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A Semi-Blind Method for Localization of
Underwater Acoustic Sources

Amir Weiss, Toros Arikan, Hari Vishnu, Grant B. Deane, Andrew C. Singer, and Gregory W. Wornell

Abstract—Underwater acoustic localization has traditionally
been challenging due to the presence of unknown environmental
structure and dynamic conditions. The problem is richer still
when such structure includes occlusion, which causes the loss of
line-of-sight (LOS) between the acoustic source and the receivers,
on which many of the existing localization algorithms rely. We
develop a semi-blind passive localization method capable of
accurately estimating the source’s position even in the possible
absence of LOS between the source and all receivers. Based
on typically-available prior knowledge of the water surface and
bottom, we derive a closed-form expression for the optimal
estimator under a multi-ray propagation model, which is suitable
for shallow-water environments and high-frequency signals. By
exploiting a computationally efficient form of this estimator, our
methodology makes comparatively high-resolution localization
feasible. We also derive the Cramér-Rao bound for this model,
which can be used to guide the placement of collections of
receivers so as to optimize localization accuracy. The method
improves a balance of accuracy and robustness to environmental
model mismatch, relative to existing localization methods that
are useful in similar settings. The method is validated with
simulations and water tank experiments.

Index Terms—Localization, non-line-of-sight, underwater
acoustics, matched field processing, maximum likelihood,
Cramér-Rao bound, Cholesky decomposition.

I. INTRODUCTION

Underwater localization of acoustic sources is an important
and challenging problem, and arises in a wide range of
applications [1]–[3]. As such, it has been extensively addressed
in the literature, where early work dates back to at least the
mid-1970s [4]. Fruitful combinations of advanced signal pro-
cessing methods and detailed underwater acoustic propagation
models have led to a variety of methods for different regimes
(shallow/deep water, short/long distances, etc.) [5], [6].

While an abundance of methods have been developed and
proposed over the years, only a portion of these survive the
ruthless test of practicality. Indeed, from a practical point of
view, a good applicable method is one that, on the one hand
exploits as much prior knowledge as possible, but on the other
hand does not go too far by assuming access to unavailable
information/resources. In the context of passive underwater
acoustic localization, our goal in this work is to provide a
robust algorithm, while judiciously balancing this trade-off.

In particular, we consider scenarios where the area of
interest is characterized by shallow waters (say, up to ∼ 100 m
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depth [7]) and relatively short distances (say, up to ∼ 1 km).
In this regime, under a few additional realistic assumptions
(stated explicitly in the sequel), the acoustic signal propa-
gation can be approximated by ray trace modeling [7], [8].
This allows us to exploit the multipath channel effect, rather
than mitigate it. In other words, we explicitly incorporate
prior knowledge on the structure of the environment, which
either allows us to successfully localize using fewer resources
(e.g., sensors or measurements), or to improve performance
while using the same resources. Moreover, we are capable
of localizing a source in the complete absence of line-of-
sight (LOS) signal components, based on non-LOS (NLOS)
signal reflections. Naturally, these notions have already been
considered in some settings, as reviewed in what follows.
A. Related Work: Underwater Acoustic Localization

For short-range localization in shallow-water environments,
straight-ray tracing is a widely-accepted approximation for
acoustic signal propagation [7], [8]. In such environments, the
speed of sound is (at least approximately) constant1 and known
in the relevant volume of interest. Therefore, propagation
delay, namely time of arrival (TOA) or time-difference of
arrival (TDOA) (e.g., [10], [11]), is usually employed as a
basis for different localization methods [12]. However, since
the underwater acoustic environment typically induces a rich
multipath channel [13], the measured signals contain both LOS
and NLOS components. Under such circumstances, the per-
formance of TOA/TDOA-based methods usually deteriorates,
possibly up to unacceptable error levels.

Since the complete multipath channel is (generally) un-
known, a possible remedy is to first identify and separate the
LOS components. Diamant, et al. propose in [14] a method
for classifying the signal components as LOS and NLOS, and
for subsequent range estimation based on the classified LOS
components. While this approach can certainly work, it does
not attempt to exploit the NLOS reflections, which contain
valuable information on the unknown source location. Emok-
pae and Younis propose in [15] a surface-reflection-based
method in an active setting, where only the surface reflections
are exploited. In [16], Emokpae, et al. present an extended,
enhanced version of this notion, where a scheme that employs
both the LOS and surface-reflected NLOS components is
developed to locate a lost (drifted away) node of an underwater
sensor network. To use this method, all nodes in the network
are required to have a sensor array, with more than one sensor,
and the waveform emitted from the lost node (i.e., source) is
assumed to be known, which is not always possible and less

1Nearly constant sound speed may be found, e.g., in very shallow waters,
or shallow waters that are well-mixed [9].

ar
X

iv
:2

11
0.

14
76

7v
2 

 [
ee

ss
.S

P]
  2

 F
eb

 2
02

3



2

common in passive settings. Assuming that perfect knowledge
of the physical model is available, which translates into an
equivalent impulse response, matched field processing (MFP)
[17] is a well-known technique that makes full use of the
environmental structure for enhanced localization. However, as
mentioned in [18], in realistic applications model mismatch is
a serious problem for MFP, on top of its heavy computational
workload. Recent increasing efforts towards reducing system
cost [19], [20] and computational complexity [21], [22], while
exploiting environmental structure [23], motivate our current
work.

B. Semi-Blind Localization: Motivation and Contributions
We propose a semi-blind localization (SBL) method that

uses a spatially diverse network of receivers. Each receiver is
required to have a single sensor (rather than a sensor array, as
in [16]), which reduces hardware requirements, and hence the
overall cost of the system.2 The information lost by restricting
the number of sensors is mitigated by leveraging available
partial prior knowledge on the structure of the environment,
namely the depths of the sensors and the ocean bottom. Our
SBL method, developed in a nonBayesian framework, jointly
estimates the associated parameters of the implied impulse
response with the unknown source position, and thus can be
viewed as a form of focalization [18]. However, it is more
naturally related to the direct position determination approach
[25], originally proposed for narrowband radio frequency
signals. We show that with some carefully chosen adaptations,
a similar, though generalized approach leads to our SBL
method,3 which provides a good balance between accuracy and
robustness to some physical model mismatch. We demonstrate
this via simulation experiments by comparing to MFP and to
the TDOA method referred to as “generalized cross-correlation
with phase transform” (GCC-PHAT) [26]–[28], which is well-
known due to its resilience to multipath.

We note in passing that if additional knowledge of the
environment is available, one may consider taking a Bayesian
approach, and incorporate the available knowledge by intro-
ducing an appropriate prior distribution on (all or some of) the
unknowns. In this work, we take a nonBayesian approach.

Our main contributions are the following:
• A novel SBL method for underwater acoustic sources: We

adopt the widely-accepted straight-ray tracing approach
for shallow-water to define a three-ray model, which
explicitly takes into account the NLOS surface and bot-
tom signal reflections. Consequently, on top of enhanced
accuracy due to this multipath model, our method is
capable of localization in the absence of LOS, due to
a potential occluder, such as a vessel or pier pilings.

• Computationally efficient direct localization: Contrary to
indirect (e.g., TDOA-based), standard localization meth-
ods (e.g., [29]–[31]), we take a different approach, in
which our algorithm is applied directly to the observed
signals. Consequently, the notion of TDOA is redun-
dant in our framework. Specifically, we assume that the

2In an application such as the ocean-of-things [3], an optimal subset of
sensors could be chosen from a larger set of sensors [24].

3In contrast to the previous claim in [25], that this approach “is suitable
only for RF signals and not for underwater emitter location”.

Fig. 1: A 2-dimensional illustration of the three-ray model. When the surface
and bottom are approximately flat in the operational area [33], [34], this model
enables NLOS-based localization in the potential absence of the LOS signal
component, e.g., due to an occluder.

source’s waveform is unknown, and in particular, we do
not assume it is a pulse-type signal. We provide a com-
putationally efficient algorithm to the resulting nonlinear
optimization problem (see Section IV, Proposition 3), and
demonstrate that the algorithm works well for pulse- or
non-pulse-type signals in Section VI.

• Lower bound on asymptotic performance: We develop the
Cramér-Rao lower bound (CRLB) on the mean-squared
error (MSE) of any unbiased localization method for a
special case of our signal model, in which our proposed
solution coincides with the maximum likelihood estimate
(MLE) of the source position. We demonstrate the va-
lidity of this bound with respect to ocean ambient noise,
using previously collected ocean acoustic recordings [32].

• Applicability proof of concept: We provide a proof of con-
cept, demonstrated on acoustic measurements collected in
a well-controlled, small-scale water tank, which provides
an acoustically frequency-scaled model for the shallow-
water environment.

The rest of the paper is organized as follows. The remainder
of this section is devoted to an outline of our notation. In
Section II we formulate the problem for the three-ray signal
model depicted in Fig. 1, and the MFP solution of this model
is presented in Section III. The main results, including our
proposed SBL method, are presented in Section IV. In Sec-
tion V we derive the respective CRLB, and present empirical
simulation results that corroborate our analytical derivation in
Section VI. Concluding remarks are provided in Section VIII.

C. Notation
We use x, x, and X for a scalar, column vector and

matrix, respectively. The superscripts (·)T, (·)∗, (·)H, and
(·)−1 denote the transposition, complex conjugation, conjugate
transposition, and inverse operators, respectively. We use IK
to denote the K ×K identity matrix, and O for the all-zeros
matrix. The pinning vector ek denotes the k-th column of the
identity matrix, with context-dependent dimension. Further,
δk` , eT

k e` denotes the Kronecker delta of k and `. E[·]
denotes expectation, λmax (·) denotes the largest eigenvalue
of its (square) matrix argument, and the Diag(·) operator
forms an M × M diagonal matrix from its M -dimensional
vector argument. The Kronecker product is denoted by ⊗. We
use  (a dotless j) to denote

√
−1; <{·} and ={·} denote

the real and imaginary parts (respectively) of their complex-
valued arguments. The `2 norm is denoted by ‖·‖2, and rank(·)
denotes the rank of its matrix argument. The symbols R and C
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denote the real line and complex plane, respectively. We use x
to denote the (normalized) discrete Fourier transform (DFT)
of x, and x̂ to denote an estimate thereof. We use O(·) to
denote the standard big O notation [35].

II. PROBLEM FORMULATION

Consider L spatially-diverse, time-synchronized receivers at
known locations, each consisting of a single omni-directional
hydrophone.4 Furthermore, consider the presence of an un-
known signal in an isotropic homogeneous medium, emit-
ted from a source whose deterministic, unknown position
is denoted by the vector of coordinates p ∈ R3×1. We
assume that the source is static, and is located sufficiently far
from all L receivers to permit a planar wavefront (far-field)
approximation in the shallow-water waveguide. Each receiver
records the measured acoustic signal on a fixed observation
time interval, which after sampling and baseband conversion
amounts to N samples. We further assume that the area of
operation can be considered as a shallow-water environment,
and that the ocean floor depth in the relevant area of operation5

is approximately constant [36]. We restrict our scope to
(approximately) isovelocity environments and high frequency
signals, in which the straight-ray model approximately holds.
Since we focus on short ranges in shallow-water environments,
we neglect nonlinear propagation effects in the waveguide.

Although the underwater acoustic channel generally gives
rise to an equivalent rich multipath channel, a relatively simple,
yet useful, approach is the three-ray model, illustrated in
Fig. 1. In this approach, the modeled signal components are:

1) The direct-path LOS component;
2) The surface reflection NLOS component; and
3) The bottom reflection NLOS component.

Accordingly, the associated distances traveled by these com-
ponents from the source to the `-th receiver are given by [37]

R1` , ‖p` − p‖2, (LOS) (1)

R2` ,
»
ρ2
` + (zp + z`)2, (NLOS surface) (2)

R3` ,
»
ρ2
` + (2h− zp − z`)2, (NLOS bottom) (3)

where p , [xp yp zp]
T; p` , [x` y` z`]

T is the position
of the `-th receiver; ρ` ,

√
(xp − x`)2 + (yp − y`)2 is the

horizontal distance between the source and the `-th receiver;
and h is the bottom depth in the area of interest. An illustration
of the geometry associated with (1)–(3) in our coordinate
system is given in Fig. 2. Therefore, assuming isovelocity,
the associated time-delays of these components are

τr`(p) , Rr`
c
, r ∈ {1, 2, 3}, ∀` ∈ {1, . . . , L}, (4)

where c denotes the speed of sound, assumed to be known.
This model can be viewed as a third-order approxima-

tion (with respect to the delayed signal components) of the
equivalent impulse response of an acoustic channel, whose
energy is concentrated in the three arrivals corresponding to
the LOS component, and the surface and bottom reflections.

4We focus on the single sensor case for convenience. However, our
methodology can in principle be used when the receivers have sensor arrays.

5The smallest rectangular area encompassing the source and receivers.

Fig. 2: A 3-dimensional illustration of the geometry leading to (1)–(3).

While some unpredictable factors can give rise to additional
components in the induced impulse response, the surface and
bottom of the ocean are always present. Therefore, it is reason-
able to incorporate these additional signal components into the
model. Moreover, this simplified model allows for successful
localization in the absence of (even all) LOS components in
the received signals, a situation that may occur, e.g., due to
the presence of potential occluders. This will be demonstrated
via simulations and experiments with real data in Section VI.

A. Baseband Signal Model

Formally, and assuming the source has been detected in a
given frequency band, the sampled, baseband-converted signal
from the `-th receiver is given by

x`[n] =
3∑

r=1

br`sr`[n] + v`[n] , sT
` [n]b` + v`[n] ∈ C,

∀n ∈ {1, . . . , N}, ∀` ∈ {1, . . . , L},
(5)

where we have defined s`[n] = [s1`[n] s2`[n] s3`[n]]T ∈
C3×1, b` = [b1` b2` b3`]

T ∈ C3×1, and where
1) br` ∈ C denotes the unknown attenuation coefficient from

the source to the `-th sensor associated with the r-th
component (LOS or surface/bottom NLOS reflection);

2) sr`[n] , s (t− τr`(p))|t=nTs ∈ C denotes the sampled
r-th component of the unknown signal waveform at the `-
th sensor, where s (t− τr`(p)) is the analog, continuous-
time waveform delayed by τr`(p), and Ts is the (known)
sampling period; and

3) v`[n] ∈ C denotes the additive noise at the `-th receiver,
representing the overall contributions of internal receiver
noise and ambient noise, modeled as a zero-mean random
process with an unknown variance σ2

v`
.

B. Equivalent Formulation in the Frequency Domain

Applying the normalized DFT to (5) yields the equivalent
frequency-domain representation for all ` ∈ {1, . . . , L},

x`[k] =

3∑

r=1

br`s[k]e−ωkτr`(p) + v`[k]

, s[k] · dH
` [k]b`︸ ︷︷ ︸
,h̄`[k]

+v`[k] = s[k] · h̄`[k] + v`[k] ∈ C,
(6)
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where we have defined

d`[k] , [e−ωkτ1`(p) e−ωkτ2`(p) e−ωkτ3`(p)]H ∈ C3×1,

ωk ,
2π(k − 1)

NTs
∈ R+, ∀k ∈ {1, . . . , N}.

For shorthand, we further define

x` , [x`[1] · · ·x`[N ]]
T ∈ CN×1,X` , Diag(x`),

s , [s[1] · · · s[N ]]
T ∈ CN×1, S , Diag(s),

v` , [v`[1] · · · v`[N ]]
T ∈ CN×1,

D` , [d`[1] · · ·d`[N ]]
T ∈ CN×3,H` , Diag (D`b`) .

(7)

Note that D` and H` are nonlinear functions of the unknown
emitter position p, as suggested by the definition of d`[k]
above and (1)–(4), though we omit this for brevity. With this
notation, we may now write (6) compactly as

x` = H`s+ v` ∈ CN×1, ∀` ∈ {1, . . . , L}. (8)

Thus, the localization problem can be formulated as follows:

Problem: Given the measurements
{
x` ∈ CN×1

}L
`=1

of the
signal model (8), localize the source, namely estimate p.
We emphasize that although we are interested solely in p, the
channel parameters {b`} and the DFT coefficients s of the
emitted waveform are unknown as well.

III. THE MATCHED FIELD PROCESSING SOLUTION

The key assumption of MFP approaches is that, for a
given hypothesized emitter location p, the channel response
H` is fully predictable.6 For the model (5), the attenuation
coefficients {b`} can be assumed to be given by7

b1` =
1

R1`
, (LOS attenuation) (9)

b2` =
−1

R2`
, (NLOS surface reflection attenuation) (10)

b3` =
κb
R3`

, (NLOS bottom reflection attenuation) (11)

for all ` ∈ {1, . . . , L}, where κb is the bottom reflection
coefficient, which (presumably) can be determined based on
prior physical knowledge (e.g., assuming the bottom is sand,
silt, clay, rock, etc.) and the angle of incidence, and is assumed
to be known within the MFP framework for a given hypoth-
esized emitter location p. For (10), we assumed a perfectly
reflecting ocean surface [8], [38], which approximately holds
for calm shallow waters. Based on this knowledge, the channel
responses {H`} can be readily computed.

The MFP solution for the three-ray model, denoted for
convenience as MFP3, is then given by

p̂MFP3 , argmin
p∈R3×1

min
s̄∈CN×1

‹CMFP3(p, s), (12)

where

‹CMFP3(p, s) ,
L∑

`=1

‖x` −H`(p)s‖22 , (13)

6Otherwise, infeasible high-dimensional optimization is required.
7Ignoring the effects of volume absorption in water, which are minimal.

and here we write H`(p) (rather than H`) to emphasize the
dependence on p. The simplified MFP3 solution is given by

p̂MFP3 = argmax
p∈R3×1

N∑

k=1

∣∣∣x[k]Hhk(p)
∣∣∣
2

‖hk(p)‖2
, (14)

where we have defined, for every k-th DFT component,

x[k] , [x̄1[k] · · · x̄L[k]]
T ∈ CL×1,

hk(p) ,
[
h̄1[k] · · · h̄L[k]

]T ∈ CL×1,

using hk(p) (rather than hk) to emphasize the dependence on
p. For completeness of the exposition, the derivation of the
simplified form (14) is given in the supplementary materials.

In (14), the channel impulse response hk(p) is considered to
be fully known for any given hypothesized position p (via (1)–
(4) and (9)–(11)). In other words, assuming perfect knowledge
of b1, . . . , bL means that any relevant physical parameter, such
as the ocean bottom sediment coefficient κb in (11), is assumed
to be perfectly known as well. We relax this (somewhat
unrealistic) assumption in our semi-blind localization approach
described next.

IV. THE PROPOSED SEMI-BLIND LOCALIZATION METHOD

As our semi-blind framework, we only assume that the
bottom depth h is known, but we do not assume that we have
any prior knowledge of the channel attenuation coefficients.
Thus, since the waveform emitted from the source is also
unknown, we may assume without loss of generality (w.l.o.g.)
that ‖s‖2 = 1, viz., s ∈ SN , {z ∈ CN×1 : ‖z‖2 = 1},
where SN is the N -dimensional unit sphere. This assumption,
which is common in similar (semi-)blind formulations (e.g.,
[39]), is justified due to the inherent scaling ambiguity in (8),

α ∈ C : H`s = Diag (D`b`) s = Diag
(
D`

(
1
αb`︸︷︷︸
, b̃`

))
( αs︸︷︷︸
, s̃

)

= Diag
Ä
D`b̃`

ä
︸ ︷︷ ︸

,H̃`

s̃ = H̃`s̃, ∀` ∈ {1, . . . , L},

which, granted, is immaterial to our localization problem.
Our proposed SBL solution can be viewed as the MLE of

p, obtained by joint estimation of all the unknown determin-
istic model parameters, under the assumption that the noise
processes {v`}L`=1 from all different sensors are temporally
white complex normal (CN) processes, mutually statistically
independent, with equal variances. In this case, the MLE of p
is the solution to the nonlinear least squares problem

p̂SBL , argmin
p∈R3×1

min
s̄∈SN

B∈C3×L

‹CSBL(p, s,B)

︸ ︷︷ ︸
CSBL(p)

, argmin
p∈R3×1

CSBL(p),

(15)
where the objective function ‹CSBL(p, s,B) is defined as

‹CSBL(p, s,B) ,
L∑

`=1

‖x` −Diag (D`(p)b`) s‖22 , (16)
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and here we write D`(p) (rather than D`) to emphasize the
dependence on p. In contrast to the MFP3 solution (12), our
proposed solution (15) is due to joint estimation of all the
unknown model parameters p, s and B , [b1 . . . bL] ∈ C3×L,
including the channel coefficients B. Thus, in our proposed
approach, we do not assume that the channel response is fully
known for a given hypothesized position p of the source.

Intuitively, this approach should lead to a more robust so-
lution than MFP3 with respect to deviations from the channel
knowledge (9)–(11), at the cost of extra computational effort.
Fortunately, as we show in Section IV, by exploiting the low-
dimensional structure of the data, the additional computational
cost is negligible. Moreover, although (15) defines a nonlinear
high-dimensional optimization problem with 3L additional
unknowns relative to MFP3, it boils down to a 3-dimensional
optimization problem, similar to (14).

Our main result is the following localization algorithm:

The SBL Estimator:
Input: {x`}L`=1 , c, h, 3D grid of the volume of interest.
Output: The SBL estimate, p̂SBL.
1. For every candidate p on the grid:
1.1. Compute the matrices {DT

` D
∗
`}L`=1;

1.2. Compute the Cholesky decompositions

DT
` D
∗
` , ΓH

` Γ` ∈ C3×3, ∀` ∈ {1, . . . , L}, (17)

and obtain the matrices {Γ`}L`=1;
1.3. Compute the matrix

U(p) ,
[
X1D

∗
1Γ−1

1 · · · XLD
∗
LΓ−1

L

]
∈ CN×3L,

(18)
and construct the matrix

‹Q(p) , U(p)HU(p) ∈ C3L×3L. (19)

1.4. Compute λmax

Ä‹Q(p)
ä

;
2. Find p̂SBL,grid, the maximizer point on the grid.
3. Return p̂SBL, the solution of a nonlinear optimization

solver (e.g., trust-region [40]) initialized by p̂SBL,grid.

We now provide the analysis, based on which the algorithm
above is derived. For convenience, we define

P s , Diag(|s|2) , Ps · (IN + E) ∈ RN×N+ , (20)

where Ps ∈ R+ is the average signal power (with | · |2
operating elementwise), and E is a diagonal matrix with
“small” elements, such that εmax , |λmax (E) | < 1.

Proposition 1 (SBL for Spectrally Flat Waveforms). Consider
the case where E = O, and define the data-dependent matrix,

Q(p) ,
L∑

`=1

X`D
∗
`

Ä
DT
` D
∗
`

ä−1 (
X`D

∗
`

)H ∈ CN×N , (21)

for any hypothesized source position p. Then,

p̂SBL = argmax
p∈R3×1

λmax (Q(p)) . (22)

Proposition 1, whose proof is given in Appendix A, tells
us that, for spectrally flat waveforms s, the source’s position

MFP3 SBL

Unknowns p, s p, s, b1, . . . , bL

Objective
function

∑N
k=1
|x[k]Hhk(p)|2
‖hk(p)‖2

λmax

Ä‹Q(p)
ä

Complexity O(NL) O(NL2)

Required
physical parameters h, c, κb, b1, . . . , bL h, c

TABLE I: Comparison of the primary attributes of traditional MFP3 and the
proposed estimator, SBL, for the three-ray model.

estimator can be computed based only on λmax (Q(p)). More-
over, although our model has more unknowns, (22) is obtained
by (only) a 3-dimensional optimization.

The next proposition, whose proof appears in Appendix B,
states that the simplified form λmax (Q(p)) of the objective
function can be a good approximation to (15) when E 6= O,
namely for waveforms that are not spectrally flat. In turn, this
implies that (22) can be used to localize a source emitting a
general waveform.

Proposition 2 (SBL for General Waveforms). Consider the
case where E is not necessarily equal to O. Then,

p̂SBL = argmax
p∈R3×1

λmax (Q(p)) +O(εmax).

It follows that whenever εmax � 1, we have

p̂SBL ≈ argmax
p∈R3×1

λmax (Q(p)) .

However, as we demonstrate via simulations and real data in
Section VI, our proposed estimator exhibits good performance
even for waveforms that are far from being spectrally flat.
Thus, Proposition 2 implies that only λmax (Q(p)) is required
for approximately optimal localization. In particular, it suf-
fices to use, e.g., the power method, rather than computing
the complete eigenvalue decomposition of Q(p). However,
the computational complexity can be reduced even more, as
implied by the following proposition, whose proof is given in
Appendix C.

Proposition 3 (Efficient Computation of the SBL Objective
Function). Let Q(p) ∈ CN×N be defined as in (21). Then,

λmax (Q(p)) = λmax

Ä‹Q(p)
ä
, (23)

and the complexity of computing (23) is (only) O(NL2).

We note that a naı̈ve application of, e.g., the power method
to Q(p) would cost O(N2). This is already prohibitively ex-
pensive for reasonable sample sizes on the order of N ∼ 103.

We emphasize that our proposed estimator implicitly op-
timizes over an additional 2 · 3L unknown parameters—the
channel attenuation coefficients b1, . . . , bL—relative to the
MFP estimator of this model, while retaining the same order
of computational complexity in terms of N (sample size). As
an intermediate summary, a comparison of several attributes
of the proposed SBL with MFP3 is given in Table I.
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For the actual computation of the estimate p̂SBL, we propose
a two-phased approach. The first phase consists of a coarse
grid search over the relevant volume of interest. In the second
phase, a general purpose nonlinear optimization algorithm
(e.g., trust-region methods [40]) is applied, where the solution
from the first phase is used for initialization.

A. Interpretation of the SBL Solution

We now provide a useful interpretation of the closed-
form expression (22) of our proposed solution, based on the
derivation presented in Appendix A. We begin by explaining
the first step, the estimation of b`. From (36), when S and
D` (defined in (7)) are treated as known, we see that this first
step can be regarded as compensation (or, rectification) of the
attenuations of each of the three signal components. It is also
enlightening to see this from the noiseless case, where

x` = SD`b` =⇒ S−1x`︸ ︷︷ ︸
per-frequency

elementwise division

= D`b`︸ ︷︷ ︸
per-frequency weighted
sum of b1`, b2`, b3`

. (24)

Substituting {b̂`} (defined in (40)) into (16) yields after
simplification (42)—the “b`’s-rectified” objective, where the
rectification is based on the intermediate estimators {b̂`},
which still depend on the unknown S and p at this phase.

Moving forward, we momentarily focus on a single (matrix)
element of the sum (42). Rearranging this term, we see that

sHX`D
∗
`

Ä
D`

TP sD
∗
`

ä−1 (
X`D

∗
`

)H
s =

xT
` S
∗D∗`

Ä
D`

TSTS∗D∗`
ä−1

DT
` S

Tx∗` . (25)

Again, focusing on the noiseless case to gain intuition, by
substituting x` = SD`b`, we have

xT
` S
∗D∗`

Ä
D`

TSTS∗D∗`
ä−1

DT
` S

Tx∗` =

bT
` D

T
` S

TS∗D∗`
Ä
D`

TSTS∗D∗`
ä−1

DT
` S

TS∗D∗`b
∗
` =

bT
` D

T
` S

TS∗D∗`b
∗
` = ‖SD`b`‖2 =

N∑

k=1

∣∣∣s[k]dH
` [k]b`

∣∣∣
2

2
.

Therefore, we interpret the maximization (42)—for a single
receiver—as choosing the best set of parameters {s,p, b`}, in
the sense that the total energy of the received signal from the
source is maximized, under the hypothesized set of parameters.

Generalizing this intuition for a signal in noise, after sub-
stituting x` into (25), for a sufficiently large N , the signal-
noise cross product terms will tend to zero by virtue of the
law of large numbers, since the noise DFT coefficients are
uncorrelated and zero-mean.

Lastly, we generalize the intuition above from a single
receiver to multiple receivers. For this, recall that (42) is in
fact a joint maximization of the total energy of all L received
signals from the same source. Therefore, it weights the L
signals from different relative locations to the source while
taking into account that they all contain shifted versions of
the same waveform. This is essentially the connecting link,
and the advantage in processing the data jointly (rather than
individually). This joint weighting is nontrivial in the general
case. However, when the source is spectrally flat, i.e., E = O,

the optimal way (in the sense of (15)) to weight and combine
the data from the receivers is to form the matrix Q(p) as in
(21), and to compute its maximal eigenvalue (22). A natural
interpretation of the maximal eigenvalue of a semi-positive
definite matrix is the energy distributed along the dominant
direction (orthogonal to all others) in the space spanned by
the columns of this matrix. With this interpretation, the final
form of the SBL solution given in (22) is now intuitive.

V. THE CRAMÉR-RAO LOWER BOUND FOR SBL
We now analyze the localization accuracy limitations of the

proposed solution in terms of the MSE,

MSE(p̂,p) , E
î
‖p̂− p‖22

ó
. (26)

Specifically, we derive the CRLB for the special case E = O.
Unlike the common approach (e.g., as in [41], [42]), wherein
both the unknown source signal and noise are considered to
be random, in our model only the noise is considered random.
Thus, for a given waveform, the bound can be used as a tool
for designing the deployment of a network of receivers, so as
to maximize accuracy in regions of higher importance.

Regardless of the constant spectral level (i.e., E = O),
in our general framework s ∈ SN w.l.o.g., hence in this
particular case Ps = 1

N . Consequently, s[k] = 1√
N
eφs[k]

for all k, and the only waveform-related unknowns are the
phases8 of the DFT coefficients, denoted collectively by φs ,
[φs[2] . . . φs[N ]] ∈ R(N−1)×1.

To facilitate the following derivation, we introduce a more
compact representation of the measured signals. Specifically,
let x , [x1 . . .xL]T ∈ CNL×1. Thus, (8) reads

x = Hs+ v ∈ CNL×1, (27)

where H ,
î
HT

1 . . .H
T
L

óT ∈ CNL×N and v , [v1 . . .vL]T.
Denoting σ2

v , [σ2
v1 . . . σ

2
vL ]T ∈ RL×1

+ , it follows that

x ∼ CN
(
Hs,Diag(σ2

v)⊗ IN
)
. (28)

It is well-known that for the CN signal model CN (µ,R), the
Fisher information matrix (FIM) elements are given by9 [43]

J [θi, θj ] = Tr

Å
R−1 ∂R

∂θi
R−1 ∂R

∂θj

ã
+ 2<

ß
∂µH

∂θi
R−1 ∂µ

∂θj

™
,

∀i, j ∈ {1, . . . ,Kθ},
where we have defined the vector of all the real-valued
unknown deterministic parameters

θ,
[
pT vec(φs)

T vec(<{B})T vec(={B})T σ2
v

]T∈RKθ×1,
(29)

with Kθ = 3 + (N − 1) + 2 · 3L+ L, and J(θ) is the FIM.
It is readily seen from (28), that in our model the mean

vector and covariance matrix are functions of distinct unknown
parameters. This immediately implies that

J [σ2
v`1
, σ2
v`2

] = N · δ`1`2 , ∀`1, `2 ∈ {1, . . . , L}, (30)

J [σ2
v`
, θ] = 0, ∀θ 6= σ2

v`
, (31)

8Note that although there are N elements in φs, there are only N − 1 de-
grees of freedom, since the (complex-valued) channel attenuation coefficients
are considered unknown as well. Therefore, we assume w.l.o.g. that the first
element of φs, considered as a reference phase, is zero.

9For the sake of clarity, we specifically use a different notation for the
FIM’s elements, with slight abuse of notation also in (30)–(32).
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namely the FIM has a block diagonal structure. Furthermore,
for the signal-related block, we have

J [θi, θj ] = 2<
ß
∂(Hs)H

∂θi

(
Diag−1(σ2

v)⊗ IN
) ∂Hs
∂θj

™
,

∀i, j ∈ {1, . . . ,Kθ}, ∀` ∈ {1, . . . , L}.
(32)

When σ2
v`

= σ2
v for all `, it can be observed from (32) that the

signal-related FIM block is inversely proportional to the noise
variance. Hence, the associated signal-related CRLB block is
inversely proportional to the signal-to-noise ratio (SNR).

It only remains to compute the derivatives of Hs with
respect to the parameters of θ, excluding σ2

v , which is merely
technical. We defer the details of these calculations, as well
as the final expressions of all the signal-related elements of
the FIM to the supplementary materials, along with a Matlab
implementation of this bound. Finally, the CRLB is given by10

E
[Ä
θ̂ − θ

ä Ä
θ̂ − θ

äT] � J−1(θ) , CRLB(θ) ∈ RKθ×Kθ

=⇒ MSE(p̂,p) ≥
3∑

i=1

[CRLB(θ)]ii ,

(33)
for any unbiased estimator θ̂, and the implied p̂ (see (29)).

VI. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we consider simulation and physical experi-
ments of source localization for different scenarios in order to
corroborate our analytical derivations. First, we begin by the
evaluation and visualization of the CRLB for a hybrid signal,
wherein the signal-related component, namely Hs from (27),
is synthetic, and the noise-related component, namely v from
(27), is taken from previously collected ambient noise record-
ings from the Kauai ACOMMS ONR MURI 2011 (KAM11)
experiment [32]. Second, we simulate a different scenario,
wherein the receivers are deployed in a linear formation. For
this setting, we evaluate the performance with respect to vary-
ing SNR, model mismatch (to assess robustness), and missing
LOS components due to occluders. In these simulations, we
compare our proposed method to the MFP3 solution (14)
and to GCC-PHAT [27], a TDOA-based localization method,
which is considered as highly robust to multipath effects. In the
third experiment we compare the algorithms on data recorded
from a water tank testbed.

A. Validation of the CRLB for Ocean Ambient Noise

We consider a scenario with L = 4 receivers, in an area with
bottom depth h = 100 m. The locations of the receivers and
the source are given in Table II. The attenuation coefficients
were drawn (once, and then fixed) independently from the
circularly-symmetric CN distribution, such that E

[
|brl|2

]
= 1,

with variance 0.12. The speed of sound was set to c =
1500 m/s, and the sample size to N = 30. We consider
the case E = O, such that the waveform’s DFT coefficients
are s[k] = 1√

N
eφs[k], and the phases {φs[k]}Nk=2 were

drawn11 (once, and then fixed) independently from the uniform
10A � B is to be interpreted to mean that A−B is semi-positive definite.
11Except for the (immaterial) φs[1] = 0, due to our semi-blind setting.

x [m] y [m] z [m]
Source Position, p 200.7240 100.1661 30.6374

Receiver 1, p1 150 −175 20

Receiver 2, p2 75 −225 20

Receiver 3, p3 −50 −200 20

Receiver 4, p4 −150 −150 20

TABLE II: Positions of the source and the four receivers for the setting
considered in Subsection VI-A, depicted in Fig. 3 (left), with Ts = 10−3 s.
Note that the source position is not located on a (discrete) grid point.

Fig. 3: Validation of the predicted asymptotic performance using the CRLB
for the hybrid signal, containing recordings of ocean ambient noise collected
in the KAM11 experiment. Left: The 2-dimensional setting of the scenario
under consideration. Right: The 95%-confidence ellipse, as predicted by the
CRLB (33), with 100 superimposed estimates.

Fig. 4: Two different points of views for the (same) 3-dimensional 95%-
confidence ellipsoid based on the CRLB, with 100 SBL estimates superim-
posed (legend as in Fig. 3, right). The CRLB accurately quantifies how the
variance of the proposed solution is spread in the 3-dimensional space.

distribution U(0, 2π). In this case, p̂SBL is the MLE, and
the CRLB accurately predicts its asymptotic variance. The
received signals were generated according to (6), where the
noise realization for all four sensors were taken from record-
ings of ocean ambient noise from the KAM11 experiment [32].
This way, we obtain a hybrid signal for this simulation, which
allows us to test the validity of the bound on real ambient
noise, which is potentially not CN and temporally white. Since
the CRLB is informative only asymptotically (in the “small
errors” regime), we set the noise variance12 to σ2

v`
= σ2

v = 0.1

for all ` ∈ {1, 2, 3, 4}, to have an SNR of ‖s‖22 /σ2
v = 10 dB.

Figure 3 presents the 2-dimensional setting under consid-
eration, and the 95% confidence ellipse computed using the
CRLB (33), with superimposed estimates p̂SBL obtained for 100

12We do so by first normalizing the recorded ambient noise to have unit
variance, and then scale it accordingly to have the desired level of SNR.
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x [m] y [m] z [m]
Source Position, p 100.5976 250.5837 30.1131

Receiver 1, p1 150 −250 10

Receiver 2, p2 50 −250 15

Receiver 3, p3 −50 −250 20

Receiver 4, p4 −150 −250 25

c = 1535 m/s, κb = 0.85, h = 100 m, N = 100, Ts = 0.001 s

TABLE III: The setting considered in Subsection VI-B.

different noise recordings. Despite the model mismatch with
respect to the noise distribution, a good fit is seen between the
empirical results and the predicted theoretical accuracy due to
the CRLB. Figure 4 reflects the same fit in the 3-dimensional
space. This not only agrees with our analytical derivation of
the bound, but also provides an empirical justification for our
stochastic noise model. In this regard, we note further that
the hybrid signals we use allow us to essentially isolate the
(potential) noise-related model mismatch effects, and test our
proposed solution with respect to deviations of this sort only.

B. Comparison with GCC-PHAT and MFP3

We now compare the proposed SBL method with MFP3 and
the GCC-PHAT localization methods. In this simulated experi-
ment, we consider the setup depicted in Fig. 5, namely a linear
deployment of the receivers. Such a deployment is conceivable
for naval defense purposes near the shoreline, or harbor
monitoring [44]. The positions of the source and the receivers,
and all relevant system and environmental parameters are
given in Table III. The source’s DFT coefficients s[k], as well
as the noise realizations {v`[k]}, were drawn independently
from the standard CN distribution in each trial. The noise
variance of the `-th receiver is set as σ2

v`
= σ2

v ·‖b`‖2, and the
SNR is defined here as E

[
|s[k]|2

]
/σ2

v = 1/σ2
v . All empirical

results presented in this subsection are based on averaging 104

independent trials.
We first compare the localization accuracies of the methods

for different SNRs. Figure 6 presents the root mean squared
(RMS) miss distance, i.e., the square root of (26), vs. the SNR
for each method. A 2D slice at the receiver’s depth of the
objective functions of each of the algorithms for a typical real-
ization at 5 dB SNR is given in Fig. 5. For MFP3, we show the
performance obtained with perfect knowledge of the channel
(“Perfect Model”), i.e., when b1, . . . , bL and κb are known
exactly; and when this perfect knowledge is accurate except
for the phases of b1, . . . , bL (“Imperfect Model”), which are
drawn independently from U(0, 2π). As observed, although
GCC-PHAT improves when the SNR increases, it essentially
cannot cope well—in a 3-dimensional space optimization—
with the addition of the surface and bottom reflections. It is
also seen the MFP3 is highly sensitive to deviations from the
assumed channel response. In contrast, such deviations are
completely transparent to SBL, as it considers these parameters
as unknown, and implicitly optimizes over them jointly with
all the other unknowns (see (36), Appendix A). The robustness
at the moderate cost in performance relative to MFP3 is
evident. Note that MFP3’s superior performance is guaranteed
only asymptotically, in agreement with the results in Fig. 6.

Next, we compare the performances of the three different
methods with respect to perturbations in the expected channel
attenuations, as prescribed by the physical model (9)–(11).
This form of model mismatch is likely to occur in practice
due to nonidealities13 (e.g., inaccurate prior knowledge of κb).
Formally, we model these deviations by generating the channel
attenuation coefficients as

br`(ε) = (1− ε · γr`)br` · e2πε·ϕr` ,
r ∈ {1, 2, 3}, ` ∈ {1, 2, 3, 4}, (34)

where {γr` ∼ U(0, 0.5)} and {ϕr` ∼ U(0, 1)} are indepen-
dent. In (34), ε ∈ [0, 1] is a parameter controlling the deviation
from the physical model, where ε = 0 corresponds to no
deviation from (9)–(11).

Figure 7 presents the RMS miss distance vs. ε. As ex-
pected, we observe an overall accuracy-robustness superiority
of SBL relative to the competing algorithms. While MFP3 is
superior when perfect knowledge of the channel parameters
κb, b1, . . . , bL is available, SBL is inherently indifferent to
deviations from their ideal physical values. GCC-PHAT is also
robust to such deviations, but completely ignores (by design)
the multipath channel, and therefore cannot exploit additional
signal components, such as surface and bottom reflections.

In the last simulation for this setup, we model the effect
of a potential occluder between some of the receivers and the
source. Specifically, for the second and third receivers (i.e., at
p2 and p3), we introduce an attenuation coefficient β ∈ [0, 1]
to the LOS components, such that

b1`(β) = β · b1` · e2π(1−β)ϕ1` , ` ∈ {2, 3}. (35)

When β = 1, there is no occlusion, and when β = 0, the LOS
components of receivers ` = 2, 3 are completely lost. The
phase perturbation models the interaction with the occluder.

Figure 8 presents the RMS miss distance vs. β. It is
observed that the accuracy obtained by GCC-PHAT is on the
same order of the distances (∼ 25m) corresponding to the time
delays between the LOS and NLOS components. This level
of accuracy is stable, but is not satisfactory for an SNR level
of 10 dB (here, σ2

v = 0.1). It is also seen that in the absence
of a modeling error (i.e., β = 1), MFP3 attains the highest
accuracy. However, deviations from the ideal signal model, in
the form of occluded LOS components of two receivers, inflict
a severe performance deterioration.

As we have demonstrated in Fig. 5c and Fig. 6, when MFP3
is actually mis-matched, it could perform even worse than
what is presented in Fig. 8. Still, even in this setting, our
method exhibits the best accuracy-stability trade-off.

C. Experimental Results

We now demonstrate the performance of our proposed
method on acoustic data acquired in our water tank testbed—
the high frequency autonomous acoustic tank. This system,
presented in Fig. 9, is (roughly) of size 25 cm×32 cm×15 cm,
and enables us to create a controlled and challenging setting
for frequency-scaled underwater localization.

13Within the three-ray model. Of course, in practice there are more
modeling mismatch factors due to the simplified three-ray model. The effects
of some of these nonidealities will be evaluated in the next experiment, where
we apply our method to real data, and demonstrate successful localization.
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(a) (b) (c) (d)

Fig. 5: 2-dimensional slices at the source depth (z = zp) of the objective function for typical realizations at 5 dB SNR. (a) GCC-PHAT (b) MFP3 with
perfect model (c) MFP3 with unknown phases of b1 . . . , bL (d) SBL. Evidently, GCC-PHAT and MFP3 without perfect knowledge are considerably more
fragile than the proposed method, which is similar to MFP3 with perfect knowledge with respect to stability, at the cost of a higher variance.

Fig. 6: RMS miss distance vs. SNR, for T = 100.
At very low SNR, all methods perform poorly.
As the SNR increases, GCC-PHAT improves only
moderately, while SBL improves significantly.

Fig. 7: RMS miss distance vs. ε, quantifying a
deviation from the physical model, for T = 100
and σ2

v`
= 0.1. MFP3 is sensitive to such model

deviations, while GCC-PHAT and SBL are robust.

Fig. 8: RMS miss distance vs. β, the LOS attenua-
tion coefficient of receivers ` = 2, 3, for T = 100
and σ2

v`
= 0.1. Our proposed SBL offer the best

accuracy-stability balance out of the three methods.

Fig. 9: A picture of our water tank. Our testbed provides high frequency
(200−400 kHz) noisy acoustic data from a complex reverberant environment.

Although the water tank environment is only a scale model
of a shallow-water environment, it nevertheless poses a chal-
lenging scenario. In addition to the modeled bottom and
surface reflections, the water tank has four additional sides,
that are reflective boundaries. These thin plastic boundaries
are highly reflective, so that the test environment is highly re-
verberant, giving rise to a rich multipath channel. In particular,
the magnitudes of the unmodeled reflections are comparable
to the modeled ones in our three-ray model.

In this experiment, the source is transmitting a Gaussian

pulse at a carrier frequency of 280 kHz, and the speed of sound
in the water tank is c = 1485 m/s. To maintain consistency
across different trials, the source and receivers were set at
the same depth. In this case, spatial diversity in the depth-
direction is limited, hence we assume here that the source’s
depth is known, and approach this 2-dimensional problem.

The received signals were sampled at 2 GHz. Before ap-
plying the localization method, the signals were decimated by
a factor of 2 × 103, to obtain 1 MHz bandwidth signals. For
each setting, in which the source and receivers were static, the
observation interval was 0.5 ms long. More technical details
are given in the supplementary materials.

Figs. 10, 11 and 12 present the objective functions of
GCC-PHAT, MFP3 and the proposed method, respectively,
for three different source locations. Here, the search area is
a 30× 30 cm2 square, centered around the first receiver. Note
that we intentionally did not align the search area with the
one dictated by the boundaries of the tank, since we assume
that such prior knowledge is unavailable as in a real problem
setting. As was observed in the simulations, it is seen that
in the presence of strong multipath, GCC-PHAT suffers from
the worst performance degradation, and MFP3 is the most
accurate, best exploiting the environmental prior knowledge.
SBL is less accurate than MFP3, but still provides reasonable
estimates in the vicinity of the source’s true location.

Next, we repeat the experiment but now with the presence of
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Fig. 10: GCC-PHAT experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9.

Fig. 11: MFP3 experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9.

Fig. 12: SBL experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9.

an unknown object—a cylinder, stretching from the bottom to
the surface of the tank, placed in the area between the source
and the receivers, as depicted in Figs. 13–15. This unknown
feature causes severe model mismatch; critically, if it blocks
the LOS between the source and a receiver, then all the three
modeled rays—LOS, and surface and bottom reflections—are
essentially blocked. A flexible algorithm can in principle select
(possibly implicitly) which receivers to use, and would be
able to reject uninformative measurements, such as the ones
acquired by a receiver “viewing” the occluded scenery.

Figures 13, 14 and 15, presenting the objective functions
of GCC-PHAT, MFP3 and SBL, respectively, for the same
scenarios but with an occluder, corroborate the robustness of

the SBL method. It is seen that GCC-PHAT and MFP3 are
fragile when such unknown environmental features are present.
The SBL method, which exhibits robustness in the presence
of the occluder, is still able to localize the source. Since the
attenuation coefficients are considered to be unknown, and are
implicitly estimated (36), a perfectly valid estimated value (for
some of them) is a value close or equal to zero. This essentially
means that the SBL assigns different weights to measurements
from different receivers, thus implicitly choosing to effectively
ignore the less informative data acquired by receivers with
occluded scenery.
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Fig. 13: GCC-PHAT experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9, with the presence
of an unknown occluder (cylinder), modeling an effect of inaccurate environmental prior knowledge.

Fig. 14: MFP3 experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9, with the presence of an
unknown occluder (cylinder), modeling an effect of inaccurate environmental prior knowledge.

Fig. 15: SBL experimental results based on acoustic measurements acquired in the water tank using the system presented in Fig. 9, with the presence of an
unknown occluder (cylinder), modeling an effect of inaccurate environmental prior knowledge.

VII. DISCUSSION AND EXTENSIONS

A natural extension of the direct localization problem that
we considered, is to the case of multiple sources and/or a more
complex channel model, which is beyond the scope of this
paper and is left for future work. However, in this section we
outline some key challenges of this setting to motivate this
non-trivial extended problem. We then discuss the potential
use of the SBL estimator in such scenarios, and point out
important aspects of identifiability. Before addressing these
topics, we first discuss some system design considerations for

the particular setting described in Section II.

A. System Design Considerations

For given, limited resources, one may be interested in en-
hancing the performance of a system as much as possible with
respect to the available degrees of freedom. In the specific case
of our localization problem, performance can be understood as
accuracy (e.g., in terms of (26)), and resources, perhaps, as the
number of receivers, L.14 While we defer the formulation of

14which are also the number of sensors in our formulation.
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this notion into a well-defined problem (possibly using some
function of the bound (33)) to future work, we comment on
the important related aspects of the topology and the number
of receivers.

Recall that a single receiver, equipped with a single sensor,
receives (in general) three signal components, two of which
are reflected from the surface and the bottom, which are
respectively above and under the receiver. Thus, environmental
knowledge regarding the position of the surface and the bottom
is equivalent, in some sense, to having additional virtual
receivers (e.g., [45]) above and under the surface and the
bottom, respectively. In this respect, a single receiver already
provides some vertical spatial diversity. Still, due to the blind
nature of the problem, in which the emitted waveform and
the channel coefficients are unknown, the information from a
single sensor is insufficient for localization.

However, two sensors already contain six signal compo-
nents, and can in principle contain sufficient information for
localization. Intuitively, breaking the symmetry “as much as
possible” relative to the environment in which the system
is deployed would lead to better performance. In the two
receivers case, placing the second receiver in a different
horizontal location than the first would lead to an increased
horizontal spatial diversity, which would in turn lead to
enhanced performance. The principle of increasing spatial
diversity with a fixed resources allocation can be formulated in
some settings (e.g., [46]), and provides guidance and intuition
for the design of a sensors network spatial distribution. For
example, one may consider deploying a linear network of
sensors obliquely relative to the surface.

B. Key Challenges in Extended Models

Incorporating multiple sources into the 3-ray signal model
(5) changes the interplay between the (consequently increased)
number of unknown parameters. As a result, it is no longer
clear whether a simplified, efficiently computable expression
for the objective function—as (22) in Proposition 1—can be
obtained. Recall that this has a significant effect on the overall
computational complexity of the method.

Moreover, assume that there are M sources to be localized
(where M is known), and further assume that we have obtained
such a simplified, computationally efficient expression for the
objective function, which is a function of the sources’ positions
only, denoted by, say, p(1), . . . ,p(M) ∈ R3×1. At this point, in
order to obtain the optimal direct localization solution (in the
sense of the extended criterion of (15)) for all M sources, one
is required to solve a 3M -dimensional nonlinear optimization
problem, which may well be non-convex. Consequently, even
for M = 2 sources, this is already difficult with a naive
extension of our current proposed method, as it would require
a 6-dimensional grid search (referring to the first step of
the proposed solution), which is infeasible for reasonable
resolutions. Hence, a different approach is perhaps required in
order to solve the multiple sources direct localization problem.

Focusing again on the single source case, one may consider
an extended K-ray model (with K > 3), assuming it would ac-
curately describe the signal propagation, such that the K rays
include primary and second- and higher-order reflections. In

that case, the performance (i.e., accuracy) improvement would
be due to an increased effective/post-processing SNR. This
can be understood from the interpretation given in Subsection
IV-A, where the SBL method is seen as an implicit way to
coherently add all the K reflections from all L sensors.

However, and since the ray-based propagation model is an
approximation, while the deviations from the 3 primary rays
can be small, the aggregated approximation errors in the time-
delays of the higher-order reflections are likely to no longer
be negligible. In that case, on top of additional computational
burden, a naive extension of the current approach might yield a
more fragile estimator, which is sensitive to model mismatch.
The challenging task of exploiting more complex propagation-
related phenomena for enhanced, computationally attractive
direct localization remains to be explored in future work.

C. SBL as a Solution for Multiple Sources

Notwithstanding the above, our proposed algorithm can still
be used for multiple sources localization as a sub-optimal, yet
computationally feasible solution. Indeed, (22) can be viewed
as a spatial quasi-likelihood map (as a function of p), whose
M highest maxima correspond to the M points in space, where
sources are most likely to be present (under the mismatched
model (5), treating, for each source, all the other M−1 sources
as additive noise). While providing analytical guarantees for
this case is beyond the scope of the current work, using the
Matlab package provided in the supplementary material, one
could easily verify that the SBL method still serves as a viable
localization solution for this extended setting.

Given any set of parameters that describe a particular local-
ization problem (i.e., bottom depth, locations of the receivers,
etc.), the model (5) is guaranteed to be identifiable when the
FIM is nonsingular, namely det (J(θ)) 6= 0, and (33) is finite.
However, when using the SBL for localization of multiple
source (i.e., under mismatched model) as described above, this
is obviously no longer true. Indeed, as least theoretically, there
are certain “special” (however somewhat extreme) scenarios in
which the sources not only could not be localized (reliably, or
at all), but may also “disappear” from the resulting heatmap.

To illustrate this, consider the following case, which is
depicted in Fig. 16. Assume, for example, that L receivers
are all deployed at the same depth h/2 in a linear structure,
namely z` = z0 = h/2, y` = y0 and x` = x0 + ∆(` − 1)
for all ` ∈ {1, . . . , L}, where ∆ is the spacing between the
receivers. Now, further assume that two sources are present,
such that the second source is located at the same horizontal
location as the first, but is located symmetrically about the half
depth h/2 relative to the first. That is, if the first source is at
p = (xp, yp, zp), the second is at p̃ = (xp, yp, h−zp). Finally,
assume that an occluding object is present, such that (only) all
LOS components at all L receivers are blocked from both of
the sources. Denoting by R̃2`, R̃3` the distances traveled by
the NLOS surface and bottom associated rays, respectively,
from the second source, it readily follows from (2)–(4) that
R̃2` = R3`, R̃3` = R2`, hence

τ2`(p) = τ3`(p̃), τ3`(p) = τ2`(p̃).
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Fig. 16: A 2-dimensional illustration of the special case described in Subsec-
tion VII-C, wherein the sources are “acoustically invisible” in terms of the
three-ray model, and cannot be localized by the SBL estimator.

In this case, if κb = 1 (of (11)), and if the two sources are
collaborating and coordinated, then by transmitting the same
waveform, they are essentially “acoustically invisible” (under
the three ray model). Indeed, if we denote the waveform of the
second source by s̃(t) = s(t), the baseband-converted signal
from the `-th receiver (as in (5)) would then be

x`[n] =
3∑

r=2

br` s (t− τr`(p))|t=nTs +

3∑

r=2

b̃r` s̃ (t− τr`(p̃))|t=nTs
︸ ︷︷ ︸
=−∑3

r=2 br` s(t−τr`(p))|t=nTs

+v`[n] = v`[n],

since b̃2` = −1
R3`

= −b3` and b̃3` = 1
R2`

= −b2`, and we recall
that due to the occluder, b1` = b̃1` = 0 for all ` ∈ {1, . . . , L}.
Thus, only noise is observed, and all the information is lost.

While the scenario above can certainly inspire underwa-
ter acoustic warfare techniques devised against single-source
methods like the SBL, it nonetheless describes an extreme
case of a perfectly tailored setting, where several conditions,
which are exceptionally difficult to ensure, are fulfilled simul-
taneously. Therefore, and while this is only one example of
a potential failure mechanism of the proposed method when
used for localization of multiple sources, one may still gain
a general impression of what should happen in order for
SBL to completely fail in this setting. Generally, when the
sources are not collaborating/coordinated and/or the symmetry
is broken (e.g., by a non-regular deployment of the receivers),
it is reasonable that the proposed method would still provide
reliable localization for multiple sources.

VIII. CONCLUDING REMARKS

In the general context of underwater acoustics, based on
the three-ray propagation model, we presented a semi-blind
localization method, which incorporates environmental knowl-
edge. A closed-form expression for the objective function was
derived, along with an equivalent expression, which is more
computationally appealing. Thanks to additional degrees of
freedom in our model, the proposed method is more robust
than its MFP counterpart, and can successfully localize a
source in the absence of LOS components. Further, it exhibits
stable performance enhancement with respect to methods
modeling only LOS components, such as GCC-PHAT.

Since the proposed method is able to coherently “collect”
three signal components from each sensor, the post-processing

SNR is consequently higher than any LOS-based method,
which collect only one. This way, a given level of localization
accuracy can generally be attained with shorter observation
intervals. In turn, it is easier to incorporate the SBL method
within an appropriate tracking algorithm (such as Kalman
filtering), allowing for a more general framework that localizes
the source and tracks its movement, assuming the source’s
velocity is sufficiently low. As a topic for future research, in
such cases it may be possible to develop a computationally
efficient update scheme for the objective function (23), based
on eigenvalue perturbation theory. Another direction for future
research, that is of great practical interest, is to apply coarse
quantization to the collected data [47], thus reducing the
required bandwidth for communication between the different
receivers. The above is also true for the potential extensions
for multiple sources, and for extended propagation models.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof. Using the identity Diag (D`(p)b`) s = SD`b`, it is
easily seen that, for every ` ∈ {1, . . . , L}, ‹CSBL(p, s,B) of
(16) is minimized with respect to b` by

b̂` =
((
SD`

)H
SD`

)−1 (
SD`

)H
x`, (36)

assuming15 rank (D`) = 3 for all ` ∈ {1, . . . , L} hereafter.
Substituting “B , [b̂1 · · · b̂L] into ‹C(p, s,B) yields

C̆(p, s)SBL , ‹CSBL(p, s, “B) =

L∑

`=1

∥∥∥x` − SD`b̂`

∥∥∥
2

2

=

L∑

`=1

[
xH
` x` − xH

` SD`b̂` − b̂
H

`

(
SD`

)H
x`

+ b̂
H

`

(
SD`

)H
SD`b̂`

]
. (37)

From (36), we observe that

b̂
H

`

(
SD`

)H
SD`b̂` = b̂

H

`

(
SD`

)H
x`,

with which (37) simplifies to

C̆SBL(p, s) =

L∑

`=1

xH
` x`

︸ ︷︷ ︸
constant with respect to

p and s̄

−
L∑

`=1

xH
` SD`b̂`. (38)

Therefore, using (38), (15) can now be written as

min
s̄∈SN

B∈C3×L

‹CSBL(p, s,B) = max
s̄∈SN

L∑

`=1

xH
` SD`b̂`. (39)

15We ignore the extreme, unrealistic cases in which D` are not full rank,
which occur only for very specific settings of the receivers’ and source’s
positions. Nonetheless, the initial optimization is performed via a grid search,
hence we can discard points giving rise to these rare, singular settings.
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At this point, notice that using

xH
` S = sTX∗` =⇒

(
SD`

)H
x` =

Ä
XH
` D`

äH
s∗,

we may write

b̂` =
Ä
DH
` S

HSD`

ä−1
DH
` X`s

∗. (40)

Substituting b̂` from (40) into (39), using (40), SHS =
Diag(|s|2) , P s and simplifying further yields

max
s̄∈SN

L∑

`=1

xH
` SD`b̂` =

max
s̄∈SN

L∑

`=1

sTX∗`D`

Ä
D`

HP sD`

ä−1
DH
` X`s

∗ = (41)

max
s̄∈SN

sH

(
L∑

`=1

X`D
∗
`

Ä
D`

TP sD
∗
`

ä−1 (
X`D

∗
`

)H
)
s, (42)

where from (41) to (42) we have used that P s ∈ RN×N+ , and
that (41) is real-valued (and nonnegative).

By assumption, E = O, hence P s = Ps · IN from (20).
Thus, in this case (42) simplifies further to

max
s̄∈SN

sH

(
L∑

`=1

X`D
∗
`

Ä
DT
` D
∗
`

ä−1 (
X`D

∗
`

)H
)
s =

max
s̄∈SN

sHQ(p)s = λmax (Q(p)) ,

where Q(p) is defined in (21). Therefore, we conclude that
when E = O, the SBL position estimate is given by

p̂SBL = argmax
p∈R3×1

λmax (Q(p)) .

�

APPENDIX B
PROOF OF PROPOSITION 2

Proof. Observe that in the proof of Proposition A, (42) holds
for the general case, where E is not necessarily equal to O.
Therefore, starting from (42), and focusing on the inverse
matrix of a single matrix element in the sum, we now have

Ä
DT
` P sD

∗
`

ä−1
=

1

Ps

Ä
DT
` (IN + E)D∗`

ä−1
=

1

Ps

Ä
DT
` D
∗
` +DT

` ED∗`
ä−1

=

1

Ps

[(
I3 +DT

` ED∗`
Ä
DT
` D
∗
`

ä−1
) Ä
DT
` D
∗
`

ä]−1

=

1

Ps

Ä
DT
` D
∗
`

ä−1
(
I3 +DT

` ED∗`
Ä
DT
` D
∗
`

ä−1
)−1

.

Hence, using the Neumann series [48], we have16

(
I3 +DT

` ED∗`
Ä
DT
` D
∗
`

ä−1
)−1

= I3 +O(E) =⇒
Ä
DT
` P sD

∗
`

ä−1
=

1

Ps

[Ä
DT
` D
∗
`

ä−1
+O(E)

]
. (43)

16By denoting Φ = O(E), we mean that |λmax(Φ)| = O(εmax), where
εmax = |λmax (E) |. Therefore, Φ→ O when εmax → 0.

As expected, the last term in (43) indicates that this approx-
imation holds when the deviations from a constant spectral
level, quantified here by E , are sufficiently small with respect
to the normalized average power (see (20)).

Proceeding, by substituting (43) into (42), and using well-
known eigenvalue perturbation theory results [49], we obtain

max
s̄∈SN

sH

(
L∑

`=1

X`D
∗
`

Ä
DT
` P sD

∗
`

ä−1 (
X`D

∗
`

)H
)
s =

max
s̄∈SN

sH

(
L∑

`=1

X`D
∗
`

[Ä
DT
` D
∗
`

ä−1
+O(E)

] (
X`D

∗
`

)H
)
s =

max
s̄∈SN

sH [Q(p) +O(E)] s = λmax (Q(p)) +O(εmax),

where we recall that εmax = |λmax (E) | (see (20)). It follows
that

p̂SBL = argmax
p∈R3×1

λmax (Q(p)) +O(εmax).

�

APPENDIX C
PROOF OF PROPOSITION 3

Proof. A key observation is that Q(p) is low-rank. Indeed, by
definition, Q(p) is a sum of the following L matrices,

Q`(p) ,X`D
∗
`

Ä
DT
` D
∗
`

ä−1 (
X`D

∗
`

)H ∈ CN×N , (44)

where each is low-rank. Specifically, recall that D(`) ∈ CN×3,
henceÄ

DT
` D
∗
`

ä−1 ∈ C3×3 =⇒ rank
(Ä
DT
` D
∗
`

ä−1
)

= 3, (45)

where we recall that rank (D`) = 3 by assumption. In turn,
this implies that

rank (Q`(p)) = rank
(
X`D

∗
`

Ä
DT
` D
∗
`

ä−1 (
X`D

∗
`

)H)
= 3

=⇒ rank (Q(p)) = 3L,

assuming {Q`(p)} are linearly independent.17 Thus, we con-
clude that Q(p) has only 3L nonzero eigenvalues. Since
typically L� N , we have established that Q(p) is low-rank.

Next, observe that Q(p) is a sum of L positive semi-definite
matrices, and is therefore a positive semi-definite matrix as
well. Due to its special structure (21), it is possible to compute
a different matrix, ‹Q(p), with exactly the same eigenvalues as
those of Q(p). For this, define the Cholesky decompositions
[50]

DT
` D
∗
` , ΓH

` Γ` ∈ C3×3, ∀` ∈ {1, . . . , L}, (46)

where Γ` ∈ C3×3. With these L 3-dimensional square matri-
ces, substituting (46) into (21), we may now write

Q(p) =
L∑

`=1

X`D
∗
`Γ
−1
`

(
X`D

∗
`Γ
−1
`

)H ∈ CN×N ,

where we emphasize that det (Γ`) 6= 0 is guaranteed for all
` ∈ {1, . . . , L} due to (45). Now, define (as in (18))

U(p) ,
[
X1D

∗
1Γ−1

1 · · · XLD
∗
LΓ−1

L

]
∈ CN×3L,

17This holds with probability one, due to the randomness in {X`}.
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with which
Q(p) = U(p)U(p)H.

However, we have that

Λ+ (Q(p)) = Λ+

(
U(p)U(p)H

)

= Λ+

(
U(p)HU(p)

)
= Λ+

Ä‹Q(p)
ä
,

where Λ+ (C) denotes the set of the nonzero eigenvalues of
the semi-positive definite matrix C, and ‹Q(p) ∈ C3L×3L. Put
simply, ‹Q(p) has the same spectrum as Q(p). In particular,

λmax (Q(p)) = λmax

Ä‹Q(p)
ä
.

Since dim
Ä‹Q(p)

ä
= 3L < N = dim (Q(p)), we have

reduced the computational burden, which is now governed by
L, rather than N . Specifically, the complexity is O(NL2),
due to the Cholesky decompositions (46), applied to L 3-
dimensional matrices [50], leading to the matrix multiplication
U(p)HU(p), and the subsequent application of the power
method to the 3L-dimensional square matrix ‹Q(p). �
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I. DERIVATION OF THE MFP3 SOLUTION

The MFP solution (12) may be simplified, as

L∑

`=1

‖x` −H`s‖22 =

N∑

k=1

∥∥x[k]− hk(p)s[k]
∥∥2
2

(S1)

=⇒ ŝ[k] , x[k]Hhk(p)

‖hk(p)‖22
, ŝ , [̂s[1] · · · ŝ[N ]]T, (S2)

where (S2) minimizes (S1). Substituting (S2) into the cost
function ‹CMFP3(p, s) and further simplifying, we obtain

CMFP3(p) , ‹CMFP3(p, ŝ) =
N∑

k=1

∥∥∥x[k]− hk(p)ŝ[k]
∥∥∥
2

2

=
N∑

k=1

x[k]Hx[k]

︸ ︷︷ ︸
constant

with respect to p

−
N∑

k=1

x[k]Hhk(p)ŝ[k].

Therefore,

p̂MFP3 = argmin
p∈R3×1

CMFP3(p) = argmax
p∈R3×1

N∑

k=1

x[k]Hhk(p)ŝ[k]

= argmax
p∈R3×1

N∑

k=1

∣∣∣x[k]Hhk(p)
∣∣∣
2

‖hk(p)‖2
.

II. DERIVATION OF THE FIM ELEMENTS

Following the discussion in Section VI, a complete descrip-
tion of all the FIM elements is given by (30)–(32). Hence,
it remains only to compute the derivatives of Hs w.r.t. the
parameters of θ, excluding the elements of σ2

v (due to (31)),
and to plug in these derivatives in (32) for the computation of
all the respective signal-related FIM elements.

We begin with φs, to have

∂Hs

∂φs[k]
= H

Å
∂s

∂φs[k]

ã
= H

Ç√
Ps ·

∂eφs

∂φs[k]

å
(S3)

= H
Ä

√
Pse

φs[k]ek
ä

=
Ä

√
Pse

φs[k]
ä
Hek.

(S4)

Next, for the real part of the channel attenuation coefficients,
using the block structure of H and the fact that H` =
Diag(D`b`), we have for all ` ∈ {1, . . . , L} and r ∈ {1, 2, 3},

∂Hs

∂<{br`}
=

Å
∂H

∂<{br`}

ã
s =

Å
e` ⊗

∂Diag(D`b`)

∂<{br`}

ã
s

= [e` ⊗Diag(D`er)] s = e` ⊗ (Diag(D`er)s) .
(S5)

Similarly, we have for the imaginary parts,

∂Hs

∂={br`}
=  · e` ⊗ (Diag(D`er)s) . (S6)

We now address the elements of p, which require some
additional auxiliary computations. First, observe that

∂Hs

∂xp
=

∂

∂xp




Diag(D1b1)
...

Diag(DLbL)


 s =




Diag(∂D1

∂xp
b1)

...
Diag(∂DL

∂xp
bL)


 s.

(S7)

Similar expressions are obtained for yp, zp replacing xp in
(S7). Hence, it suffices to compute

¶
∂D`

∂xp
, ∂D`

∂yp
, ∂D`

∂zp

©
.

The derivative of any coordinate Cp ∈ {xp, yp, zp} w.r.t. the
(k, r)-th element of D` is given by

∂[D`]kr
∂Cp

=
∂eωkτr`(p)

∂Cp
= ωke

ωkτr`(p) · ∂τr`(p)

∂Cp
. (S8)

Using the expressions (1)–(3), it can shown with straightfor-
ward calculations that for r ∈ {1, 2, 3},

∂τr`(p)

∂xp
=
xp − x`
c ·Rr`

, ∆x`
c ·Rr`

, ∀` ∈ {1, . . . , L}. (S9)

Similarly, from considerations of symmetry, we also have

∂τr`(p)

∂yp
=
yp − y`
c ·Rr`

, ∆y`
c ·Rr`

, ∀` ∈ {1, . . . , L}, (S10)

for r ∈ {1, 2, 3}. For the vertical (depth) dimension, with
slightly different expressions for the NLOS delays, we have

∂τ1`(p)

∂zp
=
zp − z`
c ·R1`

, ∆z`
c ·R1`

, ∀` ∈ {1, . . . , L}, (S11)

∂τ2`(p)

∂zp
=

2zp
c ·R2`

, ∀` ∈ {1, . . . , L}, (S12)

∂τ3`(p)

∂zp
=

2(zp − h)

c ·R3`
, ∀` ∈ {1, . . . , L}. (S13)

Finally, by substituting (S9)–(S13) into (S8), and then substi-
tuting (S8) into (S7), we obtain all the required derivatives.
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III. ADDITIONAL TECHNICAL DETAILS ON THE WATER
TANK TESTBED

The high frequency autonomous acoustic tank provides high
frequency (200–400 kHz) acoustic data from a complex rever-
berant environment. This apparatus enables us to work directly
with experimental data, which inherently contains noise and
uncertainty in estimates of geometry and environmental data
that may be lacking in simulations, helping to prepare for
larger scale experiments.

A. Experimental Configuration

The water tank testbed is designed around a modified Ender
5 Plus 3D (E5P) printer, which provides precise control of
transducer placement and rapid mapping of the tank volume.
The E5P has a relatively large print volume of 35 cm ×
35 cm× 40 cm and precise, 0.1 mm carriage positioning. The
tank volume, selected to fit on the Ender 5 plus print table, is
roughly 25 cm×32 cm×15 cm. Acoustic signals are transmit-
ted and received using ITC 1089D spherical ceramic crystals,
which which operate in the 200 kHz–400 kHz frequency range.
Signals for the ITC1089D transducer are designed using
Matlab and uploaded to a networked Siglent SDG2042X
arbitrary waveform generator. Received waveforms on the
second ITC1089D are amplified and filtered with Stanford
Research Systems SIM910 and SIM965 modules before acqui-
sition with an Agilent Technologies DSO5034A oscilloscope.
Signal transmission and acquisition is controlled with custom
National Instruments Labview software, which also positions
the E5P carriage between transmission/acquisition cycles using
standard G-code printer commands sent over a virtual serial
interface.

The water tank testbed is useful despite its small scale. The
tank size is of order of tens of wavelengths in each direction.
Experiments have been done with scattering cylinders that
are approximately 10 wavelengths in scale. These experiments
demonstrated that for the testbed, the impact of scattering is
negligible in the received signal compared to the reverberant
arrivals from tank surfaces. The most unrealistic element in
the setup is therefore additional reverberation from the tank
side-walls. This problem could be addressed but would require
re-engineering the carriage mount frame, something that is
difficult to do in the current environment. In our localization
experiments, the reflections from the tank boundaries are
considered as unmodeled phenomena, essentially giving rise
to a more difficult scenario (in this respect) than the one
the algorithms under consideration would face in open water,
where side reflections are typically less probable.

In our experiments, one of the transducers is used as the
source (transmitter) and the other as the receiver. A picture
of the setup is given in Fig. 2. We record data for different
positions of the source while the receiver is kept stationary.
The same transmissions from the same positions of the source
are then repeated, with different positions of the receiver, in
order to obtain a dataset for an (almost) equivalent setting
with multiple receivers (four, in our case). This experiment
is conducted twice—once with an occluding cylinder present,
and once with it absent.

Fig. 1: A picture of the water tank showing a ITC1089D transducer mounted
near a vertical cylinder. The center frequency of the pulse transmissions is 280
kHz. The vertical source near the top tank wall is mounted to the carriage
of an Ender 5 Plus 3D printer, which provides 3-axis computer-controlled
movement for mapping out tank volumes.

Fig. 2: A picture of the water tank testbed, showing the two transducers with
the vertical wooden cylinder, modeling an occluder in our experiments.

According to our experiments, the speed of sound in the
watertank was 1485 m/s, which is the value we set for c
when applying the localization methods GCC-PHAT, MFP3,
and the proposed SBL method. For MFP3, which requires the
sediment coefficient as an input parameter as well, our calcula-
tions indicate that due to the thinness of the plastic layer at the
bottom, the bottom reflection is almost completely returned.
Therefore, we set κb = 1. Of course, it is most likely that
κb is only approximately 1, and is slightly smaller. However,
in practice it would be virtually impossible to perfectly know
the sediment coefficient in the area of interest a priori. Hence,
here the choice of κb = 1 still faithfully represents a scenario
in which highly reliable prior environmental knowledge is
incorporated into a MFP-based solution.


