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Abstract

In this paper, we propose an iterative interference alignment (IA) algorithm for MIMO cellular

networks with partial connectivity, which is induced by heterogeneous path losses and spatial

correlation. Such systems impose several key technical challenges in the IA algorithm design,

namely theoverlapping between the direct and interfering linksdue to the MIMO cellular topology

as well as how to exploit thepartial connectivity. We shall address these challenges and propose

a three stage IA algorithm. As illustration, we analyze the achievable degree of freedom (DoF) of

the proposed algorithm for a symmetric partially connectedMIMO cellular network. We show that

there is significant DoF gain compared with conventional IA algorithms due to partial connectivity.

The derived DoF bound is also backward compatible with that achieved on fully connected K-pair

MIMO interference channels.

I. INTRODUCTION

Recently, there are intense research interests in the area of interference channels and

the associated interference mitigation techniques. In particular, IA approach can achieve

the optimal degree of freedom (DoF) in K-pair interference channels [1] as well as 2-pair

MIMO-X channels [2]. In [3], the IA approach is extended to cellular OFDMA systems

by exploiting some problem-specific structure such as the channel states being full-rank

diagonal matrices. In [4], [5], [6], [7], the authors extendthe IA approach to MIMO cellular

networks. However, these works have focused on two-cell configuration with one data stream

for each mobile (MS) [4], [5] or with no more than two MSs in each cell [6], [7], and their

extension to general MIMO cellular networks (with arbitrarily number of cells, MSs and data

streams) is highly non-trivial. Furthermore, in all these works, a fully connected interference
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topology is assumed. In practice, we might have heterogeneous path losses between base

stations (BSs) and MSs as well as spatial correlation in the MIMO channels. These physical

effects induce apartially connected interference topology. Intuitively, partial connectivity

in interference topology may contribute to limiting the aggregate interference and this may

translate into throughput gains in interference-limited systems. Yet, in order to exploit this

potential advantage, it is very important to incorporate the partial connectivity topology in the

IA algorithm design. In this paper, we are interested to study the potential benefit of partially

connectivity in MIMO cellular networks with general configurations and quasi-static fading.

There are some key technical challenges that have to be addressed.

• Challenges inherent to MIMO cellular networks: The existing iterative IA algorithm

designed for interference channels [8] exploit the statistical independency of the direct

links and the cross links. However, for MIMO cellular networks, there is overlapping

between the direct links and the cross links as illustrated in Fig. 1. As a result, brute

force application of the conventional IA schemes in MIMO cellular systems may not

have desirable performance.

• Challenges to exploit Partial Connectivity: In practice, MIMO cellular systems are

usually partially connected due to path losses and spatial correlation, as illustrated in

Figure 1B. Designing an IA algorithm which can exploit the benefit of partial connectiv-

ity in the general case is highly non-trivial. While part of this issue has been addressed

in our prior work [9], the algorithm proposed in [9] cannot bedirectly extended to the

cellular case due to the specific challenges induced by the cellular typology.

• Challenges due to Quasi-Static Fading:For quasi-static interference networks, the IA

design may be infeasible [10]. However, the IA feasibility checking algorithm proposed

in [10] involves huge complexity ofO(2N
2
), whereN is the total number of nodes

in the network. Such a complexity is intolerable in practice. Hence, a low complexity

algorithm for checking the IA feasibility conditions on a real-time basis is needed.

In this paper, we will tackle the above challenges by proposing a novel IA algorithm

that exploits thepartial connectivity topologyin MIMO cellular networks. We adopt an

optimization-based approach and decompose the problem into three sub-problems which

allows us to tackle the challenges due to MIMO cellular topology and the partial connectivity

separately. Moreover, we propose a low complexity IA feasibility checking algorithm that

has worst case complexity ofO(N3) only. Based on the proposed scheme, we derive an
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achievable bound of the DoF in a symmetric partially connected MIMO cellular network. We

show that using the proposed algorithm, the partial connectivity can be exploited to increase

the total DoF in the MIMO cellular networks. Finally, the proposed scheme is compared with

various conventional baseline algorithms via simulationsand is shown to achieve significant

throughput gain.

The following notations are used in this paper:a, a, A, andA represent scaler, vector,

matrix, set/space, respectively, in particular,R, C represent the set of real number and

complex number, respectively. The operators(·)T , (·)H, rank(·), trace(·), | · |, and dim(·)
denote transpose, hermitian, rank, trace,cardinality (of a set) and dimension (of a space),

respectively. span({a}) denotes the linear space spanned by the vectors in{a}. span({A})
represents the space spanned by the column vectors ofA. G(S,N) denotes the Grassmannian

[11], which represents the space of all theS dimensional subspaces of theN dimensional

space.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. MIMO Cellular Networks

We consider a MIMO cellular system withG BSs, each of which servesK MSs, as

illustrated in Fig. 1B. DenoteN t
g, N

r
gk as the number of antennas at BS-g and thek-th MS

of BS-g, respectively. Denotedgk as the number of data streams transmitted to thek-th MS

from BS-g. The received signal at thek-th MS of BS-g is given by:

ygk = UH
gk

(

G
∑

n=1

Hgk,n

K
∑

i=1

Vnixni + z

)

, ∀k ∈ {1, ..., K} (1)

whereHgk,n ∈ CNr
gk

×Nt
n is the channel state information (CSI) from BS-n to the k-th MS

of BS-g, xni ∈ Cdni×1, Vni ∈ CNt
n×dni and Uni ∈ CNr

ni×dni are the information symbols,

the precoding matrix and the decorrelator matrix, respectively, for thei-th MS of the BS-g.

z ∈ CNr
gk

×1 is the white Gaussian noise with unity variance. The CSI matrices {Hgk,n}
are assume to be quasi-static and mutually independent random matrices. Furthermore, we

normalize the precoding matrix and the transmit symbols as trace
(

VH
niVni

)

= dni and

E

[

∑K

i=1 trace(xH
nixni)

]

= Pn so that the total transmit power from BS-n is Pn.

B. Partial Connectivity in MIMO Cellular Networks

We first describe the statistical model of the CSI matrices{Hgk,n}. This model was first

proposed in [12] and widely adopted in literature.
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Assumption 2.1 (Channel Fading with Dual-sides Correlation): We consider a channel model

that incorporates both transmit and receive spatial correlation and channel gain, thus:

Hgk,n = Ggk,nA
H
gk,nH

w
gk,nBgk,n (2)

whereHw
gk,n ∈ CNr

gk
×Nt

n contains i.i.d.CN (0, 1) entries,Ggk,n ∈ R+∪{0} is the square root of

channel gain,Agk,n ∈ CNr
gk

×Nr
gk , Bgk,n ∈ CNr

n×Nr
n represent the receive and transmit spatial

correlation, respectively. HereAH
gk,nAgk,n, BH

gk,nBgk,n are positive semi-definite matrices,

||Agk,n||F = ||Bgk,n||F = 1.

Based on the statistical model of the CSI matrices, we formally define the notion ofpartial

connectivitybelow.

Definition 2.1 (Partial Connectivity):We define the partial connectivity between BS-n and

the k-th MS of BS-g to be the null space of the spatial correlation matricesAgk,n, Bgk,n

time channel gain factorGgk,n:

• Transmit partial connectivity:N t
gk,n , N (Ggk,nBgk,n).

• Receive partial connectivity:N r
gk,n , N (Ggk,nAgk,n).

Remark 2.1 (Physical Meaning of Partial Connectivity):The partial connectivity actually

describes the effective subspaces of the channel matrices between BSs and MSs in the

network. For instance,{N t
gk,n,N r

gk,n} represent the subspaces that cannot be perceived by

the BSs and the MSs, respectively. Hence, the partial connectivity topology of the MIMO

cellular network is parameterized by the null spaces{N t
gk,n,N r

gk,n}. Also note that both the

inter-cell links (i.e.g 6= n) and the intra-cell links (i.e.g = n) may be partially connected.

We consider a few examples below (as shown in Fig. 1B) to illustrate how the partial

connectivity model in Definition 2.1 corresponds to variousphysical situations. Note that

CSI matricesHgk,n ∈ C2×2 are modeled by (2).

• Fully connected MIMO cellular network: If Ggk,n 6= 0 andAgk,n, Bgk,n are full rank,

we haveN t
gk,n = N r

gk,n = {0}, ∀g, k and this corresponds to a fully connected network.

• MIMO cellular network with spatial correlation: As an illustration,H21,1 has spa-

tial correlation such thatA21,1 =





1 0

0 0



, B21,1 =





0 0

0 1



, we haveN r
21,1 =

span([0, 1]T ), N t
21,1 = span([1, 0]T ).

• MIMO cellular network with heterogeneous path losses:Suppose the path loss from

BS-1 to the second MS of BS-2 is 60 dB and the transmit SNR is 40 dB. Since the

interference power from BS-1 is negligible compared with the gaussian noise, we can
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effectively assumeG22,1 = 0, which givesN t
22,1 = N r

22,1 = C2, as illustrated in Fig. 1B.

C. Stream Assignment and Transceiver Design under Interference Alignment Constraints

We assume all the BSs in the MIMO cellular network share global CSI knowledge1

{Hgk,n}. We adopt the IA approach to maximize the network total DoF, which is defined

by D = limSNR→∞
C

log(SNR) , where C is the network sum throughput and SNR is the

signal to noise ratio. Note thatC = D log(SNR)+O(log(SNR)), DoF gives a first order

estimation on network throughput. Moreover, it offers somefirst order simplification to the

complex throughput optimization on MIMO interference network. Specifically, we would

like to jointly optimize the data stream assignment{dnj}, precoders{Vnj} and decorrelators

{Unj}, n ∈ {1, ..., G}, j ∈ {1, ..., K} policies to maximize the total number of data streams
∑G

n=1

∑K

k=1 dnj under the IA constraints2, i.e.:

Problem 2.1 (IA for MIMO Cellular Networks):

max
{dnj},{Vnj},{Ugk}

G
∑

n=1

K
∑

j=1

dnj (3)

s.t.: rank(UH
gkHgk,gVgk) = dgk, (4)

UH
gkHgk,nVnj = 0, (5)

trace
(

VH
njVnj

)

= dnj, (6)

dnj ∈ {0, 1, ..., dmax
nj }, ∀g, n ∈ {1, ..., G}, k, j ∈ {1, ..., K}, (n, j) 6= (g, k)

wheredmax
nj is the maximum number of data streams for the concerned MS. Constraint (4)

ensures that all the direct links have sufficient rank to receive the desired signals while

constraint (5) ensures that all the undesired signals are aligned.

III. IA FOR FULLY CONNECTED MIMO CELLULAR NETWORKS

In this section, we shall first solve Problem 2.1 for fully connected MIMO cellular net-

works, i.e.dim(N t
gk,n) = dim(N r

gk,n) = 0.

1Global CSI is easy to obtain when the network size is small. When the networks size is large, the partial connectivity

can be exploited to achieve scalable CSI feedback schemes. For instance, by utilizing heterogeneous path loss, in [13],the

authors propose a scalable CSI feedback scheme for MIMO cellular networks.

2Under the IA constraints (4), (5), the number of data streamsequals to the DoF of the network.
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A. The Unique Challenge for MIMO Cellular Networks

In the literature, a common approach towards IA for interference channel is based on the

interference leakage minimization iteration [8]. While this approach is designed for standard

interference channels, one can extend the framework to MIMOcellular network as below:

Algorithm 1 (Extension of Existing Iterative IA Algorithm [8]): 3 Alternatively update pre-

codersVnj and decorrelatorsUgk by minimizing the total interference leakage expressions

in (7) and (8) until the algorithm converges.

min
Vnj∈C

Nt
n×dnj

VH
nj

Vnj=I

G
∑

g=1

K
∑

k=1
(g,k) 6=(n,j)

trace
(

(UH
gkHgk,nVnj)

H(UH
gkHgk,nVnj)

)

(7)

min
Ugk∈C

Nr
gk

×dgk

UH
gk

Ugk=I

G
∑

n=1

K
∑

j=1
(n,j) 6=(g,k)

trace
(

(UH
gkHgk,nVnj)

H(UH
gkHgk,nVnj)

)

(8)

∀n, g ∈ {1, ..., G}, j, k ∈ {1, ..., K}.

Fig. 5 illustrates the performance of the naive algorithm ina 3-BS fully connected MIMO

cellular network withK = 2, N t
g = 5, N r

gk = 2, dgk = 1, ∀g ∈ {1, 3}, k ∈ {1, 2}. It is shown

that the naive algorithm could achieve a total DoF of 3, whichis only half of the achievable

DoF lower bound given in [10], which demonstrates that naiveextension of standard iterative

IA algorithm can perform poorly in MIMO cellular networks. This problem is due to the

direct link - cross link overlapping issue defined below:

Definition 3.1 (Direct Link - Cross Link Overlapping):In an interference network, denote

the set of the channels that carry the desired signals and undesired signals asHD andHC ,

respectively. IfHD ∩HC 6= ∅, then the network has direct link - cross link overlapping.

As illustrated in Fig. 1A, in conventional MIMO interference network,HD = {Hmm}
and HC = {Hmn : m 6= n}, wherem, n are the indexes for transmitters and receivers,

respectively. Obviously, in this case,HD∩HC = ∅ and there is no overlapping issue. However,

as illustrated in Fig. 1B, in MIMO cellular network, when thenumber of MSs per cell

K > 1, the intra-cell links also carries over undesired signals and henceHD = {Hgk,g} and

HC = {Hgk,n}. In this scenario, we have thatHD ∩HC = HD 6= ∅. As the channel states in

3The algorithm proposed in [8] is important as it offers a systematic way to obtain IA transceiver design for MIMO

interference networks withgeneralconfiguration. Most other existing IA algorithms applies toMIMO interference networks

with simple specific configuration only. Please refer to [9, Sec. I] for details.

August 21, 2018 DRAFT
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HD appear in (7) and (8), when we update the precoders and decorrelators via (7) and (8),

we may also reduce the dimension of the signal space for the desired signals as well.

B. Problem Decomposition

We decompose the original problem, i.e. Problem 2.1 into thefollowing three subproblems:

Problem 3.1 (Stream Assignment):

max
{dnj}

G
∑

n=1

K
∑

j=1

dnj (9)

S.t.
∑

(g,k)∈SU,(n,j)∈SV
g 6=n

dgkdnj ≤
∑

(n,j)∈SV

dnj(N
t
n −

K
∑

k=1

dnk) +
∑

(g,k)∈SU

dgk(N
r
gk − dgk) (10)

∀SV , SU ⊆ S, whereS = {(g, k) : g ∈ {1, ..., G}, k ∈ {1, ..., K}}

Problem 3.2 (Inter-cell Interference Suppression):

min
VF

nj
,Ugk

G
∑

g=1
6=n

K
∑

k=1

trace
(

(UH
gkHgk,nV

I
nj)

H(UH
gkHgk,nV

I
nj)
)

(11)

S.t. VI
nj = VC

nj + SnV
F
nj, V

F
nj ∈ C(Nt

n−
∑K

k=1 d
∗
nk

)×d∗nj (12)

UH
gkUgk = I,Ugk ∈ C

Nr
gk

×dk (13)

∀g ∈ {1, ..., G}, k ∈ {1, ..., K}, where:{d∗nj} are the solutions of Problem 3.1, matrices

VC
nj ∈ CNt

n×d∗nj , Sn ∈ CNt
n×(Nt

n−
∑K

k=1 d
∗
nk

), are isometry matrices whose row vectors combined

together form a basis forCNt
n×1, i.e.

[

VC
n1,V

C
n2, ...V

C
nK ,Sn

]H [

VC
n1,V

C
n2, ...V

C
nK ,Sn

]

= I. (14)

Problem 3.3 (Intra-cell Interference Suppression):

min
Vnj

K
∑

k=1, 6=j

trace
(

((U∗
nk)

HHnk,nVnj)
H((U∗

nk)
HHnk,nVnj)

)

(15)

S.t. (Vnj)
HVnj = I (16)

rank
(

(U∗
nj)

HHnj,jVnj

)

= d∗nj (17)

span([Vn1,Vn2, ...,VnK ]) ⊆ span
([

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

])

(18)

where{VI∗
nj} and {U∗

nj}, n ∈ {1, ..., G}, j ∈ {1, ..., K}, are the solutions of Problem 3.2,

span(X) denotes the linear space spanned by the row vectors ofX.
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Theorem 3.1 (Equivalence between the Original Problem and the Subproblems):For fully

connected MIMO cellular networks with i.i.d. channel matrices {Hgk,n}, the optimizing

variables of Problem 2.1 is given by ({d∗gk}, {U∗
gk}, {V∗

gk}) with probability 1, where{d∗gk},

{U∗
gk}, {V∗

gk} are the solutions of Subproblem 3.1, 3.2, 3.3 respectively.Furthermore, the

optimal value of Problem 2.1 isD∗ =
∑G

n=1

∑K

j=1 d
∗
nj.

Proof: Please refer to Appendix-A for the proof.

Remark 3.1 (Roles of the Three Subproblems):

• Problem 3.1determines the stream assignment{dnj} to maximize the sum of the data

stream numbers (i.e. DoF) of the network, conditioned on thenetwork being IA feasible.

• Problem 3.2updates the intermediate precoders{VI
nj} and decorrelators{Ugk} to

suppress the inter-cell interferences.

• Problem 3.3further adjusts the precoders{Vnj} to suppress the intra-cell interferences.

Note that after separating the process of inter-cell and intra-cell interference mitigation in

Problem 3.2 and Problem 3.3, only inter-cell channel states{Hgk,n}, g 6= n are involved

in Problem 3.2. This property is very important to overcome the cross link - direct link

overlapping issue.

Remark 3.2 (The Structure of the Intermediate Precoder):Unlike the existing iterative IA

algorithm, we have introduced an auxiliary variable, namely the intermediate precoder vari-

ables{VI
nj}. From (12),VI

nj consists of thecore spaceVC
nj, the free spaceSn and the free

elementsVF
nj as illustrated in Fig. 2. This precoder structure in the auxiliary variable enables

us to separate inter-cell and intra-cell interference suppression.

Remark 3.3 (The Physical Meaning of Equation(18)): Constraint (18) is introduced to make

sure that the desirableinter-cell interference alignment property obtained in Problem 3.2

is still maintained during the precoder updates{Vnj} in Problem 3.3. This is because of

the following. Suppose{U∗
gk} and {VI∗

nj} constitute the solution of Problem 3.2. We have

(U∗
gk)

HHgk,n

[

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

]

= 0, ∀g 6= n ∈ {1, ..., G}. From (18), there must exist a

matrix Rn ∈ C
∑K

j=1 dnj×
∑K

j=1 dnj such that[Vn1,Vn2, ...,VnK] =
[

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

]

Rn,

which leads to the following equation

(U∗
gk)

HHgk,n [Vn1,Vn2, ...,VnK] = (U∗
gk)

HHgk,n

[

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

]

Rn = 0 ·Rn = 0.(19)

Hence, equation (19) shows that the inter-cell interference alignment property is preserved

for the updated precoders{Vnj} in Problem 3.3.
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C. Solution to Problem 3.1 (Stream Assignment Problem)

Problem 3.1 is a combinatorial problem whose optimal solution {d∗gk} often involves

exhaustive search with exponential complexity w.r.t. to the total number of MSsGK. For

low complexity consideration, we propose the following greedy-based solution.

Algorithm 2 (Greedy Stream Assignment):

• Step 1 Initialization: Initialize the stream assignment policy to be the number of streams

requested by each MSs, i.e.dgk = dmax
gk , ∀g ∈ {1, ..., G}, k ∈ {1, ..., K}.

• Step 2 Low complexity IA feasibility checking:

– Denotevtnj , v
r
gk, n, g ∈ {1, ..., G}, j, k ∈ {1, ..., K} as the number of the freedoms,

i.e. free variables in precoderVI
nj and decorrelatorUgk, respectively. Note that the

number of freedoms inVI
nj are given by the number of elements inVF

nj and that

in Ugk are given by the dimension of GrassmannianG(dgk, N r
gk), we have

vtnj = dnj(N
t
g −

K
∑

k=1

dnk), v
r
gk = dgk(N

r
gk − dgk). (20)

– Denotecgk,nj, n, g ∈ {1, ..., G}, j ∈ {1, ..., K}, k ∈ {1, ..., K}, as the number of

constraints required to eliminate the interference fromVnj to Ugk. Set

cgk,nj = dnjdgk, if g 6= n; cgk,nj = 0, otherwise. (21)

– Use the low complexity IA feasibility checking algorithm proposed in Appendix-B

to check if the system is IA feasible. If the network is not IA feasible, go to Step

3. Otherwise, letd∗gk = dgk, g ∈ {1, ..., G}, k ∈ {1, ..., K} and exit the algorithm.

• Step 3 : Updatedg′k′ = dg′k′ − 1 and go back to Step 2, where(g′, k′) is given by

(g′, k′) = argmax
g,k

(

G
∑

n=1

K
∑

j=1

(cgk,nj + cnj,gk − c′gk,nj − c′nj,gk)− (vtgk + vrgk − v′
t

gk − v′
r

gk)

)

= argmax
g,k






2

G
∑

n=1

K
∑

j=1
(n,j) 6=(g,k)

dnj − (N t
g +N r

gk − 4dgk + 2)






(22)

where{v′tgk, v′rgk}, and {c′gk,nj, c′nj,gk} denote the number of freedoms and constraints

given by (20) and (21), respectively, withd′gk = dgk = 1.

Theorem 3.2 (Property of the Low Complexity IA Feasibility Checking): The IA feasibil-

ity constraint in (10) is satisfied if and only if it can satisfy the low complexity IA feasibility

checking in Appendix-B. Moreover, the worst case complexity of the proposed checking
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scheme isO(G3K3), which is substantially lower compared with the complexityO(2G
2K2

)

in conventional IA feasibility checking [10].

Proof: Please refer to [14] for the proof.

D. Solution to Problem 3.2 (Inter-cell Interference Suppression Problem)

The following algorithm solves Problem 3.2 by alternatively updating the intermediate

precoders{VI
nj} and the decorrelators{Ugk} to minimize the inter-cell interference, i.e.:

min
VF

nj

G
∑

g=1
6=n

K
∑

k=1

trace
(

(UH
gkHgk,nV

I
nj)

H(UH
gkHgk,nV

I
nj)
)

, S.t.: equation (12), (23)

min
Ugk

G
∑

g=1
6=n

K
∑

k=1

trace
(

(UH
gkHgk,nV

I
nj)

H(UH
gkHgk,nV

I
nj)
)

, S.t.: equation (13). (24)

Algorithm 3 (Alternative Inter-cell Interference Suppression):

• Step 1 Initialization : Randomly generateVF
nj, ∀n ∈ {1, ..., G}, j ∈ {1, ..., K}.

• Step 2 Minimize interference leakage at the receiver side:At the k-th MS of BS-g

, updateUgk: ugk(d) = νd

[

∑G

n=1, 6=g

∑K

j=1 Pnj(Hgk,nV
I
nj)(Hgk,nV

I
nj)

H
]

, whereugk(d)

is thed-th column ofUgk, νd[A] is the eigenvector corresponding to thed-th smallest

eigenvalue ofA, d ∈ {1, ..., dgk}.

• Step 3 Minimize interference leakage at the transmitter side: At BS-n, update

VF
nj, j ∈ {1, ..., K}: VF

nj = −(SH
n QnjSn)

−1SH
n QnjV

C
nj ,whereQnj =

∑G

g=1, 6=n

∑K

k=1

Pnj(U
H
gkHgk,n)

H(UH
gkHgk,n).

• Repeat Step 2 and 3 untilVF
nj and Ugk converges. SetVI∗

nj = VC
nj + SnV

F
nj and

U∗
gk = Ugk.

Theorem 3.3 (Convergence of Algorithm 3):For fully connected MIMO cellular network

with i.i.d. channel matrices{Hgk,n}, Algorithm 3 converges to a local optimal solution of

Problem 3.2. Note that global optimality is not assured.

Proof: Please refer to Appendix-C for the proof.

Theorem 3.4 (Property of{VI∗
nj} and {U∗

nj}): For fully connected MIMO cellular net-

work with i.i.d. channel matrices{Hgk,n}, the converged solution of Algorithm 3{VI∗
nj},
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U∗
nj, n ∈ {1, ..., G}, j ∈ {1, ..., K}, satisfy

rank





























(U∗
n1)

HHn1,n

(U∗
n2)

HHn2,n

. . . . . . . . . . . . .

(U∗
nK)

HHnK,n















[

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

]















=

K
∑

j=1

dnj, ∀n ∈ {1, .., G} (25)

almost surely.

Proof: Please refer to Appendix-D for the proof.

E. Solution to Problem 3.3 (Intra-cell Interference Suppression Problem)

We solve Problem 3.3 by the following constructive algorithm.

Algorithm 4 (Intra-cell Zero-Forcing):DenoteWq =
[

WH
1 , ...,W

H
q−1,W

H
q+1, ...,W

H
K ,W

H
q

]H

,

whereWq = (U∗
nq)

HHnq,n, q ∈ {1, ..., K}. Each BS does the following for everyq ∈
{1, ..., K} to calculate the precoders:

• Step 1: Perform LQ decomposition forWq

[

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

]

= Ln(q)Qn(q), where

Qn(q) is an
∑K

j=1 dnj ×
∑K

j=1 dnj unitary matrix, andLn(q) is a
∑K

j=1 dnj ×
∑K

j=1 dnj

lower triangular matrix.

• Step 2: SetV′
nq =

[

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

]

Q′
n(q), whereQ′

n(q) is a matrix aggregated by

the lastdnq columns ofQH
n (q).

• Step 3: Perform singular value decomposition forV′
nq = AnqSnqB

H
nq, whereSnq is a

N t
g × dnq matrix, Anq andBnq areN t

g × N t
g and dnq × dnq matrices, respectively. Set

V∗
nq = A′

nq, whereA′
nq is a matrix aggregated by the firstdnq columns ofAnq.

Theorem 3.5 (Optimality of{V∗
nj}): For fully connected MIMO cellular network with

i.i.d. channel matrices{Hgk,n}, the output of Algorithm 4{V∗
nj}, n ∈ {1, ..., G}, j ∈

{1, ..., K}, is the optimal solution for Problem 3.3 almost surely (withoptimal value (intra-

cell interference power)= 0).

Proof: Please refer to Appendix-E for the proof.

IV. IA FOR MIMO CELLULAR NETWORKS WITH PARTIAL CONNECTIVITY

A. Space Restriction on Transceivers

In the prior work [9], we have shown that in contrast to the conventional cases, partial

connectivity can be beneficial to system performance in MIMOinterference networks as

it gives us an extra dimension of freedom, namely theinterference nullingto eliminate
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interference4. In particular, we have found by restricting transceivers to lower dimensional

subspaces in partially connected MIMO interference network, we can eliminate many IA

constraints at a cost of only a few freedoms in transceiver design and hence extend the

IA feasibility region. We exploit the idea of subspace constraint to extend the approach in

Section III to exploit the partial connectivity in MIMO cellular networks. Specifically, we

impose the following structure on transceivers:

Definition 4.1 (Transceiver Structure to Exploit Partial Connectivity):

• Intermediate precoder with dynamic free space:VI
nj = VC

nj + St
njV

F
nj,

• Decorrelator with dynamic linear filter: Unj = Sr
njU

F
nj,

where St
nj ∈ CNt

n×St
nj , VF

nj ∈ CSt
nj×dnj , Sr

nj ∈ CNr
nj×(dnj+Sr

nj), UF
nj ∈ C(dnj+Sr

nj)×dnj ,

St
nj ∈ {0, 1, ...N t

n −
∑K

k=1 dnj}, Sr
nj ∈ {0, 1, ...N r

nj − dnj}.

Remark 4.1 (Space Restriction via New Transceiver Structures): Note that span(VI
nj) ⊆

span(VC
nj) + span(St

nj), and span(Unj) ⊆ span(Sr
nj), space restriction is imposed onVI

nj

andUnj by the new transceiver structure. As a special case, whenSt
nj = N t

n −∑K

k=1 dnj,

Sr
nj = N r

nj − dnj, the transceiver structure is reduced to that proposed in Section III.

B. Problem Decomposition

Similar to Section III, the original Problem 2.1 is decomposed into three subproblems. The

data stream assignment subproblem is modified as below.

Problem 4.1 (Stream Assignment and Subspaces Design):

max
{dnj},{VC

nj},{St
nj},{Sr

nj}

G
∑

n=1

K
∑

j=1

dnj (26)

S.t.
∑

(g,k)∈SU,

(n,j)∈SV ,g 6=n

min
(

dgk, dim
(

(span(Sr
gk) ∩ (N r

gk,n)
⊥))min (dnj,

dim
(

(span(VC
nj) + span(St

nj)) ∩ (N t
gk,n)

⊥)) ≤
∑

(n,j)∈SV

dnjS
t
nj +

∑

(g,k)∈SU

dgkS
r
nj,(27)

∀SV , SU ⊆ S, whereS = {(g, k) : g ∈ {1, ..., G}, k ∈ {1, ..., K}}
[

VC
n1,V

C
n2, ...,V

C
nK,S

t
nj

]H [

VC
n1,V

C
n2, ...,V

C
nK,S

t
nj

]

= I, VC
nj ∈ (N t

nj,n)
⊥, (28)

(Sr
nj)

HSr
nj = I, Sr

nj ∈ (N r
nj,n)

⊥, ∀n ∈ {1, ..., G}, j ∈ {1, ..., K}. (29)

4Please refer to [9, Section III-A] for detailed elaborationon the concept of interference nulling and the difficulties to

integrate it into IA processing. We shall omit the details here due to page limitation.
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The second and third subproblems are similar to Problem 3.2 and 3.3 except replacing

VC
nj, Sn, andUnj with VC∗

nj , St∗
nj, andSr∗

njU
F
nj respectively in Problem 3.2 and 3.3, where

{VC∗
nj }, {St∗

nj}, and{Sr∗
nj} are the solutions of Problem 4.1.

Theorem 4.1: (Connetction of the Original Problem and the Subproblems in Partially Con-

nected Networks)For partially connected MIMO cellular networks, we have with probability

1, the solutions of Subproblem 4.1, 3.2, 3.3, i.e.{d∗gk}, {U∗
gk}, {V∗

gk}, are also valid solution

of Problem 2.1. Hence, the performance of the decomposed problems, i.e.
∑G

g=1

∑K

k=1 d
∗
gk

gives a lower bound of that of the original problem.

Proof: Please refer to Appendix-F.

C. Solution to Problem 4.1 (Stream Assignment and SubspacesDesign Problem)

We extend the greedy-based Algorithm 2 to cater for the partial connectivity in Problem 4.1.

Algorithm 5 (Greedy-Based Solution for Problem 4.1):

• Step 1 Initialization: Initialize the number of streams as:dnj = min(rank(Hnj,n), d
max
nj ),

∀n ∈ {1, ..., G}, j ∈ {1, ..., K}.

• Step 2 Calculate the common null spaces:At each BSn ∈ {1, ..., G}, calculate the

intersection of the null spaces of the inter-cell cross links, i.e.Nn(M) = ∩(g,k)∈MN t
gk,n,

M ⊆ {(g, k) : g 6= n ∈ {1, ..., G}, k ∈ {1, ..., K}}, as follows:

– DenoteMn = {(g, k) : Hnm 6= 0}. Initialize Nn(∅) = CNt
n, Nn({(g, k)}) = N t

gk,n,

and set the cardinality parameterC = 2.

– For everyM ⊆ Mn with |M| = C, if all the subsets ofM with cardinality(C − 1)

are not{0}, calculateNn(M) = Nn(M\{(g′, k′)}) ∩ N ({(g′, k′)}), where(g′, k′)

is an arbitrary element inKsub. UpdateC = C + 1. Repeat this process until

N (M) = {0}, ∀M ⊆ Mn with |M| = C or C = |Mn|.
– For everyM ⊆ Mn with Nn(M) 6= {0}, setNn(M ∪ ({1, ..., K}\Mn)) = Nn(M).

At each MSMgk, calculateN r
gk(M

′) = ∩n∈M′N r
gk,n, M′ ⊆ {n : n 6= g ∈ {1, ..., G}}

using a similar process.

• Step 3 DesignVC
nj (i.e. span(VC

nj)) : At BS n, n ∈ {1, ..., G}, designVC
nj , j ∈ {1, ..., K}

one by one as follows: For thej-th MS of BS-n,

– Update the number of streams assigned to thej-th MS of BS-n if there is not enough

signal dimension left, i.e. updatednj = min
(

dnj, N
t
g − dim

(

(+k<jV
C
nk) +N (Hnj)

))

;

– Design VC
nj based on the principles thatA) VC

nj is orthogonal to the previous

designed core spaces and is contained by the effective subspace of the direct link,
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i.e. VC
nj ⊆

(

(+k<jV
C
nk) +N (Hnj)

)⊥
; B) A subspace which belongs to a null space

N (M) with larger “weight” (i.e.Wn(N (M)), defined below) is selected with higher

priority.

Wn(N (M)) =
∑

(g,k)∈M
min (dgk, rank(Hgk,n)) (30)

From the left hand side of (27), this weight is the maximum number of IA constraints

that one can mitigate by selecting a one dimensional subspace in N (M).

• Step 4 DesignSt
nj and Sr

gk (i.e. span(St
nj), span(Sr

gk)):

At BS n, n ∈ {1, ..., G}, design{St
nj}:

– A. Generate a series of potentialSt
nj(d), d ∈ {0, 1, ..., N t

g − ∑K

k=1 dnk} with

dim
(

St
nj(d)

)

= d based on the principles thatA) St
nj ⊆

(

(+k∈{1,...,K}V
C
nk)
)⊥

, B)

Same as the principle B in Step 3.

– B. Choose the bestSt
nj : SetSt

nj = St
nj(d

∗), where

d∗ = argmax
d

(

dnjd−
G
∑

g=1, 6=n

K
∑

k=1

min (dgk, rank(Hgk,n))

×min
(

dnj,
∣

∣(VC
nj + St

nj(d)) ∩ (N t
gk,n)

⊥∣
∣

)

)

. (31)

Similarly, at each MSMgk, generateSr
nj(d), d ∈ {0, 1, ..., N r

gk−dgk} based on principle

B. SetSr
gk = Sr

gk(d
∗), where

d∗ = argmax
d

(

dgkd−
G
∑

n=1, 6=g

K
∑

j=1

min
(

dgk,
∣

∣Sr
gk ∩ (N r

gk,n)
⊥∣
∣

)

×min
(

dnj,
∣

∣(VC
nj + St

nj(d)) ∩ (N t
gk,n)

⊥∣
∣

)

)

. (32)

• Step 5 IA Feasibility checking: Similar to Step 3 in Algorithm 2, setvtnj = dnjS
t
nj ,

vrgk = dgkS
r
gk, whereSt

nj andSr
gk are defined in Definition 4.1. Setcgk,nj = min

(

dgk,
∣

∣span(Sr
gk)

∩(N r
gk,n)

⊥∣
∣

)

min
(

dnj, |(span(VC
nj) + span(St

nj)) ∩ (N t
gk,n)

⊥|
)

, if g 6= n; cgk,nj = 0,

otherwise. Use the low complexity algorithm in Appendix-B to check if the system

is IA feasible. If the network is not feasible, go to Step 6. Otherwise, setd∗nj = dnj,

and setVC∗
nj , St∗

nj , S
r∗
nj to be matrices aggregated by the basis vectors ofVC

nj, andSt
nj ,

Sr
nj, respectively,∀n ∈ {1, ..., G}, j ∈ {1, ..., K}. Exit the algorithm.

• Step 6 Update stream assignment:Updatedg′k′ = dg′k′ − 1 and go back to Step 2,

where(g′, k′) is given by (the first line of) (22).

Remark 4.2 (Subspace Design Criterion in Algorithm 5):Similar to the stream assignment

criteria (22), the core space{VC
nj} and free space{St

nj} should be designed to alleviate the
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IA feasibility constraint as much as possible in order to enhance the network DoF. Hence,

both (30) and (31) are designed to maximize the difference between the number of freedoms

in intermediate precoder design minus the number of inter-cell IA constraints.

Remark 4.3 (Relationship between Algorithm 2 and 5):In fact, Algorithm 5 is a back-

ward compatible extension of Algorithm 2. When the network is fully connected, Step 2∼4

in Algorithm 5 will generate{VC
nj}, {St

nj}, and {Sr
nj} with St

nj = Sn, ∀j ∈ {1, ..., K}}
and rank(Sr

nj) = N r
nj . However, this particular choice of the core space will not offer any

additional DoF gain compared to other choices of{VI
nj} and{Sn} satisfying constraint (14)

in the fully connected case.

D. Solution of Subproblems 3.2 and 3.3 in Partially Connected Networks

The solution to Problems 3.2 and 3.3 in the partially connected networks are very similar

to Algorithm 3 and 4, respectively. Details are omitted to avoid redundance.

V. PERFORMANCE ANALYSIS

A. Symmetric MIMO Cellular Networks with Partial Connectivity

Definition 5.1 (Symmetric MIMO Cellular Networks with Partial Connectivity): A symmet-

ric MIMO cellular network hasG BSs (each withN t antennas) servingK MS (each

with N r (≤ N t) antennas) per BS. There are at mostdmax
gk = df data streams per MS.

The partial connectivity is induced by thepath losseffects as well as thetransmit spatial

correlationeffects due to local scattering5 [15], [16]. Links from BS-n to MSs of BS-g with

J < |n − g| < G − J are assumed to have huge path losses and they are regarded as not

connected. Furthermore,R1(≤ N r) andR2(≤ N r) denote the ranks of the intra-cell links

and inter-cell links.

As a result, there are three key parameters, i.e.J , R1 and R2, which characterize the

connection density, the rank of the intra-cell and inter-cell links of the symmetric MIMO

cellular network, respectively. In particular, the BS sidepartial connectivity in Definition 2.1

of the above symmetric network is given by:

N t
gk,n =



















span({n(q) : q ∈ R1(k)}) , if: g = n

span({n(q) : q ∈ R2(n− g)}) , if: g 6= n, 0 < |n− g| ≤ J or |n− g| ≥ G− J

CNt

, otherwise.

(33)

5The transmit spatial correlation is caused by the lack of scattering in the propagation environment around the BSs.
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where{n(q)}, q ∈ {0, 1, ..., N t − 1} form a basis forCNt

,

R1(k) = {0, 1, ..., N t − 1}\{kR1 modN t, kR1 + 1 modN t, ..., (k + 1)R1 − 1 modN t},

R2(m) = {0, 1, ..., N t − 1}\{mR2 modN t, mR2 + 1 modN t, ..., (m+ 1)R2 − 1 modN t},

span({n}) denotes the linear space spanned by the vectors in set{n}. To make sure the

direct links can have sufficient rank, we also assume: anddfK ≤ N t.

Remark 5.1 (Partial Connectivity in Practice):In practice, singular values of channel ma-

trices or the path gain of links can hardly beabsolutely0, and hence, the DoF defined by the

asymptotic slope of the throughput-SNR curve may not correspond to the number of data

streams transmitted. However, this shall not jeopardize the value of the proposed algorithm,

i.e. Algorithm 3, 4, and 5. This is because in practice, we areinterested in the performance

at finite SNR regime only. As long as the singular values or the path gains are below a

sufficiently small threshold, we shall quantize the singular values and the path gain to be

zero and the said channel is partially connected according to Definition 2.1.

B. Analytical Results

Theorem 5.1 (Achievable DoF of the Proposed Scheme):The total DoF achieved by the

proposed scheme in a symmetric MIMO cellular network in Definition 5.1 is lower bounded

by GKd∗, whered∗ is the number of streams assigned to each MS, given by:

d∗ = min

(

R1,

⌊

max

(

N r

min(G− 1, 2J)K R2

Nt + 1
,

N r +N t

min(G− 1, 2J)K + 2

)⌋)

. (34)

Proof: Please refer to Appendix-G for the proof.

The following are some interpretations of the results in (34).

Remark 5.2 (Backward Compatibility with Fully Connected K-pair Interference Channels):

Consider a special case of fully connectedG-pair interference channel withK = 1, J ≥ G
2
,

R1 = R2 = N r. The achievable DoF in (34) reduces to
⌊

Nt+Nr

G+1

⌋

, which is consistent with

result in the conventional IA feasibility condition6.

Remark 5.3 (How Partial Connectivity Affects DoF):When the partial connectivity effect

is strong, i.e.J < G
2
, R2 ≪ N t, the network total DoF becomesGKmin

(

R1,

⌊

Nr

2JK
R2
Nt+1

⌋)

.

Hence, it can be observed that partial connectivity affectsthe total DoF in three aspects:

6Using the conventional IA feasibility condition in [10] forG-pair MIMO interference channels, we haveN t +N
r −

(G+ 1)d ≥ 0 ⇒ d ≤ Nt+Nr

G+1
.
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• Gain due to the connection density: As the connection density parameterJ limits the

maximum number of MSs that each BS may interfere, the total DoF of the MIMO

cellular network isO(G), which scales with the number of the BS. This behavior

represents a significant gain compared with the fully connected case in which the total

DoF= O(1) [10].

• Gain due to weak inter-cell links: When the network is dense, i.e.J ≫ 1, Nr

2LK
R2
Nt +1

≃
NrNt

2LKR2
. Hence, aNt

R2
factor gain can be further observed.

• Loss due to weak intra-cell links:Note that the rank of the direct linkR1 is one of the

terms inmin function and hence, the partial connectivity may also limitthe system DoF

when the intra-cell links are weak, i.e. smallR1.

Remark 5.4 (DoF Scaling Law w.r.t. Number of Antennas):

• Strong inter-cell link case:When the inter-cell links are strong, i.e.R2 ≃ N t, in (34), the

second term is themax operation is larger, hence, the total DoF scales onO(N r +N t).

• Weak inter-cell link case:When the inter-cell links are weak, i.e.R2 ≪ N t, in (34), the

first term is themax operation is larger, hence, the total DoF scales onO(N rN t).

Comparing the two cases, we can see that antennas are more “effective” when the inter-cell

links are weak. This is because when inter-cell links are weak, the partial connectivity can

be exploited to eliminate part of the potential interference, thus alleviating the constraints on

transceiver design.

VI. NUMERICAL RESULTS

In this section, we shall illustrate the performance of the proposed scheme by simulation.

Definition 6.1 (Randomized Partially Connected MIMO Interference Channels):Consider

a MIMO cellular network withG BSs andGK MSs. Each BS hasN t antennas and each MS

hasN r antennas and requestsdf data streams. The BSs and MSs are distributed uniformly

in a 30km×30km area. All BSs transmit at powerP . DenoteDgk,n as the distance between

the BSn and thek-th MS of BS-g. The network is partially connected due to:

• Path loss effect:If Dgk,n > L, we assume the channel from the BSn to thek-th MS

of BS-g is not connected, i.e.Hgk,n = 0.

• Local scattering effect: If Dgk,n ≤ L, due to local scattering effect, channel fading are

correlated (only transmit correlation), and hence:

N t
gk,n = Lgk,n, N r

gk,n = {0} (35)
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whereLgk,n = span({eNt(q) : q ∈ {1, ..., N t} and satisfies (36)}), eN (ω) = 1√
N
[1, e−j2π(ω)

, e−j2π(2ω)..., e−j2π((N−1)ω)]t.

1

N t
<

⌊∣

∣

∣

∣

sin θ

2
− q

N t

∣

∣

∣

∣

⌋

<
N t − 1

N t
, ∀θ ∈ [θgk,n − Fa(S, dgk,n), θgk,n + Fa(S, dgk,n)] (36)

whereFa(S, dgk,n) =







arcsin S
dgk,n

when:S ≤ dgk,n

π when:S > dgk,n
, S is the local scattering radius

as illustrated in Fig. 4B,θgk,n is the angle between the antenna array normal direction

and the direction from BSn to thek-th MS of BS-g. Please refer to [16] for details.

The proposed scheme is compared with 5 reference baselines below7,8:

• Simplified proposed scheme (Baseline (BL) 1):The stream assignment and transceiver

matrices are designed by Algorithms 2, 3 and 4. As we illustrate in Remark 4.3,

Algorithm 2 is a simplified version of Algorithm 5.

• Naive extension of the existing IA algorithm [8] (BL 2): The transceivers are designed

by naive extension of iterative IA algorithm in [8] as described in Algorithm 1.

• Coordinated beamforming [17] (BL 3): The BSs jointly optimize their precoders to

improve the overall system SINR performance using the algorithm proposed in [17].

• Round robin scheduling with Intra-cell zero-forcing (BL 4): The BSs are scheduled

to transmit using round robin. Zero-forcing precoders are adopted.

• Isotropic transmission (BL 5): The BSs and the MSs apply random precoders and

decorrelators, respectively.

A. Fully Connected MIMO Cellular Network

Fig. 5 illustrates the sum throughput versus SNR (10 log10(P )) for the proposed scheme

and 5 baselines for an IA feasible MIMO cellular network withG = 3, K = 2, df = 1,

N t = 5, N r = 2, L, S ≥ 30
√
2km. BL 4 can only achieve 2 DoF as each BS has only1

3
of

the time to transmit. BL 2 achieves only 3 DoF due to the cross link - direct link overlapping

issue. The throughput of BL 3 saturates at high SNR since coordinated beamforming [17] can

7The feasible bound for IA algorithms on partially connectedMIMO cellular network is still unknown. Therefore, we

cannot plot the theoretical upper bound as one of the benchmarks in simulation.

8Note that BL 1 is a simplification of the proposed scheme. It does not address the partial connectivity issue. BL 2 is

generalized from [8] to the MIMO Cellular Network. Comparison with BL1 illustrates the importance of exploiting partial

connectivity. On the other hand, comparison with BL2 illustrates the necessity of the decomposition approach proposedin

this paper.
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only suppress part of the interference.On the other hand, the proposed algorithm and BL 1

achieve 6 DoF, which is an achievable upper bound.This result also confirms the comments

made in Remark 4.3 that Algorithm 5 is a backward compatible extension of Algorithm 2

and they have the same performance in fully connected networks.

B. Partially Connected MIMO Cellular Network

1) Performance w.r.t. SNR:Fig. 6 illustrates the sum throughput versus SNR (10 log10(P ))

for the proposed scheme and 5 baselines in a MIMO cellular network with G = 12, K = 4,

df = 2, N t = 8, N r = 4, L = 15km, S = 3km. The throughput of BL 2 also saturates at

high SNR since the network is not IA feasible. BL 1 achieves 11DoF only as Algorithm 2

fails to exploit the benefit of partial connectivity.On the other hand, the proposed algorithm

achieves 35 DoF, which is significantly higher than all the baselines. Furthermore, the total

DoF upper bound for the fully connected MIMO network is only 11. This demonstrates that

partial connectivity can indeed contribute to the significant gain in system throughput.The

comparison between the proposed scheme and BL 1 illustratesthe importance of incorporating

partial connectivity topology in the IA algorithm.

2) Performance w.r.t. Partial Connectivity Factors:To better illustrate how different partial

connectivity factors such as path loss and spatial correlation affect system performance, we

illustrate the sum throughput versusL (the maximum distance that a BS can interfere a MS)

andS (the radius of the local scattering) under a fixed SNR (30dB) in Fig. 7. By comparing

the performance of the proposed scheme with different partial connectivity parameters, we

have that the performance of the proposed scheme roughly scalesO
(

1
LS

)

, which illustrates

a consistent observation as Remark 5.3 that weaker connectivity can indeed contribute to

higher system performance. Moreover, comparison of the proposed algorithm with BL 1

further illustrates the importance of adapting the transceiver structures given in Def. 4.1 to

exploit partial connectivity. By dynamically adapting thetransceiver structures, the proposed

scheme obtains significant performance gain over a wide range of partial connectivity levels.

APPENDICES

A. Proof for Theorem 3.1

Lemma -A.1 (IA Feasibility Conditions of MIMO Cellular Network): With i.i.d. fading,Prob-

lem 2.1is equivalent to the following problem almost surely.
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Problem -A.1 (Transformed IA Problem):

max
{dnj},{V′

nj
},{U′

gk
}

G
∑

n=1

K
∑

j=1

dnj (37)

s.t.: rank(U′
gk) = dgk, rank([V′

n1, ...V
′
nK ]) =

K
∑

j=1

dnj (38)

(U′
gk)

HHgk,nV
′
nj = 0 (39)

dnj ∈ {0, 1, ..., dmax
nj }, ∀n, g ∈ {1, ..., G}, n 6= g, k, j ∈ {1, ..., K}.

Proof: We need to show thata) if {dnj,Ugk,Vnj} is a solution of Problem 2.1, there

must exists{dnj,U′
gk,V

′
nj} which is a solution of Problem-A.1, andb) vise versa.

• Proof of a): Denote the transceivers in the solution of Problem 2.1 as{U∗
nj,V

∗
nj}. Let

U′
nj = U∗

nj , V
′
nj = V∗

nj, then from (4), (5) we have (38) and (39).

• Proof ofb): Denote the solution of Problem-A.1 as{d∗nj,U′∗
nj,V

′∗
n }. Note that{U′∗

nj,V
′∗
n }

are functions of the cross link channel states, i.e.{Hgk,n : g 6= n}, which are independent

of the direct link channel states, i.e.{Hnk,n}. Hence we have

rank





















(U′∗
n1)

HHn1,n

. . . . . . . . . . . . .

(U′∗
nK)

HHnK,n











[V′∗
n1, ...V

′∗
nK]











=
K
∑

j=1

dnj, ∀n ∈ {1, .., G} (40)

almost surely. LetU∗
nj = U′∗

nj , V
I∗
nj = V′∗

nj and use Algorithm 4 to constructV∗
nj. Then

from (40), Theorem 3.5 holds, which means{U∗
nj ,V

∗
nj} satisfies (16), (17), (18) and

(U∗
nj)

HHnj,nVnk = 0, ∀n ∈ {1, ..., G}, ∀j 6= k ∈ {1, ..., K}. (41)

From (18), (39) we have:

(U∗
gk)

HHgk,nVnj = 0, ∀n 6= g ∈ {1, ..., G}, ∀j, k ∈ {1, ..., K}. (42)

From (16), (17), (41), and (42), we have that{U∗
nj,V

∗
nj} satisfy (4)∼(6).

From Lemma-A.1, we need to showA) an optimizing solution{d∗gk,U′∗
g ,V

′∗
gk}, of Problem-A.1

is a feasible solution of the Subproblems 3.1, 3.2, 3.3 andB) vise versa.

First consider the statement A). We first have two lemmas:

Lemma -A.2 (Non-overlapped Subspaces):V is a subspace uniformly distributed in Grass-

mannianG(D,N). For anyN −D dimensional subspaceS, V ∩ S = {0} almost surely.

Proof: WhenD ≤ ⌊N
2
⌋, we have:V∩S = {0} ⇔ v 6⊥ (S)⊥, ∀v ∈ V ⇔ θmax(V, (S)

⊥) <

π
2
, whereθmax(A,B) denotes the largest principal angle between subspaceA andB. Note
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that bothV and(S)⊥ areD dimensional subspaces withD < N+1
2

. From Theorem 1 in [18],

we havePr(θmax(V, (S)
⊥) < π

2
) = 1.

Similarly, whenD > ⌊N
2
⌋, we have:V∩S = {0} ⇔ s 6⊥ (V)⊥, ∀s ∈ S ⇔ θmax(S, (V)

⊥) <

π
2
. Note that bothS and (V)⊥ areN − D dimensional subspaces withN − D < N+1

2
and

(V)⊥ uniformly distributes in GrassmannianG(N −D,N), we can again apply Theorem 1

in [18]. This completes the proof of the lemma.

Lemma -A.3 (Uniformly Distributed Precoder Space):Under the i.i.d. fading assumption,

span(V′∗
n), uniformly distributes inG(∑K

j=1 d
∗
nj, N

t
n), whereV′∗

n and d∗
nj are the optimal

solution of Problem-A.1.

Proof: In Problem-A.1, span(V′∗
n) is a function of the channel states{Hgk,m}, denote

as span(V′∗
n) = F ({Hgk,m}). For any two elements inG(∑K

j=1 d
∗
nj, N

t
n), V

a andVb, denote

Hx = {{Hgk,m} : Vx = F ({Hgk,m})} = {{Hgk,m(x)}}, wherex ∈ {a, b}. Then there exists

a unitary matrixT ∈ CNt
n×Nt

n such that

Vb = TVa, whereVx is the matrix aggregated by the basis ofVx, x ∈ {a, b}. (43)

Construct a mappingG : Ha → Hb,Hgk,m(b) =







Hgk,m(a)T, if: m = n,

Hgk,m(a) , otherwise.
. Substitute

(43) into (39), we have thatG is bijective. DenoteDh and Dv as the probability density

function of {Hgk,m} andV′∗
n, respectively. Then from the i.i.d. fading assumption, we have

thatDh(G({Hgk,m(a)})) = Dh({Hgk,m(a)}). SinceG is bijective, we have

Dv(V
b) =

∫

Hb

Dh(x)dx =

∫

Ha

Dh(G(x))dx =

∫

Ha

Dh(x)dx = Dv(V
a). (44)

wherex denotes the elements inHa or Hb. With (44), we complete the proof.

The constraints (38), (39) in Problem-A.1 are the same as that addressed in [10], except

that the number of transmitter and receiver are different when K > 1. Yet, note that the

analysis in [10] can be easily extended to the case with different number of transmitters

and receivers, Lemma-A.1 enables us to extend the existing IA feasibility conditions to the

cellular case. Hence from Lemma-A.1 and the IA feasibility conditions obtained in [10], we

have that the feasibility conditions of MIMO cellular network are given by (10).

Denote{d∗nj}, {V′∗
n}, {U′∗

gk} as the optimizing variables for Problem-A.1. Substitute the

stream assignment policy{d∗nj} into Problem 3.1, the feasibility condition (10) shall be satis-

fied almost surely. Consider the singular value decomposition ofV′∗
n = AV

n





SV
n

0



 (BV
n )

H =
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A′V
nS

V
n (B

V
n )

H , U′∗
gk = AU

gk





SU
gk

0



 (BU
gk)

H = A′U
gkS

U
gk(B

U
gk)

H , whereAV
n , BV

n , AU
gk, B

U
gk

areN t
n ×N t

n,
∑K

j=1 d
∗
nj ×

∑K

j=1 d
∗
nj, N

r
gk ×N r

gk, andd∗gk × d∗gk unitary matrices, respectively,

A′V
n andA′U

gk are the first
∑K

j=1 d
∗
nj andd∗gk columns of the corresponding matrices, andSV

n

andSU
gk are

∑K

j=1 d
∗
nj ×

∑K

j=1 d
∗
nj and d∗gk × d∗gk diagonal matrices, respectively. Note that

rank(V∗
n) =

∑K

j=1 d
∗
nj, rank(U∗

gk) = d∗gk, ∀n, g, k, we haveSV
n andSU

gk are full rank. Hence

we can set:

Vn = A′V
n = V′∗

nB
V
n (S

V
n )

−1 (45)

Ugk = A′U
gk = U′∗

gkB
U
gk(S

U
gk)

−1 (46)

From Lemma-A.3, span(V′∗
n ) uniformly distributes inG(∑K

j=1 d
∗
nj, N

t
n). Note that span(Vn) =

span(V′∗
n ), dim(span(Sn)) = N t

n −
∑K

j=1 d
∗
nj, from Lemma -A.2, we have:

span(Vn) ∩ span(Sn) = {0}, almost surely. (47)

From equation (14), the columns of{VC
nj} and Sn form a basis forCNt

n. Hence, there

exist matricesRn (
∑K

j=1 d
∗
nj ×

∑K

j=1 d
∗
nj) andQn ((N t

n −
∑K

j=1 d
∗
nj)×

∑K

j=1 d
∗
nj) such that:

Vn =
[

VC
n1,V

C
n2, ...,V

C
nK,Sn

]





Rn

Qn



 =
[

VC
n1,V

C
n2, ...,V

C
nK

]

Rn + SnQn (48)

From (47),Rn is full rank almost surely. Hence we have:

VnR
−1
n =

[

VC
n1,V

C
n2, ...,V

C
nK

]

+ SnQnR
−1
n (49)

Set V′F
nj = QnR

−1
nj , where R−1

nj is the matrix aggregated by the(
∑j−1

k=1 d
∗
nj) + 1 to

(
∑j

k=1 d
∗
nj)-th column ofR−1. Substitute{V′F

nj}, {U′
gk} into Problem 3.2 and substitute

{V′
nj}, {U′

gk} into Problem 3.3, From (4), (5), (45), (46) and (49), all the constraints are

satisfied almost surely. This completes the proof for statement A).

Then to Statement B). From statement A) and [10], under the IAconstraint (10), the

optimal value of Problem 3.2, 3.3 are0 almost surely. Hence, denote{d∗nj}, {V∗
nj}, {U∗

gk}
as the corresponding outputs by solving the three problems sequentially. Substitute these

outputs to Problem 2.1, then from (17), (15), and (19), we have that{d∗nj}, {V∗
nj}, {U∗

gk}
must satisfy (4) and (5). This completes the proof.
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B. Low Complexity IA Feasibility Checking

For notational convenience, denotevtnj , v
r
gk andcgk,nj asvtn, vrg andcgn, respectively, where

n = (n, j), g = (g, k), n, g ∈ {1, ..., G}, j, k ∈ {1, ..., K}.

• Initialize the constraint assignment: Randomly generalize aconstraint assignment

policy, i.e.{ctng, crgn} such that:ctng, c
r
gn ∈ N∪{0}, ctng+crgn = cgn. Calculate{P t

n, P
r
g}:

P t
n = vtn −∑g∈S c

t
ng, P r

g = vrg −
∑

n∈S c
r
gn.

• Update the constraint assignment:As illustrated in Fig. 3, while there exist “over-

loaded nodes”, i.e.P t
n < 0 or P r

g < 0, do the following to update{ctgn, crgn}:

– A. Initialization: Select an “overloaded node” with negative pressure. For instance,

assumeP t
n < 0, we setP t

n to be the root node of the “pressure transfer tree”,

which is a variation of the tree data structure, with its nodes storing the pressures

at the precoders and decorrelators, its link strengths storing the maximum number

of constraints that can be reallocated between the parent nodes and the child nodes.

– B. Add leaf nodes to the pressure transfer tree:

For every leaf nodeP x
n (x ∈ {t, r}):

For everyg: If cxng > 0, addP x
g as a child node ofP x

n with link strengthcxng,

wherex is the element in{t, r} other thanx.

– C. Transfer pressure from root to leaf nodes:For every leaf node with positive

pressure, transfer pressure from root to these leafs by updating the constraint assign-

ment policy{ctgn, crgn}. For instance, as illustrated in Fig. 3B,P t
n1

ctn1g1−−−→ P r
g1

crg1n2−−−→
P t
n2

is a root-to-leaf branch of the tree (red lines). Update:(ctn1g1
)′ = ctn1g1

− ǫ,

(crg1n1
)′ = crg1n1

+ ǫ, (crg1n2
)′ = crg1n2

− ǫ, (ctn2g1
)′ = ctn2g1

+ ǫ. Hence we have

(P t
n1
)′ = P t

n1
− ǫ and (P t

n2
)′ = P t

n2
+ ǫ, whereǫ = min

(

−P t
n1
, P t

n2
, ctn1g1

, crg1n2

)

.

– D. Remove the “depleted” links and “neutralized” roots:

∗ If the strength of a link become 0 after Step C: Separate the subtree rooted from

the child node of this link from the original pressure transfer tree.

∗ If the root of a pressure transfer tree is nonnegative, remove the root and hence the

subtrees rooted from each child node of the root become new trees. Repeat this

process until all roots are negative. For each newly generated pressure transfer

tree, repeat Steps B∼D (Please refer to Fig. 3C for an example).

– E. Exit Conditions: Repeat Steps A∼D until all trees become empty (hence the

network is IA feasible) or no new leaf node can be added for anyof the non-empty
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trees in Step B (hence the network is IA infeasible). Exit thealgorithm.

C. Proof for Theorem 3.3

We shall first prove the optimality part via the following twolemmas:

Lemma -C.1:The updated decorrelators{Ugk} in Step 2 of Algorithm 3 are the optimal

solution for problems (24).

Proof: Please refer to [8] for the proof.

Lemma -C.2:The updated free elements in precoder{VF
nj} in Step 3 of Algorithm 3 are

the optimal solution for problems (23).

Proof: DenoteQnj =
∑G

g=1, 6=n

∑K

k=1 Pnj(U
H
gkHgk,n)

H (UH
gkHgk,n). Note thatQnj is a

positive semidefinite matrix, and we have in (23):

G
∑

n=1
6=g

K
∑

j=1

trace
(

(UH
gkHgk,nV

I
nj)

H(UH
gkHgk,nV

I
nj)
)

=

G
∑

n=1
6=g

K
∑

j=1

trace
(

(VI
nj)

HQnjV
I
nj

)

=

G
∑

n=1
6=g

K
∑

j=1

trace
(

(Q
1
2
njV

C
nj +Q

1
2
njSnV

F
nj)

H(Q
1
2
njV

C
nj +Q

1
2
njSnV

F
nj)
)

= ||Q
1
2
njV

C
nj +Q

1
2
njSnV

F
nj||2F (50)

By minimizing the Frobenius norm in (50), we have:

VF
nj = −

(

(Q
1
2
njSn)

H(Q
1
2
njSn)

)−1

(Q
1
2
njSn)

HQ
1
2
njV

C
nj = −(SH

n QnjSn)
−1SH

n QnjV
C
nj (51)

(51) proofs the lemma.

Now we begin to prove the convergence part. Denote

I =

G
∑

g=1

G
∑

n=1
6=g

K
∑

k=1

K
∑

j=1

trace
(

(UH
gkHgk,nV

I
nj)

H(UH
gkHgk,nV

I
nj)
)

(52)

Then I is non-negative. Moreover, from Lemma-C.1, -C.2,I is non-increasing in each

round of update. Hence, following the analysis in [8], Algorithm 3 is surely to converge.

D. Proof of Theorem 3.4

Lemma -D.1:rank
([

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

])

=
∑K

j=1 dnj, ∀n ∈ {1, .., G}.

Proof: Denote theq-th column in
[

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

]

and
[

VC
n1,V

C
n2, ...,V

C
nK

]

asvI
n(q)

andvC
n (q), q ∈ Q = {1, ...,∑K

j=1 dnj}, respectively. From the intermediate precoder structure
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(12), and the orthogonal constraint (14) (which means that all thevC
n (q), q ∈ {1, ...,∑K

j=1 dnj}
and the row vectors inSn are orthogonal to each other), we have

vI
n(q) ∈ span(vC

n (q)) + span(Sn), v
I
n(q) 6∈ span(Sn) (53)

(

span(vC
n (q)) + span(Sn)

)

∩
(

+p 6=q,∈Q
(

span(vC
n (p)) + span(Sn)

))

= span(Sn) (54)

where span(X) denotes the linear space spanned by the column vectors ofX. From (53),

(54), we havevI
n(q) 6∈ span({vI

n(p), p 6= q,∈ Q}), ∀q ∈ Q. This completes the proof.

Lemma -D.2:Denote thep-th row of U∗
njHnj,n aswnj(p), p ∈ {1, ..., dnj}. Then we have

span(wH
nj(p)) follows i.i.d. uniform distribution in GrassmannianG(1, N t

n).

Proof: Denotehnj,n(q) as theq-th row of Hnj,n, q ∈ {1, ..., N r
nj}. From the i.i.d.

fading assumption, span(hH
nj,n(q)) follows i.i.d. uniform distribution inG(1, N t

n). Since in

(23), (24), the intra-cell channel states{Hnj,n}, n ∈ {1, ..., G}, j ∈ {1, ..., K} do not

appear,{Hnj,n} are independent of{VI∗
nj} and {U∗

nj}. Hence we have span(wH
nj(p)) =

span
(

∑Nr
nj

q=1 unj(p, q)h
H
nj,n(q)

)

still uniformly distributed inG(1, N t
n), whereunj(p, q) is the

element in thep-th row andq-th column ofU∗
nj. Note that the rows inU∗

nj are orthogonal

to each other, span(wH
nj(p)) are independentp ∈ {1, ..., dnj}. Moreover, sinceHnj,n, Hnj′,n

are independent, span(wH
nj(p)) and span(wH

nj′(p
′)) are independent.

From Lemma-D.2, we can easily deduce the following two results

rank
([

HH
n1,nU

∗
n1,H

H
n2,nU

∗
n2, ...,H

H
nK,nU

∗
nK

])

=

K
∑

j=1

dnj, almost surely (a.s.) (55)

and if
∑K

j∈=1 dnj < N t
g,

v 6∈ span
([

HH
n1,nU

∗
n1,H

H
n2,nU

∗
n2, ...,H

H
nK,nU

∗
nK

])

, ∀v ∈ CNt
n×1 a.s. (56)

If
∑K

j=1 dnj = N t
n, from Lemma-D.1 and (55), (25) is proved. Otherwise, from (56):

dim
(

span
([

HH
n1,nU

∗
n1, ...,H

H
nK,nU

∗
nK

])

+
(

span
([

VI∗
n1, ...,V

I∗
nK

]))⊥
)

=

K
∑

j=1

dnj + (N t
n −

K
∑

j=1

dnj) = N t
n, a.s.

⇔ dim

(

(

span
([

HH
n1,nU

∗
n1, ...,H

H
nK,nU

∗
nK

]))⊥
∩ span

([

VI∗
n1, ...,V

I∗
nK

])

)

= 0, a.s.

⇔ N
([

HH
n1,nU

∗
n1, ...,H

H
nK,nU

∗
nK

])

∩R
([

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

])

= {0}, a.s. (57)

whereN (X) andR(X) denotes the null space and the range of matrixX, respectively. From

(57), we have (25). This ends the proof.
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E. Proof of Theorem 3.5

We need to show: A) Prove that the output of Algorithm 4{V∗
nj}, n ∈ {1, ..., G}, j ∈

{1, ..., K}, is indeed a solution for Problem 3.3, i.e. it satisfies constraints (16), (17) and

(18); B) Show that the intra-cell interference power (15) under{V∗
nj} is 0.

We shall first prove the A) part. In Step 3, from the property ofSVD, we have:

V∗H
nq V

∗
nq = (A′

nq)
HA′

nq = I (58)

Snq =
[

(S′
nq)

T , 0

]T

(59)

whereS′
nq is a dnq × dnq diagonal matrix.

From Theorem 3.4, in Step 1,Ln(q) is full rank almost surely. Note thatRn(q) is a lower

triangular matrix, in Step 2, we have:

rank
(

(U∗
nq)

HHnq,nV
′
nq

)

= rank(L′
n(q)) = dnq, ∀q ∈ {1, ..., N} a.s. (60)

(U∗
np)

HHnp,nV
′
nq = 0, ∀p 6= q ∈ {1, ..., N} (61)

whereL′
n(q) is a dnq × dnq matrix aggregated by the elements in the lastdnq rows and

columns ofLn(q). From (60), we have rank(S′
nq) = rank(V′

nq) = dnq almost surely. Hence,

V∗
nq = V′

nq(S
′
nq)

−1Bnq almost surely. This result leads to the following equations:

rank
(

(U∗
nq)

HHnq,nV
∗
nq

)

= rank
(

(U∗
nq)

HHnq,nV
′
nq(S

′
nq)

−1Bnq

)

= rank
(

(U∗
nq)

HHnq,nV
′
nq

)

= dnq, ∀q ∈ {1, ..., N} a.s. (62)

[V∗
n1,V

∗
n2, ...,V

∗
nK ] =

[

VI∗
n1,V

I∗
n2, ...,V

I∗
nK

]

·
[

Q′
n(1)(S

′
n1)

−1Bn1,

Q′
n(2)(S

′
n2)

−1Bn2, ...,Q
′
n(N)(S′

nK)
−1BnK

]

(63)

(58), (62) and (63) proofs the statement A).

Now we turn to the B) part. Statement B) is an immediate reference of (61).

F. Proof for Theorem 4.1

We need to prove statement B) in Appendix-A. Following the analysis in [9, Appendix

B], after introducing the new transceiver structure in Definition 4.1, the “no more IA con-

straints than freedoms” constraint (10) is extended to (27). Moreover, constraints (28), (29)

and the fact that intra-cell channel states{Hgk,g} are independent of the inter-cell channel

states{Hgk,n, n 6= g}, ensures that the statement in Theorem 3.4 still holds underpartial

connectivity. Hence, the solution set of Problem 3.3 is non-empty. Substitute these solutions
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to Problem 2.1, then from (17), (15), and (19), we have that{d∗nj}, {V∗
nj}, {U∗

gk} must

satisfy (4) and (5). This completes the proof.

G. Proof for Theorem 5.1

Due to the symmetry property of the system, in Algorithm 5, the stream assignment policy

{d∗gk}, core space{VC∗
gk }, free space{St∗

gk} and linear filter for decorrelator{Ur∗
gk} hall be

symmetrical∀g ∈ {1, ..., G}. From dfK ≤ N t and the first line of (33), in Step 3 of

Algorithm 5, core spaces assignment is feasible iff.dgk ≤ R1, j ∈ {1, ..., K}.

From (27), (31) and the second and third lines of (33), since the inter-cell partial connec-

tivity state is the same for all users, in Step 4 and 5 of Algorithm 5, the number of streams

assigned to each MSdgk, the dimension of the free spacesSt
gk, and the dimension of the

linear filterSr
gk shall be the same for all MSs. Moreover, asN r

gk,n = {0}, ∀n, g, k, we have

thatSr
gk shall be the maximum possible value, i.e.N r −R1. Denoted = dgk, S = St

gk, then

from the feasibility condition (27) and (33), stream assignment{dgk = d} is feasible ifd is

achievable in the following problem:

max
S

d (64)

S.t. min(G− 1, 2J)Kmin(d,
R2(d+ S)

N t
) ≤ S +N r − d (65)

d ∈ {0, 1, ..., R1}, S ∈ {0, 1, ..., N t − dK}

By solving (64), we get (34).
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Fig. 2. A simple example of the Core space, Free space and Freeelements. In this figure,N t
g = 2, dgk = 1.

Fig. 3. Illustrative example of the “pressure transfer tree” and the corresponding operations. A) A tree generated in Step

A and B; B) Pressure transfer in Step C; C) Removal of depletedlinks and neutralized roots in Step D.

Fig. 4. Local scatteringeffect: The lack of scattering in the propagation environment leads to spatial channel correlation.
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Fig. 5. Sum throughput versus SNR for the proposed algorithm(and 5 baselines) in a fully connected MIMO cellular

network.
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