

)

1{−t≤hi≤t}

∣

∣

∣

∣

,

∣

∣

∣

∣

hi
α⋆

−
√
P

∣

∣

∣

∣

1{
√
P α̂≤hi≤

√
Pα⋆},

∣

∣

∣

∣

hi
α̂

+
√
P

∣

∣

∣

∣

1{−
√
P α̂≤hi≤−

√
Pα⋆}

)

.

Since α̂− α⋆ converges to zero in probability, for any ǫ > 0, with probability approaching 1,

|α̂− α⋆| ≤ ǫ

and
∣

∣

∣

∣

1

α̂
− 1

α⋆

∣

∣

∣

∣

≤ ǫ.

Hence,

∣

∣

[

x̃AO
]

i
−
[

xAO
]

i

∣

∣ ≤ max

(

ǫt̂

α̂α⋆
,

√
Pǫ

α⋆
,

√
Pǫ

α̂

)

≤
√
Pǫ
(

1 +
ǫ

α⋆

)

(

1

α⋆
+ ǫ

)

.

Choosing ǫ ≤ min(12α
⋆, 1), we thus obtain

∣

∣

[

x̃AO
]

i
−
[

xAO
]

i

∣

∣ ≤ 3

2

√
P (

1

α⋆
+ 1)ǫ.

This shows that:

1

n

∥

∥x̃AO − xAO
∥

∥

2 → 0. (161)

Next, to prove (106), we recall that L̂λ,ρ writes as:

min
x

L̂λ,ρ(x) = max
Cβ≥β≥0

βa(x̃AO)− β2

4
+ λ‖x̃AO‖2,

where x 7→ a(x) is defined in (156). Let

ˆ̂
β = arg max

Cβ≥β≥0
βa(xAO)− β2

4
+ λ‖xAO‖2,

then,

min
x

L̂λ,ρ(x) ≥ ˆ̂
βa(x̃AO)− ˆ̂

β + λ‖x̃AO‖2. (162)

With this we can use (161) to show that:

ˆ̂
βa(x̃AO)− ˆ̂

β + λ‖x̃AO‖2 ≥ ˆ̂
βa(xAO)− ˆ̂

β + λ‖xAO‖2 − ǫ = L̂λ,ρ(x
AO)− ǫ, (163)

and hence, in view of (162), we obtain:

min
x

L̂λ,ρ(x) ≥ L̂λ,ρ(x
AO)− ǫ

which shows (106).
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B. Proof of Lemma 3

1) Proof of (107): We start by proving that:

φ̃λ,ρ(g,h) − φ→ 0. (164)

Recall that φ̃λ,ρ(g,h) is given by:

φ̃λ,ρ(g,h) = max
u∈Su

min
x2
i≤P

1

n
‖x‖gTu− 1

n
‖u‖hTx−

√
ρuT s√
n

− ‖u‖2
4

+
λ‖x‖2
n

, (165)

we first note that:

φ̃λ,ρ(g,h) ≤ φλ,ρ(g,h). (166)

Since φ(g,h) converges in probability to φ, for any η > 0 with probability approaching 1,

φλ,ρ(g,h) ≤ φ+ η

and thus in view of (166),

φ̃λ,ρ(g,h) ≤ φλ,ρ(g,h) ≤ φ+ η.

To prove (164), it suffices to show that with probability approaching 1

φ̃λ,ρ(g,h) ≥ φ− η. (167)

For that, we note that necessarily at optimum hTx ≥ 0 because otherwise −x would lead to a higher

cost. Hence, nothing would change if we write φ̃λ,ρ(g,h) as

φ̃λ,ρ(g,h) = max
u∈Su

min
x2
i≤P

hTx≥0

1

n
‖x‖gTu− 1

n
‖u‖hTx−

√
ρuT s√
n

− ‖u‖2
4

+
λ‖x‖2
n

. (168)

Stating from (168), we can lower bound φ̃(g,h) as

φ̃λ,ρ(g,h) ≥ max
u∈Su

gTu≥0

min
x2
i≤P

hTx≥0

1

n
‖x‖gTu− 1

n
‖u‖hTx−

√
ρuT s√
n

− ‖u‖2
4

+
λ‖x‖2
n

. (169)

We can easily see that the objective function of the above problem is convex in x for any u satisfying

gTu ≥ 0 and concave in u for any x such that xTh ≥ 0. We can thus flip the order of the max-min to

find:

φ̃(g,h) ≥ min
x2
i≤P

hTx≥0

max
u∈Su

gTu≥0

1

n
‖x‖gTu− 1

n
‖u‖hTx−

√
ρuT s√
n

− ‖u‖2
4

+
λ‖x‖2
n

. (170)

If we discard the constraint gTu ≥ 0 and fixing the magnitude of u at β ≥ 0, we can easily see that the

optimal u is given by

u⋆ = β
1
n
‖x‖g −

√

ρ
n
s

‖ 1
n
‖x‖g −

√

ρ
n
s‖



48

and satisfies with probability approaching 1 gTu⋆ ≥ 0. Replacing u by u⋆ in (170),

φ̃(g,h) ≥ min
x2
i≤P

Lλ,ρ(x). (171)

It follows from Lemma 2 that

min
x2
i≤P

Lλ,ρ(x) → φ

or equivalently for any η > 0, with probability approaching 1,

min
x2
i≤P

Lλ,ρ(x) ≥ φ− η,

which in view of (171) implies (167). This proves the convergence in (164).

2) Proof of (109): It can be easily checked that hTxAO ≥ 0. Hence, function F̃λ,ρ is 1
2 -strongly

concave. Moreover, we may use the same calculations as in Lemma 2 to optimize over the direction and

magnitude of u. By doing so, we find:

max
u∈Su

F̃λ,ρ(u) = max
0≤β≤Cβ

β

∥

∥

∥

∥

1

n
‖xAO‖g −

√

ρ

n
s

∥

∥

∥

∥

− β
1

n
hTxAO − β2

4
+
λ

n
‖xAO‖2. (172)

To continue, we use the fact that:

1

n
‖x̃AO − xAO‖ → 0,

to show that

max
u

F̃λ,ρ(u)− L̃λ,ρ(x̃
AO) → 0. (173)

From Lemma 2,

L̃λ,ρ(x̃
AO)− φ→ 0,

which thus in view of (173) implies the convergence in (109).

3) Proof of (110): Clearly, the maximizer of F̃λ,ρ is given by

ũ = β̃
1
n
‖xAO‖g −

√

ρ
n
s

‖ 1
n
‖xAO‖g −

√

ρ
n
s‖
,

where β̃ is given by

β̃ = arg max
0≤β≤Cβ

β

∥

∥

∥

∥

1

n
‖xAO‖g −

√

ρ

n
s

∥

∥

∥

∥

− β
1

n
hTxAO − β2

4
+
λ

n
‖xAO‖2. (174)

We can easily see that β̃−β⋆ → 0. This comes indeed from the facts that (i) 1
n
‖x̃AO−xAO‖ → 0, which

implies that the optimal cost in (174) converges to φ and (ii) the strict concavity of the asymptotic AO

in (97) with respect to β. Using the fact that β̃ − β⋆ → 0, we can thus easily see that:

‖ũAO − ŭAO‖ → 0, (175)
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where

ŭAO = β⋆
1
n
‖xAO‖g −

√

ρ
n
s

‖ 1
n
‖xAO‖g −

√

ρ
n
s‖
.

To continue, we use the weak law of large numbers along with the fixed point equation in (100) to show

that

1√
n
‖xAO‖ →

√

δ(τ⋆)2 − ρ

and
∥

∥

∥

∥

1

n
‖xAO‖g −

√

ρ

n
s

∥

∥

∥

∥

2

→ (τ⋆)2δ2.

Using the above convergence, it takes no much effort to check that

‖ŭAO − uAO‖ → 0,

and thus in view of (175), we have

‖ũAO − uAO‖ → 0.

IX. PROOF OF THE RESULTS FOR THE SPECIAL CASES

A. Proof of Theorem 3

We can prove that as P → ∞, β⋆(P ) and τ⋆(P ) converge to the solutions of the following max-min

problem:

(β⋆, τ⋆) := argmax
β≥0

min
τ≥0

τβδ

2
+
ρβ

2τ
− β2

4
− 1

2

β
1
τ
+ 2λ

β

. (176)

From the first-order optimality conditions, (β⋆RZF, τ
⋆
RZF) are solutions to the following system of equa-

tions:

τδ +
ρ

τ
− β − 1

1
τ
+ 2λ

β

− 2λ

β( 1
τ
+ 2λ

β
)2

= 0, (177)

δ − ρ

τ2
− 1

(1 + 2λτ
β
)2

= 0. (178)

Let s = 2τ
β

. Then, it follows from (178) that

ρ

τ2
= δ − 1

(1 + λs)2
.

Plugging this relation into (177), we may express (177) as

2δ − 2

s
− 1

(1 + λs)2
− 1

1 + λs
− λs

(1 + λs)2
= 0,

or equivalently

δ − 1

s
− 1

1 + λs
= 0.
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The above equation admits a unique positive solution s⋆ given by:

s⋆ =

√

(δ − λ− 1)2 + 4δλ− δ + λ+ 1

2δλ
, (179)

and

β⋆RZF =
2
√
ρ

s⋆
√

δ − 1
(1+λs⋆)2

, (180)

τ⋆RZF =

√
ρ

√

δ − 1
(1+λs⋆)2

. (181)

Finally, plugging the above expressions into the expressions of P ⋆
b , P ⋆

d , P ⋆
e and SINAD

⋆
lb yields the

convergences in (30)-(33).

X. PROOF OF THE RESULTS FOR THE LIMITING CASES

A. Proof of Theorem 5

To begin with, we perform the change of variables τ ′ = τ
√
δ and β′ = β√

δ
and write φ as

φ = max
β′≥0

min
τ ′≥0

τ ′β′δ
2

+
ρβ′δ
2τ ′

− β′2δ
4

+ Y (β′
√
δ,
τ ′√
δ
). (182)

Obviously, the saddle point of φ remain the same if we divide the cost by δ. We will thus consider the

normalized cost φδ given by

φδ = max
β′≥0

min
τ ′≥0

τ ′β′

2
+
ρβ′

2τ ′
− β′2

4
+

1

δ
Y (β′

√
δ,
τ ′√
δ
). (183)

Since τ ′ 7→ Y (β′
√
δ, τ ′√

δ
) is decreasing,

φδ ≥ max
β′≥0

min
τ ′≥0

τ ′β′

2
+
ρβ′

2τ ′
− β′2

4
+ lim

τ ′→∞
1

δ
Y (β′

√
δ,
τ ′√
δ
).

Moreover, we can easily check that

lim
τ ′→∞

1

δ
Y (β′

√
δ,
τ ′√
δ
)

=
(β′)2

2λ

{

E

[

(H −
√
P

2λ

β′
√
δ
)21{H≥

√
P 2λ

β′√δ
}

]

− 1

2

}

(184)

≥ −(β′)2

4λ
. (185)

This together with (183) yields

φδ ≥ max
β′≥0

min
τ ′≥0

τ ′β′

2
+
ρβ′

2τ ′
− β′2

4
− (β′)2

4λ
. (186)
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On the other hand, we have

φδ ≤ max
β≥0

[

τ ′β′

2
+
ρβ′

2τ ′
− β′2

4
+

1

δ
Y (β′

√
δ,
τ ′√
δ
)

]

τ ′=
√
ρ

(187)

= max
β≥0

min
τ ′≥0

τ ′β′

2
+
ρβ′

2τ ′
− β′2

4
+

1

δ
Y (β′

√
δ,

√
ρ√
δ
), (188)

where the last equality follows by noticing that function τ ′

2 + ρ
2τ ′ takes its minimum when τ ′ =

√
ρ.

Function β′ 7→ minτ ′≥0
τ ′β′

2 + ρβ′

2τ ′ − β′2

4 + 1
δ
Y (β′

√
δ,

√
ρ√
δ
) is concave and tends to −∞ as β → ∞.

Moreover, as δ tends to zero,

lim
δ→0

1

δ
Y (β′

√
δ,

√
ρ√
δ
) = −(β′)2

4λ
.

Hence, using Lemma 10 in [15], we thus have

lim
δ→0

max
β′≥0

min
τ ′≥0

τ ′β′

2
+
ρβ′

2τ ′
− β′2

4
+

1

δ
Y (β′

√
δ,

√
ρ√
δ
)

= max
β′≥0

min
τ ′≥0

τ ′β′

2
+
ρβ′

2τ ′
− (β′)2

4
− (β′)2

4λ
.

Combining this with (188) and (186) we obtain

lim
δ→0

φδ = max
β′≥0

min
τ ′≥0

τ ′β′

2
+
ρβ′

2τ ′
− (β′)2

4
− (β′)2

4λ
.

The saddle point of the limiting max-min problem in the above equation is unique and is given by:

(β
′
=

2
√
ρ

1+ 1

λ

, τ ′ =
√
ρ). Therefore, letting β̂′(δ) and τ̂ ′(δ) be the saddle point of the max-min problem in

(182), we have

lim
δ→0

β̂′(δ) =
2
√
ρ

1 + 1
λ

and

lim
δ→0

τ̂ ′(δ) =
√
ρ.

Finally, going back to the original variables τ = τ ′√
δ

and β =
√
δβ′ yields the convergences in (40)

and (41). Using these convergences in the asymptotic expressions of P ⋆
b , P ⋆

d , P ⋆
e and SINAD

⋆
lb, we can

directly obtain (42)-(45).

B. Proof of Theorem 6

Similar to the proof of Theorem 5, we work with the change of variable τ ′ = τ
√
δ and β′ = β√

δ
and

consider the max-min problem in (183). As a first step, we prove that the optimal τ ′ lies in the bounded

interval [0, 2
√
ρ+ 1] for sufficiently large δ. To see this, we begin by rewriting φδ as

φδ = max
β′≥0

β′
(

min
τ ′≥0

τ ′

2
+

ρ

2τ ′
+

1

δ
Y (β′, τ ′)

)

− (β′)2

4
, (189)
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where:

Y (β′, τ ′) =

√
δ

αδ

(

E

[

(H −
√
Pαδ)

21{H≥
√
Pαδ}

]

− 1

2

)

,

where αδ =
√
δ

τ ′ + 2λ√
δβ′ . Next, we define φδ,1(β) and φδ,2(β) as the optimal costs of the minimization

problem in (189) when τ is constrained in the interval [0, 2
√
ρ+ 1] and in the interval [2

√
ρ+ 1,∞],

respectively, namely:

φδ,1(β) = min
0≤τ ′≤2

√
ρ+1

τ ′

2
+

ρ

2τ ′
+

1

δ
Y (β′, τ ′), (190)

φδ,2(β) = min
τ ′≥2

√
ρ+1

τ ′

2
+

ρ

2τ ′
+

1

δ
Y (β′, τ ′). (191)

Since 1
δ
Y (β′, τ ′) ≤ 0, for any fixed β′,

φδ,1(β) ≤ min
0≤τ ′≤2

√
ρ+1

τ ′

2
+

ρ

2τ ′
=

√
ρ. (192)

On the other hand, one can easily check that:

1

δ
Y (β′, τ ′) ≥ − 1√

δαδ

≥ −τ
′

δ
.

Hence,

φδ,2(β) ≥ min
τ ′≥2

√
ρ+1

τ ′

2
+

ρ

2τ ′
− τ ′

δ
.

Now, function τ ′ 7→ τ ′

2 + ρ
2τ ′ − τ ′

δ
is non-decreasing on the interval [

√
ρ√

1− 1

δ

,∞). Hence, for δ ≥ 4
3 , this

function is non-decreasing on the interval [2
√
ρ+ 1,∞). Consequently, for sufficiently large δ,

φδ,2(β) ≥
√

ρ+ 1

(

1− 2

δ

)

+
ρ

4
√
ρ+ 1

=
√

ρ+ 1

(

5

4
− 2

δ

)

− 1

4
√
ρ+ 1

. (193)

Obviously, when δ ≥ 8, one can check that:

√

ρ+ 1

(

5

4
− 2

δ

)

− 1

4
√
ρ+ 1

≥
√

ρ+ 1− 1

4
√
ρ+ 1

≥ √
ρ,

and thus:

φδ,2(β) ≥
√
ρ. (194)

Combining (192) with (194), we thus conclude that for δ ≥ 8, the optimal τ ′ lies in the interval

[0, 2
√
ρ+ 1]. As a result, for sufficiently large δ, φδ writes as

φδ = max
β′≥0

β′
(

min
0≤τ ′≤2

√
ρ+1

τ ′

2
+

ρ

2τ ′
+

1

δ
Y (β′, τ ′)

)

− (β′)2

4
.

With the new rewriting above of φδ, we are now ready to prove the desired result. For that, similar to

Lemma 5, we prove that

lim
δ→∞

φδ = max
β′≥0

β′
(

min
0≤τ ′≤2

√
ρ+1

τ ′

2
+

ρ

2τ ′

)

− (β′)2

4
. (195)
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Indeed, if (195) holds true, then one can easily check that the saddle point of the max-min problem is

unique and is equal to β
′
= 2

√
ρ, τ ′ =

√
ρ. Hence, denoting by β̂′(δ) and τ̂ ′(δ) the saddle point of the

optimization problem in (189), we thus have

lim
δ→∞

β̂′(δ) = 2
√
ρ, (196)

lim
δ→∞

τ̂ ′(δ) =
√
ρ. (197)

Hence, going back to the original variables τ = τ ′√
δ

and β =
√
δβ′ yields the sought-for result. To prove

(195), we use the fact that since the objective function tends to −∞ as β′ grows to ∞, the optimal β′

is bounded by a constant Cβ′ . Based on this, it clearly suffices to show that

lim
δ→∞

sup
0≤β′≤Cβ′

0≤τ ′≤2
√
ρ+1

∣

∣

∣

∣

1

δ
Y (β′, τ ′)

∣

∣

∣

∣

→ 0 (198)

to obtain (195) and thus the desired results in (196) and (197). To show (198), we use the fact that since

Y (β′, τ ′) ≤ 0, we have
∣

∣

∣

∣

1

δ
Y (β′, τ ′)

∣

∣

∣

∣

≤ 1

2
√
δαδ

≤ τ ′

δ
,

and thus,

sup
0≤β′≤Cβ′

0≤τ ′≤2
√
ρ+1

∣

∣

∣

∣

1

δ
Y (β′, τ ′)

∣

∣

∣

∣

≤ 2
√
ρ+ 1

δ
→

δ→∞
0.

This completes the proof of (196) and (197) and thus that of the convergences in (46) and (47). Using

these convergences into the expressions of P ⋆
b , P ⋆

d , P ⋆
e and SINAD

⋆
lb, the convergences in (48)-(51)

follow easily.

C. Proof of Theorem 7

To begin with, we perform the change of variables τ
′
= τ/

√
ρ and β

′
= β/

√
ρ to write φ̄ as

φ = max
β′≥0

min
τ ′≥0

τ ′β′δρ
2

+
ρβ′

2τ ′
− β′2ρ

4
+ Y (β′

√
ρ, τ ′

√
ρ). (199)

Obviously, the saddle point of φ remain the same if we divide the cost by ρ. We will thus consider the

normalized cost φρ given by

φρ = max
β′≥0

min
τ ′≥0

τ ′β′δ
2

+
β′

2τ ′
− β′2

4
+

1

ρ
Y (β′

√
ρ, τ ′

√
ρ). (200)

It takes no much effort to see that

1

ρ
Y (β′

√
ρ, τ ′

√
ρ) ≥ −1

2

β′

1
τ ′ +

2λ
β′

, (201)
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which directly implies that

φρ ≥ φρ,lb, (202)

where

φρ,lb := max
β′≥0

min
τ ′≥0

τ ′β′δ
2

+
β′

2τ ′
− β′2

4
− 1

2

β′

1
τ ′ +

2λ
β′

. (203)

Denote by τ ′ and β
′

optimal solutions in (τ, β) to (203). It is easy to check that the optimization problem

in (203) is the same one as in (176) (Proof of Theorem 3) when ρ = 1. Hence, based on the proof of

Theorem 3, we conclude that τ ′ and β
′

are unique and are given by

τ ′ =
1

√

δ − 1
(1+λs⋆)2

, (204)

β
′
=

2

s⋆
√

δ − 1
(1+λs⋆)2

, (205)

where s⋆ is defined in (179). To continue, we note that

φρ ≤ φρ,up,

where

φρ,up := max
β′≥0

τ ′β′δ
2

+
β′

2τ ′
− β′2

4
+

1

ρ
Y (β′

√
ρ, τ ′

√
ρ). (206)

The objective function in (206) is concave in β′ and tends to −∞ as β′ grows to infinty. From Lemma

10 in [15],

lim
ρ→0

φρ,up = max
β′≥0

τ ′β′δ
2

+
β′

2τ ′
− β′2

4
+ lim

ρ→0

1

ρ
Y (β′

√
ρ, τ ′

√
ρ).

For fixed β′, it can be readily seen that

lim
ρ→0

1

ρ
Y (β′

√
ρ, τ ′

√
ρ) = −1

2

β′

1
τ ′ + 2λ

β′

and thus

lim
ρ→0

φρ,up = max
β′≥0

τ ′β′δ
2

+
β′

2τ ′
− β′2

4
− 1

2

β′

1
τ ′ + 2λ

β′

.

This in combination with (202) yields:

lim
ρ→0

φρ = max
β′≥0

τ ′β′δ
2

+
β′

2τ ′
− β′2

4
− 1

2

β′

1
τ ′ + 2λ

β′

. (207)

Let β̂′(ρ) and τ̂ ′(ρ) be solutions to (199). Then, based on (207) and using the uniqueness of the solutions

τ ′ and β
′
, we have

lim
ρ→0

τ̂ ′(ρ) = τ ′, (208)

lim
ρ→0

β̂′(ρ) = β
′
. (209)
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Hence, going back to the original variables τ
′
= τ/

√
ρ and β

′
= β/

√
ρ yields the convergences in (54)

and (55).

D. Proof of Theorem 8

The proof is organized in two parts. In the first part, we follow the same line steps as in the proof of

Theorem 6 to show that

lim
ρ→∞

τ⋆(ρ)
√

ρ
δ

= 1 and lim
ρ→∞

β⋆(ρ)

2
√
ρδ

= 1. (210)

In a second step, we use the fixed point equations in (100) to refine the approximation in (210).

First part: Proof of (210). We start by performing the change of variables τ ′ = τ√
ρ

and β′ = β√
ρ

to

write φ as

φ = max
β′≥0

min
τ ′≥0

τ ′β′ρδ
2

+
ρβ′

2τ ′
− ρ(β′)2

4
+ Y (β′

√
ρ, τ ′

√
ρ).

For convenience, we consider the normalized cost φρ given by

φρ = max
β′≥0

min
τ ′≥0

β′
(

τ ′δ
2

+
1

2τ ′
+

1√
ρ
Y ρ,1(α

′)− 1

2α′ Y ρ,2(α
′)
)

− (β′)2

4
, (211)

where

Y ρ,1(α
′) =

√
PE

[

(

√
P√
ρ
α′ − 2H)1{H≥

√
P√
ρ
α′}

]

, (212)

Y ρ,2(α
′) = E

[

H21{−
√

P√
ρ
α′≤H≤

√
Pα′
√

ρ
}

]

, (213)

with α′ = 1
τ ′ +

2λ
β′ . Note that to find (211), we used the expression of Y (β, τ) in (98) instead of (99).

To continue, we need to show that

lim
ρ→∞

sup
β′≥0
τ ′≥0

1√
ρ

∣

∣Y ρ,1(α
′)
∣

∣→ 0, (214)

and

lim
ρ→∞

sup
β′≥0
τ ′≥0

1

2α′Y ρ,2(α
′) → 0. (215)

Proof of (214). To begin with, we note that

1√
ρ

∣

∣Y ρ,1(α
′)
∣

∣ ≤
√
P√
ρ
E

[

|2H|1{H≥
√

P√
ρ
α′}

]

≤
√
P√
ρ
E [|2H|] . (216)

Hence,

sup
β′≥0
τ ′≥0

1√
ρ

∣

∣Y ρ,1(α
′)
∣

∣ ≤
√
P√
ρ
E [|2H|] →

ρ→∞
0.
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Proof of (215). Clearly, Y ρ,2(α
′) can be upper bounded as:

|Y ρ,2(α
′)| ≤ α′

√
P√
ρ
E

[

|H|1{|H|≤
√

P√
ρ
α′}

]

(217)

≤ α′
√
P√
ρ
E[|H|], (218)

which yields:

sup
β′≥0
τ ′≥0

1

2α′ |Y ρ,2(α
′)| ≤ 1

2

√
P√
ρ
E[|H|] →

ρ→∞
0.

With (214) and (215) at hand, we obtain

lim
ρ→∞

φρ = max
β′≥0

min
τ ′≥0

β′
(

τ ′δ
2

+
1

2τ ′

)

− (β′)2

4
.

The above limiting optimization problem possesses a unique saddle point given by (β′ = 2
√
δ, τ ′ = 1√

δ
).

Denoting by β̂′(ρ) and τ̂ ′(ρ) the saddle point of the optimization problem in (211), we thus obtain

lim
ρ→∞

β̂′(ρ) = 2
√
δ and lim

ρ→∞
τ̂ ′(ρ) =

1√
δ
.

Hence, going back to the original variables τ =
√
ρτ ′ and β =

√
ρβ′ yields the convergence in (210).

Second part: Approximation’s refinements. Denoting by α⋆(ρ) = 1
τ⋆(ρ) +

2λ
β⋆(ρ) , it follows from the

convergence in (210) that α⋆(ρ) goes to zero and verifies the following convergence:

lim
ρ→∞

α⋆(ρ)
√

δ
ρ
+ λ√

ρδ

= 1.

To continue, we exploit the fixed point equation in (100) and rewrite it as

(τ⋆)2δ − ρ = 2Pf1(
√
Pα⋆) +

1

(α⋆)2
(1− 2f2(

√
Pα⋆)), (219)

where functions f1 and f2 are given by

f1(x) =
1√
2π

∫ ∞
√
Px

exp(− t
2

2
)dt, (220)

f2(x) =
1√
2π

∫ ∞
√
Px

t2 exp(− t
2

2
)dt. (221)

By using standard calculations, we may expand the Taylor expansion of f1(
√
Pα⋆) and f2(

√
Pα⋆) for

α near zero as

f1(
√
Pα⋆) =

1

2
−

√
P√
2π
α⋆ +O((α⋆)2), (222)

f2(
√
Pα⋆) =

1

2
− P 3(α⋆)3

3
√
2π

+O((α⋆)4). (223)
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Plugging the above approximations into (219) yields:

(τ⋆(ρ))2δ − ρ = P +
2P 2

√
2π

(

P

3
− 1

)

α⋆ +O((α⋆)2) (224)

= P +
2P 2

√
2π

(

P

3
− 1

)

(
√

δ

ρ
+

λ√
ρδ

)

+O(
1

ρ
) (225)

and hence, we get after straightforward calculations:

τ⋆(ρ) =

√
ρ√
δ
+

P

2
√
δρ

+O(
1

ρ
). (226)

To find a similar approximation for β⋆(ρ), we first take the derivative in (97) with respect to β to obtain

the following relation

β⋆(ρ) = τ⋆(ρ)δ +
ρ

τ⋆(ρ)
+ 2

∂Y

∂β
(β⋆, τ⋆). (227)

Simple calculations leads to

∂Y

∂β
= −

√
2P√
π

+O(
1√
ρ
).

Plugging this together with (226) into (227) yields

β⋆(ρ) = 2
√

ρδ − 2

√
2P√
π

+O(
1√
ρ
). (228)

Finally, plugging the asymptotic equivalences (226) and (228) into the asymptotic expressions of P ⋆
b , P ⋆

d ,

P ⋆
e and SINADlb, we obtain the convergences in (68)-(71).

XI. A USEFUL TECHNICAL LEMMA

Lemma 4 (Lemma B1 in [25]). Let f be a convex function in R
n. Let x be in R

n and r > 0. Assume

that f is γ-strongly convex on the ball B(x, r) for some γ > 0. Assume that

f(x) ≤ min
x∈B(x,r)

f(x) + ǫ

for some ǫ < r2γ
8 . Then, the following statements hold true:

1) f admits a unique minimizer x⋆ over R
n. Moreover, x⋆ ∈ B(x, r) and hence

‖x⋆ − x‖ ≤ 2

γ
ǫ.

2) For every x ∈ R
n,

‖x− x‖2 ≥ 8

γ
ǫ =⇒ f(x) ≥ min f + ǫ.
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