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Abstract—In this paper, we investigate the scheduling scheme
to combine cooperative diversity (CD) and multiuser diversity
(MUD) in multiuser cooperative networks under the time re-
source allocation (TRA) framework in which the whole transmis-
sion is divided into two phases: the broadcast phase and the relay
phase. The broadcast phase is for direct transmission whereas
the relay phase is for relay transmission. Based on this TRA
framework, a user selection based low complexity relay protocol
(US-LCRP) is proposed to combine CD and MUD. In each time
slot (TS) of the broadcast phase, a “best” user is selected for
transmission in order to obtain MUD. In the relay phase, the
relays forward the messages of some specific users in a fixed order
and then invoke the limited feedback information to achieveCD.
We demonstrate that the diversity-multiplexing tradeoff (DMT)
of the US-LCRP is superior to that of the existing schemes, where
more TSs are allocated for direct transmission in order to jointly
exploit CD and MUD. Our analytical and numerical results show
that the US-LCRP constitutes a more efficient resource utilization
approach than the existing schemes. Additionally, the US-LCRP
can be implemented with low complexity because only the direct
links’ channel state information (CSI) is estimated during the
whole transmission.

Index Terms—Cooperative diversity, multiuser diversity,
diversity-multiplexing tradeoff, low complexity.

I. I NTRODUCTION

Diversity serves as one of the major solutions to combat
channel impairment caused by random fading in wireless
environments [1]. Recently, cooperative communication has
emerged as a promising technique of achieving spatial diver-
sity in a distributed fashion. A variety of cooperation schemes
such as opportunistic relaying and space-time coded cooper-
ation [2]–[5] have been proposed to provide full cooperative
diversity (CD) in multi-relay networks. Among these schemes,
opportunistic relaying achieves full CD by selecting the “best”
relay to support transmission. Moreover, it is outage-optimal
under an aggregate power constraint, and can be implemented
with low complexity, hence it attracts much attention.
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On the other hand, it is well known that multiuser diversity
(MUD) constitutes an inherent resource of diversity in a mul-
tiuser network [6]. Since many users experience independent
fading, the probability that the “best” user has a “strong”
channel is very high. Therefore, by allowing only the user
with the highest instantaneous signal-to-noise ratio (SNR)
to transmit, MUD can be obtained to improve the outage
probability and/or capacity performance.

In multiuser cooperative networks, it is potentially feasible
to achieve both CD and MUD, and there have been some
studies focusing on the combination of CD and MUD [7]–
[12], [20]–[25]. More specifically, [7] and [8] discussed this
combination in some specific cooperative networks from the
capacity perspective, other literature investigated the reliability
performance of the combined use of CD and MUD. The
authors of [9] established a multiuser cooperative network
model where each user transmits with the aid of one ex-
clusive relay, and analyzed the diversity order for both the
amplify-and-forward (AF) and the decode-and-forward (DF)
protocols. Furthermore, in [10], they extended the analysis
of [9] to a more generalized multiuser network model in
which each user has multiple exclusive relays. However, the
assumption of exclusive relay might not be realistic although
it brings convenience to theoretical analysis. The authorsof
[11] considered a more practical scenario where all the users
share all the relays, and proposed an optimal “user-relay” pair
selection strategy to achieve CD and MUD simultaneously.
Nevertheless, global channel state information (CSI) is needed
to perform such “user-relay” pair selection. Namely, in an
N -user M -relay network, the CSI of all theN (M + 1)
links in the network is required for a single “user-relay” pair
transmission [12]. This requirement makes the complexity of
selection excessively high for largeN andM . To reduce the
complexity, the authors of [12] proposed a two-step selection
scheme while still obtaining both CD and MUD. To elaborate
a little further, firstly, the “best” user with the highest direct-
link channel quality is selected to transmit, then a “best”
relay is chosen to support the transmission. In this way, only
the CSI of theN direct links and the2M links related to
the relays are needed for the user selection and the relay
selection, respectively. The existing studies [11], [12] are based
on the time-resource allocation (TRA) framework that two
time slots (TSs) are allocated for each transmission request.
In the first TS the selected user broadcasts its information,
and then in the second TS the selected relay forwards its
observation. However, considering the two TSs as a whole, the
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framework is essentially the same as those in the traditional
non-cooperative systems. In this framework, using two TSs
together to serve one user causes a degradation of spectrum
efficiency.

Recently, a two-phase TRA framework (TP-TRA) is ex-
ploited to improve the spectrum efficiency [14]–[17]. In TP-
TRA the whole transmission is divided into two phases:
the broadcast phase and the relay phase. Firstly, the users
broadcast their messages in the broadcast phase, and then the
relays assist in transmission in the relay phase. [14] showed
that all the users can achieve a diversity order of two by
transmitting a network coding (NC) combined packet within
one relay TS in single DF-relay aided systems. [15], [16]
studied the cooperative schemes in general networks with
multiple users and multiple DF relays. More specifically, [15]
proposed a Galois field NC based scheme to achieve full CD,
and [16] developd a criterion for binary field NC to guarantee
full CD. In [17], the authors showed that the diversity gain
of NC based cooperation comes from selection, and based on
this revelation, they further proposed a user selection strategy
in the relay phase to achieve full CD for both AF and DF
networks. Attributing to the TP-TRA framework, these full-
CD schemes can improve the spectrum efficiency significantly.
However, the problem of jointly exploiting CD and MUD
in multiuser multi-relay cooperative networks has not been
studied yet under the TP-TRA framework.

In this paper, we propose a user selection based low
complexity relay protocol (US-LCRP) which is capable of
achieving both CD and MUD under the TP-TRA framework.
In each broadcast TS, the “best” user with the strongest direct
link broadcasts its data block. Then in the relay phase, all the
relays serve the transmission in a round-robin fashion. In each
relay TS, instead of selecting relay, the destination selects a
“worst” data block which most needs to be relayed according
to the quality record of each block. Afterwards, a single relay
transmits its observation of the selected data block, and the
destination performs data combining and quality record updat-
ing. To show the effectiveness of the US-LCRP, the diversity-
multiplexing tradeoff (DMT) performance is analyzed in this
paper.

The merit of the US-LCRP is twofold:
1) With the aid of good design, the US-LCRP achieves

higher spectrum efficiency while obtaining both CD
and MUD. To be more specific, let us suppose the
broadcast phase and the relay phase last forL andM
TSs, respectively. Then, the US-LCRP provides better
DMT performance in the scenario ofL > M , which
indicates that the proposed protocol achieves higher
spectrum efficiency than the existing protocols [11], [12]
while maintaining the same reliability performance, or it
attains higher diversity gain than the existing protocols
[11], [12] despite providing the same data rate.

2) The US-LCRP requires the CSI of only theN direct
links for user selection in each broadcast TS. The data
block selection in the relay phase is based on the quality
record of the previously transmitted data blocks. This
quality record may be simply characterized as the SNR
of the corresponding signals received at the destination,
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Fig. 1. System Model.

and can be estimated by using some SNR estimation
algorithms. Hence the US-LCRP imposes a significantly
lower implementation complexity in practice compared
with existing protocols.

The rest of this paper is organized as follows. The system
model and the proposed US-LCRP are described in Section
II. The DMT performance of the US-LCRP is analyzed in
Section III, and simulation results are provided in SectionIV.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND THE PROPOSEDUS-LCRP

A. System Model

We consider an AF cooperative network withN +M + 1
nodes, whereN users (Sn, 1 ≤ n ≤ N ) transmit individual
information to one destination (D) with the aid ofM relays
(Rm, 1 ≤ m ≤ M ). The system model is shown in Fig. 1. All
the nodes are assumed to have single antenna and transmit
with power Es, and operate in half-duplex mode. All the
channels in the network are assumed to be independent flat
Rayleigh block fading channels with additive white Gaussian
noise (AWGN). We further assume that the variances of the
channel coefficients of theSn → D, Sn → Rm, andRm → D
links are γSnD, γSnRm

, and γRmD, respectively, while the
average noise power of each link in the network isN0.

B. The Proposed US-LCRP

In [11] and [12], the relays serve one data block immediately
after the data block’s direct transmission has been finished. In
this TRA, the relays are dedicated to assist one data block
in each relay time slot and brings no benefits for the other
data blocks. Differently, we exploit the TRA as in [14]–
[17] where all the relays are shared by all the sources. To
achieve this effect, the relays do not participate in assisting
the signal transmission until all the direct transmissionshave
been finished. Therefore, the whole transmission is divided
into two phases: the broadcast phase and the relay phase.
First, the sources transmit data blocks in the broadcast phase.
Afterwards, the relays assist the transmissions in the relay
phase. Studies show that with the aid of a well-designed
protocol, it is attractive to achieve the effect of “relay sharing”,
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which means that multiple sources are able to benefit from
a single relay TS. The design objective of US-LCRP is to
achieve both CD and MUD under the TP-TRA framework.

Different from [11], [12], in the proposed US-LCRP, we
exploit the TRA framework as in [14]–[17]. The whole trans-
mission is divided into two phases: the broadcast phase and
the relay phase. First, the sources transmit data blocks in the
broadcast phase. Afterwards, the relays assist in transmissions
in the broadcast phase. Studies show that with the aid of a
well-designed protocol, it is attractive to achieve the effect of
“relay sharing” which means that multiple sources are able to
benefit from a single relay TS. The design objective of US-
LCRP is to achieve both CD and MUD under the TP-TRA
framework.

We assume that the broadcast phase occupiesL TSs. In
each TS of the broadcast phase, the “best” user whose link
towards the destination exhibits the highest SNR is selected
as a candidate for transmission. Then in the relay phase, the
relays assist in transmissions one by one, thus the relay phase
lasts forM TSs. In each relay TS, a single relay aids the
transmission of the “worst” data block which has the lowest
quality record atD. Fig. 2(a) illustrates TP-TRA, and its
details are presented as follows.

1) Broadcast Phase:In the broadcast phase, a greedy
scheduler is employed to obtain MUD. In thelth broadcast TS,
the scheduler chooses the “best” userSil whose link towards
the destination has the highest SNR. Then,il can be expressed
as

il = arg max
n=1,...,N

ρ(l,BP)
n , (1)

where “BP” is the abbreviation of “broadcast phase”,ρ
(l,BP)
n =

Es

∣

∣

∣
h
(l,BP)
SnD

∣

∣

∣

2

N0
represents the instantaneous SNR of the linkSn →

D in the lth broadcast TS, andh(l,BP)
SnD

denotes the channel
coefficient of this link in thelth broadcast TS.

Due to the broadcast nature of wireless environment, all
the relays and the destination can receiveSil ’s signal. The
received signal atD andRm are

ySil
D = h

(l,BP)
Sil

D xl + n
(l,BP)
Sil

D ,

ySil
Rm

= h
(l,BP)
Sil

Rm
xl + n

(l,BP)
Sil

Rm
,

respectively, whereh(l,BP)
Sil

Rm
is the channel coefficient of the

link Sil → Rm in the lth broadcast TS,xl is the transmitted
data block ofSil in the lth broadcast TS,n(l,BP)

Sil
D andn(l,BP)

Sil
Rm

are the AWGN atD andRm, respectively.
2) Relay Phase:The relay phase lasts forM TSs, during

which all the relays participate in the transmission one by
one, i.e., in a round-robin fashion. In the first relay TS,R1

transmits, and then in the second relay TS,R2 transmits.
This procedure goes on until all the relays have assisted the
transmission. In addition, the US-LCRP employs data block
selection to facilitate the transmission. Briefly speaking, a
single relay assists the transmission of the “worst” data block
in each relay TS. After relays’ transmission, the destination
performs data combining and then updates the quality record
of the selected data block in order to prepare for the next relay
TS. Since selective combining (SC) is capable of providing
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Fig. 2. TRA framework of (a) the existing schemes [11], [12] and (b) the
proposed US-LCRP.

diversity order with rather low complexity, we focus on SC in
this paper. It should be noted that other combining schemes
such as maximum ratio combining (MRC) [18] and equal gain
combining (EGC) can be readily introduced into the US-LCRP
in the same way. The details of relay phase operation are
described as follows.

We denoteρ(m)
l as the SNR of the received signals atD

related toxl after combining and before themth relay TS (i.e.,
the SNR of the combined signals from all the links over which
xl has been transmitted toD before themth relay TS),φm as
the set ofρ(m)

l , where1 ≤ l ≤ L. Supposeh(m,RP)
SnRm

, h(m,RP)
SnD

,

and h
(m,RP)
RmD are the channel fading coefficients of the links

Sn → Rm, Sn → D, and Rm → D in the mth relay TS,
respectively, where “RP” is the abbreviation of “relay phase”.
For the ease of exposition, the details of the calculation and
the updating ofρ(m)

l will be explained later.
In themth relay TS,D first selects the “worst” data block

and broadcasts its indexθm,1 where

θm = arg min
l=1,...,L

ρ
(m)
l , 1 ≤ m ≤ M. (2)

ThenRm amplifies its observation of the data blockxθm

and forwards it toD. The destination receives the relayed
signal, which is written as

yRmD = h
(m,RP)
RmD x̃θm + n

(m,RP)
RmD , (3)

wheren
(m,RP)
RmD is the AWGN with zero mean and variance

N0, x̃θm is the version of amplified signalxθm at Rm and is
expressed as

x̃θm =
h
(θm,BP)
Siθm

Rm√∣∣∣h(θm,BP)
Siθm

Rm

∣∣∣
2

+N0

xθm +
n
(θm,BP)
Siθm

Rm√∣∣∣h(θm,BP)
Siθm

Rm

∣∣∣
2

+N0

.

(4)

After Rm finishes the transmission,D employs SC to per-
form data combining. Finally,D updatesρ(m)

θm
to ρ

(m+1)
θm

and
reconstructs a new SNR setφm+1 to record all the data blocks’
quality of the next relay TS, and the currentmth TSs ends.

The relay phase continues until all the relays finish assisting
the transmission and thereby lasts forM TSs.

1This limited feedback information may be represented with⌈log2 L⌉ bits.
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Below we will elaborate on the calculation and updating of
ρ
(m)
l . Note that the initial value ofρ(m)

l , namelyρ(1)l , is equal
to the SNR of the received signals atD from Sil after the
broadcast phase, and it is computed as

ρ
(1)
l = ρ

(l,BP )
il

=
Es

∣∣∣h(l,BP)
Sil

D

∣∣∣
2

N0
. (5)

In themth relay TS, relying on (4), the SNR of the received
signal atD (i.e., the SNR ofyRmD) is formulated as

ρ(m,RP) =
Es

∣∣∣h(θm,BP)
Siθm

Rm
h
(m,RP)
RmD

∣∣∣
2

N0

(∣∣∣h(θm,BP)
Siθm

Rm

∣∣∣
2

+
∣∣∣h(m,RP)

RmD

∣∣∣
2

+N0

) (6)

=
ρSiθm

Rm
ρRmD

ρSiθm
Rm

+ ρRmD + 1
, (7)

where ρSiθm
Rm

is the SNR of the linkSiθm
→ Rm in

the θmth broadcast TS and can be expressed asρSiθm
Rm

=

Es

∣

∣

∣

∣

h
(θm,BP)
Siθm

Rm

∣

∣

∣

∣

2

N0
, while ρRmD is the SNR of the linkRm → D

in the mth relay TS and can be expressed asρRmD =
Es

∣

∣

∣
h
(m,RP)
RmD

∣

∣

∣

2

N0
.

After data combining,ρ(m)
l is updated toρ(m+1)

l . Addi-
tionally, ρ(m+1)

θm
denotes the SNR of the combined signal at

the output of the selection combiner, thus it is written as

ρ
(m+1)
θm

=max
(
ρ
(m)
θm

, ρ(m,RP)
)
. (8)

Since only the signal of the selected data block is relayed,
the unselected data blocks’ quality records remain unchanged.
Thus the elements of the updated SNR setφm+1 are given by

ρ
(m+1)
l =

{
ρ
(m)
l , l 6= θm

max
(
ρ
(m)
l , ρ(m,RP)

)
, l = θm

. (9)

3) Discussions:Let us compare the proposed US-LCRP
and the existing protocols in [11], [12]. The US-LCRP enjoys
a lower implementation complexity. In [11], the CSI of all the
N (M + 1) links in the entire network has to be estimated for
selecting the optimal “user-relay” pair selection. In [12], the
CSI of only theN direct links and of the2M relaying links
has to be estimated for selecting the “proper” user and the
“proper” relay. In contrast, the US-LCRP requires to estimate
the CSI of only theN direct links in the broadcast phase
while in the relay phase it does not need to estimate any
CSI. In each relay TS of the US-LCRP, the destinationD
only has to evaluate the received SNR and update the users’
quality records. It should be noted that in each relay TS of
the scheme proposed in [12],D also has to estimate the
received SNR of the relayed signal as in the proposed US-
LCRP scheme, because it also has to combine the original
signal and the relayed signal. Besides, only the quality of the
selected “data block” is changed and updated in each relay
TS of the proposed US-LCRP scheme, and the updating can
be directly accomplished after the data combining, as shown
in (9). As a result, the calculation and updating of each data
block’s quality do not incur other overhead when compared

with the scheme of [12].
Moreover, Fig. 2 illustrates the TRA of the US-LCRP and

its counterparts in [11], [12]. We can observe from Fig. 2 that
the US-LCRP occupiesL + M TSs whereas both schemes
of [11] and [12] occupy2L TSs. It implies that ifL is set
a larger value thanM , the US-LCRP has the potential to
achieve higher spectral efficiency than the schemes of [11],
[12], because the US-LCRP requires less time resources. This
conclusion will be demonstrated by both the analytical results
of Section III and the simulation results of Section IV, as
detailed subsequently.

Let us now discuss the issue of feedback latency. In each
TS of the proposed US-LCRP, the destination (i.e. BS) has
to notify the selected users/relays with a limited amount of
feedback information. It should be pointed out that such
kind of feedback technique is widely exploited in wireless
communications, and related works include, for example, the
benchmark schemes of [11] and [12] considered in this paper.
In the scheme of [11], the destination performs joint “user-
relay” pair selection among all theNM candidates of the
“user-relay” pairs. Therefore, the destination has to broadcast
⌈logNM⌉ bits of feedback information to reveal the selection
result, where⌈.⌉ denotes the ceiling operation. In the scheme
of [12], the destination performs “optimal” user selection
among all theN candidates of users and “optimal” relay se-
lection among all theM candidates of relays in each broadcast
time slot and each relay time slot, respectively.⌈logN⌉ and
⌈logM⌉ bits feedback information is thus used for notifying
the selected users and the selected relays, respectively. By
contrast, in the proposed US-LCRP requires smaller amount of
feedback information compared with its counterpart schemes
in [11] and [12], whenL ≥ max {M, 3}. Furthermore, feeding
back a small amount of information is not difficult in practical
systems such as LTE, where the feedback information is
transmitted with much lower data rate and protected with
much stronger channel codes to ensure a much lower error
rate compared with the data since it is important and of small
size. As a result, the feedback information could be regarded
as approximately perfect. What’s more important, the latency
brought by feedback is typically acceptable to satisfy the QoS
requirement in current wireless communication systems. For
instance, in LTE the ACK/NACK is sent four subframes later
than the data block’s transmission, and the retransmission
will happen four subframes later after the NACK is sent. In
current wireless systems, the time granularity of scheduling
is tiny enough and typically this latency does not affect user
experience. In addition, in this way the resources could be
used efficiently. The uplink and downlink usually use differ-
ent frequency bands, and after the uplink/downlink feedback
information has been sent, the base station/user equipmentcan
use the downlink/uplink channel to transmit other information
to the user equipment/base station.

III. DMT A NALYSIS

Both the reliability performance and the spectral efficiency
are considered to verify the superiority of the US-LCRP. As is
well known, the fundamental and comprehensive performance
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metric to simultaneously characterize the reliability andca-
pacity performance is DMT [19]. DMT depicts the reliability
with diversity gain and the capacity with multiplexing gain.
It shows the achievable diversity gain of a given protocol
under a certain multiplexing gain. In this section, the DMT
performance of the US-LCRP is analyzed. For convenience of
exposition, let us start with the definitions that will be used in
our analysis.

A. Definitions

We defineU = {u1, . . . , uk, . . . , uL+M} (1 ≤ k ≤ L+M)
as the set of SNRs of the received signals atD in
the broadcast phase and the relay phase. Considering (5),
(7) and (8), we haveU =

{
ρ
(l,BP)
il

|l = 1, 2, . . . , L
}

∪
{
ρ(m,RP)|m = 1, 2, . . . ,M

}
, thusuk is defined as

uk =

{
ρ
(k,BP)
ik

, 1 ≤ k ≤ L

ρ(k−L,RP), L < k ≤ L+M
. (10)

We assume the elements of the setU are ordered asu
′

1 ≤
u

′

2 ≤ . . . ≤ u
′

L+M .
Define V = {vl|l = 1, 2, . . . , L}, wherevl represents the

SNR of the combined signals ofxl at D after the whole
transmission. Apparently,

vl = ρ
(M+1)
l . (11)

We also assume the elements of the setV are ordered asv
′

1 ≤
v

′

2 ≤ . . . ≤ v
′

L.
The average transmitted SNR of the network is defined as

the effective signal to noise power ratio, namely

ρ =
LEs

(L+M)N0
, (12)

whereEs is the transmission power at each node.
A system outage event occurs whenD does not correctly

decode all the blocks after the whole transmission. Let us
defineIl as the maximum average mutual information between
xl and the corresponding received signal atD. For a given
end-to-end data rate ofR bit/s/Hz, Sil suffers an outage
if Il = L

L+M
log (1 + vl) < R. Thus the system outage

takes place if the conditionmin {I1, I2, . . . , IL} ≥ R is not
satisfied.

The multiplexing gain is defined as [19]

r = lim
ρ→∞

R (ρ)

log ρ
, (13)

whereR (ρ) is the end-to-end transmission data rate charac-
terized as a function of the average SNRρ.

The diversity gain is defined as [19]

d = − lim
ρ→∞

logPout (R (ρ))

log ρ
, (14)

wherePout (R (ρ)) is the average system outage probability
for the givenρ and data rateR (ρ). This definition is also
written asPout (R (ρ))

.
= ρ−d in the exponential equality

notation as used in [19].

B. DMT performance

Next, we proceed to analyze the DMT performance of our
US-LCRP with the above definitions. Obviously, we need
to evaluate the system outage probability with regard to the
average SNR and the required end-to-end data rate. Relying
on the definition of the system outage event, the system outage
probability is expressed as

Pout (R) = 1− Pr (min {I1, I2, . . . , IL} ≥ R)

= 1− Pr
(
min {v1, v2, . . . , vL} ≥ 2

L+M
L

R − 1
)

= 1− Pr
(
v

′

1 ≥ 2
L+M

L
R − 1

)

= F
v
′

1
(β) , (15)

whereF
v
′

1
(.) is the cumulative distribution function (CDF) of

v
′

1, β , 2
L+M

L
R − 1.

To begin with, let us study the equivalent SNR of the
combined signal received atD for each data block after the
whole transmission is finished. In total there areL+M data
blocks transmitted during the whole transmission. Since one
data block is discarded while making data combining in each
relay TS,L data blocks are retained for the final decision. First,
we prove that the retained data blocks have better quality than
the discarded data blocks. This conclusion is summarized in
the following Lemma 1.

Lemma 1. The SNRs of the retained data blocks are higher
than that of the discarded data blocks, i.e.,

v
′

l = u
′

l+M , (16)

wherev
′

l is the lth smallest SNR of the retained data blocks
andu

′

l+M is the l+M th smallest SNR of all the data blocks
as defined in Section III-A previously.

Proof: Please see Appendix A.
With Lemma 1, (15) can be rewritten as

Pout (R) = F
u
′

M+1
(β) , (17)

whereF
u
′

M+1
(.) is the CDF ofu

′

M+1, and can be formulated
as

Fu
′

M+1
(β)

=Pr (at leastM + 1 entries ofU are less than/equal toβ)

=

L+M∑

j=M+1

Pr (j entries ofU are less than/equal toβ) . (18)

To calculate (18), we try to obtain the expression ofFuk
(β).

For 1 ≤ k ≤ L, Fuk
(β) represents the CDF of the SNR of

the strongest direct link in a single broadcast TS. Thus it is
expressed as

Fuk
(β) =

N∏

n=1

Pr
(
ρ(k,BP)
n < β

)
(19)

=

N∏

n=1

(1− exp (−λSnDβ)) , (20)
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whereλSnD = N0

EsγSnD
. For L < k ≤ L+M , Fuk

(β) is the
CDF of the SNR of the relayed signal in the(k − L)th relay
TS. However, in general networks where the distributions of
the SNRs of all the links are characterized by different parame-
ters, and hence the distribution ofuk is varying corresponding
to the specific values ofθk−L. As a result,Fuk

(β) is written
as

Fuk
(β) =

L∑

l=1

Pr (θk−L = l) Fuk
(β|θk−L = l) , (21)

where

Fuk
(β|θk−L = l)

=1− exp
(
−λSiθk−L

Rk−L
x− λRk−LDx

)

× 2
√
λSiθk−L

Rk−L
λRk−LDx (x+ 1)

×K1

(
2
√
λSiθk−L

Rk−L
λRk−LDx (x+ 1)

)
, (22)

with λSnRm
, λRmD being N0

EsγSnRm
, N0

EsγRmD
, respectively,

andK1 (.) being the first order modified Bessel function of
the second kind.

With the expression of the system outage probability, we
can derive the DMT of the proposed US-LCRP.

Theorem 1. In anN -userM -relay network with multiplexing
gain r, the proposed US-LCRP protocol withL broadcast
phase TSs achieves the DMT of

d = (M +N)

(
1−

L+M

L
r

)+

, (23)

where(x)+ representsmax {x, 0}.

Proof: Please see Appendix B.

C. Discussions

It is not difficult to prove that the existing protocols
combining CD and MUD [11], [12] achieve the DMT of
(M +N) (1− 2r)

+. Clearly, the proposed US-LCRP pro-
vides a diversity order ofM + N , similar to the existing
protocols. However, in the network whereL > M , the US-
LCRP achieves better DMT performance. In other words, the
US-LCRP achieves higher spectral efficiency than the existing
protocols while maintaining the same level of reliability,or
it provides higher diversity gain than the existing protocols
with the same data rate. Moreover, as is well known, the
ideal DMT of an (M +N) -input one-output network (an
instance of the multiple-input single-output (MISO) network)
is (M +N) (1− r)

+. However, it is practically infeasible to
achieve such an ideal DMT in a cooperative network due to
the potential excessively high complexity. It is demonstrated
that asL increases, the DMT of our US-LCRP approaches
the ideal case.2 As an example, we illustrate the DMT curves

2(23) implies that as the value ofL goes to infinity, the achievable DMT
performance of the US-LCRP approaches that of the ideal MISOscenario.
In practical communication systems, the required buffer size in each relay
linearly grows upon increasing the value ofL, because each relay has to
store all theL data blocks. Therefore, the value ofL should be set as large
as possible subject to the limitation of the buffer size of the relays.
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Fig. 3. An example of DMT performance comparison across the proposed
US-LCRP, the existing protocols of [11], [12] and the ideal MISO scenario.
There are five sources and three relays in the network (i.e.,N = 5, M = 3)
considered.

for various communication strategies in a five-source three-
relay network in Fig. 3. When the multiplexing gain is0.4, the
existing protocols combining CD and MUD [11], [12] achieve
a diversity gain of1.6, while the US-LCRP achieves a diversity
gain of 2.88, for L = 5. It demonstrates that the US-LCRP
achieves higher diversity gain than the existing protocolswhile
providing the same data rate. Moreover, the existing protocols
of [11], [12] achieve a diversity gain of3.2 with multiplexing
gainr = 0.3, while our US-LCRP achieves a diversity gain of
3.84 and4.32 with multiplexing gainr = 0.4 for L = 10 and
L = 20, respectively. This result implies that the US-LCRP is
capable of offering higher data rate (i.e., larger multiplexing
gain) with higher reliability (i.e. larger diversity gain)if L is
set to be sufficiently large.

IV. SIMULATION RESULTS

In this section, simulation results are presented to demon-
strate the performance of the proposed US-LCRP in terms of
the average system outage probability with different values
of multiplexing gain. These results corroborate the validity
of the proposed protocol and consolidate our DMT analysis
presented in Section III. HereEb/N0 represents the ratio of
the average transmit power to the noise power of the network.
The simulations are performed over Rayleigh block fading
channels with AWGNs. The network is generated in a two-
dimensional plane whereD is located at the coordinate of
(1, 1), and the other nodes are uniformly distributed in the first
quadrant of the1× 1 square as [12]. The path loss exponent
is set to2.

Fig. 4 shows the impact ofM andN on the system outage
performance of the proposed US-LCRP under fixed data rate
R = 1bit/s/Hz. Observe that the US-LCRP achieves the
diversity order of N + M , equal to that of the existing
low complexity scheme of [12]. Moreover, in terms of the
system outage probability, the proposed protocol attains a
considerable improvement in comparison with its counterpart
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Fig. 4. System outage probability performance comparisonsbetween the
scheme of [12] and the proposed US-LCRP under the fixed data rate of R =
1bit/s/Hz.

in [12] in terms of the system outage probability. For example,
this improvement is about1 ∼ 2dB when system outage
probability is equal to10−4 in Fig. 4.

Fig. 5 shows the impact of data rateR on the system outage
performance of the existing low complexity scheme [12] and
the proposed US-LCRP. We setL = 6 in this simulation.
The system outage probabilities of the proposed US-LCRP
and of its counterpart [12] are illustrated in a five-user three-
relay network under fixed data rateR = 1bit/s/Hz and
R = 1.5bit/s/Hz, respectively. The upper boundP

′

out and
the lower boundP

′′

out are also illustrated, and the achievable
simulation curves ofPout reside between them. Thus our
analysis ofPout is consolidated. It is shown that when the
system outage probability is equal to10−4, the improvement
of the proposed US-LCRP over the existing low complexity
scheme of [12] is about1.5dB and2dB for R = 1bit/s/Hz
and R = 1.5bit/s/Hz , respectively. We can also observe
that the performance advantage of the proposed scheme over
the scheme of [12] becomes more significant upon increasing
R. This is because the proposed scheme allocates more time
resource to direct transmission (i.e., for the transmission of
“fresh” data), and hence the required transmission rate of each
link is reduced. More specifically, in order to achieve an end-
to-end data rate ofR bit/s/Hz, the actual data rates of each
link in the proposed scheme and in the scheme of [12] are
L+M

L
R bit/s/Hz and2R bit/s/Hz, respectively. Therefore,

the gap of the required data rate in each link between the
proposed scheme and the scheme of [12] grows asR increases.
As a beneficial result, it is demonstrated that the US-LCRP is
more powerful in supporting high rate transmission than the
scheme of [12].

Fig. 6 illustrates the system outage probabilities of the
proposed US-LCRP and the scheme of [12] under a range
of different values of multiplexing gain. The desired data rate
is determined by the multiplexing gain and the average SNR
of the network asR = r log

(
1 + Eb

N0

)
. It is observed that

the US-LCRP achieves higher diversity gain than the scheme
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Fig. 5. System outage probability performance comparison between the
scheme of [12] and the proposed US-LCRP under the fixed data rate of R =
1bit/s/Hz andR = 1.5bit/s/Hz, respectively (N = 5, M = 3).
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Fig. 6. System outage probability performance comparison between the
scheme of [12] and the proposed US-LCRP employed in the asymmetric
network subject to different multiplexing gains (N = 5, M = 3).

of [12]. For example, if we setL = 6, the diversity gains
of the US-LCRP are3.2 and 2 when r = 0.4 and r = 0.5,
respectively, whereas those of the existing scheme in [12] are
1.6 and 0, respectively. Furthermore, Fig. 6 shows that the
DMT of the US-LCRP becomes more attractive asL increases.
This result confirms that the proposed scheme has the potential
to achieve better DMT performance than the scheme of [12]. It
also implies that the proposed US-LCRP is the asymptotically
optimal in the sense that the DMT of the US-LCRP becomes
arbitrarily close to that of the ideal MISO scenario whenL is
sufficiently large.

Simulation results for the network configured with other
parameters are also presented. For example, in some systems,
the relays are almost in the middle between the source and
the destination to assist in the user’s transmission. Hencewe
assume that the sources are clustered around(0, 0) and the
relays are clustered around(0.5, 0.5), whereas the destination
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Fig. 7. System outage probability performance comparison between the
scheme of [12] and the proposed US-LCRP subject to differentmultiplexing
gains (N = 5, M = 3, L = 6).

remains staying at(1, 1). Additionally, larger path loss expo-
nent, for instance3.5, is considered. The comparison between
the proposed US-LCRP and the scheme of [12] is depicted
in Fig. 7. From Fig. 7 we can see that with fixed data rate,
i.e. r=0, the scheme in [12] and US-LCRP both achieve the
same diversity gain of 8. However, as the multiplexing gain
increases, the diversity gain of the scheme in [12] decays much
faster than the proposed US-LCRP. Based on the theoretical
analysis, the US-LCRP achieves the diversity gain of4.4 and
2 whenr = 0.3 andr = 0.5, respectively, whereas the scheme
in [12] achieves diversity gain of3.2 and0, respectively. These
results are validated in Fig. 7.

V. CONCLUSIONS

This paper addresses the problem of joint exploitation of
both CD and MUD under the TP-TRA framework, in which
the whole transmission is composed of the broadcast phase
and the relay phase. Based on the TP-TRA framework, a user-
selection based low complexity relay protocol (US-LCRP) is
proposed to achieve both CD and MUD. The DMT perfor-
mance of the proposed US-LCRP is analyzed, and simulations
are carried out to corroborate the analysis. Both the theoretical
analysis and simulation results demonstrate that the proposed
US-LCRP combines CD and MUD successfully and achieves a
total diversity order ofN+M in anN -userM -relay network.
Furthermore, it provides better DMT performance and has the
potential to approach the optimal DMT when certain mild
conditions are satisfied. Finally, the proposed US-LCRP needs
the CSI of only the direct links in each broadcast TS during the
whole transmission, which results in a simpler implementation.

APPENDIX A
PROOF OFLEMMA 1

Obviously, all the elements inU, which is defined in
Section III-A, are mutually independent random variables
(RVs). According to (9) and the definitions in Section III-
A, we readily haveρ(m)

l ∈ U for all l and m (1 ≤ l ≤ L

and 1 ≤ m ≤ M ), andV ⊆ U. From (2) and (9), we have
vl = ρ

(M+1)
l ≥ ρ

(m+1)
l = ρ

(m)
l > ρ

(m)
θm

if l 6= θm. It means
that wheneverxl is not selected in one relay TS, we can find
an elementρ(m)

θm
∈ U that is less thanvl. Similarly, we obtain

vl = ρ
(M+1)
l ≥ ρ

(m+1)
l > min

{
ρ
(m)
θm

, ρ(m,RP)
}

if l = θm. It
means that oncexl is selected in the relay phase, an element
min

{
ρ
(m)
θm

, ρ(m,RP)
}

∈ U is found3 to be less thanvl. In
summary, after each relay TS, we can always find an element
in U which is less thanvl. Therefore, after the whole relay
phase, there are at leastM elements inU which are less than
vl, i.e., v

′

l ≥ u
′

l+M . On the other hand, note thatV ⊆ U,
then we havev

′

l ≤ u
′

l+M . Therefore, we obtain the result of
v

′

l = u
′

l+M , which indicates thatv
′

l is the(M + l)th smallest
SNR of all the received signals during the whole transmission.

APPENDIX B
PROOF OFTHEOREM 1

It is very difficult to obtain the exact numerical results
of (21) for general networks due to the complicated math-
ematical structure. However, in a special network where
Fuk

(β|θk−L = l) remains unchanged with differentl (i.e.,
λSil

Rm
can be expressed by a constantλSRm

for all the
1 ≤ l ≤ L) , the expression ofFuk

(β) can be derived

straightforwardly because
L∑
l=1

Pr (θk−L = l) = 1. Therefore,

F
u
′

M+1
(β) can be obtained as

F
u
′

M+1
(β)

=
L+M∑

i=M+1

∑

all possiblej1,
...,jL+M

Pr
(
uj1 , . . . , uji ≤ β < uji+1 , . . . , ujL+M

)

=

L+M∑

i=M+1

∑

1≤j1<...<ji≤L+M

1≤ji+1<...<jL+M≤L+M

j1 6=...6=jL+M

i∏

t=1

Fujt
(β)

×

L+M∏

t=i+1

(
1− Fujt

(β)
)
. (24)

We refer to this special network as the symmetric network.
In this appendix, we show that the DMTs of the two special
symmetric networks serve as the upper bound and the lower
bound of that of the original network, respectively, and the
upper bound coincides with the lower bound. Therefore, we
obtain the DMT of the US-LCRP in general cases.

Note that deriving DMT entails the analysis of the asymp-
totic performance. Specifically, we can construct some sym-
metric networks to facilitate the DMT analysis of the original
asymmetric network. For any given general network, we
establish two special(N +M + 1)-node symmetric networks.
We assume that the SNRs of theSn → D, Sn → Rm

andRm → D links in the first symmetric network obey the
exponential distributions with parametersλ

′

SnD
, λ

′

SnRm
and

λ
′

RmD, respectively, and the SNRs of theSn → D, Sn → Rm

3We havemin
{

ρ
(m)
θm

, ρ(m,RP)
}

∈ U because bothρ(m)
θm

and ρ(m,RP)

are the elements ofU.
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andRm → D links in the second symmetric network obey the
exponential distributions with parametersλ

′′

RnD
, λ

′′

SnRm
and

λ
′′

RmD, respectively. In the first symmetric network, we set
λ

′

SnD
= λSnD, λ

′

SnRm
= max {λS1Rm

, λS2Rm
, . . . , λSnRm

}

andλ
′

RmD = λRmD. Obviously, since the quality of each link
in the first symmetric network is not better than that of the
corresponding link in the original network, it suffers a higher
system outage probabilityP

′

out (R). Thus the upper bound of
the original network’s outage probability is obtained by calcu-
lating the system outage probability of this special symmetric
network using (24). Similarly, we can generate the second
symmetric network where the source-to-relay links are guar-
anteed to have higher/equal qualities than/to the corresponding
links in the original network, namely we haveλ

′′

SnD
= λSnD,

λ
′′

SnRm
= min {λS1Rm

, λS2Rm
, . . . , λSnRm

} and λ
′′

RmD =
λRmD. As a result, we can obtain the lower bound of the
original network’s outage probability by calculating the system
outage probabilityP

′′

out (R) of the second symmetric network.
The mathematical derivation is represented below.

From [19], the diversity gaind is computed as

d = − lim
ρ→∞

logPout (R)

log ρ
= − lim

ρ→∞

logPout (r log ρ)

log ρ
.

SinceP
′

out (r log ρ) is the upper bound ofPout (r log ρ), we
have

d ≥ − lim
ρ→∞

logP
′

out (r log ρ)

log ρ
. (25)

According to (24),P
′

out (r log ρ) is computed as

P
′

out (r log ρ) =

N+M∑

l=M+1

∑

1≤j1<...<jl≤N+M

1≤jl+1<...<jN+M≤N+M

j1 6=j2 6=...6=jN+M

l∏

i=1

F
u
(UB)
ji

(β)

×

N+M∏

i=l+1

(
1− F

u
(UB)
ji

(β)

)
, (26)

where we have

F
u
(UB)
k

(β)

=





N∏
n=1

(1− exp (−λSnDβ)) , 1 ≤ k ≤ L

1− exp
(
−λ

′

SRk−L
x− λRk−LDβ

)

×K1

(
2
√
λ

′

SRk−L
λRk−ND (β2 + β)

)

×2
√
λ

′

SRk−L
λRk−ND (β2 + β),

else

.

(27)

Note thatF(UB)

u
′

M+1

(r log ρ) ≤ 1, then we arrive at

− lim
ρ→∞

logP
′

out (r log ρ)

log ρ
≥ 0. (28)

Substituting (12) and (27) into (26), we have

− lim
ρ→∞

logP
′

out (r log ρ)

log ρ

=− lim
ρ→∞

log

(
ρ−(M+N)

(
Lβ

L+M

)M+N
)

log ρ

=− lim
ρ→∞

log

(
ρ−(M+N)

(
ρ

L+M
L

r
)M+N

)

log ρ

=− lim
ρ→∞

log
(
ρ−(M+N)(1−L+M

L
r)
)

log ρ

=(M +N)

(
1−

L+M

L
r

)
, (29)

if r < L
L+M

. According to (25) and (29), we obtain

d ≥ − lim
ρ→∞

logP
′

out (r log ρ)

log ρ

= (M +N)

(
1−

L+M

L
r

)+

. (30)

Similarly, we can get

d ≤ − lim
ρ→∞

logP
′′

out (r log (ρ))

log ρ

= (M +N)

(
1−

L+M

L
r

)+

. (31)

As a result, the DMT of the proposed US-LCRP isd =

(M +N)
(
1− L+M

L
r
)+

.
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