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Approximate Multi-Hypothesis Multi-Bernoulli
Multi-Object Filtering Made Multi-Easy

Karl Granström, Member, IEEE, Peter Willett, Fellow, IEEE, and Yaakov Bar-Shalom, Fellow, IEEE

Abstract—In multiple target tracking (MTT) it becomes neces-
sary to use a multi-hypothesis approach if the trajectories of two
or more targets cross. However, multi-hypothesis approaches, e.g.
the Multiple Hypothesis Tracker (MHT) or the emerging General-
ized Labelled Multi-Bernoulli (GLMB) filter, are computationally
demanding. In this paper we propose a simple multi-Bernoulli
(MB) filter and a post processing method, which together deliver a
multi-hypothesis tracking estimate at a computational cost that is
only slightly larger than the cost of a single-hypothesis tracking
filter even for many targets. The proposed MB filter is shown
to be similar to the labeled MB filter, itself an approximation
of the multi-hypothesis GLMB filter. In a simulation study with
multiple targets and several trajectory crossings the proposed
filter is shown to be capable of correctly estimating the multi-
hypothesis output. The filter is also tasked with presenting to an
operator a principled perspective on a scene with many feasible
track switches.

I. INTRODUCTION

MTT is the processing of sets of measurements obtained
from multiple sources in order to maintain estimates of targets’
current states. The task is complicated by the fact that – in
addition to noise, missed detections and clutter – the number of
targets is unknown and time-varying. Broadly speaking there
are three different approaches to multiple target tracking: Mul-
tiple Hypothesis Tracking (MHT) [4], Joint Probabilistic Data
Association (JPDA) [1], and Random Finite Sets (RFS) [11],
[12]. The MHT type approaches involve propagating target
track hypotheses in time and calculating their likelihoods, the
JPDA type approaches blend data association probabilities on
a scan-by-scan basis, and the RFS type approaches rely on
modeling the targets and the measurements as random sets.

The multiobject Bayes filter is an RFS-type filter that prop-
agates and updates the density (pdf) of the multiobject state
in time. Because of the computational complexity of the data
association problem it is generally considered infeasible to
implement and use a multi-object filter without approximating
the data association problem in some way. Computationally
feasible approximate filters include the Probability Hypothesis
Density (PHD) filters [13], the Cardinalized PHD (CPHD) filters
[14], and the multi-Bernoulli filters [17], [18], [22]–[24], [26].
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The PHD filters recursively estimate the first order moment
of the multiobject state, called the PHD intensity, under an
assumed Poisson distribution for the cardinality. The CPHD
filters recursively estimate the PHD and also a truncated
cardinality distribution. A known drawback of the PHD filter
is the high variance of its cardinality estimate, this being
a consequence of the underlying Poisson assumption. The
CPHD filters are known to have better cardinality estimates,
but remain susceptible to a “spooky effect” [8], [12], a
phenomenon manifested by PHD mass shifted from undetected
targets to detected targets that are far enough away that they
ought to be statistically insulated. The multi-Bernoulli filters
[17], [18], [22], [24], [26] approximate the multiobject density
with a multi-Bernoulli distribution, which is then propagated
and updated in time. Multi-Bernoulli filters estimate, for each
target, its location and probability of existence; and they are
known to be capable of matching the CPHD filters’ cardinality
performance without being susceptible to a “spooky effect”
[8].

Ultimately the desired output from an MTT algorithm is
a set of estimated trajectories (tracks), where a trajectory is
defined as the sequence of states from the time the target
appears to the time it disappears. Both the MHT and JPDA
type algorithms estimate trajectories. In their most basic forms,
none of the PHD [13], CPHD [14] nor multi-Bernoulli filters
[23] formally estimates target trajectories – only a set of
target state estimates is supplied at each time step – however,
target trajectories can be obtained, e.g. using labeling schemes
[16]. With the introduction of labeled RFSs it has become
possible to obtain trajectory estimates without the need for
post-processing, leading to the Generalized Labeled Multi-
Bernoulli (GLMB) filter [22], and its computationally efficient
approximation the Labeled Multi-Bernoulli (LMB) filter [18].
An analysis of the approximation error in the GLMB filter is
given in [25].

Some recent work [10] derived an interesting improvement
to the PHD that integrates classical multi-target data association
models very easily. Although [10] is attractive due to its PHD
simplicity, a relationship to the better-performing MB approach
can be suggested. In this paper we show that their combination
has both simplicity and performance: we call it the Multi-
Object Particle Multi-Bernoulli (MOP-MB) filter. Not only is it
an excellent integrated target tracker, and not only can it track
in dense situations (we show an example with 150 targets),
but it turns out to be nicely adaptable to low-complexity
recovery of multi-target hypotheses when targets cross and
their identities become confused. This we call the Approximate
Multi-Hypothesis Multi-Bernoulli (AMHMB) filter.
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Fig. 1. Notional figure of trajectory crossing. Using linear Gaussian motion and measurement models, filtering the sequence of measurements in (a) has many
solution hypotheses, however the two trajectory set hypotheses shown in (b) and (c) represent the most likely solutions. Because the measurements do not
contain any information regarding target identity both hypotheses are equally likely.

TABLE I
LIST OF ACRONYMS

AMHMB Approximate Multi Hypothesis MB
CPHD Cardinalized PHD
EM Expectation Maximization
GLMB Generalized Labelled MB
JPDA Joint Probabilistic Data Association
KL Kullback Leibler
LMB Labelled MB
MB Multi Bernoulli
MHT Multi Hypothesis Tracking
MOP Multi Object Particle
MTT Multi Target Tracking
OSPA Optimal Sub-Pattern Assignment
PHD Probability Hypothesis Density
RFS Random Finite Set
SJPDA Set JPDA
VMB Variational MB

A list of acronyms is given in Table I. The paper1 is
organized as follows. In the next Section II we motivate by
explaining the need for a joint multi-target multi-hypothesis
tracking approach, as opposed to (for example) the PHD. The
paper’s two main contributions (MOP-MB and AMHMB) are
mapped in Section III. In Section IV we give background on
multi-Bernoulli filters. In Section V we present the proposed
multiple target tracking filter. Simulation results are presented
in Section VII. The paper is concluded in Section VIII.

II. WHY A JOINT MULTI-TARGET REPRESENTATION?

Consider the measurements in Figure 1a, where the mea-
surement provenances (target or clutter?) are assumed un-
known. Due to measurement origin uncertainty the number of
possible scenarios that could have caused this measurement
sequence grows exponentially with time. One solution to this
indeed is to consider all possible data association hypotheses,
however this would come at the price of ever-increasing
computation.

Under some realistic and non-restrictive assumptions, the
two hypotheses in Figures 1b and 1c can reasonably be seen
as the most likely solutions to the MTT problem given the
measurements in Figure 1a. Note that, because the measure-
ments do not provide information about target identity, the two
hypotheses are (approximately) equally probable. In this paper
we designate these as multi-object hypotheses.

An ideal solution to the MTT problem would output a set
of trajectories that are “closest” to the true set of trajectories.

1A very preliminary version of this work is in [9].

For example, the MHT is often implemented to output the most
likely hypothesis. Indeed, if the targets are well separated in
state space, the single most probable solution hypothesis will
likely yield an accurate estimate. However, when target tra-
jectories cross, a single multi-object hypothesis is insufficient.
For example, in Figure 1 the true targets are located in the
same position from time k = 5 to k = 15, after which they
separate. When the targets separate starting at time k = 16 it
cannot be inferred from the past measurements which target
is going up (increasing position) and which is going down. In
other words, both hypotheses are equally likely, and picking
out one of them, based on an estimated hypothesis probability
that numerically is perhaps only slightly larger than the second
most probable hypothesis, does not correctly represent this
ambiguity. Therefore a multi-hypothesis approach is necessary
to correctly represent the scenario.

Because of the possibility of trajectory crossings, we argue
that a solution to the MTT problem should output a set
of the most probable multi-object hypotheses, along with
probabilities of each hypothesis being true. Depending on the
underlying scenario and the sequence of measurements, this
output may, or may not, contain more than one hypothesis.

A. Non-Joint Trackers
The JPDA, PHD, CPHD, and LMB filters are all examples of

MTT filters with a single multi-object hypothesis. The filters
can be implemented with multi-modal representations of the
single target densities (e.g. using a Gaussian mixture or a
particle representation), which yields an output that is multi-
hypothesis on the single target level. However, it is not multi-
hypothesis on the multi-object level, because, given multiple
single target densities, there is no information regarding which
single target modes can coexist, and which are mutually
exclusive. To obtain a multi-hypothesis multi-object output
from multi-modal target densities post-processing is needed.

Furthermore, a multi-modal single target density represen-
tation, e.g. a Gaussian mixture, raises the question of how a
point estimate is obtained:
• If there are multiple distinct modes with equal weights,

which one should be chosen? Taking the weighted mean
of distinct modes with equal weights will give an estimate
that is clearly not correct, as it is not close to any of the
modes. This is similar to the track coalescence problem
[5], [7].

• Assume a point estimate is taken as the mean of the most
probable mode. If there are two distinct modes with equal
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weights, and two measurements each near a mode, the
measurement update will give a slightly larger weight
to the mode whose mean is closer to the corresponding
measurement. If in the next time step the other mode
is more probable, then the point estimate output will be
“flickering” between the two modes. This is similar to
the track switching problem, see [6].

Thus, from an output perspective, multi-modal single target
density representations are sub-optimal. It must be noted
though, that single target densities modeled by Gaussian
mixtures or particle filters have been shown to be very useful,
e.g. when the motion and/or measurement models are non-
linear. In this case, to avoid the problems outlined above, care
should be taken to ensure that the densities are essentially uni-
modal.2 Further study of target trajectory display can be found
in, e.g., [6].

B. Joint Trackers
The MHT and GLMB are examples of filters that maintain

multiple multi-object hypotheses, but those filters also have a
computational cost (as measured by, e.g., average cycle time)
that is considerably higher than that of the JPDA, PHD, CPHD
and LMB filters. The drawbacks of an MTT filter with multiple
multi-object hypotheses can be summarized in two points:
• High computational complexity: Slightly simplified, han-

dling several multi-object hypotheses is akin to running
several single-hypothesis tracking filters in parallel, one
for each multi-object hypothesis. In case there are mul-
tiple trajectory crossings, the hypothesis space increases
quickly, with a corresponding increase in computational
complexity.

• Duplicate estimates: if multiple multi-object hypotheses
are estimated there will be duplicate estimates. Consider
the example in Figure 1: after the true targets separate
starting at time 16, the blue and the orange estimates
will quickly converge to the same values. In other words,
assuming Gaussian single target densities, after conver-
gence the means and covariances of the blue estimate in
Figure 1b are equal to the means and covariances of the
orange estimate in Figure 1c. The result is that the same
information (means and covariances) is computed and
stored twice, and if there are multiple trajectory crossings,
there will be a lot of duplicated information.

The goal of this paper is to devise a way to obtain a multi-
hypothesis output without using a computationally expensive
multi-hypothesis filter. This is achieved by using a simple
single-hypothesis multi-Bernoulli filter, and post-processing to
produce a multi-hypothesis output. The reconstruction of the
multi-hypothesis output is based on estimating the probability
of trajectory crossings.

III. CONTRIBUTIONS

A. The MOP-MB filter
The first contribution of this paper is a filter with an update

inspired by the work in [10]. Given a particle approximation

2If a Gaussian mixture is used, the sum is uni-modal. If a particle filter is
used, the particles form a single cluster.

of the predicted PHD intensity, in [10] the following update
was proposed:

1) Obtain multi-object particles (MOPs) with states that are
randomly sampled (with replacement, and with varying
cardinality) from the predicted PHD.

2) Compute the weight of each MOP by evaluating the
multi-object measurement pdf and normalizing.

3) Obtain a particle approximation of the posterior PHD
intensity from the updated MOPs.

The above procedure does improve the filter performance
compared to a PHD filter with the standard update (see e.g.
[13]), however the drawbacks of the Poisson assumption
for the cardinality are retained. In this paper we relax the
Poisson cardinality assumption and instead assume that an MB
approximation of the predicted multi-object density is given.
The MOP idea is used in the update of the parameters of the
predicted MB density, because the MOPs are a great way of
handling the unknown cardinality, i.e. the fact that at each time
step it is not known how many new targets appear, how many
extant targets persist, nor how many extant targets disappear.
The update basically follows the same three steps as above,
details are given in Section V.

In an early version of this work, see [9], JPDA association
probabilities were used to simplify the data association in
step 2 above; in this paper a single most probable association
event is used, computed using the auction algorithm [3]. The
posterior MB density is predicted using the MB prediction
proposed in [18], [22], and the proposed filter is called Multi-
Object Particle Multi-Bernoulli (MOP-MB) filter.

The MOP-MB has obvious relation to [10], and also shares
its similarities to the MB work in [18], [22], [26]. The Gener-
alized Labeled Multi-Bernoulli (GLMB) filter [22] predicts and
updates a labeled MB mixture density, representing the target
densities and different hypotheses for target existence and data
association. The GLMB density is closed under the multi-object
prediction and update [22], the GLMB filter formally produces
tracks, and in [12] the filter is claimed to be the first fully
Bayesian approach to MTT. The disadvantage of the filter is
the complexity with an exponential growth in the number of
components in the MB mixture, both in the prediction and the
update.

The high computational cost of the GLMB filter can be
alleviated by approximating the GLMB density with a labeled
MB density, resulting in the Labeled Multi-Bernoulli (LMB)
filter [18]. The LMB filter predicts a labeled MB density, uses
it to approximate a GLMB density which is updated using the
GLMB update [22], and then approximates the updated GLMB
density with an LMB density that matches the first moment.
A simulation study with a large number of targets and high
clutter rate showed that the LMB filter has performance that
matches the GLMB filter’s performance at lower computational
cost, see [18].

The variational multi-Bernoulli (VMB) filter [26] approxi-
mates the multi-object posterior by finding the MB distribution
that minimizes the set Kullback-Leibler (KL) divergence (de-
fined in [11]). A solution to the minimization problem is found
using variational approximation, specifically the expectation
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maximization (EM) algorithm. Essentially, the variational ap-
proximation marginalizes the association uncertainty out of the
update. In [26] the VMB filter is shown to be related to the set
JPDA (SJPDA) filter [21], with the added benefit of handling
an unknown number of targets (SJPDA assumes known number
of targets). The VMB filter is also shown to approximate the
minimum mean OSPA estimator [26].

Just like the LMB and VMB, the presented MOP-MB filter
approximates the multi-object posterior with a multi-Bernoulli
distribution. The construction of multi-object particles is sim-
ilar to how, in the LMB filter, the LMB density is used to
approximate the GLMB density. Exhaustive enumeration of the
possible GLMB density components is used in the LMB filter,
however the authors note that, for very large target numbers,
sampling may be a better alternative [18]. Equivalently, ex-
haustive enumeration could be used in the MOP-MB filter. Thus
the MOP-MB filter is similar to the LMB filter. It is also a
“simpler” filter in the following sense:
• Sampling typically gives fewer MOPs than there are

hypotheses in the GLMB after exhaustive enumeration.
• The GLMB update, used in both the LMB and GLMB fil-

ters, is suggested to be implemented using only the set of
M most probable association events, e.g. computed using
Murty’s algorithm [15]. The MOP-MB filter considers the
single most probable association event, e.g. computed
using the auction algorithm [3]. How many association
events are considered is a trade-off between complexity
and accuracy.

• The MOP-MB filter uses only a single Gaussian for each
estimate, whereas the LMB filter uses a possibly multi-
modal Gaussian mixture (or a particle filter, in severely
non-linear scenarios).

The LMB approximation preserves the first moment of the
posterior density, and as noted above the VMB minimizes the
KL divergence. An important topic for future work is to in-
vestigate the relationship between the MOP-MB’s approximate
posterior density and the actual posterior density.

B. The AMHMB Filter
Note that while the LMB, VMB and MOP-MB filters all

consider multiple hypotheses for the target estimates to a
varying degree, none of these filters is multi-hypothesis on
the multi-object level in the sense that it can deliver an output
like the one indicated in Figure 1. The reason for this lies
in the approximation of the full multi-object density with a
multi-Bernoulli density, which interestingly is also the key to
the tractable complexity.

The second contribution in this paper is an approximative
approach to multi-hypothesis multi-Bernoulli tracking that
allows the MTT system to output an operationally-useful multi-
hypothesis tracking solution at a computational cost that is
nearly as low as a single hypothesis filter. The approximate
multi-hypothesis method is based on estimating the probability
that the true states corresponding to two estimates are equal,
and then building multi-object identity switch hypotheses us-
ing these probabilities. Combined with the MOP-MB filter this
results in the Approximate Multi-Hypothesis Multi-Bernoulli
(AMHMB) filter.

IV. BACKGROUND: MULTI-BERNOULLI RANDOM FINITE
SETS FOR MULTIPLE TARGET TRACKING

Some notations are given in Table II. Let xik denote the
state of the ith target at time step k, and let the target set be
denoted

Xk =
{
xik
}Nx

k

i=1
(1)

The target set cardinality |Xk| = Nx
k is a time-varying discrete

random variable, and each target state xik is a random variable.
The set of measurements obtained at time step k is denoted

Zk =
{
zjk

}Nz
k

j=1
(2)

where Nz
k = |Zk| is the cardinality of the measurement

set at time k. There are two types of measurements: clutter
measurements and target originated measurements, and the
measurement origin is assumed unknown. Note that the sets
above are without order and the set indexing is arbitrary; the
particular choices i = 1, . . . , Nx

k and j = 1, . . . , Nz
k are only

used for notational simplicity and convenience.
The posterior multi-object distribution at time step k− 1 is

f(Xk−1|Zk−1) where Zk−1 denotes all measurement sets Zκ
from κ = 0 up to, and including, κ = k − 1. The predicted
multi-object distribution is given by the Chapman-Kolmogorov
equation

f(Xk|Zk−1) =

∫
f(Xk|Xk−1)f(Xk−1|Zk−1)δXk−1 (3)

where f(Xk|Xk−1) is the multi-object transition density.
Multi-object prediction involves modeling the time evolution
of surviving targets (targets that remain in the surveillance
area), target death (targets that do not remain), and target birth
(new targets that appear in the surveillance area). The targets
are assumed to evolve over time independently, with single
target transition density pk,k−1(xk|xk−1). The integral in (3)
is a set integral, defined as∫

f(X)δX =

∞∑
n=0

1

n!

∫
f
(
{x1, . . . ,xn}

)
d(x1, . . . ,xn) (4)

The posterior multi-object distribution at time tk is given
by the Bayes update

f(Xk|Zk) =
f(Zk|Xk)f(Xk|Zk−1)∫
f(Zk|Xk)f(Xk|Zk−1)δXk

(5)

where the integral in the denominator is a set integral.
The multi-object measurement set density f(Zk|Xk) involves
modeling target detection, measurement noise, and clutter
measurements.

TABLE II
NOTATIONS

• Rn is the set of real column vectors of length n.
• Sd+ is the set of positive semi-definite d× d matrices.
• |Y| is the cardinality of the set Y.
• N (x ; m, P ) denotes a multi-variate Gaussian pdf over the vector x ∈
Rnx with mean vector m ∈ Rnx , and covariance matrix P ∈ Snx

+ .
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A Bernoulli RFS Xj is a type of RFS that is empty with
probability 1 − wj or, with probability wj , contains a single
element with distribution pj(x). The cardinality is Bernoulli
distributed with parameter wj and the pdf of Xj is

f(Xj) =

 1− wj Xj = ∅
wj · pj(x) Xj = {x}

0 |Xj | ≥ 2
(6)

A typical assumption in multiple target tracking is that the
targets are independent, see e.g. [2]. A multi-Bernoulli (MB)
RFS X is the union of a fixed number M of independent
Bernoulli RFSs Xj ,

X =

M⋃
j=1

Xj (7)

and is defined by the set of existence probabilities {wj} and
distributions {pj(·)}. Here M is the maximum number of
targets that the MB RFS can represent. A realization with
N ≤M targets has probability density

f
({

x1, . . . ,xi, . . . ,xN
})

=
∑
{ij}

∏
j:ij=0

(1− wj)
∏
j:ij>0

wjpj(xij ) (8)

Here {ij} is a set of M indicators that specify which Bernoulli
RFSs are empty (ij = 0) and which are not (ij > 0), where
ij1 6= 0, ij2 6= 0 ⇒ ij1 6= ij2 for j1 6= j2. The summation is
over all indicator sets such that there are N targets. The MB
probability density is abbreviated as

f(X) =
{(
wj , pj

)}M
j=1

(9)

The MB cardinality distribution follows from (8),

PX(N) =
∑
{ij}

∏
j:ij=0

(1− wj)
∏
j:ij>0

wj (10)

Analogous to mixtures of distributions, e.g. Gaussian mix-
tures, we can define MB mixtures [12], [22], [26], i.e. convex
combinations of multi-Bernoulli distributions

f(X) =
∑
`

W`
∏
x∈X

p`(x);
∑
`

W` = 1 (11)

In a target tracking scenario the weights can, e.g., correspond
to different existence and data association histories for the
target estimates.

The measurement set is the union of a set of clutter
measurements Ck and sets of target generated measurements
Wk

(
xik
)

Zk = Ck ∪

Nx
k⋃

i=1

Wk

(
xik
) (12)

The clutter measurements are typically modeled as a Pois-
son process, meaning that the number of clutter measurements
is Poisson distributed and each is distributed with pdf gc(z).
The clutter set pdf is

κ(Ck) = e−λc

Nc
k∏

i=1

λcgc

(
zjk

)
(13)

where λcgc
(
zjk

)
is the Poisson process intensity.

This paper is restricted to consideration of so called point
targets, meaning that the ith target measurement set Wk

(
xik
)

is a Bernoulli RFS that is empty (= ∅) with probability 1 −
pD(xik), and with probability pD(xik) the set contains a single
measurement zk originating from xik, distributed according to
the pdf gx(zk|xik).

Under the assumption of Poisson clutter and independent
point target measurements the measurement set pdf is [11]

f(Zk|Xk) = e−λc

Nz
k∏

j=1

λcgc

(
zjk

)Nx
k∏

i=1

(
1− pD

(
xik
))

×
∑
θ∈Θ

∏
i:σi>0

pD

(
xik
)

1− pD

(
xik
) gx (zσi

k |xik
)

λcgc (zσi

k )
(14a)

=
∑
θ∈Θ

e−λc

 ∏
j:@σi=j

λcgc

(
zjk

)[ ∏
i:σi=0

(
1− pD

(
xik
))]

×

[ ∏
i:σi>0

pD

(
xik
)
gx
(
zσi

k |x
i
k

)]
(14b)

Here θ = {σi}, defined as in [11], is a set of associations
σi, where σi = 0 if target xik is not associated to any
measurement, and σi = j if target xik is associated to
measurement zjk. The set of all associations θ is denoted Θ.

V. MB FILTER WITH MULTI-OBJECT PARTICLE UPDATE

In this section we present the proposed multi-object particle
probability hypothesis density (MOP-MB) filter. We assume
Gaussian single target densities, Gaussian transition density,
and Gaussian measurement pdf,

pk|k(xk|Zk) = N
(
xk ; mk|k, Pk|k

)
(15a)

pk,k−1(xk|xk−1) = N (xk ; fk,k−1(xk−1), Qk) (15b)
gx(zk|xk) = N (zk ; hk(xk), Rk) (15c)

The birth process is assumed unknown and an adaptive birth
process is used, for some previous work see, e.g., [18], [19].
We assume that the clutter is uniformly distributed in the
surveillance area, gc(z) = 1/V where V is the volume of
the surveillance region.

For the probability of detection and probability of survival
the following is assumed to hold

pD(x)N (x ; m,P ) ≈ pD(m) (16)
pS(x)N (x ; m,P ) ≈ pS(m) (17)

The above is trivially exact when pD(·) and pS(·) are constants.
Further, it is true if pD(·) and pS(·) are sufficiently smooth
functions in the uncertainty area defined by N (x ; m,P ). If
this were to not be true, a non-linear approach, e.g. a particle
filter, could be utilized.

A. Update

The update is an adaptation of the PHD update in [10] and
has three main steps:
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1) The predicted MB density is used to create a parti-
cle approximation of the predicted multi-object density
f(Xk|Zk−1).

2) Update each multi-object particle using the multi-object
update (5), using an approximation for the data associ-
ation computed using the auction algorithm.3

3) Use the posterior multi-object particles to approximate
the posterior MB density.

To mitigate computational cost, measurement gating should
be used to define groups of estimates and measurements, such
that given the gating decisions the groups are statistically
independent. The update is then performed for each group.
The details of the proposed filter are below.

1) Approximate predicted multi-object density: Given a
predicted Gaussian MB density{(

wjk|k−1,m
j
k|k−1, P

j
k|k−1

)}
j

(18)

we approximate the predicted multi-object density by M
multi-object particles X`

k|k−1

f(Xk|Zk−1) ≈
M∑
`=1

W`
k|k−1φXk

(X`
k|k−1) (19)

where, for the `th particle, φXk
(X`

k|k−1) = 0 if |Xk| 6=
|X`

k|k−1| and

φXk
(X`

k|k−1) =
∏
i∈I`

N
(
xi ; mi

k|k−1, P
i
k|k−1

)
(20)

if |Xk| = |X`
k|k−1|. Expressed in words, the meaning of the

set I` is that in the `th particle the jth predicted Gaussian
component is included with probability wjk|k−1. For each
particle, the cardinality is the cardinality of the set I`, meaning
that within each multi-object particle the included Gaussians
are interpreted as representing targets that do exist, i.e. target
existence is here represented by the random sampling ui`.

Comparing to (11) we see that (19) is an MB mixture where
the probabilities of existence are either zero or one. Note that,
strictly speaking, (19) is a Gaussian sum approximation and
not a particle approximation, because (20) defines a Gaussian
distribution. However, for the sake of brevity and simplicity,
in the remainder of the paper we will follow [10] and use the
terminology “multi-object particle.”

The sets I` that define the particles X`
k|k−1 are constructed

using random sampling. Specifically, the set I` is defined
as I` = {i|ui` ≤ wik|k−1}, where ui` are randomly sampled
from the uniform distribution U(0, 1). The MOPs have equal
weights,W`

k|k−1 = M−1, ∀`. When sampling the M particles
are not necessarily unique, in which case computations should
be saved by only considering only unique particles.

2) Update: Given the particle approximation of the pre-
dicted multi-object density (19), the posterior multi-object
density is given by the Bayes update (5),

f(Xk|Zk) =

∑M
`=1 f(Zk|Xk)φXk

(X`
k|k−1)∑M

`=1

∫
f(Zk|Xk)φXk

(X`
k|k−1)δXk

(21)

3JPDA association probabilities [2], cheap JPDA [7] or Murty’s algorithm
[15] can also be used.

Using the measurement set pdf (14) and the Kalman filter
update, or one of its non-linear variants, for each multi-object
particle we have

f(Zk|Xk)φXk
(X`

k|k−1) = 0 (22a)

if |Xk| 6= |X`
k|k−1|, and when |Xk| = |X`

k|k−1| we have

f(Zk|Xk)φXk
(X`

k|k−1)

=
∑
θ∈Θ

e−λc

 ∏
j:@σi=j

λc
V

[ ∏
i∈I`:σi=0

(
1− pD(mi

k|k−1)
)]

×

[ ∏
i∈I`:σi>0

pD(mi
k|k−1)N

(
zσi

k ; mi
k|k−1, P

i
k|k−1

)]

×

[∏
i∈I`

N
(
xik ; mi

k|k−1, P
i
k|k−1

)]
(22b)

=
∑
θ∈Θ

L`,θk|k−1

∏
i∈I`

N
(
xi ; mi,σi

k|k , P
i,σi

k|k

)
(22c)

=
∑
θ∈Θ

L`,θk|k−1φXk
(X`,θ

k|k−1) (22d)

Note that mi,σi

k|k = mi
k|k−1 and P i,σi

k|k = P ik|k−1 for σi =
0. The likelihoods of the detections, given the MOP and the
association event, are

L`,θk|k−1 = e−λc

(
λc
V

)NFA(θ)
[ ∏
i∈I`:σi=0

(
1− pD(mi

k|k−1)
)]

×

[ ∏
i∈I`:σi>0

pD(mi
k|k−1)

][ ∏
i∈I`:σi>0

N
(
zσi

k ; ẑik, S
i
k

)]
(23)

where NFA(θ) is the number of measurements that are not
associated to a target, and

Sik =HkP
i
k|k−1H

T

k +Rk (24a)

Ki
k =P ik|k−1Hk

(
Sik
)−1

(24b)

ẑik =Hkm
i
k|k−1 (24c)

mi,σi

k|k =mi
k|k−1 +Ki

k

(
zσi

k − ẑik
)

(24d)

P i,σi

k|k =P ik|k−1 −K
i
kS

i
k(Ki

k)T (24e)

where Hk is the gradient of hk (x) evaluated at x = mi
k|k−1.

Note that (22) includes a summation over Θ, the set of all
possible measurement associations θ. Except for very simple
scenarios with few targets and high signal to noise ratio,
this is computationally infeasible. To mitigate computational
complexity data association is used. The JPDA algorithm was
used in [9], however this solution is highly susceptible to
track coalescence, and it also suffers from high computational
complexity when there are many targets.

Instead, for each MOP, the auction algorithm [3] is used
to compute a single most probable association event θ̂(`).
Under this approximation the Bayes normalization constant
f(Zk|Zk−1) is zero for |Xk| 6= |X`

k|k−1|, and for |Xk| =
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|X`
k|k−1| it becomes∫

f(Zk|Xk)φXk
(X`

k|k−1)δXk = L`,θ̂(`)k|k−1 (25)

We thus have a multi-object particle approximation of the
posterior multi-object density

f(Xk|Zk) =

∑M
`=1 L

`,θ̂(`)
k|k−1φXk

(X
`,θ̂(`)
k|k )∑M

`=1 L
`,θ̂(`)
k|k−1

(26a)

,
M∑
`=1

W`
k|kφXk

(X
`,θ̂(`)
k|k ) (26b)

3) Approximate posterior multi-Bernoulli density: For each
gating group there will be multiple different MOPs created,
each with a unique combination of estimates. A predicted
estimate may be included in multiple MOPs, and it follows
that there may be multiple updated estimates that correspond
to the same predicted estimate. As noted in the discussion
in Section II we want each estimate to be uni-modal; hence
merging of distributional modes is required.

A posterior multi-Bernoulli density with uni-modal target
estimates {(

wjk|k,m
j
k|k, P

j
k|k

)}
j

(27)

is obtained as follows,

wjk|k =
∑
`:j∈I`

W`
k|k (28)

mj
k|k =

1

wjk|k

∑
`:j∈I`

W`
k|km

j,σ̂j(`)

k|k (29)

M
j,σ̂j(`)

k|k =
(
m
j,σ̂j(`)

k|k −mj
k|k

)(
m
j,σ̂j(`)

k|k −mj
k|k

)T

(30)

P jk|k =
1

wjk|k

∑
`:j∈I`

W`
k|k

(
P
j,σ̂j(`)

k|k +M
j,σ̂j(`)

k|k

)
(31)

In other words, for each predicted estimate w,m,P an up-
dated probability of existence is found by taking the sum
of updated MOP weights for the MOPs that the estimate was
included in. A single updated Gaussian density is found by
merging the updated Gaussian densities from the MOPs that
the estimate was included in. Note that this merging minimizes
the Kullback-Leibler divergence between the Gaussian mixture
and the single Gaussian (see [26]).

B. Prediction
The MB prediction used here follows the MB prediction used

in, e.g., the LMB filter [18]. Given a posterior Gaussian MB
density (27), the Gaussian MB density representing a surviving
target is {(

wjk+1|k,m
j
k+1|k, P

j
k+1|k

)}
j

(32)

where

wjk+1|k = pS

(
mj
k|k

)
wjk|k (33)

mj
k+1|k = fk+1,k

(
mj
k|k

)
(34)

P jk+1|k = F jk|kP
j
k|k

(
F jk|k

)T

+Qk (35)

and F jk|k is the gradient of fk+1,k (x) evaluated at x = mj
k|k.

The Gaussian MB density representing new targets (due to
birth, or spawning) is{(

wbk+1, β
(
zjk

)
, P bk+1

)}
j: 6∃σ̂i(`)=j, ∀i,`

(36)

where the weights wbk+1 and the covariances P bk+1 are user
defined parameters that are equal for all birth components.
In other words, each measurement from the previous time
step that was not associated to any estimate in any multi-
object particle is taken as a potential new target. The function
β(z) returns a Gaussian mean vector where the position is
given by the detection z and the velocity is initiated by an
all-zero vector. Note that this handles both new target birth
and target spawning. In the simulation study presented below
it was sufficient to set the weight equal for all birth targets,
however the weight can be set adaptively, see e.g. [18], [19].

The predicted Gaussian MB density at time step k + 1, cf
(18), is the union of the surviving targets MB density (32) and
the new targets MB density (36).

C. Pruning, confirmation and extraction

To reduce the complexity after the update, multi-Bernoulli
components with a probability of existence wjk|k lower than
a threshold τP are pruned (i.e. removed). A target estimate is
considered confirmed if the probability of existence is larger
than a threshold τC for at least one time step. An estimate of
the target set is taken as the set of estimates that have been
confirmed and have probabilities of existence larger than a
threshold τE.

VI. APPROXIMATE MULTI HYPOTHESIS APPROACH

In this section we apply the MOP MB toward a simple
approach to the trajectory crossing problem that allows us
to compute a multiple hypothesis output at a computational
cost that is only marginally larger than the cost of a single
hypothesis filter4. The approximate multi hypothesis procedure
presented below works on the confirmed target estimates, i.e.
it is a post-processing procedure. Combined with the MOP-MB
filter it gives the approximate multi-hypothesis multi-Bernoulli
(AMHMB) filter.

A. Probability of identity switch

If the true trajectories cross at some point we say that
the corresponding estimates may switch their identities, where
switching identity should be understood as meaning confusion
as to, for example, which target went left and which went right.

An identity switch implies that the true states were (approx-
imately) equal at some prior time, excluding that the states
are (approximately) equal at the current time. In the example
in Figure 1, up until time step 15 there is no confusion as
to which target is located where, i.e. there is no reasonable
identity switch. However, from time step 16 there is confusion
as to which target went up and which went down.

4This section presents one nice application of the MOP MB filter. Note that
we will show the MOP MB filter is a fine integrated target tracker taken all
on its own.



8

The estimates at time step κ corresponding to two targets
with states xiκ and xjκ are subject to a possible identity switch
if there is at least one time step k < κ for which the true
states were

xik
∼= xjk (37)

meaning, approximately, but not necessarily exactly, equal.
In this case the sequence of measurements will not contain
sufficient information to enable telling the two targets apart.
Note that (approximate) equality of positions, on its own, is
generally not sufficient to alert for a possible identity switch
because if, e.g., the kinematics (velocity, turn rate, etc) are
different enough the sequence of measurements will generally
contain sufficient information to tell the two targets apart.

The difference between approximately equal and exactly
equal is important, and the difference must be understood not
only in terms of the true states but also in terms of the sensor’s
and the targets’ characteristics. For example, if two targets are
separated by 1 meter, and the measurement noise standard
deviation is 10 meters, then there is relatively large chance of
identity switch. However, if the measurement noise standard
deviation is 0.1 meters, then there is relatively little chance of
identity switch.

We denote by i
k

 j the event that at time step k the

estimates of targets i and j underwent an identity switch. The
probability of an identity switch is equal to the probability of
approximately equal true states (37), and is here approximated
by the probability of the states being exactly equal,

P(i
k

 j) = P(xik

∼= xjk) ≈ P(xik = xjk) (38)

The probabilities of identity switch between two targets will
subsequently be used to construct multi-object hypotheses that
include identity switches involving an arbitrary number of
targets.

Denote the difference between the true states as

dijk = xik − xjk (39)

and consider the two hypotheses

Hij
0 : dijk = 0 and Hij

1 : dijk 6= 0 (40)

Note that the probability of the null hypothesis P(Hij
0 ) cor-

responds to the probability of identity switch (38). Let the
estimates of xik and xjk have respective expected values mi

k|k
& mj

k|k, and covariances P ik|k & P jk|k; and cross-covariance
P ijk|k. The estimate of the true difference (39) is

d̂ijk|k = mi
k|k −m

j
k|k (41)

The error in the difference between the target estimates

d̃ijk|k = dijk − d̂ijk|k (42)

is zero-mean and has covariance [2, Eqn. 9.3.3-3]

T ijk|k = P ik|k + P jk|k − P
ij
k|k −

(
P ijk|k

)T

(43)

Most MTT algorithms assume that the targets are inde-
pendent and subsequently do not estimate cross-covariances

P ijk|k. However, during a true trajectory crossing the target
kinematics are equal,5 assuming equivalent motion models
(15b). The longer the target kinematics are equal, the more
significantly non-zero the crosscovariance will be. A recursion
for P ijk|k, assuming Gaussian models, is given in [2]. In the
remainder of this paper we will assume that the trajectory
crossings are sufficiently short to allow the cross-covariances
to be approximated by all-zero matrices. For some standard
2D motion models, e.g. constant velocity and constant accel-
eration, “sufficiently short” means less than 15 time steps.

Below we will outline two different approaches to estimat-
ing the probability of identity switch (38).

1) Alternative 1: Assuming the estimation errors to be
Gaussian, we accept hypothesis H0 if

∆ij
k|k ,

(
d̂ijk|k

)T (
T ijk|k

)−1

d̂ijk|k ≤ ∆α (44)

This test is called the “track-2-track-assocation test” [2, Sec.
9.2], and the threshold ∆α is chosen such that

P(∆ij
k|k > ∆α|H0) = α (45)

From the Gaussian assumption the threshold is the 1−α point
of the chi-square distribution with nx degrees of freedom [1],

∆α = χ2
nx

(1− α) (46)

where χ2
nx

(·) denotes the inverse of the chi-squared cumulative
distribution function (cdf). From this we derive the approxi-
mate probability of identity switch

P(i
k

 j) = 1− Fnx

(
∆ij
k|k

)
(47)

where Fn(·) is the chi-squared cdf with n degrees of freedom.
2) Alternative 2: Let Pk|k−1(Hij

0 ) be the predicted proba-
bility of Hij

0 at time step k given data up to time step k − 1.
The updated probability follows from Bayes’ theorem

Pk|k(Hij
0 ) =

p(d̂ijk|k|H
ij
0 )Pk|k−1(Hij

0 )

p(d̂ijk|k)
(48a)

=
p(d̂ijk|k|H

ij
0 )Pk|k−1(Hij

0 )∑1
h=0 p(d̂

ij
k|k|H

ij
h )Pk|k−1(Hij

h )
(48b)

where Pk|k−1(Hij
1 ) = 1−Pk|k−1(Hij

0 ). Here d̂ijk|k is taken as
a pseudo-measurement of dijk , with pseudo-measurement pdfs
for the two hypotheses modeled as

p
(
d̂ijk|k|H

ij
0

)
= N

(
d̂ijk|k ; 0, T ijk|k

)
(49a)

p
(
d̂ijk|k|H

ij
1

)
=

∫
d6=0

N
(
d̂ijk|k ; dijk , T

ij
k|k

)
p(dijk )ddijk

≈ p
(
d̂ijk|k

)
(49b)

It is assumed that if the true states are not equal (hypothesis
Hij

1 ) the true states are independently uniformly distributed in
the state space. With knowledge of the sensor’s surveillance
area, the pdf p(dijk ) can be derived under this assumption. For
example, if the state space is one dimensional with minimum

5For at least a single time step.
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Fig. 2. Probabilities of trajectory crossing computed for the two crossing
targets in Figure 1. Alternative 1 is in orange, alternative 2 in blue. From
time step 5 to 15 two of the true targets are located in (approximately) the
same position, and the corresponding estimates are thus susceptible to an
identity switch. Alternative 2 estimates the probability of trajectory cross to
just less than 1, while alternative 2 estimates a much lower probability of
trajectory cross.

value d1 and maximum value d2 (d1 = 0 and d2 = 30 in
Figure 1), then the state difference distribution is

p(d) =
1

d2 − d1
− sign(d)d

(d2 − d1)2
(50)

The generalization to higher dimensions is straightforward.
Remark: The approximation in (49b) is accurate as long as

the pdf p(dijk ) is a sufficiently smooth function inside the un-
certainty region defined by T ijk|k (the 99% probability region).
For the example in (50), this means that the uncertainty region
is sufficiently smaller than 2(d2 − d1). �

Remark: Note that because the target estimates at time steps
k and k− 1 are dependent, it follows that the state difference
pseudo-measurements are also dependent. �

The probability of identity switch is approximated as

P(i
k

 j) = Pk|k(Hij

0 ) (51)

The predicted probability Pk+1|k(Hij
0 ) is computed as

Pk+1|k(Hij
0 ) = P00Pk|k(Hij

0 ) + P10Pk|k(Hij
1 ) (52)

where P00 and P10 are the probabilities that two targets
with equal/unequal states will maneuver such that their states
remain/become equal. P00 = P10 = 0.5 corresponds to there
being no memory left from previous time steps.

3) Comparison: Probabilities P(i
k

 j) corresponding to

the example in Figure 1 are shown in Figure 2. We see
that alternative 2 (blue) gives better results than alternative
1 (orange). The two alternatives have been tested extensively
in simulations, and empirically it was found that alternative 2
gives better performance.

B. Pairwise switch hypotheses

A pairwise switch hypothesis H = (I, S) is defined by
an index set I indicating the two estimates in the pair, and
a sequence S of consecutive time steps for which it holds
P (i

s

 j) > 0, ∀s ∈ S. Note that for a particular pair I of

estimates there may be several switch hypotheses for different
time sequences, in which case the intersection of the time
sequences are the empty set.

C. Merged switch hypotheses
After computing all pairwise switch hypotheses, the hy-

potheses are merged to form switch hypotheses involving an
arbitrary number of targets.

Two hypotheses H1 = (I1, S1) and H2 = (I2, S2) are
merged if I1∩I2 6= ∅ and |S1∩S2| > Smin , i.e. the hypotheses
involve the same targets and overlap in time by at least Smin

time steps. The merged hypothesis resulting from merging H1

and H2 is H = (I1∪I2, S1∪S2). Hypotheses are merged until
there are no two hypotheses that fulfill the merging criterion.

D. Probability of switch hypothesis
For a merged switch hypothesis, there are NI = |I|!

possible switch outcomes J1, . . . , JNI
. A switch outcome Jι

is defined as a set of indices jι(i) ∈ Jι, where jι(i) indicate
the identity that estimate i ∈ I switches to. The probability of
a particular switch outcome I → Jι is

P(I → Jι) =
maxs∈S

∏
i∈I P(i

s

 jι(i))∑NI

ι=1 maxs∈S
∏
i∈I P(i

s

 jι(i))

(53)

For a hypothesis, a single switch time s for all switch outcomes
is estimated as

s = max
k

{
arg max

k

NI∑
ι=1

∏
i∈I

P(i
k

 jι(i))

}
(54)

The outermost max-function ensures that if the maximum is
attained at more than one time step, then the most recent
time step is taken. Note that switch times can be defined
individually for each outcome Jι, however empirically we have
found that defining a single switch time as in (54) is a better
compromise between accuracy and complexity.

E. Overall scenario hypotheses
An overall scenario hypothesis H is constructed by ordering

the merged switch hypotheses chronologically, and enumerat-
ing all possible combinations of the merged hypotheses. In
total there are

∏
I∈H |I|! possible overall hypotheses, and the

probability of an overall scenario hypothesis is

P(H) =

∏
I P(I → Jι(h))∑

H
∏
I P(I → Jι(h))

(55)

The forming of trajectories among the overall hypotheses
is illustrated with an example. Let there be three confirmed
targets x̂ik|k, x̂jk|k, and x̂`k|k with initiation times tib, t

j
b, t

`
b,

and pruning times tid, tjd, t`d, respectively. Consider an overall
hypothesis H with two switches i

s1

 j and i

s2

 `, s1 < s2.

The trajectories in this hypothesis are formed as

x̂i,Hk|k =

{
x̂ik|k tib ≤ k ≤ s1

x̂jk|k s1 < k ≤ tjd
(56)

x̂j,Hk|k =


x̂jk|k tjb ≤ k ≤ s1

x̂ik|k s1 < k ≤ s2

x̂`k|k s2 < k ≤ t`d
(57)

x̂`,Hk|k =

{
x̂`k|k t`b ≤ k ≤ s2

x̂ik|k s2 < k ≤ tid
(58)
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F. Complexity

The approximate multi hypothesis approach requires prob-
abilities of identity switch for each possible pair of confirmed
estimates, which has complexity of order

O (Nx
k (Nx

k − 1)) (59)

VII. SIMULATION RESULTS

The MOP-MB filter and AMHMB filter are tested in different
scenarios. The first has many targets and confirms that the
MOP-MB filter can estimate the trajectories. This scenario is
mainly included as a “proof-of-concept”: it is intended to show
that the MOP-MB can handle many targets and high clutter rate.

As noted in e.g. [26], an increasing number of targets is
not necessarily the most challenging scenario, since a large
number of targets spread out in the surveillance area can be
treated like a number of single target tracking problems. More
challenging is to handle multiple targets that have identical
states. The MOP-MB filter is tested in scenarios where multiple
targets have identical states at the mid point in time. For these
scenarios we compare the performances of the MOP-MB and
LMB filters. A comparison between an early version of the
MOP-MB filter and the PHD filter was included in [9]; the MOP-
MB was shown to give superior performance, specifically the
cardinality error is much lower. For a comparison between the
LMB and GLMB filter please refer to [18].

Lastly, the AMHMB filter is tested in scenarios where there
are multiple trajectory crossings at a number of different times.
Here a trajectory crossing means that the target states are
(approximately) equal at a point in time, i.e. the true target
states “coalesce” at a point in time.

In all simulations a nearly constant velocity motion model
(white noise acceleration [1]) was used with acceleration noise
standard deviation σa = 2 m/s2, and a linear measurement
model was simulated. In the update, for each gate group
the maximum number of MOPs was set to 8192. However,
in practice the number of MOPs is typically much smaller.
The probability of survival was pS = 0.99 and for the data
assocation gating probability PG = 0.999 was used. For
pruning, confirmation and extraction the following thresholds
were used: τP = 10−5, τC = 0.75, and τE = 0.25.
Alternative 2 was used to estimate the switch probabilities,
with P00 = 0.90 and P10 = 0.10 and Smin = 5.

For performance evaluation we compare the estimated car-
dinality and the optimal subpattern assignment metric (OSPA)
[20]. The OSPA is implemented using the Euclidean norm with
cut-off parameter c = 300 and p = 1. For the cardinality, we
show the number of extracted targets; the cardinality error is
the number of extracted targets minus the true cardinality.

A. High target number

A scenario was generated with a total of 150 targets:
110 appear at the first time step, 20 appear at time step
20, and the last 20 appear at time step 40. The time of
disappearance was either randomly sampled from the set
{50, 60, . . . , 90, 100}, or set to the time when the target left the
surveillance area [−1000, 1000] × [−1000, 1000]. The initial

positions were uniformly sampled in the surveillance area.
Measurements were simulated with probability of detection
0.75, measurement noise Rk = 102I and clutter measurements
with Poisson rate 100 per time step, distributed uniformly in
the surveillance area. The scenarios were simulated 500 times,
the mean OSPA and mean cardinality is given in Figure 3. The
results show that there is some convergence time following
target appearance/disappearance, but eventually the MOP-MB
filter gives a correct estimate.

B. Target coalescence

Multiple target trajectories, each 100 time steps long, were
generated by sampling the state at time step 50 from a
Gaussian distribution with mean x50 and covariance I×10−6,
and then using forward and backward simulation to generate
the true trajectories. The mean position was set as the origin,
with Cartesian velocity [20 0]T. The scenario was simulated
with N = 4, 6, and 8 targets, and for each target number two
probabilities of detection were tested: 0.75 and 0.99. As in the
simulation study in [26], the measurement noise covariance
was set to Rk = 12I.

The results of 100 Monte Carlo simulations are shown in
Figure 4, where we compare the performances of the MOP-
MB filter and the LMB filter. The plots show time steps 25
to 75, to highlight the results when the targets are very
close. For the MOP-MB filter we see that for the OSPA there
is an increase, and for the cardinality there is a decrease,
both around time step 50, where the targets are extremely
close. The MOP-MB filter errors are larger when the target
number is higher, which is expected. The higher the target
number, the more possible association events there are. For
spatially separated targets a single association hypothesis is
often enough to obtain accurate results. In a highly ambiguous
situation such as this, as the target number increases, only
considering a single association event is a progressively worse
approximation, leading to a worse MB approximation. As
expected, ceteris paribus, the MOP-MB filter results are better
for higher pD.

By comparison, for the LMB filter we see that the cardinality
error is low during the entire simulation scenario. The OSPA
error is lower when the targets are still approaching each other
(up until time step 50), due to the fact that the LMB considers
more association hypotheses than the MOP-MB does. However,
after the targets separate, the LMB filter’s estimated target
densities become multi-modal, causing the target output to
“flicker” between the multiple modes, which in turn causes the
OSPA to grow siginificantly. This “flickering” behaviour was
mentioned in Section II-A as one of the motivations behind
constructing a target tracker that estimates uni-modal single
target densities.

C. Multi-Hypothesis Results

The AMHMB filter has been tested in several scenarios
with multiple targets and multiple trajectory crossings. Here
we present results from two selected scenarios in which
the true trajectories are generated such that the results are
clear when visualized. Both scenarios were simulated with
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Fig. 3. Scenario with 150 targets. (a): OSPA (b): Cardinality, estimated by the number of confirmed tracks.
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Fig. 4. Coalescence scenario with N targets. (a), (b), (c): OSPA; (d), (e), (f): Cardinality error. The N targets are closest at time step 50. The MOP-MB filter
has larger cardinality error than the LMB filter when the targets are close, i.e. around time step 50. After the targets separate the LMB filter has larger OSPA
error, because the output of the LMB filter “flickers” between the different single target modes.

probability of detection 0.75 and mean clutter number 200,
uniformly distributed in the surveillance area [−1500, 1500]×
[−1500, 1500]. The measurement noise had Rk = 12I.

1) Two targets: Two targets have trajectories that cross at
time steps 37 and 109, where each crossing lasts for a single
time step (i.e. equal states for a single time step). Each crossing
has 2 possible switching outcomes, and there are 4 different
scenario outcomes. The true tracks and the results are shown in
Figure 5. The AMHMB filter finds the trajectory crossings and
correctly reconstructs all four multi-object hypotheses. The
identity switches have estimated switch times 38 and 107, and
estimated probabilities,

P(1
38

 2) = 0.999997; P(1

107

 2) = 0.999998 (60)

The resulting four multi-object hypotheses are equiprobable
(0.25) to the 5th decimal.

2) Eight targets: Eight targets and three trajectory cross
at time steps 75, 100 and 125, involving 2, 3, and 2 targets,
respectively. For this scenario there are 24 different scenario
outcomes. The true tracks are shown in Figure 6. To conserve
space we do not show all 24 multi-object hypotheses, instead
we show the different hypotheses for each of the eight targets,
see Figure 7. The AMHMB filter correctly estimates the multi-
ple trajectory hypotheses for the eight estimates. The identity
switches have estimated switch times 74, 105 and 130, and the
resulting 24 multi-object hypotheses are equiprobable (1/24)
to the 5th decimal.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a very simple implementation of
a multi-object multi-Bernoulli filter, called the MOP-MB filter.
The MOP-MB filter is similar to the LMB filter [18], however
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Fig. 5. Scenario with two targets. (a): true tracks. The trajectories cross twice,
around (x, y) = (−250, 0) and (x, y) = (250, 0). (b)–(e): AMHMB output,
the four hypotheses are equiprobable to the seventh decimal. (b) shows the
result from the MOP-MB filter, the other three hypotheses are constructed using
the approximate multi-hypothesis method.
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Fig. 6. True tracks for scenario with eight targets. Around (x, y) = (0, 500)
four targets have equal positions, but only three of them have equal velocity
vectors. Around (x, y) = (500,−500) and (x, y) = (−500,−500) two
targets have equal states. Around (x, y) = (−350, 150) two targets have
equal positions, but perpendicular velocity vectors. There are 3! · 2! · 2! = 24
identity switch combinations.

it is also slightly simpler than the LMB filter. Additionally,
we presented a postprocessing method that can reconstruct
the multi-hypothesis picture of the tracking scenario using the
output from a single hypothesis filter. Coupled with the MOP-
MB filter this leads to the AMHMB filter.

The use of the postprocessing together with a very simple
single hypothesis filter is deliberate. It shows that it is suffi-

cient to have a most simple single hypothesis filter, and then
use the postprocessing technique on the output, allowing the
multi-hypothesis output to be obtained at lower computational
cost than the cost of a full multi-hypothesis approach such as
the MHT [4] or the GLMB filter [22].

The results from the simulation study showed that the
AMHMB filter can correctly approximate the multi-hypothesis
multi-object output, however the MOP-MB filter’s estimation
error increases in scenarios where very many targets have
equal states. The reason is the approximation of the full set
of association events with a single association event compute
using the auction algorithm. A topic for future work is to in-
vestigate the relationship between the MOP-MB’s approximate
posterior density and the actual posterior density.
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