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Abstract—Group testing refers to the process of testing pooled
samples to reduce the total number of tests. Given the current
pandemic, and the shortage of test supplies for COVID-19, group
testing can play a critical role in time and cost efficient diagnostics.
In many scenarios, samples collected from users are also accom-
panied with auxiliary information (such as demographics, history
of exposure, onset of symptoms). Such auxiliary information may
differ across patients, and is typically not considered while design-
ing group testing algorithms. In this paper, we abstract such het-
erogeneity using a model where the population can be categorized
into clusters with different prevalence rates. The main result of this
work is to show that exploiting knowledge heterogeneity can further
improve the efficiency of group testing. Motivated by the practical
constraints and diagnostic considerations, we focus on two-stage
group testing algorithms, where in the first stage, the goal is to
detect as many negative samples by pooling, whereas the second
stage involves individual testing to detect any remaining samples.
For this class of algorithms, we prove that the gain in efficiency is
related to the concavity of the number of tests as a function of the
prevalence. We also show how one can choose the optimal pooling
parameters for one of the algorithms in this class, namely, doubly
constant pooling. We present lower bounds on the average number
of tests as a function of the population heterogeneity profile, and
also provide numerical results and comparisons.

Index Terms— Pooled testing, group testing, hypothesis testing.

I. INTRODUCTION

GROUP testing was first studied by Dorfman [1] who
introduced the idea of testing groups (or pools) of subsets

of the population as opposed to individual testing with aims of
reducing cost and time by reducing the amount of tests required.
The goal is to identify all positive samples (for some disease
or defection) out of a large population [1]–[10]. For an ideal
(noiseless) pooled test, the outcome is negative when all samples
in the pooled test are negative, and positive otherwise. Therefore,
carefully designed group testings are needed to identify all
positive samples with minimum number of tests.

Group testing has also been used for screening for diseases
such as HIV [11], [12], Zika Virus [13] and more [11], [14]–[16].
Due to the recent COVID-19 outbreak, group testing has gained
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a lot of interest. The predominant method for detecting COVID-
19 Coronavirus is real-time Reverse Transcription Polymerase
Chain Reaction (RT-PCR) based diagnostic test. Interestingly,
recent works have shown that using real time RT-PCR for
detecting COVID-19 on pools of around 32 samples or fewer
with at least one positive sample will reliably give a positive
outcome [17]–[23]. The idea of group testing has also been
widely applied in other fields such as communications [24],
compressed sensing [25] and machine learning [26].

Group testing algorithms can be broadly categorized as either
non-adaptive [2], [3], [27], [28] or adaptive [29]–[32]. Non-
adaptive group testing algorithms refer to algorithms where
all tests are designed beforehand. Non-adaptive algorithms are
efficient due to the parallelizability of tests, however, they can
lack flexibility since tests are designed in advance, which causes
excessive/insufficient tests in most cases. On the other hand,
adaptive group testing refers to algorithms where the design
of some later tests can depend on the results of previous tests.
Adaptive group testings are not fully parallelizable as its non-
adaptive counterpart. A good compromise is to use a hybrid
algorithm with multiple stages, where the tests within each stage
is non-adaptive, but adaptive across stages [4], [5], [33].

Group testing can also be categorized based on the underlying
assumptions made about the population disease prevalence.
Algorithms can be designed for two different settings: (a) com-
binatorial and (b) probabilistic. In combinatorial test designs,
one assumes that the number of positive samples is fixed among
the population and a bound on the number of positives may be
known. In probabilistic testing, one assumes that each sample is
positive with some fixed probability, referred to as the prevalence
rate p. In this work, we argue that in practice both of these
assumptions do not utilize the auxiliary information that can be
collected about the population of samples.

In most cases, screenings and responses to questionnaires are
collected before the actual testing to learn additional information
from the patients, such as demographics, history of exposure,
onset of symptoms, medical and travel history [34]–[36]. Such
auxiliary information can be linked to a finer understanding
of the heterogeneity among the patients. One can potentially
use this information in two different ways: (a) estimate the
individual likelihood of the positivity of each patient and sub-
sequently divide the population into clusters, with different
local prevalence rates, according to some thresholds on the
likelihood. The local prevalence of each cluster can then be
found as the average likelihood of the patients in the cluster;
or (b) categorizing the population into groups according to the
potential risk, e.g., low risk (asymptomatic, no known exposure),
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medium risk (asymptomatic, known exposure), and high risk
(symptomatic). The local prevalence of each cluster can be esti-
mated using one of the prevalence estimation techniques in the
literature [37]–[39]. Estimating prevalence rate often requires
accessing past data. It is worth noting that, while clusters can be
formed more intelligently with individual likelihood, past data
on the individual-level (Approach (a)) may not be available
due to privacy concern in practice, however, past data on the
group-level (Approch (b)) is often public, can be obtained easily
and estimation of individual prevalence is not required.

In this work, we study the benefits of leveraging the het-
erogeneity knowledge of the patient groups/clusters in order
to reduce the total number of required tests. We refer to this
approach as heterogeneity aware group testing. Specifically, we
focus on Approach (b), where we do not rely on individual
prevalence. We formalize this by assuming that the population
is divided into C clusters. For each cluster c ∈ [1, . . . , C], we
make the assumption that the probability that a patient is positive
is equal to pc, and the samples are i.i.d. within each cluster.

Main contributions: We consider heterogeneity-aware two-
stage group testing under a probabilistic model, where in the
first stage, the goal is to detect as many negative samples by
pooling, whereas the second stage involves individual testing to
detect any remaining samples. For the pooling strategy, we adapt
doubly constant method [5], among each population cluster,
where constant numbers of samples per pool and tests per sample
are assumed. Doubly constant provide practical constraints on
pooling parameters. In addition, as shown in [4], doubly constant
outperforms other existing two-stage group testing algorithms.
However, finding the optimal pooling parameters is non-trivial.
We provide an approach to obtain the optimal pool size through
a series of approximations for a given prevalence rate and total
number of tests per sample. We present the empirically derived
optimal pooling parameters for doubly constant pooling. We
show that, by exploiting heterogeneity, the efficiency of group
testing is improved due to the concavity of the number of tests
as a function of the prevalence rate p. In particular, we show
numerically that the average total tests per sample is concave for
optimized pooling constants, i.e., pool size and tests per sample.
We also provide analytical results for the concavity property for
small values of p. We present a lower bound on the number of
tests as a function of the heterogeneity profile (characterized
by the prevalence rates of the clusters, namely p1, p2, . . . , pC).
Moreover, we conduct experiments through simulations show-
ing that heterogeneity aware performance is superior to hetero-
geneity unaware, and the performance enhances for higher levels
of heterogeneity.

Related work: Heterogeneity aware group testing has been
studied previously in several works [40]–[44]. In [40], the
authors proposed an algorithm that first orders the samples
in a positive pool by its individual estimated prevalence rate,
and samples are re-tested individually until the first positive
sample is found. The remaining samples are pooled again for
subsequent testing. The individual prevalence rates are estimated
using gender, age, race, symptoms, etc, either from past data
or initial test results. The authors of [41] proposed ordered
halving algorithm which creates two pools of equal size. By

ordering the samples based on the prevalence rates and using
the median as the threshold, the probability of one of the pools
being positive is maximized, while the probability of the other
pool being negative is minimized. In [42], the authors proposed
an algorithm that first design tests that focus on minimizing
the expected number of false negatives. Then, samples are
carefully placed into each test based on their individual risk
factors. The optimal placement is obtained through three-stage
optimization problem with budget constraints. In addition to
the test design, [42] also considered the effects of imperfect
tests and dilution. The authors of [43] formulate the problem of
finding the optimal pool size as a partitioning problem, which
can then be converted to a constrained shortest path problem.
The partitioning problem is formulated in a way that it contains
some beneficial structure properties, which allow an originally
NP-hard problem to be approximately solved in an efficient
manner. The above works assumed that each sample is positive
with an individual prevalence rate. To incorporate heterogeneity
knowledge, the population was either split using threshold-based
schemes into two clusters or through computationally intractable
optimization problems.

One of the works that is closely related to our work is [44]. A
threshold-based design is proposed in [44], with the flexibility
of optimizing the threshold. Samples are grouped into low and
high risks groups based on their estimated prevalence rates.
Samples in the low risk pools are further divided and tested
using Dorfman style testing, whereas samples in the high risk
pools are tested individually. The authors in [44] proposed to
estimate the individual prevalence rates using similar method of
that in [40] with past data. While our work is similar to [44],
we point out that there are subtle distinctions between the two.
First, we consider doubly constant pooling strategy in this paper,
for which obtaining the optimal pooling parameters is more
complex. In addition, we are interested in understanding how
much reduction can be obtained in a scenario where we use
coarser knowledge of prevalence rates. Furthermore, we derive
lower bounds that take heterogeneity into account. However, we
note that the algorithm of [44] can also be applied when only
coarser knowledge is available, in which case, the algorithm
of [44] is equivalent to the heterogeneity aware Dorfman’s
algorithm that will be discussed and compared later.

Recently, [45] considered community aware group testing for
a heterogeneous population model where the total population is
divided into F families. It is assumed in [45] that each family
is equally likely to have at least one infected member. For
infected families, members within the family are infected with a
different probability. The main idea is to mix the samples within
each family, and then perform group testing on samples across
families. We can view this model as accounting for a micro
(family) level heterogeneity.

In this paper, we model the heterogeneity differently by
grouping the population according to the risk of infection intoC
clusters with different local prevalence rates. In contrast to [45],
we can view our approach as taking into account a macro-level
view of heterogeneity. We show that significant gains are still
achievable by using coarser knowledge, i.e., without assuming
sample-level individual prevalence rates. We also present a lower
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bound (converse result) for the two-stage group testing problem
with prevalence heterogeneity.

II. SYSTEM MODEL

In this work, we consider a population of N heterogeneous
samples, which can be categorized into C clusters. Let vn ∈
{0, 1} denote the true status of sample n for all n ∈ [1 : N ],
where vn = 0 when the true status of sample n is negative and
vn = 1 otherwise. In addition, we assume that each cluster c con-
sists ofαcN i.i.d. samples, whereαc is the fraction of population
in cluster c ∈ [1 : C]. A sample in cluster c is positive with local
prevalence rate pc. We can compactly represent p = [p1 . . . pC ]
and α = [α1 . . . αC ] as the prevalence rate and population frac-
tion vectors, respectively. The samples are categorized into
clusters based on the auxiliary information obtained through
screenings and questionnaires. For instance, we may consider
the following scenario with C = 3 categories: (a) low risk
(asymptomatic, no known exposure); (b) medium risk (asymp-
tomatic, known exposure); and (c) high risk (symptomatic), with
local prevalence rates pL, pM and pH , where pL < pM < pH .
The average prevalence for the entire population can be written
as the convex combination of pc’s with ratios αc’s, i.e.,

p = α · p =
C∑
c=1

αcpc. (1)

Given an average prevalence rate p, samples are pooled ac-
cording to some pooling strategy ψp, which can be adaptive
or non-adaptive. In this work, we focus on two-stage group
testing algorithms, where in the first stage, the goal is to detect
as many negative samples by pooling, whereas the second stage
involves individual testing to detect any remaining samples. Let
φ(ψ) denote the decoding algorithm for pooling strategy ψ. The
pooling strategy ψp is feasible if it allows decodability. Let
φ(ψ) = [v̂1, . . . , v̂N ] denote the estimates for the n samples,
then, we require

Pr(v̂n = vn) = 1, ∀n, (2)

for exact recovery of the unknown status of the samples.
In this work, we focus on optimizing the performance of the

testing algorithm, which is evaluated by finding the average
number of tests per sample needed (or expected normalized
number of tests normalized by the entire population N ), de-
fined as T (p, ψp, φ(ψp)), to identify all positive samples. Tests
are assumed to be perfect/noiseless, i.e., always return correct
results. The optimal expected normalized number of tests can
then be obtained by minimizingT (p, ψp, φ(ψp))over all feasible
pooling and decoding methods, i.e., find the optimal pooling
method ψopt

p and optimal decoding method φopt(ψopt
p ),

T opt(p) = min
Ψp,Φ(Ψp)

T (p, ψp, φ(ψp)) = T (p, ψopt
p , φopt(ψopt

p )),

(3)

where Ψp is a set of all feasible two-stage pooling strategies for
p, and Φ(Ψp) is a set of all algorithms that, when applied to Φp,
allow decodability of the unknown status of samples, defined in
(2).

A naive choice of ψp is to apply group testing on the entire
population and ignore the heterogeneity knowledge, i.e., ignore

the clustering. This approach is referred to as the heterogeneity
unaware approach. Another possible choice of ψp is to perform
individual group testing on each cluster c, referred to as the
heterogeneity aware approach. Due to the independence of
pooling design of each cluster, we can use the optimal pooling
strategy and decoding algorithm for each cluster c, denoted as
ψopt
pc and φopt(ψopt

pc ), according to the local prevalence pc. The
total number of tests for this approach is the sum of numbers
of tests required for all clusters. Let ψp = [ψp1 . . . ψpC ] and
φ(ψp) = [φ(ψp1) . . . φ(ψpC )]. This gives the expected normal-
ized number of tests, denoted as THet.(p, α, ψp, φ(ψp)), as fol-
lows,

THet.(p, α, ψp, φ(ψp)) = min
Ψpc ,Φpc

c∈[1:C]

∑
c∈[1:C]

αcT (pc, ψpc , φ(ψpc))

=
∑

c∈[1:C]

αcT (pc, ψ
opt
pc
, φopt(ψopt

pc
))

=
∑

c∈[1:C]

αcT
opt(pc). (4)

By comparing (3) and (4), we observe that the concavity of
T opt(p) as a function of the prevalence p is a sufficient condition
for the heterogeneity aware approach to acquire lower expected
normalized number of tests, i.e.,∑

c∈[1:C]

αcT
opt(pc) ≤ T opt(

∑
c∈[1:C]

αcpc) = T opt(p). (5)

In other words, if T opt(·) is concave, we can expect to have
reduction on the expected normalized number of tests, which
depends on the heterogeneity profile, i.e.,pc’s. We note that prov-
ing concavity analytically could be non-trivial, thus, we show
concavity of expected normalized number of tests of Doubly
constant algorithm numerically and through approximation in
Section IV-B.

In this paper, we focus on two-stage group testing, which
is known practically [4], [5], [33] to achieve a good trade-off
between parallelizability and low number of tests. Next, we
give an overview on several two-stage group testing algorithms
commonly considered in the literature.

III. OVERVIEW OF TWO-STAGE GROUP TESTING

Two-stage (T.S.) group testing with an aim of exact recovery
of the positive samples can be described as follows:
• Stage 1 (Pooled Testing): Samples are grouped intoT1 pools

using some pooling strategy with parameters ψT.S.
p . The aim of

this stage is to identify as many negative samples as possible
from the pooled tests. If a pool is negative, all samples in the pool
are declared as definite negatives (DNs). Equivalently, a sample
is declared as negative if it appears in at least one negative pool.
The number of pooled tests in Stage 1 is T1.

• Stage 2 (Conservative Individual Testing): All samples that
are not declared as DNs in the first stage are tested individually.
The number of individual tests conducted in Stage 2 is denoted
by T2.

From here onwards, we omit the argument for the decoding
algorithm fromT (p, ψp, φ(ψp)) since we use the same decoding



3980 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

algorithm for the pooling algorithms being discussed in this pa-
per. We define T (p, ψT.S.

p ) = (T1 + T2)/N as the expected nor-
malized number of tests using two-stage group testing. Clearly,
T2 critically depends on the effectiveness of the first stage at
identifying negative samples. Therefore, we need to carefully
design the pooling strategy ψT.S.

p so that the total number of
tests is minimized. We define the minimum expected normalized
number of tests achieved by using optimal two-stage group
testing ψT.S. opt

p as

T T.S. opt(p) = min
all possible ψT.S.

p

T (p, ψT.S.
p ) = T (p, ψT.S. opt

p ). (6)

Different pooling algorithms have been considered in [4]
for pooling samples in the first stage, namely, Dorfman’s [1],
Bernoulli sampling, constant tests per sample, and doubly con-
stant [5]. We note that while two-stage decoding algorithm may
also be referred as Dorfman’s algorithm in the literature, we
reserve the term Dorfman’s algorithm for the pooling strategy
in [1] throughout the paper. We next summarize the results of [4].
• Dorfman’s Algorithm: All N samples are partitioned into
N/s disjoint pools, each of size s. Each pool is then tested
individually. As a function of the prevalence rate p and the pool
size s, the expected normalized number of tests can be expressed
as

T (p, ψDorfman
p = s) =

1

s
+ 1− (1− p)s, (7)

where optimal s∗ can be approximated as s∗ ≈ 1/
√
p.

• Bernoulli Sampling Algorithm: In Stage 1, each sam-
ple participates in each of the T1 tests with probability π =
min{1, 1/(Np)}. The expected normalized number of tests can
be expressed as

T (p, ψBernoulli
p = π) =

{
p+ ep ln

(
1−p
p

)
, π = 1/(Np)

1
N + 1− (1− p)N , π = 1.

(8)

For the case when π = 1, there is no need for multiple tests
in Stage 1, i.e., T1 = 1. The algorithm is then equivalent to
Dorfman’s algorithm with s = N .

• Constant Tests per Sample (CTS): In this scheme, each
sample is only allowed to be in at most a constant r number of
tests. Since the second stage is individual testing, that leaves us
with r − 1 tests per sample in the first stage. Stage 1 is divided
into r − 1 rounds, withT1/(r − 1) pooled tests in each round. In
every round, each sample participates in one of the T1/(r − 1)
pools selected uniformly at random. This gives the average pool
size as s̄ = N(r − 1)/T1. The expected normalized number of
tests is given as

T (p, ψCTS
p = (r, s̄)) =

r − 1

s̄
+ p+ (1− p)(1− e−ps̄)r−1,

(9)

where the optimal values of r and s̄ can be solved numerically
to minimize T (p, ψCTS

p = (r, s̄)).
•Doubly Constant Algorithm: In addition to restricting each

sample to participate in at most r tests, the pool size is limited to
exactly s samples per pool. Similar to constant tests per sample
algorithm, this can be done by dividing Stage 1 into r − 1 rounds.
However, in every round, the samples are equally partitioned into

T1/(r − 1) pools. The expected normalized number of tests is
given as [5],

T (p, ψDoubly
p = (r, s))

=
r − 1

s
+ p+ (1− p)(1− (1− p)s−1)r−1, (10)

where the optimal value of r and s can be solved numerically
to minimize T (p, ψDoubly

p = (r, s)). Intuitively, the first stage of
Doubly constant is equivalent to performing the first stage of
Dorfman’s r − 1 times with random permutations of samples.
Thus, T1 requires (r − 1)/s tests after normalization. In the
second stage, individual tests are performed on all positive
samples and negative samples that are not in any negative pools.

In addition to studying and comparing two-stage pooling
strategies, a lower bound is derived in [4], stated in the following
lemma.

Lemma 1 (Lower Bound for Two-stage Group Testing [4]):
For conservative two-stage group testing, the expected normal-
ized number of tests is lower bounded as,

1) T T.S. opt.(p) ≥ 1 for p ≥ 0.382;

2) T T.S. opt.(p) ≥ 1

g(p)
(ln g(p) + 1) for p < 0.171;

3) T T.S. opt.(p) ≥ p+
1

f(p)
(ln((1− p)f(p)) + 1), otherwise,

where

f(p) = max
w=2,3,...

{−w ln(1− (1− p)w−1)},

g(p) = max
w=2,3,...

{−w ln(1− (1− p)w)},
where w is the pool size.

Bound 1 is a universal bound from [46] that can be applied
to any group testing algorithm. The idea behind Bound 2 and
3 is as follows. Consider any conservative two-stage group
testing algorithm and assume that the number of tests in Stage
1 T1 is fixed. The goal becomes to derive lower bounds on
the expected number of tests in Stage 2 E[T2] as a function
of T1. For Bound 2, the authors in [4] count every sample that
solely appears in positive pools. For bound 3, all positive samples
and all negative samples that only appear in positive pools are
counted. Essentially, one works with marginal probability that a
sample cannot be classified and the other works with conditional
probabilities that a sample cannot be classified given the events
that the true status of that particular sample is positive or negative
during Stage 1. Once the bounds for E[T2] are derived, one can
then optimize each bound over T1. From f(p) and g(p), we can
see that they are determined by the pool sizew and the prevalence
rate p. However, for a population with heterogeneous samples,
one needs to keep track of the number of samples from each
cluster and the contributions of their respective local prevalence
rates to the lower bounds. Therefore, the lower bounds in Lemma
1 cannot be directly applied to our setting.

The results in [4] showed (also demonstrated in Fig. 1) that
doubly constant pooling algorithm achieves the lowest expected
normalized number of tests and is very close to the lower
bound in Lemma 1. In addition, practically desirable aspects
for cases when there are underlying pooling constraints in terms
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Fig. 1. Comparison of different Two-stage pooling testing algorithms. The op-
timal pooling parameters used in the generation of this figure are s∗ ≈ 1/

√
p for

Dorfman’s and π = min{1, 1/Np} for Bernoulli. The parameters for constant
tests per sample and doubly constant are numerically optimized to minimize the
respective expected normalized numbers of tests. Doubly constant algorithm
achieves the best performance, and is close to the lower bound in Lemma 1.

of pool size and maximum number of tests per each sample are
incorporated in doubly constant algorithm. Henceforth, for the
scope of this paper, we focus on the analysis of Doubly constant
algorithm and showing the benefits of leveraging knowledge
about heterogeneity across samples.

IV. MAIN RESULTS AND DISCUSSIONS

In this work, we provide guarantees on the benefits of utilizing
the heterogeneity knowledge using two-stage group testing.
Fig. 2 shows numerical results for the case of C = 3 clusters:
low, medium and high risk, with local prevalence rates: pL =
0.005, pM = 0.05 and pH = 0.5, respectively. We consider two
cases for average prevalence rate p = 0.05 and p = 0.2. We
compute the number of tests achieved by using a heterogeneity
aware scheme, i.e., applying two-stage doubly constant group
testing over the population clusters independently. We note that
for the high-risk cluster, the optimal pooling parameters (r, s)
are in fact both 1, i.e., equivalent to individual testing, as shown
in the next Section.

Fig. 2 shows the expected normalized number of tests as
well as the error bar for various population fraction values,
i.e., (αL, αM , αH). We can see the improvement of applying
the heterogeneity aware model compared to heterogeneity un-
aware for different heterogeneity profiles. We can also notice
that larger size of low-risk patient cluster requires less number
of total tests, i.e., larger αL. For instance, for p = 5% and
(αL, αM , αH) = (0.8, 0.12, 0.08), the heterogeneity unaware
scheme requires a total of 3733 tests for N = 10000 samples,
and the heterogeneity aware scheme requires a total of 1754
tests, which is a 53.01% reduction. Moreover, we can see that
the total number of tests is centered around the mean and that is
because the number of undecided samples in stage 2, T2, follows
a Binomial distribution (see [4]).

In this section, we first analyze the doubly constant algorithm
for the optimized choice of the pooling parameters (r, s) to

obtain the optimized number of tests T ∗(p). Next, we study
the concavity of T ∗(p) as a function of the prevalence rate p
which is a desired property for the heterogeneity aware approach
to outperform the heterogeneity unaware model. Due to the
complexity of obtaining T ∗(p) in a closed form, we present
an approximation for low prevalence values which gives some
theoretical insights on the concavity of T ∗(p).

We note that the choice of pooling algorithm is independent
of how we utilize the heterogeneity knowledge in this work. We
focus on Doubly constant algorithm for its superior performance.

A. Optimizing Two-Stage Group Testing Using Doubly
Constant Algorithm

For simplicity, since we only consider doubly constant for
the rest of this paper, we drop the notation for pooling strategy
ψDoubly
p and directly express the expected normalized number

of tests using the prevalence rate p, number of tests per sample
r, and the pool size s, i.e., T (p, ψDoubly

p = (r, s)) � T (p, r, s).
Recall that T (p, r, s) is defined as:

T (p, r, s) =
r − 1

s
+ p+ (1− p)(1− (1− p)s−1)r−1. (11)

For practical constraints, we assume maximum smax pool size
and maximum rmax number of tests per sample over two stages.
To satisfy the pooling constraints, we must have s ≤ smax and
r ≤ rmax.

We can find the optimal pool size s∗(p, r) as a function of
the prevalence rate p and the number of tests per sample r by
minimizing the expression in (11). Taking the derivative of (11)
w.r.t. s and setting it to zero, we can obtain s∗(p, r) by solving
the following equation,

s2(1−p)s ln(1−p) (1− (1−p)s−1
)r−2

+1=0, s ≤ smax.
(12)

However, the above equation is hard to solve in a closed form.
The following Lemma (proved in Appendix A) provides an
approximation for the expected normalized number of tests
optimized over the parameter s.

Lemma 2: For a small prevalence rate p, the expected nor-
malized number of tests optimized over the pool size s, T ∗(p, r)
can be approximated by,

T ∗(p, r) ≈ T̂ (p, r) = T (p, r, ŝ(p, r)), (13)

where

ŝ(p, r) = min
(
smax, 	1 + p−(r−1)/r


)
, (14)

is an approximation for the optimal s∗. The notation 	·
 denotes
rounding to the nearest integer.

In Fig. 3, we compare the approximation T̂ (p, r) in (13) to
the exact T ∗(p, r) (obtained numerically) for different values of
p and r with no constraint on the maximum pool size smax. We
notice that T̂ (p, r) is closer to T ∗(p, r) for smaller values of p.
Moreover for r = 2, T̂ (p, r) is a good approximation and as r
increases the difference between exact and approximate values
increases.

In Fig. 4, we compare the optimized expected normalized
number of tests T ∗(p, r), i.e., using the optimal value s∗(p, r)
computed numerically, for different values of r and no constraint
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Fig. 2. Average number of tests using heterogeneity aware two-stage group testing for a total of N = 10000 samples with optimal pooling parameters, and two
values of average prevalence rate p = 0.05 and p = 0.2. Fig. 5 shows the optimal pooling parameters for each cluster found numerically. Reduction in number of
tests is shown compared to heterogeneity unaware scheme for different heterogeneity profiles, determined by varying cluster ratios.

Fig. 3. Exact vs approximate value of T̄ ∗(p, r) versus p for different values of r.

on pool size smax. We also compare versus the lower bound
on the optimal expected normalized number of tests for con-
servative two-stage group testing presented in [4, Theorem 5].
We notice that for different ranges of p, exactly one value of
r will give the smallest expected normalized number of tests.
The lower concave hull of the curves from all values of r gives
the optimized expected normalized number of tests over all
values of (r, s) for different values of p, denoted as T ∗(p).
Note that T ∗(p) gives an upper bound on the optimal two-stage
group testing, i.e.,T T.S. opt(p) ≤ T ∗(p). In particular, the optimal
r-values, r∗(p) as well as the corresponding optimal pool size
ranges, s∗(p, r), for different ranges of p can be summarized in
Fig. 5. We present more numerical results on optimal parameters

for constrained pool size with two values smax = 16 and 32 in
Appendix B.

B. Heterogeneity Aware Two-Stage Group Testing

We propose the heterogeneity aware approach in which two-
stage group testing is done separately over C different clusters.
For every cluster c, we use the optimal pooling parameters
given in Fig. 5 according to the local prevalence pc. The total
number of tests for this scheme is the sum of numbers of tests
of allC clusters. Thus, the expected normalized number of tests
is
∑C
c=1 αcT

∗(pc). Heterogeneity awareness helps in reducing
expected normalized number of tests provided that the function

f(smax, p, α) = − min
w∈[2:smax], w

(c)∈[0:min{w,αcN}]
∑C

c=1w
(c)=w

⎧⎨
⎩w ln

⎛
⎝1−

∏
c∈[1:C]

(1− pc)
w(c)

⎞
⎠
⎫⎬
⎭ . (15)

g(smax, p, α) = − min
w∈[2:smax], w

(c)∈[0:min{w,αcN}]
∑C

c=1w
(c)=w

{
C∑
c=1

w(c) ln

(
1− (1− pc)

w(c)−1(1− min
i∈[1:C]

pi)
w−w(c)

)}
. (16)
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Fig. 4. T ∗(p, r) versus the lower bound as a function of the prevalence p for
different values of r.

Fig. 5. Optimal parameters (r∗, s∗) for doubly constant pooling and corre-
sponding normalized tests per sample, for different prevalence rates p.

T ∗(p) is concave, i.e.,
C∑
c=1

αcT
∗(pc) ≤ T ∗

(
C∑
c=1

αcpc

)
= T ∗(p).

Fig. 4 suggests that the exact T ∗(p) is concave, which shows
the potential of applying heterogeneity aware schemes to reduce
expected normalized number of required tests. Since T ∗(p) is
hard to solve in a closed form, we are unable to prove its
concavity analytically. Lemma 2 suggests that T̂ (p, r) is a good
approximation for T ∗(p, r) when p is small. In the following
Lemma (proved in Appendix B), we give some theoretical
insights by proving that T̂ (p, r) gives some concavity guarantees
for small values of p.

Lemma 3: For small values of prevalence rate p, we can
further approximate T̂ (p, r) as follows,

T̂ (p, r) ≈ (r − 1)p(r−1)/r

1 + p(r−1)/r
+ p+ (1− p)p(r−1)/r,

where the new approximation is concave.
To understand the performance of our proposed scheme, we

derive a lower bound for conservative two-stage heterogene-
ity aware group testing. The lower bound is obtained by first
bounding the expected number of tests in Stage 2, T2, which is a
function of the number of tests in Stage 1, T1. The bound for the
minimum normalized number of tests is then minimized over

T1. Our result is summarized in the following Theorem (proved
in Appendix D).

Theorem 1: For a two-stage group testing problem with a
population of N samples that are categorized into C clusters,
with population fraction α and local prevalence p, the mini-
mum normalized tests needed using conservative model is lower
bounded by the following two bounds,

1) T T.S. opt(p, α) ≥ 1

f(smax, p, α)
(1 + ln f(smax, p, α)) ,

2) T T.S. opt(p, α) ≥
C∑
c=1

pcαc

+
1

g(smax, p, α)

(
C∑
c=1

αc ln(1− pc) + ln g(smax, p, α) + 1

)
,

where f(smax, p, α) and g(smax, p, α) are defined in (15) and
(16). smax denotes the maximum allowed pool size. The ranges
of average prevalence rate p that these bounds dominate depend
on α and p. The final lower bound can be obtained by taking the
maximum of the two bounds above.

The idea behind the bounds in Theorem 1 is similar to that of
Lemma 1. However, as mentioned above, we need to keep track
of the number of samples from each cluster in each pool since the
probability of a pool being positive requires us to know the exact
composition of the pool. This is particular important for Bound
2 in Theorem 1 due to the fact that we are working with the
conditional probability. We need to know which cluster that the
sample we conditioned on comes from. We remark here that the
lower bounds in Lemma 1 are obtained under the assumption of a
homogeneous population with i.i.d. samples. Therefore, Lemma
1 is not directly applicable to our heterogeneous population
model, where samples are only i.i.d. within each cluster. In fact,
the second and third bounds in Lemma 1 are special cases of
Bounds 1 and 2 in Theorem 1 when pc = p for c ∈ [1 : C] and
smax = N . Moreover, to add practicality, our lower bound in
Theorem 1 imposes the pool size constraint. However, the effect
of having constrained maximum number of tests per sample
rmax is not reflected in our lower bound and is a subject for
future research.

V. NUMERICAL SIMULATIONS AND COMPARISONS

In this section, we present numerical simulation results to
show (a) the benefit of exploiting the heterogeneity knowledge;
(b) comparison between different pooling methods with/without
heterogeneity knowledge; (c) comparison between heterogene-
ity aware and unaware schemes with the corresponding lower
bounds; (d) the impact of constraining the pooling parameters,
i.e., maximum pool size and maximum tests per sample rmax;
(e) impact of the accuracy of prevalence estimation; and (f)
impact of the number of clusters and fineness of heterogeneity
knowledge.

For our simulations, we assume a heterogeneity model such
that the population is divided into C = 3 clusters. For ease of
presentation, we assume the prevalence in clusters (pL, pM , pH)
scales with the average prevalence p, e.g., (pLp ,

pM
p ,

pH
p ) =
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Fig. 6. Comparison of heterogeneity aware pooling algorithms used in stage 1, with different heterogeneity levels and average prevalence values, p = 5%,
p = 10%, and p = 15%. While different algorithms give varying performance for different heterogeneity profiles, doubly constant is consistently achieving best
performance.

(cL, cM , cH). The constant vector (cL, cM , cH) indicates the
level of heterogeneity. We also pick values (αL, αM , αH)
that satisfies αL + αM + αH = 1, 0 ≤ αL, αM , αH ≤ 1 and
αLcL + αMcM + αHcH = 1 where the latter constraint fol-
lows directly from (1). In particular, for low (medium and
high, respectively) heterogeneity, we use population fraction
values (αL, αM , αH) = (0.6, 0.22, 0.18) ((0.6,0.22,0.18) and
(0.6,0.29,0.11), respectively). We assume that the population
fraction values follow the trend αL ≥ αM ≥ αH . This assump-
tion can be justified, for instance, in a pandemic scenario as
follows: we expect a small group of the population who are
front-line workers such as healthcare workers to have a higher
chance of being infected. There may also be other essential
workers who need to be in contact with other people, forming
the medium-risk group, while a large fraction of population
(low-risk) is able to socially distance more effectively at home,
and may have a lower chance of being infected. We note that
one way to quantify the level of heterogeneity is by evaluating
the following function,

HLevel = |cM − cL|+ |cH − cM |.
In the following comparisons, we refer the vector
(cL, cM , cH) = (0.7, 1.0, 2.0) as low heterogeneity, the vector
(cL, cM , cH) = (0.1, 1.0, 4.0) as medium heterogeneity and
(cL, cM , cH) = (0.05, 1.0, 6.0) as high heterogeneity.
• Comparison between pooling algorithms: In Fig. 6, we

compare four different pooling algorithms, namely Bernoulli,
constant tests per sample, Dorfman’s, and doubly constant. We
assume there are no pooling constraints. We further assume
3 values for average prevalence rate, p = 5%, p = 10%, and
p = 15%. It can be seen that, except doubly constant, the
performances of other pooling algorithms changes for differ-
ent heterogeneity profiles. For instance, for low heterogeneity
profile, Dorfman always outperforms Bernoulli, and for high
heterogeneity, the opposite is true. Also, constant tests per
sample always outperforms Bernoulli algorithm. However, the
performance of doubly constant is consistently the best among
all four pooling algorithms for different heterogeneity levels and
different prevalence rates.

Fig. 7. Comparison between Heterogeneity unaware, low, medium and high
heterogeneity schemes with optimal pool size s∗(p, r) and tests per sample
r∗(p). Lower bounds are also shown as a function of the heterogeneity profile.

• Achieved performance versus lower bounds: Next, we
show how far the achieved performance is from optimality for
different population prevalence rates. In Fig. 7, we compare
the average number of tests per sample between heterogeneity
unaware scheme and low, medium and high heterogeneity aware
schemes versus the corresponding lower bounds obtained from
Theorem 1 and [4, Theorem 5]. We use the optimal value of
pool size s∗(p, r) computed numerically using (12). Moreover,
we use the optimal value of number of tests per sample, r∗(p),
using Fig. 5. We assume there are no pooling constraints.

It can be seen that the heterogeneity knowledge reduces the
average number of tests per sample even when the heterogeneity
is low. As the heterogeneity level increases, we see a larger
reduction in the number of tests. Note that the curves for medium
and high heterogeneity are cut off due to the fact that the local
prevalence rates will not be a valid probability when the average
prevalence rates exceed certain values for their respective hetero-
geneity profile. For example, high heterogeneity has a cH = 6
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Fig. 8. Average number of tests per sample with medium heterogeneity with
optimal pool size s∗(p, r) and tests per sample r∗(p) such that the maximum
number of tests per sample, rmax, is restricted to three values 2,4,6,8 and 10.

for the high-risk cluster. Therefore, the average prevalence rate
p cannot exceed pH/cH ≤ 1/6. We also note that for the curve
for low heterogeneity, Bound 2 dominates for p < 0.351, and
Bound 1 dominates for 0.351 ≤ p ≤ 0.5.

• Constrained Pool Size and Maximum Number of Tests
per Sample: In Fig. 8, we show the impact of introducing a
constraint on maximum number of tests per sample, rmax. We
use the optimal value of number of tests per sample, r∗(p),
using Fig. 5 such that r does not exceed a predetermined values,
rmax = 2, 4, 6, 8, and 10, i.e., r = min(rmax, r

∗(p)). It can be
seen that the reductions in average total tests diminish as the
restriction on number of tests per sample loosens. This result
suggests that our two-stage testing algorithm requires only small
maximum number of tests per sample, rmax. In particular, our
analysis shows that increasing rmax beyond 4 does not have a
significant improvement in reducing number of required tests.

In Fig. 9, we show the impact of imposing the maximum
pool size constraint. In particular, we consider three cases for
maximum pooling constraint namely, unbounded, smax = 32
and rmax = 16 and compare the required number of tests versus
the corresponding lower bounds. For each population, we use
the optimal pooling parameters given by the Figs. 5, 15, and 16.
This result shows that we still can achieve reduction in number
of required tests using group testing while considering practical
constraints on maximum pool size.
• Accuracy of Prevalence Estimation: In Fig. 10, we show

the impact of prevalence estimation error on the expected nor-
malized number of tests for high heterogeneity. The pooling
parameters for each cluster can be found in Fig. 5. It can be
seen that the expected normalized number of tests is minimized
whenever the estimation is correct (i.e., along the diagonal in
the matrix). In addition, we can see that underestimation of
prevalence rate is more severe than overestimation in terms
of the total number of tests. This is due to the fact that when
we underestimate p, we will group more samples in a pool
during Stage 1. However, the fact that more positive samples are

Fig. 9. Average number of tests per sample compared to the lower bounds
with medium heterogeneity and optimal pooling parameters with the constraint
on maximum pool size, smax taking the values, unbounded, smax = 32 and
smax = 16.

Fig. 10. A confusion matrix for the effect of prevalence estimation error
on the expected normalized number of tests with high heterogeneity, i.e.,
(cL, cM , cH) = (0.05, 1.0, 6.0).

Fig. 11. The visualization of cluster compositions for C = 1, 3, 6 and N with
the prevalence rate of each cluster.

presented than expected results in more positive pools. Hence,
we need to perform more individual testing in Stage 2. For
these values of true p, estimating them to be 0.07 and 0.08
does not change the optimal pooling parameters since the local
prevalence rates for each cluster when p = 0.07 and 0.08 fall in
the same range in Fig. 5, e.g., pM = 0.07 for p = 0.07 and 0.08
for p = 0.08, and both results in r = 3 and s ∈ [6 : 8].
• Impact of the number of clusters C and fineness

of heterogeneity knowledge: With finer heterogeneity
knowledge, one can form clusters more intelligently. For
example, one can form more clusters, or have various choices
of prevalence threshold for the clusters for a fixed C. In
Fig. 12, we show the impact of varying C. Specifically,
we look at cases where C = 1, 3 and 6, with C = 1 being
heterogeneity unaware and knowing only the prevalence rate
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Fig. 12. Expected normalized number of tests for three different fineness of
heterogeneity knowledge, where heterogeneity unaware doubly constant is used
for C = 1 and heterogeneity aware doubly constant is used for C = 3 and 6.

of the entire population, C = 3 being heterogeneity aware
and having coarser knowledge of prevalence rates, and C = 6
being heterogeneity aware and having finer knowledge of
prevalence rates. For C = 6, the population fraction values are
(α1, α2, α3, α4, α5, α6) = (0.3, 0.25, 0.2, 0.15, 0.07, 0.03) and
the prevalence rates for the clusters are (p1, p2, p3, p4, p5, p6) =
(0.005, 0.04, 0.1, 0.16, 0.24, 0.42). For C = 3, we form the
low (medium/high) risk cluster using the populations of cluster
1,2 and 3 (cluster 4 and 5/cluster 6) from C = 6 case, thus,
we have (αL, αM , αH) = (α1 + α2 + α3, α4 + α5, α6) =
(0.75, 0.22, 0.03) and (pL, pM , pH) = (0.042, 0.1855, 0.42)
by taking the average of the weighted prevalence rates of the
corresponding clusters fromC = 6 case. Finally, forC = 1, we
have a prevalence rate of 0.0849 for the entire population (see
the visualization of the cluster compositions in Fig. 11). It can
be seen that heterogeneity aware doubly constant with C = 6
outperforms the cases with C = 1 and 3. However, we can
also see that at the other extreme where C = N , one recovers
individual testing. This indicates that C needs to be chosen
carefully to minimize the expected normalized number of tests.
How to pick C and form each cluster is an interesting future
work.

VI. CONCLUSION

In this paper, we consider the problem of group testing for a
heterogeneous population, where the population can be divided
into several clusters with local different prevalence rates. We
showed the benefits of applying conservative two-stage group
testing algorithm independently to each cluster. We showed that
the efficiency of heterogeneity-aware group testing algorithm
can be improved due to the concavity of the expected normal-
ized number of tests as a function of the prevalence. A lower
bound on the required number of tests was derived based on
the heterogeneity profile as well as a practical constraint on the
pool size. Our numerical results confirmed that heterogeneity
knowledge indeed provides significant improvement for group
testing performance compared to the case where heterogeneity
is unknown, i.e., assuming i.i.d. samples. Interesting future
directions include studying the benefits of heterogeneity aware
schemes for other model assumptions such as, noisy pooled test-
ing and non-conservative testing models where pooled testing
can be useful to detect both positive and negative samples.

Noisy group testing has been studied in [30], [31], [47]–[50].
In the noisy setting, the pooled tests could yield noisy outcomes,
which subsequently lead to incorrect classification. In practice,
noises can be results of dilution or inherently inaccurate testing.
While noisy group testing is relatively well-understood with

homogeneous population, there are few works that assume het-
erogeneous population. Understanding the impact of noise for
pooled testing in a heterogeneous population is an interesting
direction for future work.

In a recent interesting work [33], it was shown that by leverag-
ing quantitative information from the test outcomes (as opposed
to binary outcomes), one can further reduce the number of tests
for two-stage adaptive testing algorithms. Another interesting
direction would be to jointly use quantitative information from
pooled tests (as in [33]) and prevalence heterogeneity across
samples.

APPENDIX A
PROOF OF LEMMA 2

In order to find an approximation for s∗(p, r), we approximate
the derivative of T (p, r, s) in (11) as follows,

∂T (p, r, s)

∂s

= − (r − 1)

s2
−(r − 1)(1− p)s ln(1− p)

(
1− (1− p)s−1

)r−2

(a)≈ − r − 1

s2
− (r − 1)(1− p)s ln(1− p) (p(s− 1))r−2

(b)≈ − r − 1

s2
+ (r − 1)pr−1(1− p)s(s− 1)r−2

(c)≈ − r − 1

s2
+ (r − 1)pr−1(s− 1)r−2 = 0, (17)

where the approximation in the three steps assumes that p� 1.
More specifically, (a) follows from approximating 1− (1−
p)s−1 with p(s− 1) through binomial approximation; (b) fol-
lows from the fact that ln(1− p) ≈ −p for small p; and (c) fol-
lows from (1− p)s ≈ 1 for small p. Hence for small prevalence
rate p, the optimal pool size is approximately the solution of
s2(s− 1)r−2 = 1

pr−1 while satisfying the constraint s ≤ smax,
which can be further approximated in a closed form as ŝ(p, r) =
min(smax, 	1 + p−(r−1)/r
) by approximating s2 as (s− 1)2.
Using this value for the pool size, we obtain the expression in
(13) for the approximate optimized average number of tests per
sample, where the bound T̂ (p, r) < 1 corresponds to individual
testing, i.e., s = r = 1.

APPENDIX B
PROOF OF LEMMA 3

T̂ (p, r) can be approximated as follows by plugging in the
ŝ(p, r) in (14) to T̂ (p, r),

T̂ (p, r)

=
r − 1

	1 + p−(r−1)/r
 + p+ (1− p)
(
1− (1− p)	p

−(r−1)/r

)r−1

(a)≈ r − 1

1 + p−(r−1)/r
+ p+ (1− p)

(
1− (1− p)p

−(r−1)/r
)r−1

(b)≈ (r − 1)p(r−1)/r

1 + p(r−1)/r
+ p+ (1− p)p(r−1)/r. (18)
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Fig. 13. Expected normalized number of tests T ∗(p, r) compared to the lower
bound (Lemma 1) for different values of r and maximum pool size smax = 16.

Fig. 14. Expected normalized number of tests T ∗(p, r) compared to the lower
bound (Lemma 1) for different values of r and maximum pool size smax = 32.

where (a) follows from removing the rounding; and (b) fol-
lows from another binomial approximation for the term (1−
p)p

−(r−1)/r
when p < 1 and p1/r � 1. Therefore, the second

derivative of T̂ (p, r) is approximated as

∂2T̂ (p, r)

∂p2
≈ −

r−1
r p−

2
r(

1 + p
r−1
r

)2
(
2 +

p−
r−1
r

r
((2r − 1)p+ 1)

)

− r − 1

r2
p−

r+1
r ((2r − 1)p+ 1), (19)

which is negative for all values of p and r, hence proving
concavity.

APPENDIX C
OPTIMAL PARAMETERS WITH CONSTRAINED POOL SIZES

In Figs. 13 and 14, we illustrate the effect of adding the
pooling size constraint, i.e., bounded smax, for smax = 16 and
smax = 32, respectively. We plot T ∗(p, r) for different values of
r with the corresponding lower bounds given by [4, Theorem 5].
We also plot T ∗(p) by optimizing over r. Figs. 15 and 16

Fig. 15. Optimal pooling parameters, (r, s) values and corresponding required
tests, for different ranges of prevalence rate p and maximum pool size smax =
16.

Fig. 16. Optimal pooling parameters, (r, s) values and corresponding required
tests, for different ranges of prevalence rate p and maximum pool size smax =
32.

for smax = 16 and smax = 32, respectively, shows the optimal
pooling parameters r∗(p) and s∗(p, r), for different ranges of p.

APPENDIX D
PROOF OF THEOREM 1

In this Section, we present the proof for the lower bounds on
the expected number of tests for the heterogeneous model. We
start by lower bounding the expected number of tests in Stage
2, T2. In the conservative setting, all positive samples are tested
again in Stage 2 regardless of the results of Stage 1. Therefore,
Stage 2 consists of all positive samples and samples that are
not declared as DNs in the first stage. For simplicity, we call
samples that cannot be declared as DNs hidden samples. The
main difference between our bound and the bound derived in [4]
is that, since the statistics of each pool now depends on the local
prevalence pc, we need to keep track of the number of samples
from each cluster in each pool. In addition, we assume that each
cluster c has exactly αcN samples, which is used during the
minimization process.

Suppose that the sample n belongs to the cluster γn and pγn
denotes the local prevalence of clusterγn. We defineNc as the set
of all samples in cluster c, i.e.,Nc = {n|γn = c, n = 1, . . . , N},
and |Nc| = αcN for all c ∈ [1 : C]. Let us also define wt as
the number of samples in pool t, and w

(c)
t as the number of

samples from cluster c that participate in pool t. Clearly, wt =∑C
c=1 w

(c)
t . The expected number of tests in Stage 2 can be

bounded as,

E (T2) ≥ E (# of hidden samples) =
N∑
n=1

P (Hn) (20)
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=

N∑
n=1

[pγnP (Hn|n is positive)

+ (1− pγn)P (Hn|n is negative)]

=
N∑
n=1

pγn +
N∑
n=1

(1− pγn)P (Hn|n is negative) (21)

where Hn is a Bernoulli random variable denoting the event
that a given sample n is hidden, and (21) follows from the fact
that for conservative testing, a positive sample is always hidden,
thus, P (Hn|n is positive) = 1.

We note that, while (20) and (21) are equivalent, we can take
different steps later on so that they produce slightly different
bounds that dominate in different regime of p like the bounds in
Lemma 1.

A. Lower Bound 1

We first start with (20). A sample is hidden when all the pools
it is in are positive. Let Htn denote the event a given sample n
is in a positive pool t. The probability of Htn is given as,

P (Htn) = 1−
∏

c∈[1:C]

q
w

(c)
t

c , (22)

where qc � 1− pc. Therefore, we know,

P (Hn) =
∏

t:xtn=1

⎛
⎝1−

∏
c∈[1:C]

q
w

(c)
t

c

⎞
⎠ , (23)

where xtn = 1 whenever sample n is in pool t and xtn = 0
otherwise. We next define the variable L(n, p) as follows:

L(n, p) = lnP (Hn) (24)

=

T1∑
t=1

xtn ln

⎛
⎝1−

∏
c∈[1:C]

q
w

(c)
t

c

⎞
⎠ (25)

Using AM-GM inequality, we can now bound (20) as follows:
N∑
n=1

P (Hn) =

N∑
n=1

eL(n,p)

≥ N exp

(
1

N

N∑
n=1

L(n, p)

)
. (26)

Thus, the goal is to bound the term inside the exponential. Plug-
ging the definition of L(n, p) into (26), we have the following
inequalities,

1

N

N∑
n=1

L(n, p) (27)

=
1

N

N∑
n=1

T1∑
t=1

xtn ln

⎛
⎝1−

∏
c∈[1:C]

q
w

(c)
t

c

⎞
⎠ (28)

(a)
=

1

N

T1∑
t=1

(
N∑
n=1

xtn

)
ln

⎛
⎝1−

∏
c∈[1:C]

q
w

(c)
t

c

⎞
⎠ (29)

(b)
=

1

N

T1∑
t=1

wt ln

⎛
⎝1−

∏
c∈[1:C]

q
w

(c)
t

c

⎞
⎠ (30)

(c)

≥ T1
N

min
w∈[2:smax]

w(c)∈[0:min{w,αcN}]
∑C

c=1w
(c)=w

⎧⎨
⎩w ln

⎛
⎝1−

∏
c∈[1:C]

qw
(c)

c

⎞
⎠
⎫⎬
⎭ (31)

= − λf(smax, p, α), (32)

where (a) follows from switching the order of summations;
(b) follows from the definition of wt; and (c) follows from
bounding each term in the summation with the minimum value;
f(smax, p, α) is defined in (15) and λ = T1/N . Therefore, the
expected normalized number of tests can be bounded as,

T T.S. opt(p, α) ≥ T1
N

+
E (T2)

N

≥ λ+ exp (−λf(smax, p, α)) . (33)

Optimizing the R.H.S. of (33) with respect to λ, we obtain the
optimal λopt that maximizes the R.H.S as follows:

λopt =
−1

f(smax, p, α)

(
ln

1

f(smax, p, α)

)
. (34)

Plugging (34) back in (33), we arrive at the first lower bound
stated in Theorem 1.

B. Lower Bound 2

We can next obtain the second lower bound by bounding
the second term in (21). Note that we are now working with
conditional probability. We need to be careful about which
cluster sample n is from. To find the probability that a negative
samplen is hidden, we first find the probability that it is hidden in
pool t in the first stage. Alternatively, we can find the probability
that a given negative samplen is not hidden in pool t. A samplen
is not hidden in pool twhen every sample in that pool is negative.
We have,

P (Htn|n is negative) = 1− P (Htn|n is negative)

= 1− (1− pγn)
w

(γn)
t −1

∏
c∈[1:C]\{γn}

(1− pc)
w

(c)
t

= 1− q
w

(γn)
t −1

γn

∏
c∈[1:C]\{γn}

q
w

(c)
t

c ,

where we have defined qc � 1− pc. From the above, we now
compute the probability that sample n is hidden in all T1 tests:

P (Hn|n is negative)

=
∏

t:xtn=1

⎛
⎝1− q

w
(γn)
t −1

γn

∏
c∈[1:C]\{γn}

q
w

(c)
t

c

⎞
⎠ ,

where xtn = 1 whenever sample n is in pool t and xtn = 0
otherwise. We next define the variable L(n, p) as follows:

L(n, p) = ln(1− pγn)P (Hn|n is negative)
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= ln qγn +

T1∑
t=1

xtn ln

⎛
⎝1− q

w
(γn)
t −1

γn

∏
c∈[1:C]\{γn}

q
w

(c)
t

c

⎞
⎠

Using AM-GM inequality, we can now bound the second term
in (21) as follows:

N∑
n=1

(1− pγn)P (Hn|n is negative)

=

N∑
n=1

eL(n,p) ≥ N exp

(
1

N

N∑
n=1

L(n, p)

)
(35)

We need to bound the term inside the exponential appearing in
(35). However, we need to bound it differently from [4] due to
having an extra term, and different constraints. We now have
a constraint on the number of samples from individual cluster
for all cluster, instead of having one constraint on the entire
population. In addition, since we are working with conditional
probability, we need to know exactly which cluster the sam-
ple we conditioned on comes from. Plugging the definition of
L(n, p) into (35), we have the following equality,

1

N

N∑
n=1

L(n, p) =
1

N

N∑
n=1

ln qγn

+
1

N

T1∑
t=1

⎛
⎝ N∑
n=1

xtn ln

⎛
⎝1− q

w
(γn)
t −1

γn

∏
c∈[1:C]\{γn}

q
w

(c)
t

c

⎞
⎠
⎞
⎠ .

(36)

We can rewrite the first term on the right as follows,

1

N

N∑
n=1

ln qγn =

C∑
c=1

αc ln qc, (37)

from the observation that the summation consists ofαcN copies
of ln qc’s for all c. We then bound the second term on the right
of (36) as follows,

1

N

T1∑
t=1

⎛
⎝ N∑
n=1

xtn ln

⎛
⎝1− q

w
(γn)
t −1

γn

∏
c∈[1:C]\{γn}

q
w

(c)
t

c

⎞
⎠
⎞
⎠

(a)

≥ 1

N

T1∑
t=1

(
C∑
c=1

w
(c)
t ln

(
1− q

w
(c)
t −1

c q
wt−w(c)

t
max

))

(b)

≥ T1
N

min
w∈[2:smax]

w(c)∈[0:min{w,αcN}]
∑C

c=1w
(c)=w

{
C∑
c=1

w(c) ln
(
1− qw

(c)−1
c qw−w(c)

max

)}

= − λg(smax, p, α), (38)

where (a) follows from the fact that we can bound individual
qc using qmax = (1−mini∈[1:C] pi) and rewrite the summation

over n using the summation over c since there arew(c)
t copies of

the same logarithm term for all c; and (b) follows by bounding
the summation usingT1 times the minimum value; g(smax, p, α)
is defined in (16), and λ = T1/N . By combining (36), (37) and

(38), we have,

1

N

N∑
n=1

L(n, p) ≥
C∑
c=1

αc ln qc − λg(smax, p, α). (39)

By rewriting
∑N
n=1 pγn in (21) as

∑C
c=1 pcαcN , the expected

average number of tests per sample can be bounded as,

T T.S. opt(p, α) ≥ T1
N

+
E (T2)

N

≥ λ+

C∑
c=1

pcαc + exp

(
C∑
c=1

αc ln qc − λg(smax, p, α)

)
.

(40)

Optimizing the R.H.S. of (40) with respect to λ, we obtain the
optimal λopt that maximizes the R.H.S as follows:

λopt =
1

g(smax, p, α)

(
C∑
c=1

αc ln qc − ln
1

g(smax, p, α)

)
.

(41)

Plugging (41) back in (40), we arrive at the second lower bound
stated in Theorem 1.
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