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Improving Radio Energy Harvesting in Robots

using Mobility Diversity
Daniel Bonilla Licea, Syed Ali Raza Zaidi, Des McLernon and Mounir Ghogho

Abstract—In this article, we propose a new technique which
exploits a robot’s (intelligently) controlled mobility to maximise
stored radio energy. In particular, we examine a scenario where
the mobile robot takes a break from its normal activity for a
duration of T secs. This ‘dead time’ consists of three phases
- searching, positioning and resting - which ensure that the
robot can optimise its energy harvesting from a base station
transmitting a narrowband RF signal over a flat fading wireless
channel. We utilise the mobility diversity principle, which arises
due to the spatial wireless channel diversity experienced by
motion of the robot. By optimal exploitation of the small scale
fading we maximize the net amount of energy (i.e., the energy
harvested by the robot minus the mechanical energy used for
motion) that the robot stores over the ‘dead time’. To the best
of the authors’ knowledge, this article is the first use of the
mobility diversity principle to optimise energy harvesting from
an RF signal. We demonstrate that mobility, if intelligently
controlled, is actually not a foe but is indeed a friend which
can provide significant benefits under wireless fading channels.
Through simulations we verify the analytical results and illustrate
the improvement in the energy stored compared with not using
intelligent mobility. Finally, we show that the efficiency of our
approach is clearly coupled with various design parameters
including the centre frequency of the narrowband RF signal and
the duration of the ‘dead time’.

Index Terms—mobility diversity; energy harvesting; optimal
control; fading; mobile robot.

I. INTRODUCTION

A. Motivation

MOBILITY and fading are traditionally regarded as foes

in the context of wireless communication. Both phe-

nomena manifest frequent variations in the propagation chan-

nel, causing transmission outages. Recently, it was demon-

strated that for delay tolerant applications, mobility can be

exploited to harness capacity gains in wireless ad-hoc networks

[1]. Nevertheless, the focus has been to exploit mobility to

diminish co-channel interference by reducing the effective

number of transmissions. A natural, and more intelligent

approach, would be to complement interference reduction with

optimal exploitation of the intrinsic diversity offered under

node mobility. More recently, it was shown [2] that in the

context of applications where mobility can be controlled,
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channel-aware trajectory planners [3] can be devised to harness

the intrinsic diversity gain. Communications for mobile robotic

platforms is one such application that can avail of such a

concept.

Mobile robots (MRs) are currently of great interest to both

the academic research community and industry. This can be

attributed to the associated wide spectrum of applications (e.g.

health care [4], rescue [5], [6], [7], construction [8], explo-

ration [9], surveillance [10] and entertainment [11] among

many others) as well as its interdisciplinary nature involv-

ing communications [12], [13], [14], control and embedded

systems.

Untethered MRs draw their energy exclusively from an

onboard battery. The amount of tasks the MR can execute

depends on the energy stored in its battery. Hence energy, in

the context of untethered MRs, is a very scarce and important

resource. There are many approaches that allow the robots to

increase the time duration over which an untethered MR can

operate without having to return to its base for recharging its

battery. These include using energy conservation techniques

to make the robot more energy efficient [15] or adding energy

harvesting capabilities to the MR [16], [17]. Now, wireless

energy harvesting [18] is a technique that is being studied with

applications to sensor networks but it could be applied to small

untethered MRs requiring low power. This can be done by

using a dedicated base station (BS) to transmit RF energy and

adding a rectifier antenna [19] to the MR so that it stores the

wireless energy transmitted by the BS. Although the amount

of energy stored by this method may not be as high as with

other energy harvesting techniques (e.g., solar or wind energy)

it is cheap to implement and it requires only a very small area

on the robot’s surface. Because of this latter property wireless

energy harvesting systems can easily be implemented on small

MRs (e.g. the micro-robot Alice [20], [16]). Moreover, the key

advantage in RF energy harvesting is that it imposes minimal

hardware requirements for MRs, as they are already provided

with on-board radio communication capabilities.

B. Problem Overview

In this article, we consider an untethered MR with an an-

tenna which uses the integrated receiver architecture presented

in [21] that provisions simultaneous data and wireless energy

reception from the command-and-control center BS. This BS

is charged to maintain communications for control purposes

or just to exchange data with the MR. More specifically, we

consider a scenario where a MR, that is harvesting wireless
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energy most of the time1 thanks to the receiver mentioned

earlier, is deployed in the field. The robot has to perform a

series of tasks demanded by the BS. Now, we assume that

there are ‘dead times’ between the tasks which are demanded

by the BS. This means that once the MR completes one task it

will not be required to perform any further action for a ‘dead

time’ of duration T seconds until the BS request execution

of the next task. During the execution of a task the MR will

harvest wireless energy while completing it.

During the ‘dead times’ the BS transmits an RF signal

so that the MR can harvest energy from it. Generally, MRs

may observe many scatterers in their near vicinity and that

there may not be a line of sight between the MR and the BS

antenna. Therefore, the wireless channel from the BS to the

MR will experience small scale fading which will affect the

amount of radio energy that can be harvested. Thus, the key

challenge posed in this scenario is to devise a MR algorithm

which maximizes the energy stored during these ‘dead times’

in the presence of fading. What should the MR do during these

‘dead times’ in order to maximize the amount of energy stored

over that period? Should the MR just stand still and continue

harvesting wireless energy? The purpose of this article is to

answer these questions and derive an optimal algorithm for

the MR to execute during the ‘dead times’. In order to solve

this problem, we propose to exploit the so called ‘mobility

diversity principle’ [2], [12] to take advantage of the wireless

channel fading by using the motion of the MR.

The mobility diversity principle (i.e., exploiting the MR

motion to combat small scale fading) is quite a recent idea.

In [12] the authors demonstrated that moving the robot can

considerably improve the propagation conditions. The authors

proposed several mobility strategies and coined the term ‘RF

Mobility Gain’. In [13], the authors designed a mobility

controller in order to maximize the channel capacity between

the MR and a BS under Rayleigh fading while satisfying some

tracking constraints for a certain pre-defined trajectory. In

[14], they considered a scenario where the robot explores and

measures the channel gains at N points which are randomly

distributed in a circular area. Following the exploration and

measurement phase, the robot then moves to the location with

the highest channel gain and transmits from that point.

While the above-mentioned articles highlight the optimal

exploitation of controlled mobility, they did not consider the

mechanical energy used by the robot in attaining these optimal

operating points. So the authors in [2] devised a mobility

control strategy such that a MR operating in a fading environ-

ment can locate an optimal transmitting position; the proposed

approach relies on calculating the stopping points which a

robot has to explore in order to find the best transmitting

position. However, as opposed to [14], in [2] the geometry of

the stopping points was optimized by considering the spatial

correlation function of the wireless channel while using a

model where the energy consumed is proportional to the

distance travelled by the robot. In articles [3] and [22], the

1The only times when the MR is not harvesting wireless energy could be
when the it is transmitting. This is because at that time the antenna could
be connected to the transmitter instead of the receiver (depending on the
transceiver architecture.)

authors employed the channel spatial correlation function and

devised an iterative ”trajectory planner” which finds a stopping

point with a high channel gain in order to minimize the power

required for successful transmission. The authors in [3] and

[22] also considered the mechanical energy consumed by the

robot.

The mobility technique proposed in this study differs from

all the above-mentioned approaches ([2]-[22]) in two specific

aspects:

1) Application: The previous literature has focused on

optimal ”trajectory planning” to find the best position

for transmitting data from the MR to the BS such that

the energy required for this operation is minimized.

However, this paper is geared towards determination of

the optimal motion on a path such that the net amount of

energy stored during ‘dead times’ (i.e., the radio energy

harvested minus the mechanical energy consumed for

the spatial exploration) is maximized. The key difference

is that in the previous literature the energy used for

wireless transmission depends only on the position of the

points where the channel is measured. But in this paper,

the net energy stored due to harvesting depends both on

the position of the points where the channel is measured

and the temporal duration of the ‘dead time’. So we have

added the temporal dimension in this problem.

2) Modeling: Another difference between the existing lit-

erature and this paper is the model employed for the

MR. The mathematical model of the MR dictates its

mechanical energy consumption and so it is important

to have a good model. In [2], [3] and [22], the authors

considered a simple model for a MR and assumed that

its mechanical energy consumption is proportional to the

distance traveled. However, in this paper, we consider a

more comprehensive and realistic model. Here, we only

consider a linear movement2 for the robot (as in [12])

during the ‘dead times’ but in contrast to [12], we are

able to optimize analytically the length of the line to be

explored.

C. Contribution & Organization

The main contribution of this paper is to demonstrate the

fact that the optimal behaviour to maximize the energy stored

(in presence of fading) during the ‘dead times’ is not to simply

stand still but to move intelligently. Another contribution is

the utilization and optimization (using joint communications

and control concepts) of the mobility diversity principle for

the problem of radio energy harvesting. In particular, we will

show that by moving in an optimized way we can increase (on

average) the amount of energy stored by the robot (i.e., the

radio energy harvested minus the mechanical energy consumed

for the exploration). Finally, as we will show in the next

sections, this technique assumes that over the period when

the robot is stationary, the wireless channel is time-invariant.

2Note that only linear movement is currently considered because com-
prehensive and accurate analytical results (i.e., the mathematics is tractable)
can then be derived from the MR model under such a restricted trajectory.
Nevertheless other types of movement merit investigation in future works.
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Figure 1. Diferential drive robot (DDR).

This implies highly “stationary” physical environments and so

our approach is suitable for applications such as surveillance

museums at night or cave exploration.

This paper is now organized as follows. In section II we

describe the models for the robot, for the channel and for

the energy storage system. Then in section III we propose an

energy harvesting technique which makes use of the mobility

diversity principle. In section IV we optimize the parameters

of this technique. An explanation about how to find the optimal

point from which to harvest the energy is presented in section

V. Finally, simulation results are given in section VI and

conclusions are presented in section VII.

D. Notation

The first and second time derivatives of x(t) are ẋ(t) and

ẍ(t) respectively. The superscript T represents the transpose

matrix while the superscript −T represents the transpose of

the inverse matrix. The Euclidian norm of a vector is written

‖ · ‖2, and the expected value is E[·]. Finally R(σ) represents

the Rayleigh distribution with standard parameter σ and ⌈x⌉
is the ceil function.

II. SYSTEM AND CHANNEL MODEL

The objectives of this section are the following:

1) To present the model for the MR. We will briefly sum-

marize the dynamics and the associated parameters of

the MR which contribute towards it mechanical energy

consumption.

2) To discuss the channel model for the link used to

transmit electromagnetic energy from the BS to the MR.

3) To briefly describe the energy storage system model.

A. MR Model

In this article, we consider a MR and in particular we

assume a differential drive robot3 (DDR) [25] furnished with

a rectifier antenna4 (rectenna) [19]. It is assumed that the

rectenna is installed on the geometric center of the robot (see

3Although we restrict our analysis to a DDR the technique presented in
this article can be easily extended to other types of MR like (for example) a
three wheeled omni-directional robot [23] which uses the model in [24].

4An antenna which is connected directly to a rectifier composed of a
Schottky diode and a lowpass filter. This kind of antenna is used in practical
energy harvesting systems [26].

Fig. 1) such that it can harvest the energy received from the BS

located at the 2-D point, pBS . A DDR is a MR that has two

wheels (each with radius r controlled by its own motor). The

distance between the two motorized wheels is 2b. In addition,

it may have a third passive5 omnidirectional6 wheel which

serves as support for the robot (see Fig. 1). The DDR model

considered in this article is a version of the model presented

in [27].

The position of the MR is p(t) and its translational ve-

locity v(t) is controlled by the motor’s input vector u(t) =
[uR(t) uL(t)]T where uR(t) and uL(t) are the control inputs

for the right and left motors respectively. The following state

equation describes how v(t) is controlled by u(t):

v̇(t) + [1 0]Ā[v(t) 0]T = [1 0]B̄u(t), (1)

where Ā = cATqJ
−1T−1

q and B̄ = cBTqJ
−1, with cA

and cB two constants depending on the electromechanical

characteristics of the robot (see [27]); the matrix J is the

equivalent inertia matrix of the robot’s motors (see [27]):

J =

[
J1 J2
J2 J1

]

, (2)

and Tq depends on the geometry of the robot and is given

by:

Tq =

[
r/2 r/2
r/2b −r/2b

]

. (3)

Finally, the energy consumed by the MR due to its mechanical

movement from any time t0 to time t1 is [27]:

Emech(u(t), t0, t1) =

∫ t1

t0

c1u
T (t)u(t)dt (4)

−
∫ t1

t0

c2[v(t) 0]T−T
q u(t)dt,

where c1 and c2 are constants which depend on the electrical

parameters of the robot’s motors.

B. Channel Model

In this article, we consider that during the dead time of

duration T the BS is constantly transmitting a narrowband RF

signal eRF (t) so that the robot can replenish its battery with

RF harvested energy. A narrowband signal will produce less

interference to adjacent wireless systems than a broadband

signal. Now while narrowband signals will experience flat

fading, which in turn will produce losses7 in the wireless

energy harvested by the system, this impairment will be

compensated through the MR movement (as we will see later

in the article).

Now, we assume that the MR receiver follows the archi-

tecture proposed in [21]. On the MR, the energy is received

by a rectenna. The output of the rectifier is connected to

both the robot’s battery and an analog-to-digital converter

(ADC) (see Fig. 2). In general, the receiver in Fig. 2 serves to

receive information (through the ADC) while simultaneously

5A passive wheel is a wheel which is not controlled by any motor.
6An omnidirectional wheel can roll in any direction at any time.
7Due to the deep fades.
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Figure 2. Energy receiver architecture [21].

harvesting radio energy, but during the dead times the receiver

will just be used to harvest radio energy. We also assume that

most of the energy generated at the output of the rectifier is

fed to the battery and only a small amount is absorbed by

the ADC’s input. This may be achieved by inserting (at the

rectifier’s output) a well-designed three-port matching network

[28] (not shown in Fig. 2) with one input and two outputs.

Consequently, the on-board battery is charged by employing

the radio signal, while the MR simultaneously monitors the

amount of energy that arrives into its battery.

Since the radio signal transmitted by the BS is narrow band

the wireless channel experiences flat fading. Furthermore, it is

assumed that during the dead time the environment remains

stationary and consequently the duration T of the dead time

is smaller than the coherence time of the channel and so the

channel will be considered approximately time-invariant over

this duration. Note that this can only be achieved if the MR

works on environments with physical features that experience

low mobility. So the low-pass, complex equivalent baseband

signal received by the robot’s antenna at position p(t) is given

by

ye(p(t), t) =
s(p(t)) · h(p(t))
‖p(t)− pBS‖γ/22

e(t) + ny(t), (5)

where ny(t) ∼ CN (0, σ2
y) is complex, zero-mean, additive

white Gaussian noise (AWGN), s(p(t)) is the shadowing

experienced at the position p(t), h(p(t)) is the small-scale

fading observed at p(t), γ ≥ 2 is the environment dependent

path-loss coefficient and e(t) is the lowpass equivalent of a

pure RF tone eRF (t) with amplitude g.

If the movement of the robot during the dead times is in

a small region then we have that s(p(t)) = s0, a constant,

i.e., the shadowing term is constant for all the positions in

which the robot moves during the dead times. In addition,

if that region is also small with respect to the distance to

the BS, then we can say that during the dead times we have

‖p(t)− pBS‖2 ≈ ‖p(0)− pBS‖2 = ‖pBS‖2. With all these

considerations then (5) simplifies to:

ye(p(t), t) = h(p(t)) · gy + ny(t), (6)

where gy = g ·s0 ·‖pBS‖−γ/2
2 . We will consider that the small

scale fading follows Jake’s model [29] and so |h(p(t))| ∼
R
(

1√
2

)

is Rayleigh distributed and the normalized spatial

covariance function of the channel gain is:

C(p,q) =
4E[(|h(p)| − E[|h(p)|])(|h(q)| − E[|h(q)|])]

(4− π)
,

= J2
0

(
2π‖p− q‖2

λ

)

, (7)

where λ is the wavelength of the RF signal transmitted by

the BS and J0(x) = 1/π
∫ π

0
cos(x sin(θ))dθ is a zero-order

Bessel function of the first kind. The signal at the output of

the rectifier in Fig. 2 is [21]:

re(p(t), t) = ge|ye(p(t), t)|2 + nr(t), (8)

where ge is the gain of the rectifier (without any loss of

generality we will assume ge = 1) and nr(t) ∼ N (0, σ2
r)

is the real, zero-mean, AWGN at the output of the rectifier.

We will refer to nr(t) as the post-rectifier noise and to ny(t) in

(5) as the pre-rectifier noise in order to differentiate between

them. Finally, the signal at the output of the ADC can be

characterised as re(p(k∆s), k∆s) with k∆s being the discrete

sampling time. We will use re(k) as the shorthand notation

for re(p(k∆s), k∆s), and the same reasoning will apply for

all the discrete-time signals in the rest of this article.

C. Energy Storage System

The energy storage system is a vital component of the DDR.

The net amount of energy stored from any time t0 to t1 can

be written as

Es(t0, t1) = Er(p(t), t0, t1)− Emech(u(t), t0, t1), (9)

where Er(p(t), t0, t1) is the energy harvested over this time

period using the rectenna. Mathematically, this can be written

as:

Er(p(t), t0, t1) = η

∫ t1

t0

re(p(τ), τ)dτ, (10)

where η ∈ (0, 1] is the energy charging efficiency parameter

[30]. The energy storage efficiency of the robotic platform

depends on the impedance matching network at the rectifier’s

output and also on the energy charging system for the battery.

Although the battery has finite capacity we will not consider

this on our model because we assume that the amount of

energy stored in the battery at the beginning of the dead

time is not high enough so that the battery can be completely

replenished at the end of this period. In the same manner, we

will assume that the battery level at the beginning of the dead

time is not low enough so that the MR runs out of energy

because of the motion carried out during this period of time.

III. PROPOSED MR ENERGY HARVESTING TECHNIQUE

(MR-EHT)

As we will define later in this section, the dead time of

T secs (from t = 0 to t = T ) when the MR is attempting

to find an optimal position from which to “re-energize” itself,

will comprise of three phases. Only during the third phase will

the MR actually be stationary. The objective is to maximise

E[Es(0, T )] in (9). Now, due to the small scale fading, the

radio energy harvested by the MR using its rectenna can be
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very low if the MR is located at a position where the channel

gain is poor. Nevertheless, although in principle the fading

seems to be a problem, it can be exploited by optimally

controlling the mobility of the robot to find a position with

high channel gain. In other words, we shall use the mobility

diversity principle [2] to maximize the energy stored by the

MR during the dead time.

During the dead time, the more points the robot explores

the higher is the probability of finding a point with a high

channel gain and so increasing the radio energy harvested

Er(p(t), 0, T ). Nevertheless, performing this exploration de-

mands significant mobility which comes at the expense of

mechanical energy consumption, see (4). This mechanical

energy consumption in turn depletes the energy from the MR’s

battery. This implies that although moving can significantly

increase Er(p(t), 0, T ) it also increases Emech(u(t), 0, T ) and

consequently the net energy Es(0, T ) (see (9)) can be low

or even negative. This encourages intelligent mobility control

such that the energy stored during the dead time is maximized.

In short, in the RF energy harvesting problem for MRs the net

energy stored is highly dependent on the actual exploration

strategy.

So first of all we define the design parameters Ts < T and

α ∈ (0, 1), which will be optimized in section IV. We propose

that the dead time is divided into three distinct phases:

1) Phase 1 - Searching Time (t ∈ [0, αTs]) During this

period the MR moves into a search space while simul-

taneously monitoring the channel gain and harvesting

energy.

2) Phase 2 - Positioning Time (t ∈ (αTs, Ts]) During this

phase the MR continues harvesting energy while moving

from its current location p(αTs) to the optimal operating

point p̂opt, where p̂opt is the estimation of popt defined

as:

popt = arg max
p(t)

t ∈ [0, αTs]

|h(p(t))|. (11)

3) Phase 3 - Resting Time (t ∈ (Ts, T ]) In this period

the robot remains motionless at p̂opt harvesting energy

through its rectenna.

Following (9) the net energy stored during the harvesting time

(i.e., over the total pause period of T seconds) is:

Es(0, T ) =

Harvested energy (Phases 1& 2)
︷ ︸︸ ︷

Er(p(t), 0, αTs) + Er(p(t), αTs, Ts) (12)

+

Harvested energy (Phase 3)
︷ ︸︸ ︷

Er(p̂opt, Ts, T )

− Emech(u1(t), 0, αTs)− Emech(u2(t), αTs, Ts)
︸ ︷︷ ︸

Energy consumed due to mobility in Phases 1 & 2

.

where u1(t) and u2(t) are the control inputs (see (1)) em-

ployed during the first and second phases8. Let us define the

searching space (for phase 1) as the following set:

S = {q | q = p(t) for t ∈ [0, T ]}. (13)

8Note that energy is harvested during all three phases of the dead time but
it is during phase 3 that the most significant harvesting actually takes place.

The selection of the optimal set S is an open problem and

is outside of the scope of this article. So in this article, for

simplicity of the trajectory planning of the MR, we will select

a straight line of length L as the searching space:

S = {lv̄ | v̄ = [1 0]T , l ∈ [0, L]}. (14)

This implies that:

1) The control input u1(t) has to follow a control law that

takes the robot from its initial state z(0) = 0 and initial

pose po(0) = 0 to the final state z(αTs) = 0 and final

pose po(αTs) = [L 0 0]T while moving in a straight

line.

2) The control input u2(t) has to follow a control law that

takes the robot from the initial state z(αTs) = 0 and

initial pose po(αTs) = [L 0 0]T to the final state

z(Ts) = 0 and final pose po(Ts) = [p̂opt 0 0]T . Since

popt and p̂opt are both random variables the control law

u2(t) is a stochastic process (as opposed to u1(t) which

is deterministic).

IV. OPTIMIZATION OF MR-EHT

In this section, our objective is to optimize the proposed

MR-EHT so that the expected value of the net energy stored

during the dead time is maximized. In other words, we want

to maximize the average net stored energy E[Es(0, T )]. The

optimization process will ensure that the average energy level

of MR battery at the end of the dead time will be maximized.

For this section, we assume that popt is known and therefore

p̂opt = popt (In section V, we provide further details of the

estimation process for popt). Finally, we assume that we know

gy in (6), this term can be estimated by using the techniques

described in [31] or [32].

Substituting (10) into (12) and applying expected value to

(12) we obtain:

E[Es(0, T )] = η

∫ αTs

0

E[re(p(τ), τ)]dτ

+ η

∫ Ts

αTs

E[re(p(τ), τ)]dτ

+ η

∫ T

Ts

E[re(popt, τ)]dτ

− Emech(u1(t), 0, αTs)

− E[Emech(u2(t), αTs, Ts)]. (15)

We will now examine in turn each of the five terms on the RHS

of (15). The first term corresponds to the energy harvested

during the first phase we can easily demonstrate that:

E[re(p(τ), τ)] = g2y + σ2
y. (16)

The second term on the RHS of (15) corresponds to the en-

ergy harvested during the second phase. In this phase the MR

starts at position p(αTs) (which is a deterministic position)

and finishes at p(Ts) = popt (which is a random position).

Now, |h(p(αTs))| ∼ R
(

1√
2

)

and so E[|h(p(αTs))|2] =

1. Also, due to the definition of popt then, for L > 0,

E[|h(p(Ts))|2] > 1. During this phase, if at time instant t the
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Figure 3. Evolution of E[|h(p(t))|2] during the execution of the three phases
(see start of section III) with T = 30s, Ts = 20s, α = 0.5 and L = 1λ.

MR is ‘near’ to popt then h(p(t)) will be highly correlated

with h(p(Ts)) = h(popt) and so E[|h(p(t))|2] will be just

slightly inferior to E[|h(popt)|2]. On the other hand, if at

time instant t the MR is ‘far’ from popt then h(p(t)) will

be almost uncorrelated with h(p(Ts)) = h(popt) and so

E[|h(p(t))|2] ≈ 1. This all means that during this second

phase E[|h(p(t))|2] > 1 and E[|h(p(t))|2] increases from 1
to E[|h(popt)|2]. In Fig. 3 we illustrate with this temporal

evolution with an example. A more detailed analysis of the

behaviour of E[|h(p(t))|2] for this phase is outside the scope

of this article but will be the subject of future work. These

results imply that E[re(p(τ), τ)] is bounded as follows:

g2y + σ2
y ≤ E[re(p(τ), τ)] ≤ g2yE[|h(popt)|2] + σ2

y. (17)

Now, the third term on the RHS of (15) depends on popt

which further depends on S in (14). Analytical evaluation

of E[re(popt, τ)] is a complicated and non-trivial task that

implies calculating E[|h(popt)|2]. Nevertheless, by extensive

simulations and numerical analysis, we were able to obtain

the following analytical approximation:

E[|h(popt)|2] ≈ ah ln

(
bh · L
λ

+ 1

)

+ 1 (18)

where ah and bh are the shorthand notations for

ah(p(k∆s),∆s) and bh(p(k∆s),∆s), which are two

functionals of p(k∆s) parameterized on ∆s. For the case in

which

p(k∆s) =

[
k∆sL

αTs
0

]T

for k = 0, 1, · · · , αTs

∆s
(19)

we used simulations to evaluate ah and bh for different spatial

sampling rates9 given by:

Sr =
αTsλ

∆sL
. (20)

To obtain this approximation we first noted that E[|h(popt)|2]
depends only on the search space S and the spatial sampling

rate Sr in (20). Since we have selected the search space S to

be a line it is uniquely characterized by its length L. After

performing an extensive amount of simulations and plotting

the results we noted that for any fixed value of Sr the plot of

9The spatial sampling rate is measured as samples per wavelength.

Table I
EVALUATION (BY SIMULATION) OF FUNCTIONALS ah AND bh

IN (18) FOR DIFFERENT SPATIAL SAMPLING RATES,
Sr = αTsλ/∆sL

Sr 1 2 4 8 16

ah 0.9909 1.03 1.061 1.092 1.14

bh 0.6494 1.057 1.698 1.987 1.907
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4

5

6

normalized distance L
6

E
[j
h

o
p
tj

2
]

Sr = 1

Sr = 2

Sr = 16

Figure 4. Comparison between the simulated E[|h(popt)|2] (in blue) and its
analytical approximation (in red) given by (18) for different spatial sampling
rates, Sr .

E[|h(popt)|2] versus L seems to be logarithmic with respect to

L. Considering that for L = 0 we must have E[|h(popt)|2] =
E[|h(0)|2] = 1 then we proposed the approximation (18) and

later we optimized numerically the parameters ah and bh for

each sampling rate.

The results are summarized in table I. In addition, as

illustrated by Fig. 4, the proposed analytical approximation

in (18) is virtually indistinguishable from the actual mean

E[|h(popt)|2], this shows the validity of our approximations.

Note that in (19) the number αTs

∆s
must be an integer, and so

we can write:

∆s =
αTs

N
(21)

where N a positive integer.

Now consider the fourth and fifth terms on the RHS of

(15). We need a control law that takes the robot from its initial

position along a straight line of length L, stops the robot at the

end of that line and finally make it move to popt. In addition,

this must be done using the minimum amount of mechanical

energy. Using the result in the Appendix it is not difficult to

show that this optimal control law for phase 1 is given by:

u∗
1(t) = L · [1 1]T (22)

·
(

Ku1(αTs)e
−t√
τv +Ku2(αTs)e

t√
τv +Ku3(αTs)

)

,

where t ∈ [0, αTs]

with τv the constant time for the translational motion which

is a function of the system’s parameters (see Appendix for
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details). Similarly, for the phase 2 is:

u∗
2(t) = ‖[L 0]T − qopt‖2 · [1 1]T (23)

·
(

Ku1((1−α)Ts)e
−(t−αTs)

√
τv +Ku2((1−α)Ts)e

t−αTs√
τv

+ Ku3((1− α)Ts)

)

,

where t ∈ (αTs, Ts].

Using these optimal control laws and by performing some

cumbersome algebra on (1) and (4), we can show that the

mechanical energy consumed during phase 1 is:

Emech(u1(t), 0, αTs) = m2(αTs)L
2 (24)

and the mechanical energy consumed during phase 2 is:

Emech(u2(t), αTs, Ts) = m2((1− α)Ts)‖[L 0]T − qopt‖22
(25)

where m2(t) is given by (26) with Kv1(t0), Kv2(t0) and

Kv3(t0) defined in (53). Now, using the proposed approxi-

mation (18), and substituting (16), (24) and (25) into (15) we

obtain

E[Es(0, T )] ≈ ηαTs

(

g2y + σ2
y

)

+ η

∫ Ts

αTs

E[re(p(τ), τ)]dτ

+ η(T − Ts)g
2
y

(

ah ln

(
bh · L
λ

+ 1

)

+ 1

)

+ η(T − Ts)σ
2
y −m2(αTs)L

2

− m2((1− α)Ts)E[‖[L 0]T − qopt‖22]. (27)

For the case where Sr → ∞ in (20) (according to experimental

results Sr ≥ 8Sa/λ will perform similarly to Sr → ∞)

we have that ‖[L 0]T − qopt‖2 becomes a continuous ran-

dom variable uniformly distributed between 0 and L. Thus,

E[‖[L 0]T − qopt‖22] = L2

3 and if we consider the inequality

(17) then after doing simple algebra we obtain both a lower

bound:

E[Es(0, T )] > ηT

(

g2y + σ2
y

)

+ η(T − Ts)g
2
yah ln

(
bh · L
λ

+ 1

)

−
(

m2(αTs) +
1

3
m2((1− α)Ts)

)

· L2

= fL(L, α, Ts), (28)

and an upper bound:

E[Es(0, T )] < ηT

(

g2y + σ2
y

)

+ η(T − αTs)g
2
yah ln

(
bh · L
λ

+ 1

)

−
(

m2(αTs) +
1

3
m2((1− α)Ts)

)

· L2

= fU (L, α, Ts). (29)

Therefore instead of maximizing E[Es(0, T )], for which we do

not have an analytical expression, we can optimize its bounds,

i.e., either fL(L, α, Ts) or fU (L, α, Ts). If we optimize the

upper bound fU (L, α, Ts) we risk obtaining a behaviour in

which the average of the energy harvested is lower than

the average energy used for the motion, because the energy

harvested is over-estimated in this bound. On the other hand if

we optimize the lower bound fL(L, α, Ts) then we eliminate

this risk because the energy harvested is under-estimated in

this other bound. Therefore we will proceed to maximize the

lower bound fL(L, α, Ts).
Now, we can maximise fL(L, α, Ts) by simultaneously

solving the following set of equations:

∂fL(L,α,Ts)
∂L = 0,

∂fL(L,α,Ts)
∂α = 0,

∂fL(L,α,Ts)
∂Ts

= 0.

(30)

Solving for the optimal length L the first equation in (30)

gives:

Lopt(α, Ts) =
1

2

√

λ2

b2h
+

2η(T − Ts)g2yah

m2(αTs) +
1
3m2((1− α)Ts)

− λ

2bh
. (31)

The objective of this technique is to obtain gain from the

small-scale fading which varies considerably over small dis-

tances. In practice if L is too big then the shadowing and

the path-loss effects cannot be considered constant anymore

(as we have assumed at the beginning of this article) and

consequently this technique may not work properly anymore.

Therefore in order to avoid this problem we will limit the

maximum value of L to some predefined value Lmax and so

the bounded optimal value for L is:

Lb
opt(α, Ts) =

{
Lopt(α, Ts), ∀ Lopt(α, Ts) < Lmax

Lmax, otherwise.
(32)

Since the shadowing can usually be considered constant for

distances of a few wavelengths then we would suggest select-

ing Lmax < 10λ.

Now, if we substitute for L in fL(L, α, Ts) with (32) then

we obtain the modified cost function fm(α, Ts). We have to

note that since α ∈ (0, 1) and Ts ∈ (0, T ) the domain of

fm(α, Ts) is finite. If we discretize this domain by applying

a fine enough grid and then we use simulated annealing [33]

to maximize fm(α, Ts) over this grid we can ensure that we

obtain a solution sufficiently close to the global maximum.

So now we have completed the optimization of the MR-

EHT (i.e., we have shown how to maximize the net average

stored energy, E[Es(0, T )]). In the next section we will look

at the estimator for popt.

V. ESTIMATION OF OPTIMAL LOCATION (popt )

In this section, we illustrate how the optimal location popt

can be estimated from the noisy signal re(k) in (8) (shorthand

for re(p(k∆s), k∆s)). This process is done once the robot
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m2(t0) = 2

[(√
τvKu1(t0)

2

)

·
(

c1Ku1(t0)−
c2
r
Kv1(t0)

)

·
(

1− e
−2t0√

τv

)

+
√
τv

(

2c1Ku1(t0)Ku3(t0)−
c2
r
(Ku1(t0)Kv3(t0) +Kv1(t0)Ku3(t0))

)

·
(

1− e
−t0√
τv

)

+

(

c1(2Ku1(t0)Ku2(t0) +K2
u3(t0))−

c2
r
(Ku1(t0)Kv2(t0) +Kv1(t0)Ku2(t0) +Ku3(t0)Kv3(t0))

)

t0

+
√
τv

(

2c1Ku2(t0)Ku3(t0)−
c2
r
(Ku2(t0)Kv3(t0) +Kv2(t0)Ku3(t0))

)

·
(

e
t0√
τv − 1

)

+

(√
τvKu2(t0)

2

)

·
(

c1Ku2(t0)−
c2
r
Kv2(t0)

)

·
(

e
2t0√
τv − 1

)]

(26)

finishes the phase 1 of the dead time. Let the sampling period

be ∆s =
αTs

N and so the robot will use N + 1 measurements

[re(0), re(1), . . . , re(N)]. The MR can use a linear smoother

to reduce the effect of the post-rectifier noise nr(t) in (8).

Then it can employ the output of the smoother rs(k) instead

of the signal re(k) to obtain a better estimate for popt. So, the

estimation of popt can be performed as follows:

p̂opt = p(kopt), (33)

where

kopt = argmax
k

rs(k), (34)

and

rs(k) =

N∑

m=0

β∗
k,mre(m). (35)

Now, the optimal weights (β∗
k,m) for the linear smoother are

calculated as follows:

β∗
k = argmin

βk

J(βk) (36)

with

J(βk) = E

[(
rs(k)− g2y|h(p(k))|2

)2
]

(37)

where βk = [βk,0, βk,1, . . . , βk,N ]T and

J(βk) = E
[
r2s(k)− 2g2yrs(k)|h(p(k))|2 + g4y|h(p(k))|4

]

= E





(
N∑

m=0

βk,mre(m)

)2




− 2g2y

N∑

m=0

βk,mE
[
re(m)|h(p(k))|2

]

+ g4yE
[
|h(p(k))|4

]
. (38)

So setting

∇βk
J(βk) = 0, (39)

where ∇βk
= [ ∂

∂βk,0
, ∂

∂βk,1
, . . . , ∂

∂βk,N
]T and

∂J(βk)

∂βk,i
= 2

N∑

m=0

βk,mE [re(m)re(i)]

− 2g2yE
[
re(i)|h(p(k))|2

]
(40)

then it is not difficult to show that:

E
[
re(i)|h(p(k))|2

]
= g2yE

[
|h(p(i))|2|h(p(k))|2

]
+ σ2

y

= g2yJ
2
0

(
2π‖p(i)− p(k)‖2

λ

)

+ g2y

+ σ2
y (41)

E [re(i)re(m)] = g4y

(

J2
0

(
2π‖p(i)− p(m)‖2

λ

)

+ 1

)

+ 2g2yσ
2
y + σ4

y + σ2
r , i 6= m (42)

and

E
[
r2e(i)

]
= 2g4y + 8g2yσ

2
y + 8σ4

y + σ2
r , i = m. (43)

Therefore, if we know σ2
y , σ2

r and g2y (or we can estimate them)

then we can evaluate (41), (42) and (43) and use in (40) to

calculate an analytical expression for the gradient ∇βk
J(βk).

So, we can solve (39) and obtain the optimal weights for the

smoother in (35) in order to estimate popt with (33).

VI. SIMULATION AND RESULTS

With the analytical framework developed in the previous

sections, our objective now is to provide further insights by

employing extensive simulations. To this end, we divide this

section into two parts. In the first part, we analyze the MR-

EHT approach in a noiseless scenario assuming that p̂opt =
popt, (i.e., that popt is exactly known by the MR). Then, in the

second part we consider a noisy scenario and we analyze how

the estimation error in p̂opt affects the energy harvested during

the resting time in phase 3. We also observe how the optimal

smoother described in section V can mitigate the degradation

in the stored energy due to estimation error in the optimal

resting position.

We will take the parameter values of [27] for the DDR

since these values were obtained experimentally and therefore

represent a real robot. This will allow us to get more realistic

results in our simulations. In table II we show the MR’s

parameters. In addition, since the performance of the system

depends on ηg2y and ησ2
y and not on individual values of η

we can assume for simulation purposes, without any loss of

generality, η = 1 in (10).
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Table II
MOBILE ROBOT PARAMETERS

c1 = 202.8169W c2 = 14.8885N r = 9.5cm

cA = 1.1279Nm cB = 14.8885Nm b = 16.5cm

J1 = 7 · 10−2 J2 = 1.3 · 10−3
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E
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T=240s

T=300s

Figure 5. Comparison of EMIF vs g2y (i.e., average received power) for

different dead times T , with N = ⌈
16Lopt

λ
⌉ and λ = 6cm (which

corresponds to a carrier frequency of 5GHz).

A. Energy Harvesting Performance without Noise

Although ignoring the noise for the proposed technique

would seem unrealistic, it is of practical interest to analyze the

behaviour of the MR-EHT under such a consideration since it

represents an upper bound on the performance of the proposed

algorithm and also describes the behaviour of our technique

when SNR =
g2
y

σ2
y+σ2

r
is high.

In order to evaluate the performance of the harvesting

technique, we now define a new metric called the “Energy

Mobility Improvement Factor” (EMIF):

EMIF =
E[Es(0, T )]

ηg2yT
. (44)

The numerator in (44) corresponds to the average net energy

stored during the total dead time T while using mobility to

harvest energy. The denominator is the expected value of the

energy that the robot would harvest if it did not move at all.

This metric quantifies how much the average net stored energy

has been increased by moving the robot in comparison to the

case where the robot does not move at all, and so we want

EMIF > 1.

We consider first the case in which the signal transmitted

by the BS uses a carrier frequency of 5GHz (corresponding

to a wavelength of 6cm). In Figs. 5 and 6 we can see the

performance of the MR-EHT for a spatial sampling rate10

Sr > 16Sa/λ, different dead times T and different average

powers received g2y .

From these Figs. we first observe that indeed EMIF > 1
which shows that the optimal energy harvesting approach is

to use intelligent motion. We also observe that EMIF is a

nonlinear increasing function of both the dead time T and

g2y , and so the higher the dead time T and/or the higher is

g2y then the larger will be the EMIF. In other words, when

10This is obtained by making N = ⌈
16Lopt

λ
⌉ in (21) with Lopt the optimal

line length.
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1

1.5

2

2.5

T (s)

E
M

IF

g
y

2
=10uW

g
y

2
=50uW

g
y

2
=100uW

Figure 6. Comparison of EMIF vs T for different average received powers

g2y , with N = ⌈
16Lopt

λ
⌉ and λ = 6cm (which corresponds to a carrier

frequency of 5GHz).

the dead time and/or the average received power are above a

certain minimum our technique is more beneficial. Now, it is

interesting to observe in Fig. 5 that if the robot has a dead time

T of just 2 minutes and receives an average power g2y = 40µW
then EMIF > 1.5, which implies that by optimally moving

the robot the stored energy has increased by more than 50%.

In a more beneficial case, for example with a dead time of

T = 5min and an average receiving power of g2y = 50µW ,

the benefit of moving the robot is even greater producing an

EMIF higher than 2, i.e., an increase of more than 100% (see

Fig. 6).

Now, in order to observe the effect of the wavelength of

the RF signal transmitted by the BS we repeated exactly the

same simulations but changed the wavelength to 14.02cm

(which corresponds to a carrier frequency of 2.14GHz). So

comparing Figs. 5 and 6 with 7 and 8 we observe that EMIF

is considerably lower for the carrier frequency of 2.14GHz

than for 5GHz.

This can be explained as follows: consider two robots using

the same EHT described in this article. Let the first robot

receive a signal with wavelength λ1 and let the second robot

receive a signal of wavelength λ2 > λ1. If both robots move

just one wavelength then the energy harvested will be the same

since this energy depends only on the normalized distance

(see (18)) but the second robot will have to travel a longer

distance than the first one and so it will use a greater amount

of mechanical energy. Thus the net energy stored (see (9))

by the second robot will be lower. This means that given the

same conditions of received power and dead time duration

our harvesting technique works better for small wavelengths.

Nevertheless we should remark that the path loss increases

with frequency [34]. Thus in the system using a smaller

wavelength either the MR would have to be closer to the BS

or the BS would have to transmit with higher power to meet

the same conditions of received power as the system using a

higher wavelength.

In Fig. 9, we observe the behaviour of E[|hopt|2] as a

function of the sampling rate Sr. We can observe it tends

to saturate for a certain value of Sr and then in the noiseless

case there is no reason to select Sr greater than ≈ 8Sa/λ.

But, as we shall see in the next subsection, higher values of

Sr help to better estimate popt when noise is present.

As we mentioned earlier in this paper the optimization of
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Figure 7. Comparison of EMIF vs g2y (i.e., average received power) for

different dead times T , with N = ⌈
16Lopt

λ
⌉ and λ = 14.02cm (which

corresponds to a carrier frequency of 2.14GHz).
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Figure 8. Comparison of EMIF vs T for different average received powers

g2y , with N = ⌈
16Lopt

λ
⌉ and λ = 14.02cm (which corresponds to a carrier

frequency of 2.14GHz).

the parameters is very important. To illustrate, in figure 10 we

plot EMIF as a function of the average received power with a

dead time of T = 300s for two cases: (i) in the first case, we

implement the MR-EHT with optimized parameters (see sec-

tion IV); (ii) in the second case, we implement the MR-EHT

without the optimized parameters and we arbitrarily select for

this case α = 0.5, Ts = 100s and L = 0.8λ. As we can see in

figure 10 the non-optimized version has in some cases a much

lower performance (as expected) than the optimized case. This

illustrates the importance of implementing the MR-EHT with

the optimized parameters.

We illustrate the behaviour of the optimal values of L, α and

Ts in the figures 11 and 12. It is worth noticing that although

Lopt is an increasing function of g2y and T , we observe that

Tsopt is an increasing function of g2y but a decreasing function

of T . This behaviour of Ts means that for a fixed received

power g2y , if we increase the dead time T the robot will

complete phases 1 and 2 slower to save more mechanical

energy and increase the net stored energy. On the other hand if

the dead time T is fixed but we increase the received power g2y
then the robot will complete phases 1 and 2 faster to increase

the duration of the resting time (phase 3). By doing so the

robot increases the amount of energy harvested during this

last phase and thus increases the net stored energy. Finally, it

is also interesting to note that αopt is independent of g2y and

Sr(Sa=6)

E
[j
h

o
p
t
j2
]

Figure 9. Behaviour of E[|hopt|2] as a function of the spatial sampling rate
Sr parameterized on different lengths of the exploration line (L).
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Figure 10. Comparison of the EMIF vs g2y (i.e., average received power) for
the optimized MR-EHT and a non-optimized MR-EHT both with a dead time

T = 300s, N = ⌈
16Lopt

λ
⌉ and λ = 6cm (which corresponds to a carrier

frequency of 5GHz).

is almost constant11 for T > 60secs.

As mentioned earlier in this article the channel coherence

time is considered longer than the dead time (see definition in

the Introduction and at the start of section III). So according

to the values T presented in this simulation section it would

seem that we are considering unrealistic values since in mobile

communications coherence times are at most on the order of

a couple of seconds or even miliseconds. Nevertheless, as

mentioned earlier in the article, we are considering that the

MR works in a extremely low mobility environment. Now, in

[35] a narrow band wireless channel operating at a 2.4GHz in

an environment with very little movement was experimentally

characterized and the coherence time (referred to as time

duration for which the temporal autocorrelation is higher

than 90% of its maximum value) is 50 seconds. Therefore it

seems natural that environments with extremely low mobility

like museums at night or caves without people can exhibit

coherence times on the order of a couple of minutes or at

least tens of seconds.

B. Energy Harvesting Performance with Noise

In this section, we consider the effect of the noise on the

estimation of popt and its effect on the harvested energy (10)

during the resting time (i.e., t ∈ [Ts, T ]). Define Pn = σ2
y+σ2

r

as the total noise power, i.e., the power of the pre-rectifier

11The optimal value of α was derived by optimizing fT (L,α, Ts) which
is a valid approximation for E[Es(0, T )] as long as Sr ≥ 8Saλ. Therefore
for values Sr < 8Saλ this behaviour may change slightly.
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Figure 11. Optimal parameter values of fL(L,α, Ts) vs g2y for T = 300s,
with λ = 14.02cm (which corresponds to a carrier frequency of 2.14GHz).
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Figure 12. Optimal parameter values of fL(L,α, Ts) vs T for g2y = 100µW,
with λ = 14.02cm (which corresponds to a carrier frequency of 2.14GHz).

noise plus the power of the post-rectifier noise . Also let σ2
y =

αnPn and σ2
r = (1− αn)Pn with αn ∈ (0, 1). Finally define

the SNR as 10 log10

(
g2
y

Pn

)

. Let us consider three cases: (i)

in the first case we consider that popt is estimated as in (33)

using the optimal smoother of section V and we will denote

this estimate by p̂
′

opt; (ii) in the second case we consider that

popt is estimated as in (33) but using the signal re(k) instead

of rs(k), the output of the smoother (35). We will denote this

estimate by p̂
′′

opt; (iii) in the last case assume that the robot

knows exactly popt. While this case is unrealistic it will serve

us for comparison.

We consider two scenarios with a low SNR of 0dB, line

length L = 1λ, different values of αn (for σ2
y = αnPn and for

σ2
r = (1−αn)Pn) and two values of the spatial sampling rate:

Sr = 16Sa/λ and Sr = 8Sa/λ. In table III we observe the

degradation12 of the energy harvested during the third phase. In

the first row we observe the degradation suffered when the MR

uses the estimate p̂
′

opt and in the second row we observe the

degradation when the MR uses the estimate p̂
′′

opt mentioned

above.

From tables III and IV we see that the harvested energy

degradation is lower for higher values of the spatial sampling

rate Sr. This means that while in the noiseless scenario there

is no reason to select a value of Sr > 8Sa/λ, in the noisy

scenario taking higher values of Sr helps to combat the

12The degradation is mathematically expressed as the ratio of the energy
harvested during the resting time when p̂opt 6= popt over the energy
harvested during the resting time when p̂opt = popt. This ratio shows us
how much the energy harvested has decreased due to the estimation error in
p̂opt.

Table III
HARVESTED ENERGY DEGRADATION FOR Sr = 16Sa/λ

αn 0.3 0.5 0.9

E[Er(p̂
′
opt,Ts,T )]

E[Er(popt,Ts,T )]
0.8731 0.8761 0.9004

E[Er(p̂
′′
opt,Ts,T )]

E[Er(popt,Ts,T )]
0.8209 0.8070 0.8315

Table IV
HARVESTED ENERGY DEGRADATION FOR Sr = 8Sa/λ

αn 0.3 0.5 0.9

E[Er(p̂
′
opt,Ts,T )]

E[Er(popt,Ts,T )]
0.8296 0.8449 0.8580

E[Er(p̂
′′
opt,Ts,T )]

E[Er(popt,Ts,T )]
0.8018 0.8139 0.8222

degradation of the energy harvested.

It is also interesting that the degradation of the energy

harvested is not only a function of the SNR but also a function

of αn, (i.e., depending on the individual powers of the pre-

rectifier noise σ2
y = αnPn and the power of the post-rectifier

noise σ2
r = (1 − αn)Pn). The degradation is higher for low

values of αn (see tables III and IV) which implies that the

post-rectifier noise is more harmful to our technique than the

pre-rectifier noise. Therefore, the RF designers should pay

more attention to reducing the post-rectifier noise than the pre-

rectifier noise when designing the energy harvesting receiver

of figure 2.

Finally, note that the ranges of received power considered

for the simulations are actually achievable in practice. To

confirm this first note that in [36] the authors used a transmitter

with an RF carrier frequency of 2388 MHz (close to the

frequencies considered in this article) that generated a power

density of 170mW/cm2 at a distance of 1.54km. This was

achieved using a directional antenna with a large parabolic

reflector (26m radius) and high transmission power (450

kW). Therefore it is indeed possible in practice to achieve

received powers on the order of tens of microwats (as used

in simulations) at distances of the order the tens or hundreds

of meters using significantly lower transmission power and a

significantly smaller parabolic reflector for the antenna.

VII. CONCLUSIONS

We have shown that when harvesting radio energy with

a MR the average, net amount of energy stored (i.e., the

average energy harvested minus the average energy used for

movement) is higher when the robot is moved in an optimal

way than when the robot simply stands still. This implies

that the optimal behaviour for a MR using wireless energy

harvesting under a flat-fading wireless channel is to move

in an optimal way instead of not moving. We also showed

how to derive this optimal movement as a function of the

dead time duration and the wireless power received. So while

we have shown (for the first time) that intelligent mobility

based energy harvesting increases efficiency, future work will

examine how we can optimize the MR’s trajectory (i.e., as

opposed to restricting it to a straight line). We will also devise
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an improved intelligent control (i.e., u(t) in (1)) in order to

perform a more efficient search over the trajectory.

APPENDIX

OPTIMAL CONTROL LAW FOR DDR

In this Appendix, we obtain the optimal control law so that

the DDR described by equations (1)-(4) uses minimum energy

to do the following: (i) starting with the still (i.e., v(0) = 0 at

the initial position p(0), (ii) moving in a straight line of length

l, (iii) stopping at the end of the straight line (i.e., v(tf ) =
0). Mathematically this optimization problem (OP) consists in

optimizing the functional Emech(u(t), 0, tf ) subject to some

restrictions:

OP :

min
uR(t)

∫ tf

0

(
c1u

T (t)u(t)− c2[v(t) 0]T−T
q u(t)

)
dt

(45)

s.t.

v̇(t) + [1 0]Ā[v(t) 0]T = [1 0]B̄u(t), (46)
∫ tf

0

v(t)dt = l, (47)

uR(t) = uL(t) (48)

v(0) = 0, v(tf ) = 0. (49)

The differential constraint (46) corresponds to the state equa-

tion that describes how the velocity v(t) is controlled by the

control input u(t). We must also satisfy the isoperimetric [37]

constraint (47) that makes the robot advance a distance l, and

satisfy the boundary conditions (49) which estate that the robot

starts from rest and finishes at rest. Finally, we must satisfy

the constraint (48) to ensure that the robot moves in straight.

The optimization problem OP is a classical problem of

optimum control and can be solved using calculus of variations

[37], [38]. By applying this method we arrive at the following

second order differential equation:

v̈(t)− [1 0]

(

QTQ[v(t) 0]T + B̄B̄T

[
α

2c1
0

]T
)

= 0

(50)

where α is the Lagrange multiplier for constraint (47) and

QTQ = ĀT Ā−
(
c2
c1

)

B̄B̄TT−T
q B̄−1Ā. (51)

By solving (50) and satisfying the conditions (49) we get:

v(t) =
(

Kv1(tf )e
−t√
τv +Kv2(tf )e

t√
τv +Kv3(tf )

)

· l (52)

where τv = cA(k1cA−k2cB)
k1(J1+J2)2

and:

Kv1(tf ) =
1−e

tf√
τv

4
√
τv

(

1−cosh
(

tf√
τv

))

+2tf sinh
(

tf√
τv

) ,

Kv2(tf ) =
e

−tf√
τv −1

4
√
τv

(

1−cosh
(

tf√
τv

))

+2tf sinh
(

tf√
τv

) ,

Kv3(tf ) =
2 sinh

(

tf√
τv

)

4
√
τv

(

1−cosh
(

tf√
τv

))

+2tf sinh
(

tf√
τv

) .

(53)

Finally, using (52) with (48) and (46) we obtain the optimal

control law:

u∗(t) =

[

Ku1(tf )e
−t√
τv +Ku2(tf )e

t√
τv +Ku3(tf )

Ku1(tf )e
−t√
τv +Ku2(tf )e

t√
τv +Ku3(tf )

]

· l

(54)

where:

Ku1(tf ) =

(
cA−

J1+J2√
τv

cBr

)

Kv1(tf ),

Ku2(tf ) =

(
cA+

J1+J2√
τv

cBr

)

Kv2(tf ),

Ku3(tf ) =
(

cA
cBr

)

Kv3(tf ).

(55)
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