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Abstract

In this paper we aim to solve the multiuser multi-input multitput (MIMO) downlink beamforming
problem where one multi-antenna base station broadcatistdamany users. Each user is assigned
multiple data streams and has multiple antennas at itsvecéifficient solutions to the joint transmit-
receive beamforming and power allocation problem basedevative methods are proposed. We adopt
the group maximum signal-to-interference-plus-noid&IEINR) filter bank (GSINR-FB) as our beam-
former which exploits receiver diversity through coopematetween the data streams of a user. The data
streams for each user are subject to an average SINR constraich has many important applications
in wireless communication systems and serves as a goodcrtetmeasure the quality of service (QoS).
The GSINR-FB also optimizes the average SINR of its outpasdsl on the GSINR-FB beamformer, we
find an SINR balancing structure for optimal power allocatiwhich simplifies the complicated power
allocation problem to a linear one. Simulation results fyetthe superiority of the proposed algorithms
over previous works with approximately the same complexity
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. INTRODUCTION

In this paper, the joint beamforming and power allocatiotirojzation problem for the multiuser
multi-input multi-output (MIMO) downlink channel is cordgred. In this system, transmit and receive
beamformings are used to suppress the multiuser intederand exploit the multi-antenna diversity.
Power allocation at the transmitter is performed to effitjentilize the available transmission power.
Such a joint beamforming and power allocation problem hanlsudied by many researchdrs [L]-[5].
In [2] [B], block diagonalization (BD) was proposed to blediagonalize the overall channel so that
the multiuser interference at each receiver is thorouglityieated. Such a zero-forcing approach suffers
from the noise enhancement problem, because it removesutieiser interference by ignoring the noise.
Hence the performance can be improved if the balance betwedtiuser interference suppression and
noise enhancement can be fouhd [4] [5].

Under individual signal-to-interference-plus-noiséaa(SINR) constraints for users, Schubert and
Boche studied the situation where each user has only onesttetem andingle receive antenna [4]. It
was shown that the optimal solution can be efficiently fougdterative algorithms. Khachaer al. [5]
generalized the scheme in| [4] to allow several transmisbieams to be grouped to serve a user, and
each user has multiple receiver antennas [5]. However, @atzhstream is processed separately. Thus, in
addition to the multiuser interference from the other ustirsre is intra-group interference between the
data streams of a user. This drawback motivates our worké@usore sophisticated receiver processing
to tackle the intra-group interference.

In this work, we adopt the group maximum SINR filter bank (GBHRB) proposed by([6] as the
beamformer, which collects the desired signal energy insiheams of each user and maximize the
total SINR at its output. That is, the GSINR-FB lets theseatis cooperate while the filters inl [5]
let them compete. Based on the GSINR-FB beamformer, we @enai system which uses the average
SINR over data streams for a user as a metric to measure thigyepieservice (QoS). This criterion is
very useful in many communication scenarids [6]-[8] indhgdthe celebrated space-time block coded
systems. It will be shown that the GSINR-FB based beamfordoes improve the performance over
the scheme in[]5]. Moreover, we find that the SINR balancirgcstire exists for this beamforming
method, that is, the optimal power allocation results in shene SINR to target ratio for all users with
the GSINR-FB based beamforming. As will be shown later, ghigperty makes solving the complicated
power allocation problem much easier. Our work can be seenram-trivial generalization of [4] to the
multi-antenna setting which also subsumes [5] as a spea&# ¢with independent processing of data
streams). For simplicity, we will first consider group powvalocation which restricts equal power on
the data streams of each user to benefits from the low-coiityleswer allocation schemes similar to
those in [4] [5]. This restriction is later relaxed by allawgi the power of individual data streams to be
adjustable. Besides the GSINR-FB based beamforming, thistpeam power allocation scheme is new
compared with[[4]([5] and has better performance than thegpower allocation. These two techniques
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are the key ingredients to make our performance better thaiin [5]. With approximately the same
complexity as([5], our approach exhibits a better perforoeacompared to the existing methods [in [5]
and the BD based methods.

We will investigate two optimization problems. One is miiging the total transmitted power while
satisfying a set of average SINR targets. The other is makigithe achieved average SINR to target
ratio under a total power constraint. Based on the uplinksdimk duality [9], our methods iteratively
calculate the GSINR-FB based beamforming and power altwtanhatrices. The rest of the paper is
organized as follows. The system model and problem fornauaire introduced in Sectidnl Il. We also
briefly discuss the basic design concept of our iterativerélygns in this section. Backgrounds such as
the GSINR-FB based beamformers and the applications of ibmge SINR criterion are provided in
Sectiorll. Sectiom IV presents our power allocation resulhe numerical results are given in Section
[Vl and the computational complexity issues are discuss&eation V]. Finally, we give the conclusion
in VIT]

[I. PROBLEM FORMULATION AND EFFICIENT ITERATIVE SOLUTIONS

A. Notations

In this paper, vectors and matrices are denoted in bold{fager and upper cases, respectively. For
vectorg, g >. 0 means that every elementgfis nonnegative. For matri&, trace(G) denotes the trace;
GT and G denote the transpose and Hermitian operations, resplyctjié,. denotes the Frobenius
norm, which is defined a$G| . = |/trace (GG). G;! and |G| are, respectively, the inverse and
determinant of a square matri&,. And I,, denotes the identity matrix of dimension A diagonal
matrix is denotediiag{...} whosekth parameter is théth diagonal term in the matrixt|-] denotes
the expectation operator.

B. System Model

Consider the downlink scenario withi users, where a base station is equipped Withantennas. The
upper part of Figl 11 shows the overall system block diagranuéerk, who hasN,, receive antennas and
receivesL; data streams, wherg; satisfies the constraint;, < min {M, N} to make sure effective
recovery of the data streams at the receiver. Thusihesers have a total oV = 5| N, receive
antennas receiving a total df = fo:lLk grouped data streams. For a given symbol time, the data
streams intended for usérare denoted by a vector of symbotg = [z41, 742, ..., 711, )T - The L data
streams are concatenated in a veotor [x7,...,x%|T. Without loss of generality, we assume that
is zero mean with covariance matrbg. The precodeiU, ¢ CM*Ir processes usér's data streams
before they are transmitted over tfié antennas. These individual precoders together formMhe L
global transmitter beamforming matri¥ = [U;, Uy, ..., Ug]. The power allocation matrix for uséris
a diagonal matrix

Py, = diag{pk1,pk2; -, PkLy } 1)
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wherepy,; is the power allocated to thgh data stream of uséfr, and the global power allocation matrix
P = diag{P1,Ps,...,Px} 2)

is a block diagonal matrix of dimensiah x L. The transmitter broadcasts sign&fs/Px to all of the
K users.
Userk receives a lengttiVy, vectory; = HkHU\/fx, which can be expanded as

K
yi = B Up/Pixy + HY Z U;jvP;x; | +ng, (3)
i#ki=1

where the channel between the transmitter and ksisrrepresented by th&/, x M matrix HkH the
Hermitian ofHy; n; represents the zero-mean additive white Gaussian nois&()/\at userk’s receive
antennas with variane€’ per antenna and the covariance maffin,n’| = oI, . The resultingV x M
global channel matrix iF17, with H = [Hy, Ho, ..., Hx]. We assume that the transmitter has perfect
knowledge of the channel matrid, and receiverk knows its H, perfectly. The second term on the
right-hand-side of[(3) is the inter-group multiple useeifiérence for usek. To estimate its;,, symbols
X, Userk processeg, with its L x N, receive beamforming matri¥ . The resulting estimated signal
vector is

%r = VIHIUVPx + Vin,

K
= VIHU,/Pix + VIH] [ > U;/Pix; | + Ving. (4)
J#k.j=1

Without loss of generality, as$ [[6], we assume that the ieterice-plus-noise components of the filter
bank output in[(#) are uncorrelated. For any filter bank thatipces correlated components, one can
easily find another filter bank which makes these componertdruelated but with the same performance.
The details can be found ial[6].

Finally, owing to the non-cooperative nature between uselwoadcast channels, the global receiver
beamforming filterV#, formed by collecting the individual receiver filters, is Itk diagonal matrix
of dimensionL x N whereV = diag{[V1,Va,..., Vk|}.

C. Problem Formulation

In this paper, we consider the average SINR of useover all its L, data streamsSINR; =
Zf;l SINRy; /Ly as the performance measure, wh8Ii&R; is the SINR of the jth data stream of
userk. The importance and applications of this design criteridlhlve reviewed in detail later in Section
[M-B] Based on the average SINR constraints and system hamseribed in Sectioh 1[1B, we consider
two problems as follows. The first optimization problem, @hiwill be referred to as Problem Pr in the
following sections is
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Problem Pr: Given a total power constraiiit,,,, and the SINR targey;, for userk, maximizemljn SINRk /v

over all beamformerdJ, V, and power allocation matri®, that is,

K Ly

SINRy,
i bj. t E <P 5
R T X

We call SINRy /v the SINR to target ratio for usé.

If the minimum SINR to target ratio in Equatiohl (5) can be madeater than or equal to one, then
the second optimization problem is to find the minimum poveguired such that the SINR targets can
be all satisfied. The mathematical formulation of this peoin] which will be referred to as Problem Pp
in the following sections is

Problem Pp: Given a constraint on the minimum SINR to target ratio, miizie the total transmitted
power over all beamformer®, V, and power allocation matri® as

K L, SINR K L,
min subj. to mln and <P 6
i 2 o to S 2 1 a0 353 i < o ®

D. Iterative methods based on uplink-downlink duality

We briefly review the uplink-downlink duality, which playshdamportant role in finding efficient
solutions based on iterative methods for our problems.JIHI2], it was shown that it is always possible
to find a virtual uplink system for the downlink system. Wetgtee virtual uplink for usek in the lower
part of Fig.[l, whereQ, is the corresponding power allocation matrix in the virtuglink defined
similarly asPj. To be more specific, with fixed beamforming filtet§ V, SINR targetsyi, ..., vk,
and the same sum power constraifit,, for both the downlink and the virtual uplink, the downlinkdan
its virtual uplink system have the same SINR to target ratith wptimal P and Q.

With the aids of the uplink-downlink duality, the optimi&at problems Pr and Pp in Sectibn II-C can
be solved efficiently with iterative algorithms. Now we imdiuce the basic concepts of these algorithms,
as summarized in Tablé I. For simplicity, we use Problem Paragxample. From Tablé I, for iteration
n, with the downlink transmitter and receiver beamform&f&) and V(™ fixed, we can obtain a new
power allocation matrid(>*+1) to increase the minimum SINR to target raﬂgnmk/yk. Note that
the downlink power allocation are executed two times (Stegmd 3) for thenth iteration, as shown in
Tablef]. To simplify notations in the following sections, weeP(?"+1) andP(2"+2) to represent the new
power allocation matrices for the first and second downliokgr allocations respectively. With fixed
P2+ andU™), we can obtain a new downlink receiver beamformér+1) to increaséSINRy, /-y;, for
all users. The minimum ratimkinmk/fﬂC is further optimized using the new power allocation matrix
P(27+2) computed fromU™ andV(*+1). Then we turn to the virtual uplink to updaté™. Similarly,
fixing uplink transmitter beamformeV ("*+1) and receiver beamformdd(™), we obtain a new uplink
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power allocation matrixQ(2**1). After power allocation, the SINR to target ratios of the adink and
virtual uplink are equal. Then we can fitd™t!) based orQ®"*+1) andV("+1), After that, Q(>"+2) is
updated according to the nel@™t!) and V(»+1), and so on.

Note that all the iterations are done at the transmitter, thedtransmitter does not need to feed
forward the optimized receive filters to the receivers dytime iterations. The receiver can compute the
final filter by itself after the iterative algorithm stops. i§lprocedure is the same as [13, Section 1I-B],
and we briefly describe it here. First, as in the “common ingihphase in [13] [[14], each receivér
can estimate its own chann#l, by using the known training sequence. After receikefeeds back
H;, to the transmitter, the transmitter can iteratively compuansmit and receive beamforming filters,
as well as power allocation matrices in Table | accordindgHip. After the iterative algorithm stops,
the “dedicated training” phase as in_[13] is performed tothet receivers compute the final receiver
filter. In this phase, the transmitter will broadcast orthiogl training sequences to the receivers as in
[13], and each receiver can estimate the final equivalemratigormed byH,, the transmit filters, and
power allocation matrices to calculate its final receivenbieamer. We will first show how to calculate
the beamforming filters in the next section, and then show towse these filters to determine power
allocation in Sections 1V-B and TVAC.

. GRouPMAXIMUM SINR HLTER BANK FOR THE AVERAGE SINR CONSTRAINT

In this section, we introduce the key motivation of our papleat is, the use of GSINR-FB inl[6] as
the beamfomer to solvé&l(5)(6). This filter bank is a non-aligeneralization of the one used [ [5].
It uses the dimensions provided by the multiple receiverarge at each user more efficiently thah [5].
Specifically, the streams of each user (or group) cooperateame another in our scheme, rather than
interfere with one another as inl[5]. Since this filter bankximazes the total SINR of the streams of
each user, it also maximizes the average SINR criterion tedop this paper. We will also review the
applications of the average SINR criterion at the end of $eistion.

A. Group Maximum SINR Filter Bank

To solve [5) [(6), the GSINR-FB is adopted for our transmitteamformefU and receiver beamformer
V to maximize the average SINR. Moreover, as will be shown iopBsition[1, the optimal SINR
balancing structure based on the GSINR-FB beamformingmélke the corresponding power allocation
problem trackable. Let us first focus on Step 2 in Table |, thagiven U™ andP >+ finding filter

v+ to maX|m|zeZ SINRp", Vk (L, times of the average SINR), whe$éNR" is the SINR of the

jth stream of usek |n thls step. For brevity, we shall omit the iteration indexn most of the following

equations. Following [6], the optimization problem beceme
Ly

maXkaj skaJ> subj. to vijn Ve =1, Y, (7
7j=1
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whereVy = [vi1,...,vir, ], while

R} = H/U,P,UH; and R} => H{U,P,U/H, + o’1y,, (8)
i#k
are the signal covariance matrix and the interference-pbise covariance matrix farser k, respectively.
It is now evident that we must Idt;, < min {M, N} since the number of eigenvectors is limited by the
dimension ofH,. The optimization problem if.{7) was shown to be equivalergdlving the generalized
eigenvalue problems 6] as

Rkviy = Ab Ry ivey, V) )
with
vARDL
APL = Ty Sk TR g DL (10)
VkJR KVEj

ThenV, can be computed easily. The receive beamforming filter desigor the downlink can be
carried over to the transmit beamforming filter for uplinkdavice versa. Thus the receive beamforming
filter U+Y for the virtual uplink system in Step 4 in Talile | can be conepusimilarly.

Now we show why the GSNIR-FB performs better than those in[3#] In [5], all streams interfere
with one another andg,; satisfies

DL DL
RYL Vi = ARk Vigs

where )}, ; is the maximum generalized eigenvalue B, R} );

R, ; = H{ wyufiHy and R = Z preHf wpafjHy, + > HU;P,UH, + 0’1y, (11)
(=1,0#£] i#k

are the signal covariance matrix and the interference-ptuse covariance matrix faitream j of user
k, respectively, andUy, = [ug1,...,ux,]. Comparing [(Il) with[(8), one can easily see that,[in [5],
the streams of the same user interfere with one another amnd th additional intra-group interference
in R}, (the first term ofR}).) compared withR)} in (8). The GSINR-FB beamforming exploits
additional dimensions from the multiple receiver antenmasch are not provided iri_[4] (wher&/,=1),
much more efficiently, by letting the streams of each usepeaate rather than compete aslin [5].

B. Average SINR criterion and its applications

The average SINR criterioBINR, is very useful in many communication systerns [6]-[8] and can
serve as a good metric for the QoS. Here we briefly review soniks applications. Note that in these
applications, it is the total SINR;SINR;, which serves as the performance metric, which equals,to
times the average SINR. However, as will be discussed in@d®} to have a fair comparison with the
results in [5] where the per stream SINR is considered, tleeage SINR is used in the comparison.
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Approximation of maximum achievable rate at low SINR [7]: The maximum achievable rate for user
k is
Z log(1 + SINR;W)

= log szl( + ) (12)

~ log(1 + LySINR;/T),
wherel is the SNR gap to capacity [15, P.432][16, Chapter 7] due bmptimal channel coding schemes
and the limitation of circuit implementation in practicatlstems. According to [15, P.432], the gap is
huge (8.8 dB) for uncoded PAM or QAM operating Ht—% bit error rate. This approximation is also
useful in systems with large numbers of users where the it@iference power i {4) is large.

Receiver SINR [6]: Assuming that the maximum ratio combining (MRC) is appliedxy, in (@),

the receiver SINR at the output of the MRC is the sum of indi@ldSINRs asL;SINR;. This metric

is very useful when space-time coding is applied apndontains the space-time coded symbols. In this
case, the decoding is based on the MRC restullts [6].

Minimization of the pairwise error probability [7]: When a space-time block code (STBC) is applied
and x; contains the STBC symbols. Assuming that the channel is $amling and remains constant
during the transmission of a codeword, and that the maxiriketihood detector is used at the receiver,
one can approximately transform the minimization of theryigie codeword error probability to the
maximization ofL;SINR;, following the steps in[[7]. This approximation applies tatbthe orthogonal
and quasi-orthogonal STBCs.

IV. POWERALLOCATION

Now we focus on the optimal power allocation strategy for &tep 3 in Tablé&ll, where the maximum
SINR beamforming filter bank&1(™), V(*+1) and a set of SINR targets;,...,vx are given. The
optimization problem corresponding to Problem [Br (5) is

o5 DL K Ly
max mkin % subj. to Z Zpkj < Phax. (13)
Tk k=1 j=1
The other one corresponding to Problem Pp (6) which minimibe total transmitted power, such that
each individual SINR target can be achieved, is

dag SINR," da
k
IHIHE E pr; subj. to min—— >1, and E E Pki < Prax- (24)
k=1 j—=1 ! k Tk k=1 j—1 ! ma

We will first explore the structure of the optimal solutios these problems in Sectibn IVFA. However,
even with this structure which significantly simplifies thelplems, the two per-steam power allocation
problems are very complicated and the solutions[in [4] [5]red apply. Thus, we first intensionally
introduce some restrictions to the power allocation sgiateto simplify the problems and benefit from
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the simple power allocation schemes similar to thosélinj]Ih Sectior Y, the simulation results show
that even without the new per stream power allocation, théopeance of [[4] [5] can be enhanced by
simply applying the GSINR-FB as the beamformers. This esifhur motivation to use the GSINR-FB.
The results for the simple “grouped” power allocation aresented in Section IViB. We then remove
the restrictions and present the general per-stream pdieeation results in Section IVAC. The insights
to why the proposed algorithms perform better than thos&jifg] are given in Section TV-D.

A. Optimal SINR balancing structure under GSINR-FB beamforming

By carefully rearranging the complicaté(ﬂNREL to a simpler equivalent form and using the properties
of the GSINR-FB, we prove the following structure for theiogl power allocation which makes solving
the complicated power allocation probleris](13) (14) pdssib

Proposition 1: For the optimization probleni (13), the optimal solutiBnmakes all users achieve the
same SINR to target ratio, that iSINR],SL/yk = CPL for all k. HereCPL is the SINR balanced level.

Proof: The vector norms of the beamforming filtevg;, j = 1...L;, can be adjusted such that
1) VIRV, is a scaled identity matrix[6],
2) trace (V,?Vk) = L.
When the above two conditions are satisfied, the average ®fMNRerk in the downlink scenario can
be expressed as

Ly trace (VHRDLV )
_ 1 ENsk VEk
SINR; "= — > SINRPF = . (15)
Ly, = trace (V,IJRB’I;CVk)
ExpandingR, ;, andR,, ,
_ t vVIiafiu, P, UIH,V
SINR." = race (Vi H} UyP U Hi Vi) . (16)
> trace (V/H{U;P;USHLVY ) + Lyo?
77k
Sincetrace (XY) = trace (YX) [17], the trace(-) terms can be written as
trace(V{ H{U;P; U H, V)
= trgce(PjUf H,V,VIH[U)) (17)

LJ
= > pilAjlu,
=1

where A j;, 2 UfHkaVkHHkHUj and[A ], denotes théth diagonal element oA ;.. Therefore, the
average SINR of usek is

Ly
. > pri[Akklu
oesDL =1
SINR;, = ——F : (18)
> pii[Ajklu + Lio?
J=1j#kl=1
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Observing [(IB), we know that the maximizer of the optimaatproblem [(IB) satisfies

LNR?L =CPt 1<E<K. (19)
Tk
The reason is as the following. Sin¢4 ;.]y; > 0, Vj, kI, eachmgL is strictly monotonically
increasing inp;,; and monotonically decreasing ir); for j # k. Thus all users must have the same SINR
to target ratioCP". Otherwise, the users with higher SINR to target ratios dae gome of their power
to the user with the lowest ratio to increase it, which catitts the optimality.
[ |

Following the same steps of the above proof, the SINR bat@nsiructure also exists for Problem Pp

in (I4). Now we can solve power allocation problems] (13) &) (vith the aid of Propositioh] 1 which

makes these problem trackable as shown in the following.

B. Simplified Solution: Group Power Allocation

For clarity, we present the simple group power allocatiost fthen the general per-stream power
allocation in the next subsection. The group power allocaintentionally restricts the power allocation
strategy to make the complicated power allocation probléth multiple receiver antennas similar to the
simple one in[[1B]([4] wheregV, = 1. Thus the group power allocation takes the advantage ofpthtas
diversity provided by the GSINR-FB based beamforming torimup the performance, while keeping the
complexity moderate.

To be more specific, the allocated power for a user using tgpgpower allocation is evenly distributed
over all streams of that user as

Pkl = Pk2 = ... = DiL,, 1 <k < K. (20)

Let the power allocated to usérbe p,. Consequently, the diagonal power allocation maRjxfor user
k can be written as a scaled identity matrix, that is,

_ Pk
Ly,

We also define a vectqs = [py,...,px]" to replace matrixP in the optimization problems. Substituting
Py, = 71, into Equation[(Ib), the average SINR in problefns (13) andl 44

P, Ip,. (21)

7 VIO,

———DL
SINR), " = e .
;k T, Lx |ViHE UJ’HF +o
J

(22)

With the “grouped” constraint on the power allocation stegt (21), the simplified average SINR{22) for
N > 1 has the same structure as thatin/ [18] [4] wh&ke= 1. Thus the solutions of this simplified group
power allocation for Problems Pr and Pp can be easily oldaifieese solutions are briefly presented in
the following subsections. The overall optimization algons are also summarized at the end of each
subsection.
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Group Power Allocation for Problem Pr: With the SINR balancing structure from the GSINR-FB
beamforming in Propositidn 1, the group power allocationFooblem Pr[(I13) can be solved by a simple

eigensystem as
1

TP = =5 b (23)

where the extended coupling matrfi® and the extended power vectprare defined as

DV D
Y- ’ and | P |, (24)
+1"D¥ 1-1"Do 1

max max

respectively, where

D = diag Lim L%{W( (25)
[vimfo ;[ visgu;
11 M e KHYKYK| R
and theijth element of the/l x K matrix ¥ is zero whenj =i or % whenj # i.

By using Propositioi]1 and the simplified average SINR (22f1i8), the rest of the proof of the
previous results is similar to those in [18] [4] and omitt&dith (9) and [2B), we summarize the final
optimization algorithm for Problem Pr in TaHllé I, whichriggively calculates the optimal beamforming
filter and power allocation vector between the downlink amalaplink, whereeig means the generalized
eigenvalue solver. Due to the uplink-downlink duality désed in Sectiod II-ID, it is guaranteed that the
uplink balanced leve’V" equals to the downlink balanced leveP".

Group Power Allocation for Problem Pp: Again, with Proposition 1, the minimizer df (1L4) satisfies

SINR, - =7, 1<k < K. (26)
Substituting [(2B) into[(22), the resulting power allocatigector is
p=(I-D¥) 'Do. (27)

The optimalq for the virtual uplink can be obtained similarly. The ovémgorithm for Problem Pp is
summarized in Tablell which iteratively finds the optimalgion minimizing the required power.
Note that [[2VV) does not necessarily have a solution with egative elements. When there exists at
least one nonnegative power allocation satisfying theetaBINR constraints and total power constraint
Pax in [I4), we call the system feasible. Depending on the chasoralitions, the total power required
to achieve the target SINRs could be quite large and exéggd For the purpose of studying the effects
of the algorithms on the system feasibility, we use the sumegpallocation algorithm in Tablglll with
a large Py, (43 dBm) to check the feasibility as inl[4].1[5]. In checkiniget feasibility, as soon as
the balanced level becomes larger than 1 (which means theasabfe solution can be obtained), the
algorithm switches to the power minimization steps. On thieeohand, if the balanced level remains
below 1 when the feasibility testing stage ends, the felityiliest fails and the power minimization
algorithm stops. In practical applications, when the sysig infeasible, one must relax the constraints
by reducing the number of usef§ or decreasing the target SINR.
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C. General Solution - Per Stream Power Allocation

Now we remove the restriction of evenly distributing poweaigroup in Section IV-B. The performance
is expected to be further improved since the group powecaition is a subset of the per stream power
allocation. The general power allocation solutions presgm this subsection are much more complicated
than the results in [4]]5]. The overall optimization algbms for Problems Pp and Pr are also summarized
at the end of each subsection.

Per Stream Power Allocation for Problem Pp: The power minimization problem using the result of
Propositior L becomes

. s DL
m;n g 1 E lpkj s.t. I; 1 g 1pkj < Ppax and SINR, " = ,1 <k < K. (28)

With the equivalent SINR expression in_{18), we will showttfiZ8) can be elegantly recast as a well-
known linear-programming problem. We first recall that tkerage SINR of usek (18) is

Ly
. > Pri[Akklu
SINR;, = — =L . (29)
> > pilAjklu + Lio?
G=T k=1

Substituting [(2B) into[(28), the original power minimizati problem turns into a linear programming
problem, that is,

min 17p
st DoprlArilu/ve — D2 Do pulAjklu = Lo (30)
= =Tk i=1

for k=1,..., K, and p >, 0,
wherep represents the vector comprising the diagonal elemenB af in Sectio IV-B. It is known
that a linear programming problem can be solved in polynbtirize using, for example, the ellipsoid
method or the interior point method [19].

Table[1M summarizes the proposed iterative algorithm witbugp maximum SINR beamforming and
per stream power allocation. The virtual uplink power alttan problem can be similarly solved as
(30) with A, replaced byB 2 VIH"U,U[TH;V;. Like the group power minimization algorithm
in Table[, the feasibility of this algorithm should alse@ lthecked using the per stream sum power
allocation which is described in the next subsection.

Per Stream Power Allocation for Problem Pr : With a fixed beamforming matriXJ, a fixed receive
filter V, and a total power constraint, the optimization problemawtetd by applying Propositidd 1 in

@ is

max CPL
° SINRPE
DL __ k _
K Ly
and Z Z Prj = Pmax;
k=1j=1
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Wheremg " is rearranged in form29).

The optimal power allocation vector for this complicatedlem is difficult to obtain, thus we consider
a suboptimal solution which can be found by simple iteratigorithms. First, using the concept of
waterfilling, we fix the proportion of the power of data stresaim each group according to the equivalent
channel gains. That is, let

Pr1iDPR2 - DL, = [Agklin : [Ark]o2 o [Ark]L,Le, (32)
fork=1,... K.
Ly,
Therefore, the.;, variablespy, . .., piz, can be reduced to one variablesuch thapy;, =t [Arl; / D [Akkl;;
=1
Li
for eachl, and }_ py; = tx. The SINR for uset in Equation [[2P) can be rewritten as
=1
N (£ 1Au/ £ (Aud, )
SINR, " = —= — (33)
>t (Z (Al [AGk]y /22 [Ajj]”) + Lyo?
j#k =1 i=1
Uk Gkk
_ 7 34
Z tigik + Lk0'2 ( )
7k

) K K Ly
with Z ty = Z Zpkl = Pnax-

Wéc:trllen sng/}elT)lroblenﬂBl) with concepts similar to the sumvgraterative water-filling algorithm
proposed in[[20]. Theuth iteration of the algorithm is described in the followirgote that this problem
has a similar form ad(13), thus the balanced levels, defisefiNR; /7, of all users must be equal
according to Propositionl 1. At each iteration step, we gatieea new effective level gain for each user
based on the power of other users from the previous tep # k as

Grk/ Yk
Gy = , 35
k Z t;gjk + L]fO'2 ( )
i#k
for k = 1,...,K. The K power variablest;s are simultaneously updated subject to a sum power

constraint. In order to maintain an equal level, we allochte new power proportionally to the inverse
of the level gain of each user as
ty = %. (36)
Gy &
j=1
Note that when updating., the power variables of other users are treated as constadts > 0.
Similarly, for the virtual uplink, we denote the power vdlia for userk ass; and the effective level

gain for userk as Hy. The proposed algorithm for the overall problem Pr is sunimedrin Table V.
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D. Insights to the performance advantage of the proposed approaches

The insights to why the proposed approaches outperfornetind$] [4] are discussed as follows. First,
under the same power allocation matixin () and [6), the GSINR-FB will perform better than the
beamformers in [5]. This is because the streams of each ospecate with one another in our scheme
rather than interfere with one another as[ih [5]. The mathiealavalidation was given in Sectidn 1IHA.
Indeed, as shown in[6, Section Ill], the GSINR-FB includes minimum mean-squared error (MMSE)
filter used in [[4] [5] as a special case (without cooperatidjus the GSINR-FB should have a better
performance. As for the power allocation part, note that suby-optimal group power allocation has a
formulation similar to that of the power allocation methaa§4] [5]. Thus they should be similar in terms
of optimality. Our more complicated per-stream power altamn includes the group power allocation as
special case. Therefore it should perform better than tbegpower allocation and the power allocation
methods in[[4][[5].

Finally, we note that we have no proof whether our iteratigmathms converge to the global optimum
or merely local optima. However, as shown by the simulatioithie next section, the local optima still
result in much better performance than [4] [5].

V. SIMULATION RESULTS

In this section we provide some numerical results to ilatstthe advantages of the proposed algorithms
over [5] and the simple BD methods [3]. The design concephefBD transmit beamformer is to remove
the inter-user interference inl (3) completely. A BD beamfer can be found whei/ > Ziﬁl#k N;, Vk.

To solve Problems Pr and Pp [d (5) ahd (6), respectively, amdaximize the average SINR of the worst
user, we also apply the GSINR-FB as the receive beamfornoerthé BD cases. Note that this paper
focuses on the QoS of individual users, where the averag® Sitves as a metric of QoS. For the BD
cases, the conventional BD receive beamformer design is fooithe purpose of sum rate maximization
(with waterfilling power allocation), which usually doestmoaximize the SINR of the worst user. Thanks
to Propositiori 11, the corresponding power allocations @ddrived similarly to those in Sectibn TV-B and

the details are omitted here. We also consider both the gaodpper stream power allocation strategies
for BD, named “group BD” and “per stream BD”, respectively.

For the system simulation parameters, the channel m&ffixis assumed flat Rayleigh faded with
independent and identically distributedi.¢.) complex Gaussian elements with zero mean and unit
variance. The noise is white Gaussian with variance 1 W. Taesmitter is assumed to have perfect
knowledge of the channel matrild”, and each user knows its own equivalent channels as distusse
in Section1[-D. Since typically the transmitter has moreeamas than the receivers, we set the number
of streamsL; equal to the number of receive antenngg for userk. Without loss of generality, we
assume a common SINR constrainfor all users, i.e.;y, = « for all k. In the following simulation,
we generate 1000 channel realizations and average therparioe. The convergence criterierof the
iterative algorithms is set td0~3.
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Fig.[2 shows the simulation results of the balanced I&Vel versus total powerP,,,. for Problem
Pr, whereCP" is defined as in Propositidd 1. The two proposed algorithm3aible[Il and Tablé"V/
are compared with the method proposed_in [5] and BD. Noteithff], the data streams are processed
separately and the balanced levels are the same for allrstré&lith a common SINR constraint to
be satisfied by all streams, the per-stream balanced levigedein [5] gives the same value as the
balanced leveCP" defined in Proposition] 1. So the comparison(8t™ is fair in Fig.[2. The simulation
parameters arel = 4 users,M = 8 transmit antennas, each user has 2 receive antennas amhistr
(N, = L = 2, Vk), and the SINR constraint = 1. For each channel realization, all the three algorithms
run until convergence but for at most 50 iterations. For &@imparison, only the cases where all the
three algorithms have converged within 50 iterations amsictered in averaging the performance. We
will discuss the convergence probabilities later. It carsben that the proposed group power allocation
achieves higher balanced levels than the methodlin [5] aptsitive SINR region. The proposed per
stream power allocation further outperforms group powlecation. Similarly, the per stream BD achieves
higher balanced levels than the group BD since the group B® special case of the per stream BD.
Note that the BD schemes perform better when the total dlailpower P, is high and perform
worse when the available power is low, since BD is a zerokfigrenethod which suffers from the noise
enhancement problem at loi®,,... When extremely large power is available, BD will perfornosz to
the proposed methods. However, the operating region whé&ehenomenon is obvious needs a much
higher power than our setting in Figl. 2. We do not show the Ktion results in this region since it is
less practical.

In Fig.[3, we plot the minimum total required powg%,;, versus SINR constraini for Problem Pp.
Simulation parameters at€ = 2 users,M = 8 transmit antennas, and each user has= 4 receive
antennas and, = 4 streams. Again, for the method inl [5], a common SINR targbts to be achieved
by all streams. Thus it has the same average SINR tarémteach user as the other algorithms. For each
channel realization, all algorithms first perform feasipitest using a large’,,.x = 43 dBm. Feasibility
test for the method iri [5] can be done similarly as the prog@dgorithms. As soon as the feasibility test
passes, the corresponding algorithm switches to the pouvémimation steps and runs until convergence
but for at most 50 iterations. Feasibility test for BD can twmel trivially. Only the cases where all the
algorithms have passed the feasibility test, and convesggiéh 50 iterations, are considered in averaging
the performance. Again, we will defer the discussions feritifeasible cases and the convergence issues
later. As shown in the figure, the proposed group power dilmegerforms better than the method in
[5] at high SINR. However, at low SINR it requires more powkhis is because group power allocation
suffers for the fact that it cannot adjust the power withinraup as the method in[5]. At low SINR,
the interference is larger and the methodl[ih [5] can adjwstpibwer within a group to better deal with
the interference. On the other hand, the proposed per stpeavar allocation performs better than the
other algorithms at both high and low SINR. Similar to iyt BD methods perform better than the
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method in [5] at high SINR, but are worse than the proposedhaukst in all cases presented. The results
at extremely high power, where the performances of BD andptbposed methods are close, are not
shown due to the same reason discussed before.

We also present the sum rate comparison in [Big. 4 where tleded levels of all users are the same
(as in Fig[2) as an indication of the QoS guaranteed and tireefs achieved. The simulation parameters
are the same as in Figl 2. Note that the sum rates of both BDauethare worse than the method in
[5], while their balanced levels cross over that [df [5] in H&y This is because under the same average
SINR, the method in[[5] will make all streams of a user haveat@INR and achieve the highest sum
rate due to the concavity of tHeg function. Thus when a scheme’s balanced level advantagetioge
method in [5] is not significant enough (e.g., the BD schemies)sum rate may be lower than that of
[5]. We emphasis again that our algorithms focus on the Qou&rége SINR) of individual users. Our
problem formulations are fundamentally different fromgbdocusing on sum rate optimization and not
guaranteeing the QoS.

Now we show the feasibility and convergence properties ef fhoposed algorithms. In the above
simulation setting, the number of transmit antendéds equal to the total number of data streams of
all usersZkK:l L. (also equal to the total number of receive antenﬁggzl N). We further consider
the cases wheré/ < Zle Ly, by increasing the number of usekS. That is, for Problem Ppk = 3,

M =8, and N, = L, = 4,Vk; while for Problem Pr,K =5, M =8, N, = L, = 2,Vk. We name
these cases as Case 2 and the settings forlFig. Z]and 3 as Qdste that typically the system will
perform scheduling [21] whed/ < Zszl Ly, that is, it uses time-division multiple access (TDMA) to
schedule a number of users such that= S/ | L, each time. Thus the simulation results of Case 1
represent the performance of fully loaded systems and thb&tase 2 well represent the performance
of over-loaded systems.

First we discuss the feasibility issues. From the simutetiof Case 1, we observed that the proposed
algorithms and the method inl[5] passed the feasibility fi@salmost all channel realizations. Intuitively,
group power allocation is more feasible than the method jnbfgcause the average, instead of per
stream, SINR constraints are easier to be achieved, andribkyg Equation(27) better conditioned than
the corresponding equation in [5]. Thus nonnegative smgtiof [27) are easier to be found. In addition,
since the group power allocation is a special case of the tpesira power allocation with equal power
distribution among the streams of a user, the per stream ipalleeation method should be even more
feasible. As an example, when a high target SINR=( 12 dB) is desired, simulation shows that the
probabilities of feasibility for the group power allocatiothe per stream power allocation, the method
in [5], group BD and per stream BD are 99%, 100%, 67%, 100%, ¥0@Pb, respectively. For Case
2, the system can only support lower target SINR and the ibties of feasibility for the above five
algorithms wheny = 3 dB are 100%, 100%, 0%, 0%, and 0%, respectively. Note thaCamse 2, the
BD based methods can not be applied sifn¢ds not large enough.
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As for the insights to the convergence behavior, typicadlgheoptimization step improves its objective
function as outlined in Section T[D. The beamforming stepximizes each user's sum SINR of the
data streams and the power allocation step optimizes tlented level. As an example, in Fig. 5, we
plot the balanced levels versus iteration times of the twappsed algorithms for Problem Pr under the
same channel conditions. The total power constraint issd6tdBm, and the SINR constraift= 1.
The arrows point at the numbers of iterations where the dlgns meet the convergence criteria. From
the figure, the two proposed algorithms typically do not kestiei often and exhibit smooth transient
behaviors. We also observe that the convergence behavibe @roup power allocation is slightly better
than that of the per stream power allocation, i.e., the peast power allocation is not as smooth as
the group power allocation and needs more iterations tooagprthe balanced level. The reason why
the per stream power allocation has worse convergence ioelithat after a power allocation step, the
noise whitening property obtained by the previous maximuhRSfilter bank may no longer be valid,
that is,VfRB}CVk may no longer be a scaled identity matrix. This effect mayrel@se the balanced
level. However, in most cases this negative effect has alsmpact on the eventual performance. Table
[VIlists the iteration times needed to converge for bothigeans. From these results, we can see that all
three methods need more iterations to converge in Case 2.tNat for Problem Pp, the target SINRs
for Case 2 are smaller than those of Case 1 since the meth®&] is fiot feasible fory > 3 dB. Also,
the method in[[b] needs significantly more iterations whea 2 dB.

Fig.[d@ shows the probabilities of the proposed algorithn thiie method in[[5] converging within 50
iterations given that they have passed the feasibility, festthe power minimization problem in Case 1
(settings of Fig[[B). We can see that the group power allonand the method in [5] both exhibit good
convergence probabilities while the per stream power atlon converges better at low SINR than at high
SINR. The reason for the lower convergence probability ef per stream power allocation is that the
linear programming makes the algorithm prone to oscilfati@tween feasible solutions from iteration
to iteration. In practice, as long as the solution is a noatieg power vector, the SINR constraints
are achieved, no matter the algorithm oscillates or not.edeer, even when the per stream power
allocation oscillates at the final iterations, typicallyet®INRs are still higher than that of the group
power allocation. So one can simply pick the solution at timalfiteration and still obtain a better
performance. The other way is to avoid oscillation by switghto the group power allocation whenever
the per stream power allocation algorithm oscillates. Tédgomance of this combined algorithm should
be between the performance of the per stream power allocatid the group power allocation. Fig. 7
shows the convergence probability for Problem Pp in Casén2eShe method ir |5] is not feasible when
SINR constraint fory > 3 dB, we only plot fory < 3 dB. The group power allocation still converges
almost surely in this overloaded case.
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VI. COMPUTATIONAL COMPLEXITY

In Table[V1, we compare the computational complexity in deedtion based on the number of complex
multiplications. From this table, one can see that thereisingle step which dominates the complexity
for each algorithm, so we list all of them for comparison. Each optimization step, the complexity of
group power allocation (Tablel ll) or power minimization Blalll) is lower than that of the method in
[5], and we have shown in Sectigd V that the performances ®fptioposed methods are also superior.
The reason for the complexity saving of the group power alion method is due to the fact that the
method in [5] processes the streams separately (matrixrdiime ), while the group power allocation
processes the streams of a user jointly (matrix dimen$ionk’ < L). For the per stream algorithms
(Table[M and_1V), the complexity of power allocation is at rhe#ightly higher than that of the method
in [5], but the performance is much better.

In addition to the computational complexity in one iteratithe average number of iterations needed for
convergence also affects the system complexity. The agerambers of iterations for the three algorithms
in the simulation settings of Fif] 3 and Hig. 2 are shown inl@&AI](for the power minimization Problem
Pp, the average number of iterations needed by the feagitdlst is included). This table shows that
the group power allocation method has the fastest conveegamong the three algorithms, while the
per stream power allocation has the slowest convergencep@md to the method inl[5], the group
power allocation has a lower computational complexity,vesges faster and performs better. If more
complicated computation is allowed, the per stream powecation exhibits even better performance.

As for the BD algorithms used in this paper, the computatibthe zero-forcing transmit beamformers
has approximately the same complexity as that of the “ugti@eamforming” step of Group (Pr) in Table
VT[] while the complexity for receiver beamformers is appmoately the same as that of “downlink
beamforming” step of Group (Pr). The complexity of the powtocation steps is negligible compared
with those of the beamformers. Since the BD algorithms doneetd iterations, they are not listed in the
comparisons in Tablds VI aid VIl (nor in Figl 6).

VIl. CONCLUSION

Efficient solutions to the joint transmit-receive beamforgnand power allocation under average SINR
constraints in the multi-user MIMO downlink systems werepmsed. The beamforming filter is a GSINR-
FB which exploits the intra-group cooperation of groupethdsareams. Due to this selection, the SINR
balancing structure of optimal power allocation holds amdpsifies the computation. Based on the
uplink-downlink duality, we formulated the dual problemthre virtual uplink, and iteratively solved the
optimal beamforming filters and power allocation matricBse proposed algorithms are generalizations
of the one in[[4] to the scenario with multiple receive ant@mnper user, and exploit the receiver diversity
more effectively than [5]. Simulation results demonstiatee superiority of the proposed algorithms over
methods based on independent data stream processing [B2ud terms of performance. Moreover,
the computational complexities of the proposed methodsaneparable with that of [5].
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TABLE |
BASIC STEPS OF THERTH ITERATION

First Downlink Power Allocation

Fixed U™ and V™, find newP "+
Downlink Receive Maximum SINR Beamforming
Fixed P ™D and U™, find new V(1
Second Downlink Power Allocation

Fixed U™ and V"V find new P2
First Virtual Uplink Power Allocation

Fixed V(*+*1) and U™, find new Q" +1)
Virtual Uplink Receive Maximum SINR Beamforming
Fixed Q"D and V(*+1)| find new U™ +1
Second Virtual Uplink Power Allocation

Fixed U™ and V* Y | find new Q"+,

20
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ITERATIVE ALGORITHM FOR PROBLEM PR WITH GROUP POWER ALLOCATION

TABLE I

Initialization: U =1,V =1

Iteration:

1:

First Downlink Power Allocation with Sum Power Constraint

Solvep in ¥ P i P
1 1
Downlink Receive Maximum SINR Beamforming
fork=1:K
Vi = eig(RYE, RYY)

Second Downlink Power Allocation with Sum Power Constraint

Solvep in ¥ l; = =br P

First Virtual Uplink Power Allocation with Sum Power Constraint

Solveq in A ) _ ST 4
1
Virtual Uplink Receive Maximum SINR Beamforming
fork=1:K
Uy, = eig(RJ} Ry 1)

Second Virtual Uplink Power Allocation with Sum Power Constraint

Solveq in A ? = =T a

Repeat steps 1-6 until convergence, i.e., |CP*(™ — CDL<"71)| <€

21
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TABLE 11l

ITERATIVE ALGORITHM FOR PROBLEM PP WITH GROUP POWER ALLOCATION

Initialization: Feasibility test using the algorithm in Talflé Il , if failuthen exit.
Iteration:
1:  First Downlink Power Minimization
p=(I-D¥) ‘Do
2. Downlink Receive Maximum SINR Beamforming
fork=1:K
Vi, = eig(ROE, RYY)
3:  Second Downlink Power Minimization
p=(I1-D¥) ‘Do
4:  First Virtual Uplink Power Minimization
q=(I-D¥")'Do
5. Virtual Uplink Receive Maximum SINR Beamforming
fork=1:K
Uy, = eig(RY}, R
6:  Second Virtual Uplink Power Minimization
q=(I-D¥")'Do
7. Repeat steps 1-6 until convergence, i.e., |CPY — 1] <e

22
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TABLE IV
ITERATIVE ALGORITHM FOR PROBLEM PP WITH PER STREAM POWER ALLOCATION

Initialization: Feasibility test using the algorithm in Talilé Vv , if failureen exit.
Iteration:
1:  First Downlink Power Minimization
Solvep in the linear programming problem:
min 17p
Ly K Lj 5
st > pri[Arklu/ve — X D pi[Ajklu = Lio”,
=1 j=1,j#k =1
fork=1,...,K, and p>.0

2. Downlink Receive Maximum SINR Beamforming
fork=1: K
Vi = eig(RO, RyY)
3:  Second Downlink Power Minimization
Solvep in the linear programming problem:
min 17p
Ly K Lj 5
st D pri[Arklu/ve — X0 Y palajelu = Lro”,
1=1 j=1,j#k1=1
fork=1,..,K, and p >0

4:  First Virtual Uplink Power Minimization
Solveq in the linear programming problem:

min 17q
Ly K L 5
st > g [Brrlu/ve — X D qi[Brjlu = Lio®,
=1 j=1j#ki=1

fork=1,..,K, and q >0
5. Virtual Uplink Receive Maximum SINR Beamforming
fork=1: K
Uy = eig(Ryj, RyL)
6:  Second Virtual Uplink Power Minimization
Solveq in the linear programming problem:

min 17q
Ly K L; )
st > qu[Brrlu/ve — 2= Y ¢i[Brjlu = Lio”,
=1 =154k =1

fork=1,..,K, and q >0

7. Repeat steps 1-6 until convergence, i.e., |CP% — 1] <e
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TABLE V

ITERATIVE ALGORITHM FOR PROBLEM PR WITH PER STREAM POWER ALLOCATION

Initialization: U =1,V =1

Iteration:
1:  First Downlink Power Allocation with Sum Power Constraint
(2n+1) _ Prax (2n) _ Ik /[ Ve
iy = oen B whereG,™" = SEO
L G;2n) £k
2. Downlink Receive Maximum SINR Beamforming
fork=1:K
Vi = eig(RYE, RyL)
3. Second Downlink Power Allocation with Sum Power Constraint
(2n+2) _ Prax (2n+1) _ Ik [ Ve
ty, = x , whereG); = Bntl .
Gty ’_2 G@}M) ]-;k t gjk+Lio?
J
4:  First Virtual Uplink Power Allocation with Sum Power Constraint
st = v )P;;ax , where H*") = S — (ﬁf)kh/ViL —
B o BT IR
J
5:  Virtual Uplink Receive Maximum SINR Beamforming
fork=1:K
Uy = eig(RLE, Ryp)
6:  Second Virtual Uplink Power Allocation with Sum Power Constraint
(2n+2) _ Priax (2n+1) _ Poie /Y
Sk B H(2n+1) f 1 'Wherer o E s;2n+1)hjk+Lko'2-
k = —Hj(2n+1) iEk
7. Repeat steps 1-6 until convergence, i.e., |CP*™ — CPL(=D| < ¢
TABLE VI
COMPLEXITIES OF THE OPTIMIZATION STEPS IN ONE ITERATION
Uplink Uplink  Power Downlink Downlink
Beamforming Allocation Beamforming Power
Allocation
Group (P1) O(K M?) O(K+1°)  OK, L)  O(K +1)?)
Group (Pp) O(KM?) O(K?) O(i, L) O(K?)
Per Stream (Pr)  O(KM?) O LiM)  OZ,Z L) O, LiM)
Per Stream (Pp) O(KM?) O(L*?) O L}) O(L*?)
Khachan's (Pr)  O(LM?) O(L?) O L}) O(L?)
Khachan’s (Pp)  O(LM?) O(L?) O L}) O(L?)

DRAFT



TABLE VII
AVERAGE NUMBERS OF ITERATIONS NEEDED FOR CONVERGENCE

Case 1 (Fully loaded)

Problem Pp Problem Pr
SINR constraint{) 2 4 6 Pmax(dB) 10 12 14
Group 9.6500 10.7200 11.7200 12.359 12.608 12.558
Khachan’s 15.3720 17.7600 21.7200 13.857 13.316 13.382
Per Stream 25.7861 26.1097 30.2598 15.475 14.871 13.906

Case 2 (Over loaded)

Problem Pp Problem Pr
SINR constraint{) -2 0 2 Pmax(dB) 10 12 14
Group 10.41 11.88 14.96 15.43 17.37 20.31
Khachan’s 16.63 22.97 40.93 14.11 14.58 15.72
Per Stream 25.78 26.10 30.25 17.53 18.3 17.04
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Fig. 1.  MIMO downlink system model for usér and its virtual uplink.
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M=8N=[2222],y=1dB

181
16 —*— group BD
—+~4—— per stream BD
i —6— group MSINR
—+— Khachan’s
1 —<&— per stream MSINR
10

(oo

Balanced level CP-

0 2 4 6 8 10 12 14
Total transmitted power to noise ratio Pmax /6® (dB)

Fig. 2. Comparison with[5] and BD for Problem B = 4, M = 8, Ny = 2, Vk.

k=2, M=8, N=[4 4]
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—+4A—— per stream BD
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5 —<— per stream MSINR
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SINR constraint y (dB)

Fig. 3. Comparison with[5] and BD for Problem PR. =2, M = 8, N = 4, Vk.
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M=8,N=[2222],y=1dB

181
—#—— group BD

160 2o per stream BD
—6— group MSINR

14 | —+— Khachan’s
—&— per stream MSINR

- -
o N

©

Sum rate (bits/channel-use)

0 1 1 1 1 1 1 J
0 2 4 6 8 10 12 14

Total transmitted power to noise ratio Pmax / 02(dB)

Fig. 4. Sum rate comparison with|[5] and BD for Problem Rr= 4, M = 8, Ny, = 2, Vk.

Convergence Behavior
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Case 1, Group MSINR
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Fig. 5. Convergence behaviors of the proposed algorithm®&foblem Pr in Case 1 (fully loaded) and Case 2 (over loaded).
The arrows point at the numbers of iterations where the dlgns meet the convergence criteria.
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Power Minimization, K=2, M=8, N=[4 4]
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SINR constraint y (dB)

Fig. 6. Comparison of the convergence probabilities forbRnm Pp in Case 1 (fully loadedix = 2, M = 8, N, = 4, Vk.

Power minimization, K=3, M=8, N=[4 4 4]

e o o o
» ~ oo o -
T T T T

o
~
T

Convergence Probability
o
(6}

o
w
T

027 [ NS Group MSINR i
01l I Khachan's 1
[ JPer stream MSINR
0 [ WD MR W
-6 -5 -4 -3 -2 -1 0 1 2
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Fig. 7. Comparison of the convergence probabilities forbRnm Pp in Case 2 (over loadedX = 3, M =8, Ny = 4, Vk.
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