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Abstract—In the phased-array radar (PAR) signals from each
antenna are transmitted at the same carrier frequency, which
yields narrowly focused only angle dependent beampattern. In
contrast, in the frequency-diverse-array (FDA) radar signals from
antenna array are generally transmitted at linearly increasing
frequencies that yields range, time, and angle dependent beam-
pattern. Reported literature on FDA radar missed the contribu-
tion of path-differences in the signal model due to the antenna
array elements, which may lead to misleading results. In this
work, incorporating missed path-differences, the signal model
of FDA radar is corrected. Using the corrected signal model,
it is shown that the instantaneous beampattern depends on the
number of transmit antenna and average beampattern depends
on the product of frequency-offset and pulse-duration. Moreover,
to illuminate the desired region-of-interest for longer dwell time,
discrete-Fourier-transform based low-complexity algorithm is
proposed. In contrast to the conventional FDA radar’s ‘S’ shaped
beampattern, the beampattern of the proposed algorithm changes
linearly with range. Simulation results compare the performance
of our proposed algorithm with the existing ones and show the
superiority of our proposed algorithm.

Index Terms—Frequency-diverse-array radars, Linear and
non-linear frequency offset, Time and range dependent beam-
pattern, Discrete-Fourier-transform.

I. INTRODUCTION

Phased-array radars (PARs) have aspiring features of ad-

aptive and agile electronic beam steering, due to which they

are replacing conventional mechanically beam steering radars

[1]–[3]. The initial use of PAR was restricted to the military

applications only but over the time, they are being used

in numerous civilian applications, such as radar-based land

mobile communication, air traffic monitoring, bio-medical,

and adaptive cruise control [4]–[8]. The benefits of PARs come

at the cost of multiple debase factors, such as their complex

and costly structure, scan loss due to the low dynamic range of

phase-shifters, and only angle-dependent beampattern [3], [9].

These debase factors limit the deployment of PARs in many

other high tech commercial applications [10].

Recently, a new framework called frequency-diverse-array

(FDA) radar is proposed [11]. In conventional FDA radar,

linearly increasing frequency-offsets (FOs) are applied across

the antenna array elements that result in periodic range, angle,

and time-dependent beampattern [12]. The FDA radar beam-

pattern in multiple dimensions can potentially be exploited to

address the challenges of cost, complexity, and scan loss in

the PAR. To steer the beam, in contrast to the use of costly

and low-dynamic range phase-shifters in PAR, FOs can be

optimized in FDA radar. Alternatively, the transmitted signal

from each antenna can be multiplied by appropriate weights

to steer the beam in FDA radar [13], these weights can also be

exploited to change the shape of beampattern. The FDA radar

range dependent beampattern can suppress known interferers

at different ranges and address the issues of scan loss [11],

[14].

Conventional FDA radar yields time dependent periodic

‘S’ shaped narrow beam with respect to range and angle.

To illuminate an object, the power should be focused on it

for longer dwell times. However, due to the time-dependent

beam, the focus of the FDA radar beam changes continuously,

which results in shorter dwell time. Due to which the FDA

radar can miss the weak targets with high probability. To

resolve the time-dependent beam issue a pulsed FDA radar

scheme is proposed in [15]. In this scheme, the achievement

of quasi-stationary beampattern is claimed by transmitting a

very short duration pulse without considering the influence

of the time variable. To steer the beam in different directions,

the proposed scheme suggests the application of corresponding

FOs across the antenna array. The fundamental drawback of

this scheme is its short dwell time. To increase the dwell time

at the given range, in [16] time-dependent FOs are applied

across the antenna array. In this scheme, although a pulse is

applied across the antenna array with time-dependent FOs,

the beampattern is periodic due to which signal to noise-

plus-interference ratio may decrease. The advantage of this

scheme is that multiple targets can be tracked. To increase

the dwell time at the given range, in [17] weights of the FDA

radar are optimized using CVX toolbox [18] and updated after

each pulse. Due to which the computational complexity of this

scheme is quite high. For aperiodic beam, a non-uniform inter-

element spacing FDA radar is proposed in [19]. Since this

strategy is dependent on the inter-element spacing between

the antenna elements that is not possible to change in real-

time, this scheme is not feasible for adaptive applications.

Moreover, the development of such a system requires much

higher precision compared to the uniform-linear array. To

achieve aperiodic and time-invariant beam within a pulse to

illuminate single target, a scheme is proposed in [20]. While to

illuminate multiple targets another scheme is proposed in [21].

In these schemes, time modulated logarithmically increasing

FOs are applied across the antenna array.

In [22], [23], it is pointed out that most of the FDA radar

algorithms mentioned above ignore the propagation delay1 and

show beampattern at t = 0 or t = T . However, for a target at

range Ro, when t < to = Ro

c
none of the transmitted signal

1A time required by a signal to propagate from the transmitting antenna to
the target.
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reach the target, where to is the propagation delay and c is the

velocity of light. Similarly, if T < to none of the transmitted

signal reach the target at t = T . Therefore, in both cases, the

beampattern will be zero. The work in [22], [23] modify the

FDA signal model by incorporating the propagation delay to.

Even their modified signal model ignores delays due to the

path-differences of antenna array elements that give rise to

transient and steady-state beampatterns as discussed in Sec.

II.

To address the above-mentioned issues, in this paper

• Signal model of FDA radar is corrected by incorporating

the ignored time delays due to the path-differences of the

uniform-linear-array (ULA) elements.

• A mathematical relationship between the beamwidth of

instantaneous beampattern and number of antenna ele-

ments is developed.

• Another mathematical relationship between the average

power received by a target at a given range and the

product foT is developed and its significance is dis-

cussed.

• A bound is devised for the value of foT that must be

not violated while selecting their values for radar system

under operation.

• To illuminate the desired spatial region at a given range,

the weights of FDA radars are derived in closed-form by

exploiting discrete-Fourier-transform (DFT), which has

much lower computational complexity compared to the

reported algorithms [17], [24] and allow the control of

dwell time.

The remainder of the paper is organized as follows: The

FDA radar signal model is discussed in Sec. II, Sec. III derives

some novel results for FDA radar that are not reported yet in

the literature. To focus the transmitted power in the desired

spatial region for the given range the algorithm is proposed in

Sec. IV, simulation results are given in Sec. V, and conclusions

are drawn in Sec. VI.

Notations: Bold upper case letters, X, denote matrices

while lower case letters, x, denote vectors. Transpose and

conjugate transposition of a matrix are respectively denoted

by (·)T and (·)H . The conjucgate of a scalar is denoted by

(·)∗. The close interval {x : a ≤ x ≤ b} is denoted as [a, b].

II. SIGNAL MODEL

The baseband model of an FDA radar is shown in Fig. 1.

The number of antenna in the array is M , the distance between

any two adjacent antennas is d, the transmitted signal from

the mth antenna is multiplied by a weight wm, and the FO

introduced in the carrier-frequency of the mth antenna is fm.

With these parameters, the transmitted signal from the mth

antenna can be written as

sm(t) = wme
−j2π(fc+fm)t, t ∈ [0, T ]

= 0, t < 0 or t > T (1)

where m = 0, 1, . . . ,M−1. If a target is present in the far field

at a distance Ro from the reference antenna in the direction

of θ, the transmitted signal from the mth antenna will cover

a distance Ro −md sin(θ) to reach target. If fm = mfo, the

Figure 1: Baseband model of a conventional FDA radar

transmitter.

superposition of M transmitted signals at the target can be

written as

r(t) =

M−1∑

m=0

wme
−j2π(fc+mfo)(t−

Ro−md sin(θ)
c

). (2)

Assuming to = Ro

c
and τm(θ) = md sin(θ)

c
, (2) can be written

as

r(t) =
M−1∑

m=0

wme
−j2π(fc+mfo)(t−to+τm(θ)). (3)

It can be observed that the start of the transmitted signal

from the mth antenna will be received at the target after
Ro−md sin(θ)

c
seconds. Therefore, during the time interval

to − τM−1(θ) to to − τM−2(θ) the target will be illuminated

only by the M th antenna, while during the time interval

to − τM−2(θ) to to − τM−3(θ) the target will be illuminated

by the M th and (M − 1)th antennas, and so on. This way

after to the target will be illuminated by all antennas. The

beampattern between the time interval to − τM−1(θ) to to is

called a transient beampattern. After time to all the transmitted

signals will be contributing to illuminate the target at the range

Ro, therefore the corresponding beampattern can be called

steady state beampattern. Since all the transmitted signals have

a pulse duration of T , the contribution of each transmitted

signal in the received signal will be only for T seconds.

Due to which, the contribution of M th transmitted signal

will be lost after to − τM−1(θ) + T seconds, similarly, the

contribution of (M − 1)th transmitted signal will be lost after

to − τM−2(θ) + T seconds, and so on. Observing this, it

can be said that after time to − τM−1(θ) + T seconds, the

contribution of the transmitted signals to illuminate the target

at the range Ro and angle θ will start decreasing. Again after

to − τM−1(θ) + T seconds, the corresponding beampattern

will be called as a transient beampattern. Arrival times of

pulses from different transmit antennas at the target are shown

in Fig. 2. From the above discussion, it can be concluded

that target with coordinates Ro and θ will be illuminated

with different number of antennas in the first, second, and

third time intervals. Therefore, in the selected processing time

interval all the transmitted signals should be illuminating the
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Figure 2: Timing diagram of the propagation of transmitted signals from different antennas for the target at range Ro and

angular location θ.

target. Now, it is obvious that before to − τM−1(θ) target

with coordinates Ro and θ cannot be illuminated. This fact is

ignored in most of the available literature, for example [25]–

[30], where the illumination of target with respect to range

and angle is shown at t = 0, which is not possible. The

illumination time should be started at-least at t = to−τM−1(θ)
so that at-least one transmitted signal is arrived at the target.

However, the actual illumination time should start at t = to so

that all the antennas can contribute in the illumination of target.

Similarly, the research presented in [16], [17], [20], [21], [31],

[32] shows the target illumination with respect to range and

angle between t = 0 and t = T , which is again misleading.

Similar to t = 0, the choice of t = T is incorrect because if

to is greater than T , the target will not illuminate. This fact

is also pointed out in [22], [23], they address this issue by

showing the illumination of target with respect to range and

angle between t = to and t = to + T . Even in this work, the

first and second transient interval are ignored. Moreover, the

precise information of the time interval in which all transmit

antennas contribute to illuminate the target is not discussed at

all. After t = to− τM−1(θ)+T , the illumination of the target

will follow the transient-2 state. Therefore, to have reliable

detection of the target, it is very important to carefully select

the target illumination times.

To find the array-factor (AF) of an FDA radar, rearranging

the terms in (3), the received signal can be written as

r(t) = e−j2πfc(t−
Ro
c

)
M−1∑

m=0

wme
−j2πΦm , (4)

where Φm = m
(

fo(t−
Ro

c
) + fc

d sin(θ)
c

+ mfod sin θ
c

)

. In (4),

by separating the terms depending on the geometry of the radar

Table I: States of beampattern Response

to − τM−1(θ) → to Transient-1 state

to → to − τM−1(θ) + T Steady State

to − τM−1(θ) + T → to + T Transient-2 state

system, the AF can be defined as

AF(t, Ro, θ) =

M−1∑

m=0

wme
−j2πΦm , for t ∈ [to − τM (θ), to + T ] ,

= 0, to − τM (θ) > t > to + T, (5)

which can be used to find the beampattern of the FDA radar

with respect to t, Ro, and θ as

B(t;Ro, θ) = |AF(t, Ro, θ)|
2. (6)

For the given time, the states of the beampattern are defined in
Table I. To show the effect of actual time on the beampattern,
a simulation is performed for a target located at Ro = 300 km
and θ = 30o. Radar parameters considered for this simulation
are M = 20, fc = 5 GHz, fo = 100 Hz and the corresponding
beampattern is shown in Fig. 3. In the figure, it can be
observed, the beampattern is changing in the transient state-
1. The reason is obvious, as discussed earlier in the transient
state-1, the contribution of signals from the transmit antennas
is increasing with time. Initially, the beampattern is due to a
single antenna element so it should be isotropic. Therefore,
in the beginning at t = to − τM−1(θ), the beampattern is
quite wide. Then after each τ(θ) seconds, the contribution of
signal from the adjacent transmit antenna in the illumination
of target is added until t = to seconds. After the addition
of signals from all M antennas, the beampattern is stabilized
and not changing further. This state is called a steady state of
beampattern. After time to− τM−1(θ)+T the contribution of
the signals in the illumination start decreasing and opposite to
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Figure 3: Transient and steady state beampattern of an FDA radar at range Ro.

state-1 beampattern can be observed. Time constraint steady
state beampattern can be defined as

Bssr(t;Ro, θ) =

∣

∣

∣

∣

∣

M−1
∑

m=0

wme
−j2πΦm

∣

∣

∣

∣

∣

2

, t ∈ [to, to − τM−1(θ) + T ] ,

(7)

where the subscript ‘ssr’ in Bssr is used for steady state

response.

III. SOME NOVEL DERIVATIONS OF FDA RADARS

In this section some new results for FDA radar are derived

that are not reported yet in the literature.

A. Beamwidth of Conventional FDA Radars

In FDA radar incremental frequency fo is kept much lower

than the carrier frequency fc. As a consequence, the term
m2fod sin θ

c
≪ mfcd sin θ

c
and it can be ignored in (5) to write

AF in more compact form as

AF(t, Ro, θ) =

M−1∑

m=0

wme
−j2π[mfo(t−

Ro
c

)+m
sin(θ)

2 )]. (8)

Assuming wm = e−jmφo , AF can be written as

AF(t, Ro, θ) =

M−1∑

m=0

e−j2πm[fo(t−Ro
c

)+φo
2π + sin(θ)

2 )]. (9)

Applying sum of geometric series formula on (9), we can write

AF(t, Ro, θ) =
1− e−j2πM[fo(t−Ro

c
)+φo

2π + sin(θ)
2 )]

1− e−j2π[fo(t−Ro
c

)+φo
2π + sin(θ)

2 )]
,

= e−jπ(M−1)[fo(t−Ro
c

)+φo
2π + sin(θ)

2 )]

×
sin(πM

[

fo(t−
Ro

c
) + φo

2π + sin(θ)
2 )

]

)

sin
(

π
[

fo(t−
Ro

c
) + φo

2π + sin(θ)
2 )

]) . (10)

Using (10), the absolute value of AF can be written as

|AF(t, Ro, θ)|=
sin

(

πM
[

fo(t−
Ro

c
) + φo

2π + sin(θ)
2 )

])

sin
(

π
[

fo(t−
Ro

c
) + φo

2π + sin(θ)
2 )

]) ,

(11)

which is a sinc(·) function. It is well know that the maximum

value of this function is M [33] and occurs at ψ(t, θ) = 0
and the nulls of this function will occur at ψ(t, θ) = nπ for

n = ±1,±2, . . . and so on. Let us define the beamwidth of

array factor as the Rayleigh beamwidth (distance from peak

to first null). The first null will occur whenever

Mπ

[

fo

(

t−
Ro

c

)

+
φo

2π
+

sin(θ)

2

]

= π.

At t = Ro

c
, the first null in the value of array factor will occur

when
M sin(θ)

2 + φo

2π = 1. From this the angular location of

first null can be derived as

θ1N = sin−1

(
2

M
−
φo

π

)

. (12)

Similarly at t = Ro

c
, the maximum value of AF will occur

when
sin(θ)

2 + φo

2π = 0, which can be used to derive the angular

location of maximum value of AF as

θmax = sin−1

(

−
φo

π

)

. (13)

Therefore, the Rayleigh beamwidth of conventional FDA radar

system can be calculated as

BWR = θ1N − θmax

= sin−1

(
2

M
−
φo

π

)

+ sin−1

(
φo

π

)

. (14)

By using Maclaurian series approximation of sin−1(·) function

given by sin−1(x) = x + x3

6 + 3x5

40 + . . ., in (14), the

approximate value of Rayleigh beamwidth can be calculated

as

BWR ≈
2

M
+

φ2o
Mπ2

. (15)

Note that in (15) the Maclaurian series terms of power five and

more are discarded due to their negligible values compared

to the selected terms. Expression (15) shows that at t = Ro

c

the Rayleigh beamwidth mainly depends on the number of

antennas and slightly on the initial phase while it does not

depend on fo or the duration of pulse. Three corollaries can

be obtained from the AF derived in (11) and are given below
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Corollary 0.1. If fo = 0, the argument of sin(·) func-

tion in the numerator πM
[

fo
(
t− Ro

c

)
+ φo

2π + sin(θ)
2

]

and

in the denominator π
[

fo
(
t− Ro

c

)
+ φo

2π + sin(θ)
2

]

becomes

independent of range Ro and time t. Therefore, fo = 0 will

result in traditional phased-array beampattern.

Corollary 0.2. At t = Ro

c
and fo 6= 0, the argument of sin(·)

function in the numerator πM
[

fo
(
t− Ro

c

)
+ φo

2π + sin(θ)
2

]

and in the denominator π
[

fo
(
t− Ro

c

)
+ φo

2π + sin(θ)
2

]

be-

comes independent of range Ro. At this instant the beampat-

tern will follow the beampattern of phased-array radar with

a boresight shifted through an angle φo

2 as shown in Fig. 4.

Corollary 0.3. For any value of Ro

c
− τM−1(θ) < t ≤ T +

Ro

c
− τM−1(θ), the beampattern will again follow the phased-

array radar beampattern with a boresight shifted through an

angle
(

fo
(
t− Ro

c

)
+ φo

2π

)

.

Since, at Ro

c
−τM−1(θ) < t ≤ T + Ro

c
−τM−1(θ), the term

fo
(
t− Ro

c

)
and φo do not depend on the value of θ, however,

these terms will spatially move the AF pattern through an

angle 2fo(t − to) + 2φo

π
(φo > 0) radians on the left hand

side, this phenomena can be called as spatial-exploration (SE)

of FDA radar system.

-50 0 50
 (degrees)

10-3

10-2

10-1

100

|A
F

(t
;R

o
,

)|

t=R
o
/cBWR

Figure 4: Beamwidth of FDA radar for φo = 0, M = 10,

and fo = 100 Hz. For fo
(
t− Ro

c

)
> 0 the beampattern will

shift left.

B. Average Transmit Beampattern of FDA Radar

The theoretical value of SE intuitively is derived in [22],

which lacks proper mathematical reasoning. In this section, an

expression for the average beampattern is derived that helps

to compute the SE of FDA radar (also called angle spread

of beampattern). To derive the average transmit beampattern

of FDA radar, again by exploiting the fact m2fod sin θ
c

≪

mfcd sin θ
c

in (4), we can write

r(t, Ro, θ) = p(t, Ro)

M−1∑

m=0

wme
−j2π[fo(t−Ro

c
)+ sin(θ)

2 ]m,

(16)

where p(t, Ro) = e−j2πfc(t−
Ro
c

). If the weight of the mth

antenna is chosen as wm = e−jmφo , (16) can be written as

r(t, Ro, θ) = p(t, Ro)

M−1∑

m=0

e−j2π[fo(t−Ro
c

)+ sin(θ)
2 +φo

2π ]m,

= p(t, Ro)

M−1∑

m=0

e−jmπ sin(θ)e−j2π[fo(t−
Ro
c

)+φo
2π ]m,

= p(t, Ro)a
H(θ)s(t;Ro),

where a(θ) =
[
1 ejπ sin(θ) · · · ej(M−1)π sin(θ)

]T
and

s(t, Ro) = [s0(t− to) s1(t− to) · · · sM−1(t− to)]
T

.

Therefore, the average received power by the target located

at range Ro and in the direction θ can be written as

P (θ) =
1

T

∫

|r(t;Ro, θ)|
2dt

=
1

T

∫

r(t;Ro, θ)r
H (t;Ro, θ)dt

= a
H(θ)R̃a(θ), (17)

where

R̃ =
1

T

∫

s(t;Ro)s
H(t;Ro)dt,

is the correlation matrix of the transmitted waveforms. Using

the timing diagram of individual pulses shown in Fig. 2,

individual elements of the correlation matrix, R̃, can be

derived as

R̃(m,n) =
1

T

∫ to−(n−1)τ(θ)+T

to−(m−1)τ(θ)

sm(t−to)s
∗

n(t−to)dt. (18)

By replacing the values of sm(t− to) and sn(t− to), (18) can

be written as

R̃(m,n) =
1

T

∫ to−(n−1)τ(θ)+T

to−(m−1)τ(θ)

ej2π[fo(t−to)+
φo
2π )](n−m)dt,

= k(m,n)
1

T

∫ to−(n−1)τ(θ)+T

to−(m−1)τ(θ)

ej2πηtdt,

= k(m,n)
ej2πηt

j2πηT

∣
∣
∣
∣
∣

to−(n−1)τ(θ)+T

to−(m−1)τ(θ)

,

where k(m,n) = ej2π[−foto+
φo
2π ](n−m) and η = fo(n −m).

Applying the limits we get

R̃(m,n) = k(m,n)
ej2πη(to−(n−1)τ(θ)+T ) − ej2πη(to−(m−1)τ(θ))

j2πηT
,

= k(m,n)ej2πη(to−(n−1)τ(θ)+T )

(
1− ej2πη((n−m)τ(θ)−T )

j2πηT

)

,

(19)
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Solving above equation further, we can write

R̃(m,n) = −k(m,n)ej2πη(to−(n−1)τ(θ)+T )ejπη((n−m)τ(θ)−T )

×

(
sin(πη((n −m)τ(θ) − T ))

πηT

)

,

= −k(m,n)ejπη(2to−(n+m−2)τ(θ)+T )

×

(
sin(πη((n −m)τ(θ) − T ))

πηT

)

. (20)

In practice, the value of τ(θ) ≪ T , therefore it can be ignored

in (20) and using this the average power in (17) can written

as

P (θ) =

M−1∑

m=0

N−1∑

n=0

e−jmπ sin(θ)R̃(m,n)ejnπ sin(θ),

=

M−1∑

m=0

N−1∑

n=0

ej(n−m)π sin(θ)ejπ(n−m)[foT+φo
π ]

×
sin((n−m)πfoT )

(n−m)πfoT
,

=

M−1∑

m=0

N−1∑

n=0

e(n−m)[π sin(θ)+πfoT+φo]

×
sin((n−m)πfoT )

(n−m)πfoT
. (21)

Assuming fθ = sin(θ)
2 , (21) can be written as

P (θ) =

M−1∑

m=0

N−1∑

n=0

ej(n−m)[2πfθ+πfoT+φo]

×
sin((n−m)πfoT )

,

= N + 2
N−1∑

n=1

(N − n)
sin(nγ) cos (nκ)

nγ
(22)

where κ = (2πfθ + πfoT + φo) and γ = πfoT . Using

sin(α) cos (β) = 1
2 [sin(α+ β) + sin(α− β)] in (22), it can

be written as

P (θ) = N +

N−1∑

n=1

1

nγ
(N − n) [sin(n(γ + κ)) + sin(n(γ − κ))]

= N +
N

γ

N−1∑

n=1

[
sin(n(γ + κ))

n
+

sin(n(γ − κ))

n

]

︸ ︷︷ ︸

P1(θ)

−
1

γ

N−1∑

n=1

[sin(n(γ + κ)) + sin(n(γ − κ))]

︸ ︷︷ ︸

P2(θ)

. (23)

In (23), P1 and P2 can also be viewed as

P1(θ) =

N−1∑

n=1

[
sin(n(γ + κ))

n

]

︸ ︷︷ ︸

P11(θ)

+

N−1∑

n=1

[
sin(n(γ − κ))

n

]

︸ ︷︷ ︸

P12(θ)

,

P2(θ) =

N−1∑

n=1

[sin(n(γ + κ))]

︸ ︷︷ ︸

P21(θ)

+

N−1∑

n=1

[sin(n(γ − κ))]

︸ ︷︷ ︸

P22(θ)

. (24)
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Figure 5: Average beampattern of P1(θ), P11(θ), P12(θ).
Initial phase φo = 0o, M = 20,fo = 200Hz,T = 1ms.
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Figure 6: Average beampattern of P2(θ), P21(θ), P22(θ).
Initial phase φo = 0o, M = 20,fo = 200Hz, T = 1ms.

The individual beampatterns of P1 and P2 along with their

sub-terms P11, P12 and P21, P22 are respectively shown in

Fig. 5 and Fig. 6. While the overall beampattern of P is shown

in Fig. 7. Looking from the left side of Fig. 5, it can be

observed, the location of the rising edges of P1 and P11 are

almost the same. Let us assume, this location is denoted by

θ1. Similarly, the location of the falling edges of P1 and P12
is almost the same. Assume this location is denoted by θ2.

Similarly, the same relationship of P2 with its sub-terms can

be observed in Fig. 6. Therefore, the SE of FDA radar can be

determined by finding the values of θ1 and θ2. It can be readily

observed in (24) that the zero crossings of P11 and P12 will

respectively be the same as of P21 and P22. Therefore, we
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Figure 7: Average beampattern of P (θ), P1(θ), and P2(θ).
Initial phase φo = 0o, M = 20, fo = 2kHz, T = 1ms.

will only find the zero crossings of first pair, i.e. P11 and P12.

Since n 6= 0, the term P11 will be zero iff

(γ + κ) = ±kπ, k = 0, 1, 2, · · ·

(πfoT + 2πfθ + φo + πfoT ) = ±kπ. (25)

The location of the first zero crossing of P11 can be found

by inserting k = 0 in (25)

(πfoT + 2πfθ + πfoT + φo) = 0,

2πfoT + 2πfθ + φo = 0. (26)

Solving (26) yields the value of θ1 as

θ1 = sin−1

(

−

[

2foT +
φo

π

])

. (27)

Similarly, the zero crossings of P12 can be derived by setting

the argument of sin(·) in the numerator of P12 equal to kπ

as

n(γ − κ) = ±kπ, k = 0, 1, 2, · · ·

n (πfoT − 2πfθ − πfoT − φo) = ±kπ. (28)

The first zero crossing of the term P12 can be found by setting

k = 0 in (28) as

(πfoT − 2πfθ − πfoT − φo) = 0.

The solution of the above equation yields the value of θ2

θ2 = sin−1

(

−
φo

π

)

. (29)

Using (27) and (29), SE of FDA radar can be found as

SE = θ2 − θ1,

= sin−1

(

−
φo

π

)

− sin−1

(

−

[

2foT +
φo

π

])

. (30)
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Figure 8: Instantaneous and average beampatterns. Initial

phase φo = 0o, M = 20,fo = 200Hz, T = 1ms.

Expanding sine function in (30) using the Maclaurin series

again as described in Sec. III-A, the approximate value of SE

can be easily derived as

SE ≈ 2foT +
2φo
π

(foT )
2. (31)

Observing the above equation, it can be said that SE depends

mainly on the product of FO and pulse duration i.e. foT . The

effect of φo on the SE will be minimal. For further under-

standing of the SE, instantaneous FDA radar beampatterns

at different time instances are shown along with the average

beampattern in Fig. 8.

C. Bound on the Selection of “foT”

As mentioned in the last section the SE depends on the

value of foT . If φo = 0, the value of foT can be found using

(26) as

2πfoT + 2πfθ = 0. (32)

Solving (32) yields

foT = −fθ

= −
sin(θ)

2
≤ 0.5. (33)

Therefore, (33) gives us the criteria to select the value of foT .

As we have seen the beamwidth of conventional FDA

radar depends inversely on the number of antennas while

its SE depends on the product of fo and T . Most of the

reported algorithms in the literature produce narrow instant-

aneous beampatterns that has short dwell time and becomes

further narrow as the number of antennas is increased. To

increase the dwell time the instantaneous beampatterns should

be wide. To achieve the wide beampatterns, weights of the

FDA radar can be optimized. The proposed algorithms in

the literature use computationally complex algorithms, such
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as convex optimization, to find such weights. To reduce the

computational complexity to optimize the weights, in the

following section we exploit DFT and propose a closed-form

solution.

IV. PROPOSED TRANSMIT BEAMPATTERN DESIGN

In FDA radar FO is kept much lower than the carrier fre-

quency or fo ≪ fc. As a consequence, the factor m2fod sin θ
c

≪
mfcd sin θ

c
and it can be ignored in (5) to write the equation in

more compact form as

AF(t, Ro, θ) =

M−1∑

m=0

wme
−j2π[mfo(t−

Ro
c

)+m
sin(θ)

2 )]

=

M−1∑

m=0

wme
−j2πfθ(t)m, (34)

where fθ(t) = fo(t−
Ro

c
) + sin(θ)

2 . It should be noted that at

t = Ro

c
, the value of fθ(t) = sin(θ)

2 and it will lie between

−0.5 and 0.5. Therefore, AF can be written as

AF

(

t =
Ro

c
, Ro, θ

)

=

M−1∑

m=0

wme
−j2πfθm, (35)

which can be considered as the equation of discrete-Fourier-

transform (DFT) [33]. Therefore, it can be said that at t = Ro

c
,

the AF of FDA radar is the DFT of weights wm. Conversely, if

the values of AF
(
t = Ro

c
;Ro, θ

)
with respect to θ are known,

using the inverse-DFT (IDFT) the corresponding weights can

be easily calculated as

wm =

0.5∑

fθ=−0.5

AF

(

t =
Ro

c
, Ro, θ

)

ej2πfθm. (36)

If AF of FDA radar is know the corresponding beampattern

can be found by just taking the square of its absolute value

as given in (6). Therefore, (36) can be exploited to find the

weights of FDA radar for the desired beampattern.

To explain the process of finding the weights for the de-

sired beampattern, consider B(t, Ro, θ) represents the desired

beampattern. The theoretical spatial region that a ULA radar

can illuminate is a bounded region between -90 degrees to

+90 degrees defined as θ ∈ {−90, 90}, which corresponds

to fθ ∈ {−0.5, 0.5}. To focus the transmitted power within

a given region at a distance Ro, the overall region can be

divided into a number of grid points, with each grid point

representing an angular location in the region. To illuminate

an angular location assign one to a corresponding grid point

otherwise assign zero to it. To achieve the desired beampattern,

calculate the corresponding weights using (36).

To explain the working and asses the performance of

proposed scheme two numerical examples are given in the

following.

In the first example, the desired region is defined by

Θ1 ∈ [−20, 20] while in the second example the desired region

is defined by Θ2 ∈ [−20,−40]U [20, 40]. For both examples

the number of transmit antennas used is M = 20 and the target

is at Ro = 300km. The desired and designed beampatterns at

different instances of time t = Ro

c
, t = 1.5Ro

c
, and t = 2Ro

c
are

shown in Fig. 9 and 10. As can be seen at t = Ro

c
, the designed

beampattern follow the pattern of desired beampattern. By

increasing the number of antenna, the pattern of the designed

and desired beampatterns can be further matched. It should
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Figure 9: Desired and designed single beampattern for

Ro = 300km, M = 20, fo = 100Hz, T = 1ms.
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Figure 10: Desired and designed beampattern for

Ro = 300km, M = 20, fo = 100Hz, T = 1ms.

be noted, as shown in the figure, for t > Ro

c
the beampattern

is shifting towards left. The reason for this is straightforward

and can be noticed by rewriting (34) as

AF(t;Ro, θ) =

M−1∑

m=0

e−j2πfo(t−Ro
c )mwme

−j2πfθm. (37)

Looking (37) in terms of index m and fθ domain, it can be

observed that the modulation theorem given by [33]

X(k + ko)
DFT
⇐==⇒ e−j2πkotx(t)

can be applied to find the beampattern at any arbitrary value of

t > to. According to this theorem, the shift in the beampattern
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at any value of time t > to will be −fo
(
t− Ro

c

)
. It can

also be noticed in the figures, the designed beampatterns are

slightly moving their spatial focus with respect time, which is

inherited problem of FDA. It is well known that the dwell time

of conventional FDA radar system is so less that it may miss

the weak targets with high probability. As it can be observed in

the figures, the dwell time of proposed scheme is dependent

on the spatial region chosen. The higher the desired spatial

region the higher will be the dwell time. So the proposed DFT-

FDA scheme offers the control over the dwell time. From this

control ability the DFT-FDA has the advantage to address the

problem of shorter dwell time of conventional FDA.

V. SIMULATION RESULTS

In this section, to compare the performance of the proposed

algorithm with the existing algorithms a number of simulations

are performed. In all of the following simulations, a ULA FDA

radar is considered, the number of antennas M = 20, the

carrier frequency fc = 5GHz, the FO fo = 100Hz, the initial

phase of the signal φo = 0 degrees, and the duration of the

transmitted pulse T = 1ms. In the following simulations, the

beampattern with respect to range are discussed, therefore the

contribution of path-differences due to the antennas elements

will be ignored.

In the first simulation, conventional FDA radar with wm = 1
for m = 1, 2, . . . ,M−1 is considered [22]. The corresponding

beampatterns with respect to range at different time instances

are shown in Fig.11. Since the duration of pulse T = 1ms,

examining (11) it can be noticed that the beampattern will be

symmetric when Ro

c
= 1ms or Ro = 300km. At t = 1ms

the leading edge of the transmitted pulse from the reference

antenna will be at Ro = 300km and the trailing edge will be at

Ro = 0. In this case, targets at ranges more than 300km will

not be illuminated. On the other hand all targets at ranges less

than 300km will be illuminated by all transmitted signals. For

these ranges, in the AF expression (11), the term fo
(
t− Ro

c

)

will be positive and as a consequence the symmetric beam-

pattern will be shifted towards the negative spatial angle.

This effect can be noticed in Fig. 11.a. At t = 1.66ms the

beampattern will be symmetric at range Ro = 500km. Similar

to previous case at ranges more than 500km none of the target

will be illuminated, at ranges less than 500km all targets will

be illuminated, and beampattern will be shifted towards the

negative spatial angle corresponding to the ranges less than

500km. These effects can be seen in Fig. 11.b. Finally, same

effects can be observed in Fig. 11.c at t = 2.66ms.

To increase the dwell time, conventional FDA radar cannot

be used to design wide beampatterns. The proposed algorithm

can be exploited for this objective. Therefore, in the second

simulation, to focus the transmitted power in the wider region

defined by Θ1 ∈ [−20, 20] at Ro = 300km the proposed

algorithm is used. Simulation results at different time instances

are shown in Fig.12.a-Fig.12.c. Wide beampatterns for longer

dwell times along with the angular shifts in beampattern for

ranges corresponding to selected times similar to previous case

can be observed in these figures.

Similarly, if we want to illuminate two regions at the given

range the proposed algorithm can also be used. Therefore, in

the third simulation, to focus the transmitted power between

two regions defined by Θ2 ∈ [−20,−40]U [20, 40] at a

range Ro = 300km the proposed algorithm is used. Corres-

ponding beampatterns at different time instances can be seen

in Fig.13.a-Fig.13.c. Similar to the results presented in the

previous two simulations, shifts in the beampatterns can be

observed for ranges less than selected Ro.

In final simulation, the beampatterns of different schemes,

where FOs are continuously (continuous-wave FDA radar)

applied instead of short duration (pulsed FDA radar) are

compared in Fig. 14. Here for all schemes, FO fo = 1kHz and

rest of the parameters are same as in the above simulations.

The beampattern of PAR is shown in Fig.14.a. It can be noticed

here that the beampattern remains same for all ranges and

does not tilt. The beampattern of continuous-wave FDA radar

is shown in Fig.14.b. Here, a non-linear ‘S’ shaped tilt in the

beampattern with respect to range can be observed. Finally,

the desired width beampattern of the proposed scheme for

increased dwell time is shown in Fig.14.c. Here, although the

tilt of beampattern is a function of range but it is smooth and

linear compared to the continuous-wave FDA radar.

It should also be noted that the tilt and periodicity of conven-

tional FDA radar beampattern are respectively the function of

sin−1(2foT ) and c
fo

. The difference in the tilt of beampattern

in the first (Fig. 11) and final (Fig. 14) simulations respectively

of conventional pulsed and continuous FDA radar is due to

the difference in the FOs. In the first simulation fo = 100HZ

while in the final simulation fo = 1kHZ.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel closed-form solution

to optimize the weights of FDA radar for the desired beam-

pattern. The proposed solution exploits the DFT to synthesis

the transmit beampattern for the desired spatial regions. The

proposed solution is simple, flexible and more tractable and

it may spawn multiple applications of FDA radar that are

not accessible by using conventional FDA and phased array

radar. We have also reanalyzed Array factor and beampattern

expression for FDA radar and devised the correct time-range

constraint that must be incorporated for more realistic and

more effective response. In addition to that an average beam-

pattern expression is calculated to calculate SE and relation

between FOs and pulse duration. By reanalyzing with the

correct signal model, we have verified and concluded that

it is impossible to design a beampattern that will remain fix

and illuminate the target for whole duration of pulse, however

dwell time ca be increased using proposed scheme. The further

potential of this idea will be exploited in Receiver design and

in planar array FDA radar system.
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Figure 11: conventional FDA radar beampattern at (a) to = 1ms (b) to = 1.66ms (c) to = 2.66ms.
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Figure 12: Desired single main-lobe proposed FDA radar beampattern at (a) to = 1ms (b) to = 1.66ms (c) to = 2.66ms.
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Figure 13: Desired two main-lobe proposed FDA radar beampattern at (a) to = 1ms (b) to = 1.66ms (c) to = 2.66ms.
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