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Abstract

In this paper we aim to solve the multiuser multi-input multi-output (MIMO) downlink beamforming

problem where one multi-antenna base station broadcasts data to many users. Each user is assigned

multiple data streams and has multiple antennas at its receiver. Efficient solutions to the joint transmit-

receive beamforming and power allocation problem based on iterative methods are proposed. We adopt

the group maximum signal-to-interference-plus-noise-ratio (SINR) filter bank (GSINR-FB) as our beam-

former which exploits receiver diversity through cooperation between the data streams of a user. The data

streams for each user are subject to an average SINR constraint, which has many important applications

in wireless communication systems and serves as a good metric to measure the quality of service (QoS).

The GSINR-FB also optimizes the average SINR of its output. Based on the GSINR-FB beamformer, we

find an SINR balancing structure for optimal power allocation which simplifies the complicated power

allocation problem to a linear one. Simulation results verify the superiority of the proposed algorithms

over previous works with approximately the same complexity.
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I. INTRODUCTION

In this paper, the joint beamforming and power allocation optimization problem for the multiuser

multi-input multi-output (MIMO) downlink channel is considered. In this system, transmit and receive

beamformings are used to suppress the multiuser interference and exploit the multi-antenna diversity.

Power allocation at the transmitter is performed to efficiently utilize the available transmission power.

Such a joint beamforming and power allocation problem has been studied by many researchers [1]–[5].

In [2] [3], block diagonalization (BD) was proposed to block-diagonalize the overall channel so that

the multiuser interference at each receiver is thoroughly eliminated. Such a zero-forcing approach suffers

from the noise enhancement problem, because it removes the multiuser interference by ignoring the noise.

Hence the performance can be improved if the balance betweenmultiuser interference suppression and

noise enhancement can be found [4] [5].

Under individual signal-to-interference-plus-noise-ratio (SINR) constraints for users, Schubert and

Boche studied the situation where each user has only one datastream andsingle receive antenna [4]. It

was shown that the optimal solution can be efficiently found by iterative algorithms. Khachanet al. [5]

generalized the scheme in [4] to allow several transmissionbeams to be grouped to serve a user, and

each user has multiple receiver antennas [5]. However, eachdata stream is processed separately. Thus, in

addition to the multiuser interference from the other users, there is intra-group interference between the

data streams of a user. This drawback motivates our work to use a more sophisticated receiver processing

to tackle the intra-group interference.

In this work, we adopt the group maximum SINR filter bank (GSINR-FB) proposed by [6] as the

beamformer, which collects the desired signal energy in thestreams of each user and maximize the

total SINR at its output. That is, the GSINR-FB lets these streams cooperate while the filters in [5]

let them compete. Based on the GSINR-FB beamformer, we consider a system which uses the average

SINR over data streams for a user as a metric to measure the quality-of-service (QoS). This criterion is

very useful in many communication scenarios [6]–[8] including the celebrated space-time block coded

systems. It will be shown that the GSINR-FB based beamformerdoes improve the performance over

the scheme in [5]. Moreover, we find that the SINR balancing structure exists for this beamforming

method, that is, the optimal power allocation results in thesame SINR to target ratio for all users with

the GSINR-FB based beamforming. As will be shown later, thisproperty makes solving the complicated

power allocation problem much easier. Our work can be seen asa non-trivial generalization of [4] to the

multi-antenna setting which also subsumes [5] as a special case (with independent processing of data

streams). For simplicity, we will first consider group powerallocation which restricts equal power on

the data streams of each user to benefits from the low-complexity power allocation schemes similar to

those in [4] [5]. This restriction is later relaxed by allowing the power of individual data streams to be

adjustable. Besides the GSINR-FB based beamforming, this per stream power allocation scheme is new

compared with [4] [5] and has better performance than the group power allocation. These two techniques
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are the key ingredients to make our performance better than that in [5]. With approximately the same

complexity as [5], our approach exhibits a better performance compared to the existing methods in [5]

and the BD based methods.

We will investigate two optimization problems. One is minimizing the total transmitted power while

satisfying a set of average SINR targets. The other is maximizing the achieved average SINR to target

ratio under a total power constraint. Based on the uplink-downlink duality [9], our methods iteratively

calculate the GSINR-FB based beamforming and power allocation matrices. The rest of the paper is

organized as follows. The system model and problem formulation are introduced in Section II. We also

briefly discuss the basic design concept of our iterative algorithms in this section. Backgrounds such as

the GSINR-FB based beamformers and the applications of the average SINR criterion are provided in

Section III. Section IV presents our power allocation results. The numerical results are given in Section

V, and the computational complexity issues are discussed inSection VI. Finally, we give the conclusion

in VII.

II. PROBLEM FORMULATION AND EFFICIENT ITERATIVE SOLUTIONS

A. Notations

In this paper, vectors and matrices are denoted in bold-facelower and upper cases, respectively. For

vectorg, g ≥e 0 means that every element ofg is nonnegative. For matrixG, trace(G) denotes the trace;

GT andGH denote the transpose and Hermitian operations, respectively. ‖·‖F denotes the Frobenius

norm, which is defined as‖G‖F =
√

trace
(

GGH
)

. G−1
s and |Gs| are, respectively, the inverse and

determinant of a square matrixGs. And In denotes the identity matrix of dimensionn. A diagonal

matrix is denoteddiag{. . .} whosekth parameter is thekth diagonal term in the matrix.E[·] denotes

the expectation operator.

B. System Model

Consider the downlink scenario withK users, where a base station is equipped withM antennas. The

upper part of Fig. 1 shows the overall system block diagram for userk, who hasNk receive antennas and

receivesLk data streams, whereLk satisfies the constraintLk ≤ min {M,Nk} to make sure effective

recovery of the data streams at the receiver. Thus theK users have a total ofN =
∑K

k=1Nk receive

antennas receiving a total ofL =
∑K

k=1 Lk grouped data streams. For a given symbol time, the data

streams intended for userk are denoted by a vector of symbolsxk = [xk1, xk2, ..., xkLk
]T . TheL data

streams are concatenated in a vectorx = [xT
1 , ...,x

T
K ]T . Without loss of generality, we assume thatx

is zero mean with covariance matrixIL. The precoderUk ∈ CM×Lk processes userk’s data streams

before they are transmitted over theM antennas. These individual precoders together form theM × L

global transmitter beamforming matrixU = [U1,U2, ...,UK ]. The power allocation matrix for userk is

a diagonal matrix

Pk = diag{pk1, pk2, ..., pkLk
}, (1)
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wherepkj is the power allocated to thejth data stream of userk, and the global power allocation matrix

P = diag{P1,P2, ...,PK} (2)

is a block diagonal matrix of dimensionL× L. The transmitter broadcasts signalsU
√
Px to all of the

K users.

Userk receives a lengthNk vectoryk = HH
k U

√
Px, which can be expanded as

yk = HH
k Uk

√

Pkxk +HH
k





K
∑

j 6=k,j=1

Uj

√

Pjxj



+ nk, (3)

where the channel between the transmitter and userk is represented by theNk × M matrix HH
k , the

Hermitian ofHk; nk represents the zero-mean additive white Gaussian noise (AWGN) at userk’s receive

antennas with varianceσ2 per antenna and the covariance matrixE[nkn
H
k ] = σ2INk

. The resultingN×M

global channel matrix isHH , with H = [H1,H2, ...,HK ]. We assume that the transmitter has perfect

knowledge of the channel matrixH, and receiverk knows itsHk perfectly. The second term on the

right-hand-side of (3) is the inter-group multiple user interference for userk. To estimate itsLk symbols

xk, userk processesyk with its Lk×Nk receive beamforming matrixVH
k . The resulting estimated signal

vector is

x̂k = VH
k HH

k U
√
Px+VH

k nk

= VH
k HH

k Uk

√

Pkxk +VH
k HH

k





K
∑

j 6=k,j=1

Uj

√

Pjxj



+VH
k nk. (4)

Without loss of generality, as [6], we assume that the interference-plus-noise components of the filter

bank output in (4) are uncorrelated. For any filter bank that produces correlated components, one can

easily find another filter bank which makes these component uncorrelated but with the same performance.

The details can be found in [6].

Finally, owing to the non-cooperative nature between usersin broadcast channels, the global receiver

beamforming filterVH , formed by collecting the individual receiver filters, is a block diagonal matrix

of dimensionL×N whereV = diag{[V1,V2, ...,VK ]}.

C. Problem Formulation

In this paper, we consider the average SINR of userk over all its Lk data streamsSINRk =
∑Lk

j=1 SINRkj/Lk as the performance measure, whereSINRkj is the SINR of the jth data stream of

userk. The importance and applications of this design criterion will be reviewed in detail later in Section

III-B. Based on the average SINR constraints and system model described in Section II-B, we consider

two problems as follows. The first optimization problem, which will be referred to as Problem Pr in the

following sections is
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Problem Pr: Given a total power constraintPmax and the SINR targetγk for userk, maximizemin
k

SINRk/γk

over all beamformersU, V, and power allocation matrixP, that is,

max
U,V,P

min
k

SINRk

γk
subj. to

K
∑

k=1

Lk
∑

j=1

pkj ≤ Pmax. (5)

We call SINRk/γk the SINR to target ratio for userk.

If the minimum SINR to target ratio in Equation (5) can be madegreater than or equal to one, then

the second optimization problem is to find the minimum power required such that the SINR targets can

be all satisfied. The mathematical formulation of this problem, which will be referred to as Problem Pp

in the following sections is

Problem Pp: Given a constraint on the minimum SINR to target ratio, minimize the total transmitted

power over all beamformersU, V, and power allocation matrixP as

min
U,V,P

K
∑

k=1

Lk
∑

j=1

pkj subj. to min
k

SINRk

γk
≥ 1 and

K
∑

k=1

Lk
∑

j=1

pkj ≤ Pmax. (6)

D. Iterative methods based on uplink-downlink duality

We briefly review the uplink-downlink duality, which plays an important role in finding efficient

solutions based on iterative methods for our problems. In [9]–[12], it was shown that it is always possible

to find a virtual uplink system for the downlink system. We plot the virtual uplink for userk in the lower

part of Fig. 1, whereQk is the corresponding power allocation matrix in the virtualuplink defined

similarly asPk. To be more specific, with fixed beamforming filtersU, V, SINR targetsγ1, . . . , γK ,

and the same sum power constraintPmax for both the downlink and the virtual uplink, the downlink and

its virtual uplink system have the same SINR to target ratio with optimalP andQ.

With the aids of the uplink-downlink duality, the optimization problems Pr and Pp in Section II-C can

be solved efficiently with iterative algorithms. Now we introduce the basic concepts of these algorithms,

as summarized in Table I. For simplicity, we use Problem Pr asan example. From Table I, for iteration

n, with the downlink transmitter and receiver beamformersU(n) andV(n) fixed, we can obtain a new

power allocation matrixP(2n+1) to increase the minimum SINR to target ratiomin
k

SINRk/γk. Note that

the downlink power allocation are executed two times (Step 1and 3) for thenth iteration, as shown in

Table I. To simplify notations in the following sections, weuseP(2n+1) andP(2n+2) to represent the new

power allocation matrices for the first and second downlink power allocations respectively. With fixed

P(2n+1) andU(n), we can obtain a new downlink receiver beamformerV(n+1) to increaseSINRk/γk for

all users. The minimum ratiomin
k

SINRk/γk is further optimized using the new power allocation matrix

P(2n+2) computed fromU(n) andV(n+1). Then we turn to the virtual uplink to updateU(n). Similarly,

fixing uplink transmitter beamformerV(n+1) and receiver beamformerU(n), we obtain a new uplink
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power allocation matrixQ(2n+1). After power allocation, the SINR to target ratios of the downlink and

virtual uplink are equal. Then we can findU(n+1) based onQ(2n+1) andV(n+1). After that,Q(2n+2) is

updated according to the newU(n+1) andV(n+1), and so on.

Note that all the iterations are done at the transmitter, andthe transmitter does not need to feed

forward the optimized receive filters to the receivers during the iterations. The receiver can compute the

final filter by itself after the iterative algorithm stops. This procedure is the same as [13, Section II-B],

and we briefly describe it here. First, as in the “common training” phase in [13] [14], each receiverk

can estimate its own channelHk by using the known training sequence. After receiverk feeds back

Hk to the transmitter, the transmitter can iteratively compute transmit and receive beamforming filters,

as well as power allocation matrices in Table I according toHk. After the iterative algorithm stops,

the “dedicated training” phase as in [13] is performed to letthe receivers compute the final receiver

filter. In this phase, the transmitter will broadcast orthogonal training sequences to the receivers as in

[13], and each receiver can estimate the final equivalent channel formed byHk, the transmit filters, and

power allocation matrices to calculate its final receive beamformer. We will first show how to calculate

the beamforming filters in the next section, and then show howto use these filters to determine power

allocation in Sections IV-B and IV-C.

III. G ROUP MAXIMUM SINR FILTER BANK FOR THE AVERAGE SINR CONSTRAINT

In this section, we introduce the key motivation of our paper, that is, the use of GSINR-FB in [6] as

the beamfomer to solve (5) (6). This filter bank is a non-trivial generalization of the one used in [5].

It uses the dimensions provided by the multiple receive antennas at each user more efficiently than [5].

Specifically, the streams of each user (or group) cooperate with one another in our scheme, rather than

interfere with one another as in [5]. Since this filter bank maximizes the total SINR of the streams of

each user, it also maximizes the average SINR criterion adopted in this paper. We will also review the

applications of the average SINR criterion at the end of thissection.

A. Group Maximum SINR Filter Bank

To solve (5) (6), the GSINR-FB is adopted for our transmitterbeamformerU and receiver beamformer

V to maximize the average SINR. Moreover, as will be shown in Proposition 1, the optimal SINR

balancing structure based on the GSINR-FB beamforming willmake the corresponding power allocation

problem trackable. Let us first focus on Step 2 in Table I, thatis, givenU(n) andP(2n+1), finding filter

V(n+1) to maximize
Lk
∑

j=1
SINRDL

kj ,∀k (Lk times of the average SINR), whereSINRDL
kj is the SINR of the

jth stream of userk in this step. For brevity, we shall omit the iteration indexn in most of the following

equations. Following [6], the optimization problem becomes

max
Vk

Lk
∑

j=1

vH
kjR

DL
s,kvkj, subj. to vH

kjR
DL
n,kvkj = 1, ∀j, (7)
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whereVk = [vk1, . . . ,vkLk
], while

RDL
s,k = HH

k UkPkU
H
k Hk and RDL

n,k =
∑

i 6=k

HH
k UiPiU

H
i Hk + σ2INk

, (8)

are the signal covariance matrix and the interference-plus-noise covariance matrix foruser k, respectively.

It is now evident that we must letLk ≤ min {M,Nk} since the number of eigenvectors is limited by the

dimension ofHk. The optimization problem in (7) was shown to be equivalent to solving the generalized

eigenvalue problems [6] as

RDL
s,kvkj = λDL

kj R
DL
n,kvkj, ∀j (9)

with

λDL
kj =

vH
kjR

DL
s,kvkj

vH
kjR

DL
n,kvkj

= SINRDL
kj . (10)

Then Vk can be computed easily. The receive beamforming filter designed for the downlink can be

carried over to the transmit beamforming filter for uplink, and vice versa. Thus the receive beamforming

filter U(n+1) for the virtual uplink system in Step 4 in Table I can be computed similarly.

Now we show why the GSNIR-FB performs better than those in [4][5]. In [5], all streams interfere

with one another andvkj satisfies

RDL
s,kjvkj = λDL

M,kjR
DL
n,kjvkj,

whereλDL
M,kj is the maximum generalized eigenvalue of (RDL

s,kj,R
DL
n,kj);

Rs,kj = HH
k ukju

H
kjHk and RDL

n,kj =

Lk
∑

ℓ=1,ℓ 6=j

pkℓH
H
k ukℓu

H
kℓHk +

∑

i 6=k

HH
k UiPiU

H
i Hk + σ2INk

(11)

are the signal covariance matrix and the interference-plus-noise covariance matrix forstream j of user

k, respectively, andUk = [uk1, . . . ,ukLk
]. Comparing (11) with (8), one can easily see that, in [5],

the streams of the same user interfere with one another and there is additional intra-group interference

in RDL
n,kj (the first term ofRDL

n,kj) compared withRDL
n,k in (8). The GSINR-FB beamforming exploits

additional dimensions from the multiple receiver antennas, which are not provided in [4] (whereNk=1),

much more efficiently, by letting the streams of each user cooperate rather than compete as in [5].

B. Average SINR criterion and its applications

The average SINR criterionSINRk is very useful in many communication systems [6]–[8] and can

serve as a good metric for the QoS. Here we briefly review some of its applications. Note that in these

applications, it is the total SINRLkSINRk which serves as the performance metric, which equals toLk

times the average SINR. However, as will be discussed in Section V, to have a fair comparison with the

results in [5] where the per stream SINR is considered, the average SINR is used in the comparison.
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Approximation of maximum achievable rate at low SINR [7]: The maximum achievable rate for user

k is
∑Lk

j=1 log(1 +
SINRkj

Γ )

= log
∏Lk

j=1 (1 +
SINRkj

Γ )

≈ log(1 + LkSINRk/Γ),

(12)

whereΓ is the SNR gap to capacity [15, P.432] [16, Chapter 7] due to suboptimal channel coding schemes

and the limitation of circuit implementation in practical systems. According to [15, P.432], the gap is

huge (8.8 dB) for uncoded PAM or QAM operating at10−6 bit error rate. This approximation is also

useful in systems with large numbers of users where the totalinterference power in (4) is large.

Receiver SINR [8] [6]: Assuming that the maximum ratio combining (MRC) is applied to x̂k in (4),

the receiver SINR at the output of the MRC is the sum of individual SINRs asLkSINRk. This metric

is very useful when space-time coding is applied andxk contains the space-time coded symbols. In this

case, the decoding is based on the MRC results [6].

Minimization of the pairwise error probability [7]: When a space-time block code (STBC) is applied

and xk contains the STBC symbols. Assuming that the channel is slowfading and remains constant

during the transmission of a codeword, and that the maximum-likelihood detector is used at the receiver,

one can approximately transform the minimization of the pairwise codeword error probability to the

maximization ofLkSINRk following the steps in [7]. This approximation applies to both the orthogonal

and quasi-orthogonal STBCs.

IV. POWER ALLOCATION

Now we focus on the optimal power allocation strategy for theStep 3 in Table I, where the maximum

SINR beamforming filter banksU(n), V(n+1) and a set of SINR targetsγ1, . . . , γK are given. The

optimization problem corresponding to Problem Pr (5) is

max
P

min
k

SINR
DL
k

γk
subj. to

K
∑

k=1

Lk
∑

j=1

pkj ≤ Pmax. (13)

The other one corresponding to Problem Pp (6) which minimizes the total transmitted power, such that

each individual SINR target can be achieved, is

min
P

K
∑

k=1

Lk
∑

j=1

pkj subj. to min
k

SINR
DL
k

γk
≥ 1, and

K
∑

k=1

Lk
∑

j=1

pkj ≤ Pmax. (14)

We will first explore the structure of the optimal solutions for these problems in Section IV-A. However,

even with this structure which significantly simplifies the problems, the two per-steam power allocation

problems are very complicated and the solutions in [4] [5] donot apply. Thus, we first intensionally

introduce some restrictions to the power allocation strategies to simplify the problems and benefit from

DRAFT



9

the simple power allocation schemes similar to those in [4] [5]. In Section V, the simulation results show

that even without the new per stream power allocation, the performance of [4] [5] can be enhanced by

simply applying the GSINR-FB as the beamformers. This verifies our motivation to use the GSINR-FB.

The results for the simple “grouped” power allocation are presented in Section IV-B. We then remove

the restrictions and present the general per-stream power allocation results in Section IV-C. The insights

to why the proposed algorithms perform better than those in [4] [5] are given in Section IV-D.

A. Optimal SINR balancing structure under GSINR-FB beamforming

By carefully rearranging the complicatedSINR
DL
k to a simpler equivalent form and using the properties

of the GSINR-FB, we prove the following structure for the optimal power allocation which makes solving

the complicated power allocation problems (13) (14) possible.

Proposition 1: For the optimization problem (13), the optimal solutionP makes all users achieve the

same SINR to target ratio, that is,SINR
DL
k /γk = CDL, for all k. HereCDL is the SINR balanced level.

Proof: The vector norms of the beamforming filtersvkj, j = 1...Lk, can be adjusted such that

1) VH
k RDL

n,kVk is a scaled identity matrix [6],

2) trace
(

VH
k Vk

)

= Lk.

When the above two conditions are satisfied, the average SINRof userk in the downlink scenario can

be expressed as

SINR
DL
k =

1

Lk

Lk
∑

j=1

SINRDL
kj =

trace
(

VH
k RDL

s,kVk

)

trace
(

VH
k RDL

n,kVk

) . (15)

ExpandingRs,k andRn,k,

SINR
DL
k =

trace
(

VH
k HH

k UkPkU
H
k HkVk

)

∑

j 6=k

trace
(

VH
k HH

k UjPjU
H
j HkVk

)

+ Lkσ2
. (16)

Sincetrace (XY) = trace (YX) [17], the trace(·) terms can be written as

trace(VH
k HH

k UjPjU
H
j HkVk)

= trace(PjU
H
j HkVkV

H
k HH

k Uj)

=
Lj
∑

l=1

pjl[Ajk]ll,

(17)

whereAjk
∆
= UH

j HkVkV
H
k HH

k Uj and [Ajk]ll denotes thelth diagonal element ofAjk. Therefore, the

average SINR of userk is

SINR
DL
k =

Lk
∑

l=1

pkl[Akk]ll

K
∑

j=1,j 6=k

Lj
∑

l=1

pjl[Ajk]ll + Lkσ2

. (18)
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Observing (18), we know that the maximizer of the optimization problem (13) satisfies

SINR
DL
k

γk
= CDL, 1 ≤ k ≤ K. (19)

The reason is as the following. Since[Ajk]ll > 0, ∀j, k, l, eachSINR
DL
k is strictly monotonically

increasing inpkl and monotonically decreasing inpjl for j 6= k. Thus all users must have the same SINR

to target ratioCDL. Otherwise, the users with higher SINR to target ratios can give some of their power

to the user with the lowest ratio to increase it, which contradicts the optimality.

Following the same steps of the above proof, the SINR balancing structure also exists for Problem Pp

in (14). Now we can solve power allocation problems (13) and (14) with the aid of Proposition 1 which

makes these problem trackable as shown in the following.

B. Simplified Solution: Group Power Allocation

For clarity, we present the simple group power allocation first then the general per-stream power

allocation in the next subsection. The group power allocation intentionally restricts the power allocation

strategy to make the complicated power allocation problem with multiple receiver antennas similar to the

simple one in [18] [4] whereNk = 1. Thus the group power allocation takes the advantage of the spatial

diversity provided by the GSINR-FB based beamforming to improve the performance, while keeping the

complexity moderate.

To be more specific, the allocated power for a user using the group power allocation is evenly distributed

over all streams of that user as

pk1 = pk2 = ... = pkLk
, 1 ≤ k ≤ K. (20)

Let the power allocated to userk be pk. Consequently, the diagonal power allocation matrixPk for user

k can be written as a scaled identity matrix, that is,

Pk =
pk
Lk

ILk
. (21)

We also define a vectorp = [p1, . . . , pK ]T to replace matrixP in the optimization problems. Substituting

Pk = pk

Lk
ILk

into Equation (15), the average SINR in problems (13) and (14) is

SINR
DL
k =

pk

L2
k

∥

∥VH
k HH

k Uk

∥

∥

2

F
∑

j 6=k

pj

LjLk

∥

∥VH
k HH

k Uj

∥

∥

2

F
+ σ2

. (22)

With the “grouped” constraint on the power allocation strategy (21), the simplified average SINR (22) for

Nk > 1 has the same structure as that in [18] [4] whereNk = 1. Thus the solutions of this simplified group

power allocation for Problems Pr and Pp can be easily obtained. These solutions are briefly presented in

the following subsections. The overall optimization algorithms are also summarized at the end of each

subsection.
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Group Power Allocation for Problem Pr: With the SINR balancing structure from the GSINR-FB

beamforming in Proposition 1, the group power allocation for Problem Pr (13) can be solved by a simple

eigensystem as

Υp̃ =
1

CDL
p̃, (23)

where the extended coupling matrixΥ and the extended power vectorp̃ are defined as

Υ =

[

DΨ Dσ
1

Pmax
1TDΨ 1

Pmax
1TDσ

]

and

[

p

1

]

, (24)

respectively, where

D = diag

{

L2
1γ1

∥

∥VH
1 HH

1 U1

∥

∥

2

F

, ...,
L2
KγK

∥

∥VH
KHH

KUK

∥

∥

2

F

}

(25)

and theijth element of theK ×K matrix Ψ is zero whenj = i or ‖VH
i HH

i Uj‖
2

F

LiLj
whenj 6= i.

By using Proposition 1 and the simplified average SINR (22) in(13), the rest of the proof of the

previous results is similar to those in [18] [4] and omitted.With (9) and (23), we summarize the final

optimization algorithm for Problem Pr in Table II, which iteratively calculates the optimal beamforming

filter and power allocation vector between the downlink and the uplink, whereeig means the generalized

eigenvalue solver. Due to the uplink-downlink duality described in Section II-D, it is guaranteed that the

uplink balanced levelCUL equals to the downlink balanced levelCDL.

Group Power Allocation for Problem Pp: Again, with Proposition 1, the minimizer of (14) satisfies

SINR
DL
k = γk, 1 ≤ k ≤ K. (26)

Substituting (26) into (22), the resulting power allocation vector is

p = (I −DΨ)−1Dσ. (27)

The optimalq for the virtual uplink can be obtained similarly. The overall algorithm for Problem Pp is

summarized in Table III which iteratively finds the optimal solution minimizing the required power.

Note that (27) does not necessarily have a solution with nonnegative elements. When there exists at

least one nonnegative power allocation satisfying the target SINR constraints and total power constraint

Pmax in (14), we call the system feasible. Depending on the channel conditions, the total power required

to achieve the target SINRs could be quite large and exceedPmax. For the purpose of studying the effects

of the algorithms on the system feasibility, we use the sum power allocation algorithm in Table II with

a largePmax (43 dBm) to check the feasibility as in [4], [5]. In checking the feasibility, as soon as

the balanced level becomes larger than 1 (which means that a feasible solution can be obtained), the

algorithm switches to the power minimization steps. On the other hand, if the balanced level remains

below 1 when the feasibility testing stage ends, the feasibility test fails and the power minimization

algorithm stops. In practical applications, when the system is infeasible, one must relax the constraints

by reducing the number of usersK or decreasing the target SINR.
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C. General Solution - Per Stream Power Allocation

Now we remove the restriction of evenly distributing power in a group in Section IV-B. The performance

is expected to be further improved since the group power allocation is a subset of the per stream power

allocation. The general power allocation solutions presented in this subsection are much more complicated

than the results in [4] [5]. The overall optimization algorithms for Problems Pp and Pr are also summarized

at the end of each subsection.

Per Stream Power Allocation for Problem Pp: The power minimization problem using the result of

Proposition 1 becomes

min
p

K
∑

k=1

Lk
∑

j=1

pkj s.t.

K
∑

k=1

Lk
∑

j=1

pkj ≤ Pmax and SINR
DL
k = γk, 1 ≤ k ≤ K. (28)

With the equivalent SINR expression in (18), we will show that (28) can be elegantly recast as a well-

known linear-programming problem. We first recall that the average SINR of userk (18) is

SINR
DL
k =

Lk
∑

l=1

pkl[Akk]ll

K
∑

j=1,j 6=k

Lj
∑

l=1

pjl[Ajk]ll + Lkσ2

. (29)

Substituting (29) into (28), the original power minimization problem turns into a linear programming

problem, that is,
min 1Tp

s.t.
Lk
∑

l=1

pkl[Akk]ll/γk −
K
∑

j=1,j 6=k

Lj
∑

l=1

pjl[Ajk]ll = Lkσ
2

for k = 1, ...,K, and p ≥e 0,

(30)

wherep represents the vector comprising the diagonal elements ofP as in Section IV-B. It is known

that a linear programming problem can be solved in polynomial time using, for example, the ellipsoid

method or the interior point method [19].

Table IV summarizes the proposed iterative algorithm with group maximum SINR beamforming and

per stream power allocation. The virtual uplink power allocation problem can be similarly solved as

(30) with Ajk replaced byBjk
∆
= VH

j HH
j UkU

H
k HjVj . Like the group power minimization algorithm

in Table III, the feasibility of this algorithm should also be checked using the per stream sum power

allocation which is described in the next subsection.

Per Stream Power Allocation for Problem Pr : With a fixed beamforming matrixU, a fixed receive

filter V, and a total power constraint, the optimization problem obtained by applying Proposition 1 in

(13) is
max

p
CDL

s.t. CDL = SINRDL
k

γk
, k = 1, ...,K

and
K
∑

k=1

Lk
∑

j=1
pkj = Pmax,

(31)
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whereSINR
DL
k is rearranged in form (29).

The optimal power allocation vector for this complicated problem is difficult to obtain, thus we consider

a suboptimal solution which can be found by simple iterativealgorithms. First, using the concept of

waterfilling, we fix the proportion of the power of data streams in each group according to the equivalent

channel gains. That is, let

pk1 : pk2 : . . . : pkLk
= [Akk]11 : [Akk]22 : . . . : [Akk]LkLk

,

for k = 1, . . . ,K.
(32)

Therefore, theLk variablespk1, . . . , pkLk
can be reduced to one variabletk such thatpkl = tk [Akk]ll /

Lk
∑

i=1
[Akk]ii

for eachl, and
Lk
∑

l=1

pkl = tk. The SINR for userk in Equation (29) can be rewritten as

SINR
DL
k =

tk

(

Lk
∑

l=1

[Akk]
2
ll/

Lk
∑

i=1
[Akk]ii

)

∑

j 6=k

tj

(

Lj
∑

l=1

[Ajj]ll [Ajk]ll /
Lj
∑

i=1
[Ajj]ii

)

+ Lkσ2

(33)

=
tkgkk

∑

j 6=k

tjgjk + Lkσ2
, (34)

with
K
∑

k=1

tk =
K
∑

k=1

Lk
∑

l=1

pkl = Pmax.

We then solve problem (31) with concepts similar to the sum power iterative water-filling algorithm

proposed in [20]. Thenth iteration of the algorithm is described in the following.Note that this problem

has a similar form as (13), thus the balanced levels, defined as SINRk/γk, of all users must be equal

according to Proposition 1. At each iteration step, we generate a new effective level gain for each user

based on the power of other users from the previous steptoj , j 6= k as

Gk =
gkk/γk

∑

j 6=k

tojgjk + Lkσ2
, (35)

for k = 1, . . . ,K. The K power variablestks are simultaneously updated subject to a sum power

constraint. In order to maintain an equal level, we allocatethe new power proportionally to the inverse

of the level gain of each user as

tk =
Pmax

Gk

K
∑

j=1

1
Gj

. (36)

Note that when updatingtk, the power variables of other users are treated as constantsand tk > 0.

Similarly, for the virtual uplink, we denote the power variable for userk assk and the effective level

gain for userk asHk. The proposed algorithm for the overall problem Pr is summarized in Table V.
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D. Insights to the performance advantage of the proposed approaches

The insights to why the proposed approaches outperform those in [5] [4] are discussed as follows. First,

under the same power allocation matrixP in (5) and (6), the GSINR-FB will perform better than the

beamformers in [5]. This is because the streams of each user cooperate with one another in our scheme

rather than interfere with one another as in [5]. The mathematical validation was given in Section III-A.

Indeed, as shown in [6, Section III], the GSINR-FB includes the minimum mean-squared error (MMSE)

filter used in [4] [5] as a special case (without cooperation). Thus the GSINR-FB should have a better

performance. As for the power allocation part, note that oursub-optimal group power allocation has a

formulation similar to that of the power allocation methodsin [4] [5]. Thus they should be similar in terms

of optimality. Our more complicated per-stream power allocation includes the group power allocation as

special case. Therefore it should perform better than the group power allocation and the power allocation

methods in [4] [5].

Finally, we note that we have no proof whether our iterative algorithms converge to the global optimum

or merely local optima. However, as shown by the simulation in the next section, the local optima still

result in much better performance than [4] [5].

V. SIMULATION RESULTS

In this section we provide some numerical results to illustrate the advantages of the proposed algorithms

over [5] and the simple BD methods [3]. The design concept of the BD transmit beamformer is to remove

the inter-user interference in (3) completely. A BD beamformer can be found whenM >
∑K

i=1,i 6=k Ni,∀k.

To solve Problems Pr and Pp in (5) and (6), respectively, and to maximize the average SINR of the worst

user, we also apply the GSINR-FB as the receive beamformers for the BD cases. Note that this paper

focuses on the QoS of individual users, where the average SINR serves as a metric of QoS. For the BD

cases, the conventional BD receive beamformer design is more for the purpose of sum rate maximization

(with waterfilling power allocation), which usually does not maximize the SINR of the worst user. Thanks

to Proposition 1, the corresponding power allocations can be derived similarly to those in Section IV-B and

the details are omitted here. We also consider both the groupand per stream power allocation strategies

for BD, named “group BD” and “per stream BD”, respectively.

For the system simulation parameters, the channel matrixHH is assumed flat Rayleigh faded with

independent and identically distributed (i.i.d.) complex Gaussian elements with zero mean and unit

variance. The noise is white Gaussian with variance 1 W. The transmitter is assumed to have perfect

knowledge of the channel matrixHH , and each user knows its own equivalent channels as discussed

in Section II-D. Since typically the transmitter has more antennas than the receivers, we set the number

of streamsLk equal to the number of receive antennasNk for userk. Without loss of generality, we

assume a common SINR constraintγ for all users, i.e.,γk = γ for all k. In the following simulation,

we generate 1000 channel realizations and average the performance. The convergence criterionǫ of the

iterative algorithms is set to10−3.
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Fig. 2 shows the simulation results of the balanced levelCDL versus total powerPmax for Problem

Pr, whereCDL is defined as in Proposition 1. The two proposed algorithms inTable II and Table V

are compared with the method proposed in [5] and BD. Note thatin [5], the data streams are processed

separately and the balanced levels are the same for all streams. With a common SINR constraintγ to

be satisfied by all streams, the per-stream balanced level defined in [5] gives the same value as the

balanced levelCDL defined in Proposition 1. So the comparison ofCDL is fair in Fig. 2. The simulation

parameters are:K = 4 users,M = 8 transmit antennas, each user has 2 receive antennas and 2 streams

(Nk = Lk = 2, ∀k), and the SINR constraintγ = 1. For each channel realization, all the three algorithms

run until convergence but for at most 50 iterations. For faircomparison, only the cases where all the

three algorithms have converged within 50 iterations are considered in averaging the performance. We

will discuss the convergence probabilities later. It can beseen that the proposed group power allocation

achieves higher balanced levels than the method in [5] at thepositive SINR region. The proposed per

stream power allocation further outperforms group power allocation. Similarly, the per stream BD achieves

higher balanced levels than the group BD since the group BD isa special case of the per stream BD.

Note that the BD schemes perform better when the total available powerPmax is high and perform

worse when the available power is low, since BD is a zero-forcing method which suffers from the noise

enhancement problem at lowPmax. When extremely large power is available, BD will perform close to

the proposed methods. However, the operating region where this phenomenon is obvious needs a much

higher power than our setting in Fig. 2. We do not show the simulation results in this region since it is

less practical.

In Fig. 3, we plot the minimum total required powerPmin versus SINR constraintγ for Problem Pp.

Simulation parameters areK = 2 users,M = 8 transmit antennas, and each user hasNk = 4 receive

antennas andLk = 4 streams. Again, for the method in [5], a common SINR targetγ has to be achieved

by all streams. Thus it has the same average SINR targetγ for each user as the other algorithms. For each

channel realization, all algorithms first perform feasibility test using a largePmax = 43 dBm. Feasibility

test for the method in [5] can be done similarly as the proposed algorithms. As soon as the feasibility test

passes, the corresponding algorithm switches to the power minimization steps and runs until convergence

but for at most 50 iterations. Feasibility test for BD can be done trivially. Only the cases where all the

algorithms have passed the feasibility test, and convergedwithin 50 iterations, are considered in averaging

the performance. Again, we will defer the discussions for the infeasible cases and the convergence issues

later. As shown in the figure, the proposed group power allocation performs better than the method in

[5] at high SINR. However, at low SINR it requires more power.This is because group power allocation

suffers for the fact that it cannot adjust the power within a group as the method in [5]. At low SINR,

the interference is larger and the method in [5] can adjust the power within a group to better deal with

the interference. On the other hand, the proposed per streampower allocation performs better than the

other algorithms at both high and low SINR. Similar to Fig. 2,the BD methods perform better than the
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method in [5] at high SINR, but are worse than the proposed methods in all cases presented. The results

at extremely high power, where the performances of BD and theproposed methods are close, are not

shown due to the same reason discussed before.

We also present the sum rate comparison in Fig. 4 where the balanced levels of all users are the same

(as in Fig. 2) as an indication of the QoS guaranteed and the fairness achieved. The simulation parameters

are the same as in Fig. 2. Note that the sum rates of both BD methods are worse than the method in

[5], while their balanced levels cross over that of [5] in Fig. 2. This is because under the same average

SINR, the method in [5] will make all streams of a user have equal SINR and achieve the highest sum

rate due to the concavity of thelog function. Thus when a scheme’s balanced level advantage over the

method in [5] is not significant enough (e.g., the BD schemes), its sum rate may be lower than that of

[5]. We emphasis again that our algorithms focus on the QoS (average SINR) of individual users. Our

problem formulations are fundamentally different from those focusing on sum rate optimization and not

guaranteeing the QoS.

Now we show the feasibility and convergence properties of the proposed algorithms. In the above

simulation setting, the number of transmit antennasM is equal to the total number of data streams of

all users
∑K

k=1 Lk (also equal to the total number of receive antennas
∑K

k=1Nk). We further consider

the cases whereM <
∑K

k=1 Lk by increasing the number of usersK. That is, for Problem Pp,K = 3,

M = 8, andNk = Lk = 4,∀k; while for Problem Pr,K = 5, M = 8, Nk = Lk = 2,∀k. We name

these cases as Case 2 and the settings for Fig. 2 and 3 as Case 1.Note that typically the system will

perform scheduling [21] whenM <
∑K

k=1 Lk, that is, it uses time-division multiple access (TDMA) to

schedule a number of users such thatM =
∑K

k=1 Lk each time. Thus the simulation results of Case 1

represent the performance of fully loaded systems and thoseof Case 2 well represent the performance

of over-loaded systems.

First we discuss the feasibility issues. From the simulations of Case 1, we observed that the proposed

algorithms and the method in [5] passed the feasibility testfor almost all channel realizations. Intuitively,

group power allocation is more feasible than the method in [5] because the average, instead of per

stream, SINR constraints are easier to be achieved, and theymake Equation (27) better conditioned than

the corresponding equation in [5]. Thus nonnegative solutions of (27) are easier to be found. In addition,

since the group power allocation is a special case of the per stream power allocation with equal power

distribution among the streams of a user, the per stream power allocation method should be even more

feasible. As an example, when a high target SINR (γ = 12 dB) is desired, simulation shows that the

probabilities of feasibility for the group power allocation, the per stream power allocation, the method

in [5], group BD and per stream BD are 99%, 100%, 67%, 100%, and100%, respectively. For Case

2, the system can only support lower target SINR and the probabilities of feasibility for the above five

algorithms whenγ = 3 dB are 100%, 100%, 0%, 0%, and 0%, respectively. Note that forCase 2, the

BD based methods can not be applied sinceM is not large enough.
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As for the insights to the convergence behavior, typically each optimization step improves its objective

function as outlined in Section II-D. The beamforming step maximizes each user’s sum SINR of the

data streams and the power allocation step optimizes the balanced level. As an example, in Fig. 5, we

plot the balanced levels versus iteration times of the two proposed algorithms for Problem Pr under the

same channel conditions. The total power constraint is set to 15 dBm, and the SINR constraintγ = 1.

The arrows point at the numbers of iterations where the algorithms meet the convergence criteria. From

the figure, the two proposed algorithms typically do not oscillate often and exhibit smooth transient

behaviors. We also observe that the convergence behavior ofthe group power allocation is slightly better

than that of the per stream power allocation, i.e., the per stream power allocation is not as smooth as

the group power allocation and needs more iterations to approach the balanced level. The reason why

the per stream power allocation has worse convergence behavior is that after a power allocation step, the

noise whitening property obtained by the previous maximum SINR filter bank may no longer be valid,

that is,VH
k RDL

n,kVk may no longer be a scaled identity matrix. This effect may decrease the balanced

level. However, in most cases this negative effect has a small impact on the eventual performance. Table

VII lists the iteration times needed to converge for both problems. From these results, we can see that all

three methods need more iterations to converge in Case 2. Note that for Problem Pp, the target SINRsγ

for Case 2 are smaller than those of Case 1 since the method in [5] is not feasible forγ ≥ 3 dB. Also,

the method in [5] needs significantly more iterations whenγ = 2 dB.

Fig. 6 shows the probabilities of the proposed algorithms and the method in [5] converging within 50

iterations given that they have passed the feasibility test, for the power minimization problem in Case 1

(settings of Fig. 3). We can see that the group power allocation and the method in [5] both exhibit good

convergence probabilities while the per stream power allocation converges better at low SINR than at high

SINR. The reason for the lower convergence probability of the per stream power allocation is that the

linear programming makes the algorithm prone to oscillation between feasible solutions from iteration

to iteration. In practice, as long as the solution is a nonnegative power vector, the SINR constraints

are achieved, no matter the algorithm oscillates or not. Moreover, even when the per stream power

allocation oscillates at the final iterations, typically the SINRs are still higher than that of the group

power allocation. So one can simply pick the solution at the final iteration and still obtain a better

performance. The other way is to avoid oscillation by switching to the group power allocation whenever

the per stream power allocation algorithm oscillates. The performance of this combined algorithm should

be between the performance of the per stream power allocation and the group power allocation. Fig. 7

shows the convergence probability for Problem Pp in Case 2. Since the method in [5] is not feasible when

SINR constraint forγ ≥ 3 dB, we only plot forγ < 3 dB. The group power allocation still converges

almost surely in this overloaded case.
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VI. COMPUTATIONAL COMPLEXITY

In Table VI, we compare the computational complexity in one iteration based on the number of complex

multiplications. From this table, one can see that there is no single step which dominates the complexity

for each algorithm, so we list all of them for comparison. Foreach optimization step, the complexity of

group power allocation (Table II) or power minimization (Table III) is lower than that of the method in

[5], and we have shown in Section V that the performances of the proposed methods are also superior.

The reason for the complexity saving of the group power allocation method is due to the fact that the

method in [5] processes the streams separately (matrix dimensionL), while the group power allocation

processes the streams of a user jointly (matrix dimensionK, K < L). For the per stream algorithms

(Table V and IV), the complexity of power allocation is at most slightly higher than that of the method

in [5], but the performance is much better.

In addition to the computational complexity in one iteration, the average number of iterations needed for

convergence also affects the system complexity. The average numbers of iterations for the three algorithms

in the simulation settings of Fig. 3 and Fig. 2 are shown in Table VII (for the power minimization Problem

Pp, the average number of iterations needed by the feasibility test is included). This table shows that

the group power allocation method has the fastest convergence among the three algorithms, while the

per stream power allocation has the slowest convergence. Compared to the method in [5], the group

power allocation has a lower computational complexity, converges faster and performs better. If more

complicated computation is allowed, the per stream power allocation exhibits even better performance.

As for the BD algorithms used in this paper, the computation of the zero-forcing transmit beamformers

has approximately the same complexity as that of the “uplinkbeamforming” step of Group (Pr) in Table

VI; while the complexity for receiver beamformers is approximately the same as that of “downlink

beamforming” step of Group (Pr). The complexity of the powerallocation steps is negligible compared

with those of the beamformers. Since the BD algorithms do notneed iterations, they are not listed in the

comparisons in Tables VI and VII (nor in Fig. 6).

VII. C ONCLUSION

Efficient solutions to the joint transmit-receive beamforming and power allocation under average SINR

constraints in the multi-user MIMO downlink systems were proposed. The beamforming filter is a GSINR-

FB which exploits the intra-group cooperation of grouped data streams. Due to this selection, the SINR

balancing structure of optimal power allocation holds and simplifies the computation. Based on the

uplink-downlink duality, we formulated the dual problem inthe virtual uplink, and iteratively solved the

optimal beamforming filters and power allocation matrices.The proposed algorithms are generalizations

of the one in [4] to the scenario with multiple receive antennas per user, and exploit the receiver diversity

more effectively than [5]. Simulation results demonstrated the superiority of the proposed algorithms over

methods based on independent data stream processing [5] andBD in terms of performance. Moreover,

the computational complexities of the proposed methods arecomparable with that of [5].
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TABLE I

BASIC STEPS OF THEnTH ITERATION

1: First Downlink Power Allocation

FixedU(n) andV(n), find newP(2n+1)

2: Downlink Receive Maximum SINR Beamforming

FixedP(2n+1) andU(n), find newV(n+1)

3: Second Downlink Power Allocation

FixedU(n) andV(n+1), find newP(2n+2)

4: First Virtual Uplink Power Allocation

FixedV(n+1) andU(n), find newQ(2n+1)

5: Virtual Uplink Receive Maximum SINR Beamforming

FixedQ(2n+1) andV(n+1), find newU(n+1)

6: Second Virtual Uplink Power Allocation

FixedU(n+1) andV(n+1), find newQ(2n+2).
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TABLE II

ITERATIVE ALGORITHM FOR PROBLEM PR WITH GROUP POWER ALLOCATION

Initialization: U = I,V = I

Iteration:

1: First Downlink Power Allocation with Sum Power Constraint

Solvep in Υ





p

1



 = 1
CDL





p

1





2: Downlink Receive Maximum SINR Beamforming

for k = 1 : K

Vk = eig(RDL
s,k,R

DL
n,k)

3: Second Downlink Power Allocation with Sum Power Constraint

Solvep in Υ





p

1



 = 1
CDL





p

1





4: First Virtual Uplink Power Allocation with Sum Power Constraint

Solveq in Λ





q

1



 = 1
CUL





q

1





5: Virtual Uplink Receive Maximum SINR Beamforming

for k = 1 : K

Uk = eig(RUL
s,k,R

UL
n,k)

6: Second Virtual Uplink Power Allocation with Sum Power Constraint

Solveq in Λ





q

1



 = 1
CUL





q

1





7: Repeat steps 1-6 until convergence, i.e., |CDL(n) −CDL(n−1)| < ǫ
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TABLE III

ITERATIVE ALGORITHM FOR PROBLEM PP WITH GROUP POWER ALLOCATION

Initialization: Feasibility test using the algorithm in Table II , if failurethen exit.

Iteration:

1: First Downlink Power Minimization

p = (I−DΨ)−1Dσ

2: Downlink Receive Maximum SINR Beamforming

for k = 1 : K

Vk = eig(RDL
s,k,R

DL
n,k)

3: Second Downlink Power Minimization

p = (I−DΨ)−1Dσ

4: First Virtual Uplink Power Minimization

q = (I−DΨT )−1Dσ

5: Virtual Uplink Receive Maximum SINR Beamforming

for k = 1 : K

Uk = eig(RUL
s,k,R

UL
n,k)

6: Second Virtual Uplink Power Minimization

q = (I−DΨT )−1Dσ

7: Repeat steps 1-6 until convergence, i.e., |CDL − 1| < ǫ
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TABLE IV

ITERATIVE ALGORITHM FOR PROBLEM PP WITH PER STREAM POWER ALLOCATION

Initialization: Feasibility test using the algorithm in Table V , if failure then exit.

Iteration:

1: First Downlink Power Minimization

Solvep in the linear programming problem:

min 1Tp

s.t.
Lk
∑

l=1

pkl[Akk]ll/γk −
K
∑

j=1,j 6=k

Lj
∑

l=1

pjl[Ajk]ll = Lkσ
2,

for k = 1, ..., K, and p ≥e 0

2: Downlink Receive Maximum SINR Beamforming

for k = 1 : K

Vk = eig(RDL
s,k,R

DL
n,k)

3: Second Downlink Power Minimization

Solvep in the linear programming problem:

min 1Tp

s.t.
Lk
∑

l=1

pkl[Akk]ll/γk −
K
∑

j=1,j 6=k

Lj
∑

l=1

pjl[ajk]ll = Lkσ
2,

for k = 1, ..., K, and p ≥e 0

4: First Virtual Uplink Power Minimization

Solveq in the linear programming problem:

min 1Tq

s.t.
Lk
∑

l=1

qkl[Bkk]ll/γk −
K
∑

j=1,j 6=k

Lj
∑

l=1

qjl[Bkj ]ll = Lkσ
2,

for k = 1, ..., K, and q ≥e 0

5: Virtual Uplink Receive Maximum SINR Beamforming

for k = 1 : K

Uk = eig(RUL
s,k,R

UL
n,k)

6: Second Virtual Uplink Power Minimization

Solveq in the linear programming problem:

min 1Tq

s.t.
Lk
∑

l=1

qkl[Bkk]ll/γk −
K
∑

j=1,j 6=k

Lj
∑

l=1

qjl[Bkj ]ll = Lkσ
2,

for k = 1, ..., K, and q ≥e 0

7: Repeat steps 1-6 until convergence, i.e., |CDL − 1| < ǫ
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TABLE V

ITERATIVE ALGORITHM FOR PROBLEM PR WITH PER STREAM POWER ALLOCATION

Initialization: U = I,V = I

Iteration:

1: First Downlink Power Allocation with Sum Power Constraint

t
(2n+1)
k = Pmax

G
(2n)
k

K∑

j=1

1

G
(2n)
j

, whereG(2n)
k = gkk/γk

∑

j 6=k

t
(2n)
j

gjk+Lkσ
2

.

2: Downlink Receive Maximum SINR Beamforming

for k = 1 : K

Vk = eig(RDL
s,k,R

DL
n,k)

3: Second Downlink Power Allocation with Sum Power Constraint

t
(2n+2)
k = Pmax

G
(2n+1)
k

K∑

j=1

1

G
(2n+1)
j

, whereG(2n+1)
k = gkk/γk

∑

j 6=k

t
(2n+1)
j

gjk+Lkσ2
.

4: First Virtual Uplink Power Allocation with Sum Power Constraint

s
(2n+1)
k = Pmax

H
(2n)
k

K∑

j=1

1

H
(2n)
j

, whereH(2n)
k = hkk/γk

∑

j 6=k

s
(2n)
j

hjk+Lkσ
2

.

5: Virtual Uplink Receive Maximum SINR Beamforming

for k = 1 : K

Uk = eig(RUL
s,k,R

UL
n,k)

6: Second Virtual Uplink Power Allocation with Sum Power Constraint

s
(2n+2)
k = Pmax

H
(2n+1)
k

K∑

j=1

1

H
(2n+1)
j

, whereH(2n+1)
k = hkk/γk

∑

j 6=k

s
(2n+1)
j

hjk+Lkσ
2

.

7: Repeat steps 1-6 until convergence, i.e., |CDL(n) − CDL(n−1)| < ǫ

TABLE VI

COMPLEXITIES OF THE OPTIMIZATION STEPS IN ONE ITERATION

Uplink

Beamforming

Uplink Power

Allocation

Downlink

Beamforming

Downlink

Power

Allocation

Group (Pr) O(KM3) O((K + 1)3) O(
∑K

k=1 L
3
k) O((K + 1)3)

Group (Pp) O(KM3) O(K3) O(
∑K

k=1 L
3
k) O(K3)

Per Stream (Pr) O(KM3) O(
∑K

k=1 L
2
kM) O(

∑K
k=1 L

3
k) O(

∑K
k=1 L

2
kM)

Per Stream (Pp) O(KM3) O(L3.5) O(
∑K

k=1 L
3
k) O(L3.5)

Khachan’s (Pr) O(LM3) O(L3) O(
∑K

k=1 L
4
k) O(L3)

Khachan’s (Pp) O(LM3) O(L3) O(
∑K

k=1 L
4
k) O(L3)
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TABLE VII

AVERAGE NUMBERS OF ITERATIONS NEEDED FOR CONVERGENCE

Case 1 (Fully loaded)

Problem Pp Problem Pr

SINR constraint (γ) 2 4 6 Pmax(dB) 10 12 14

Group 9.6500 10.7200 11.7200 12.359 12.608 12.558

Khachan’s 15.3720 17.7600 21.7200 13.857 13.316 13.382

Per Stream 25.7861 26.1097 30.2598 15.475 14.871 13.906

Case 2 (Over loaded)

Problem Pp Problem Pr

SINR constraint (γ) -2 0 2 Pmax(dB) 10 12 14

Group 10.41 11.88 14.96 15.43 17.37 20.31

Khachan’s 16.63 22.97 40.93 14.11 14.58 15.72

Per Stream 25.78 26.10 30.25 17.53 18.3 17.04
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Fig. 1. MIMO downlink system model for userk and its virtual uplink.
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Fig. 5. Convergence behaviors of the proposed algorithms for Problem Pr in Case 1 (fully loaded) and Case 2 (over loaded).

The arrows point at the numbers of iterations where the algorithms meet the convergence criteria.
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Fig. 6. Comparison of the convergence probabilities for Problem Pp in Case 1 (fully loaded):K = 2, M = 8, Nk = 4, ∀k.
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