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Abstract

The Nash equilibrium point of the transmission probalgtin a slotted ALOHA system with
selfish nodes is analyzed. The system consists of a finite euoftheterogeneous nodes, each trying to
minimize its average transmission probability (or powesestment) selfishly while meeting its average
throughput demand over the shared wireless channel to a oarbse station (BS). We use a game-
theoretic approach to analyze the network under two remeptiodels: one is called power capture,
the other is called signal to interference plus noise raBtNR) capture. It is shown that, in some
situations, Braess-like paradoxes may occur. That is, énfopnance of the system may become worse
instead of better when channel state information (CSI) &lable at the selfish nodes. In particular, for
homogeneous nodes, we analytically presented that Blikesparadoxes occur in the power capture
model, and in the SINR capture model with the capture ratigelathan one and the noise to signal

ratio sufficiently small.
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. INTRODUCTION

The simplicity of ALOHA [1] and slotted ALOHA[[2] systems pposed in the 1970s for
random access have attracted a large amount of researain. theo system perspective, the
earlier works focused on the issues of average throughplistbility of ALOHA systems with

homogeneous users. That is, these works usually assuntealltbaers in the network have the
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same statistical characteristics, thus only consideredrtacroscopic (or network-wide average)
performance. The readers are referred to [3] and the refesctherein for the analyses of slotted
ALOHA in fading channels with capture.

Recently, MacKenzie and Wicker|[4] first considered slot®ddOHA from the user per-
spective. They assumed that there is no centralized sdhgdaind each user acts selfishly to
maximize its own utility function. They then analyzed thesNRaequilibrium point by game
theory [5]. Game theory is a useful tool for modeling and ging the interaction of strategic
interactions among selfish players. The most importantliegum concept in game theory is
the Nash equilibrium (named after its inventor John Nashylath there is no incentive for
any player to unilaterally deviate. The selfish ALOHA systesymore robust and scalable for
implementation than a system with centralized control.

The analysis of([4] was extended inl [6] to the case with heggmnous users whose costs of
transmission are not identical. The behavior of the netwbrkughput at the Nash equilibria
as a function of the costs was analyzed. Unfortunately, thet s not a parameter one can
easily control. It is determined by the relative cost of sm@mssion as compared to the value of
a success.

Incorporating the availability of CSI into an ALOHA systerfi,2] investigated the Nash
equilibrium points of CSl-dependent transmission prolitas for heterogenous nodes in time-
varying channels. In that channel-aware ALOHA system, esxte tries to minimize its average
transmission probability selfishly while meeting its awyahroughput demand to the common
base station (BS). It was shown that the feasible region efntbdes’ throughput demands in
the selfish ALOHA is equivalent to the achievable region bystem with centralized control.
Moreover, within the feasible region, exactly two Nash déhQuum points exist. This work
considerably extended the analysis of the network modelirbyardd Kesidis([[11].

Other related works on CSl-dependent transmission protediin channel-aware ALOHA
networks include [[13][14][15]. In[[13], the analysis df [[L&nder the collision model was
extended to the capture model in static channels. It was ishioat while multiple Nash equilibria
may exist, one of them is uniformly preferable in the sensaisimum transmission probability.
In [14], the authors considered the network model in [12hwitt the backlogged assumption, and
found that, different from_[12], infinitely many equilibma points may exist with the distributed
algorithm if the slotted ALOHA is stable. A slotted ALOHA d¢sn with general multipacket
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reception (MPR)[16][1/7] was considered in [15]. It was sindwat, for selfish nodes to maximize
their individual utilities (including transmission and ivag costs), the structure of CSI-dependent
transmission probabilities is a threshold strategy.

The availability of CSI was used to vary transmission povether than transmission proba-
bility in [18]. The authors of[[18] derived an explicit CSepgendent power allocation strategy
at the Nash equilibrium point in a slotted ALOHA system witiippture, under the assumption
that channel gain is uniformly distributed. It was shownt tha the number of nodes increases,
the system performance with the power allocation stratégie symmetric Nash equilibrium
point approaches that with the optimal mandated power diloc strategy.

In [19], not only CSI-dependent transmission probabgitieit also CSI-dependent transmis-
sion power levels were considered. Through numerical stiidyas shown that the additional
allowance of CSl-dependent transmission power levels maenthe system performance worse
instead of better as compared to that with only the CSI-deégeintransmission probabilities [12].
This kind of counterintuitive phenomena, which demonstratperformance degradation when
more information or resource is added to a noncooperatiteank, is known as theéBraess
paradox introduced by Braess in transportation network plannii@.[There are other Braess-
like paradoxes discovered in different contexts, for exiamip the contexts of queueing network
[21], computer network [22][23][24][25], and wireless comanication [26].

The game-theoretic approach has widely been applied in eonmation networks. For ex-
ample, MacKenzie and Wicker|[7] showed that game theory @agplied to developing self-
configuring wireless networks. Cui, Chen and Low [8] showeghme-theoretic framework for
contention-based medium access control. eeal. [9] revealed the noncooperative nature of
random access from MAC reverse-engineering. They diseoMdiat, in the current backoff-based
MAC protocol, the users are participating implicitly in anumoperative game.

In this paper, we also consider the network modellin [12]. @ark analyzes the Nash
equilibrium point of transmission probabilities in fadingannels under two more general capture
models both including the collision modél [12] as a spec#ec We also extend the analysis of
[13] for static channels to fading channels. The main cbation of our work that differentiates
it from the earlier works studying the CSl-dependent trassian probability in selfish ALOHA
[12][13][15] is that we find that Braess-like paradoxes maguw under some situations. In other

words, in some situations, the availability of CSI may delgrahe performance (in terms of,
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e.g., total power consumption, throughput, etc.). We ¢adl phenomenon Braess-like paradox
due to its analogy to the Braess paradox. To the best of ouwlkdge, our work is the first to
show a Braess-like parad@nalyticallyin a random access network, and this paradox does not
occur in the collision model considered in [12]. Such a digey is important because it was
generally believed that the additional availability of CSlould improve, at least not degrade,
the network performance.

The two capture models we consider in this paper are sinoldahé capture model in_[20]
for static channels. Specifically, one model is called tlynali to interference plus noise ratio
(SINR) capture model in which the BS receives the packet abdersuccessfully if the node’s
SINR is larger than theapture ratiob. Whenb < 1, it is possible for the BS to successfully
receive more than one node’s packets as in, for example, CB¥stems whose signal quality
can be highly increased after despreading. Wihenl, at most one node’s packet is successfully
received as in typical narrowband systems which need th&kStNbe high enough to operate
properly. The other model is called the power capture madalhich the BS receives the packet
of a node successfully if the node has the strongest receweer which is at least + A times
stronger than the received power of every other node, wherte 0 models a guard zone to
counter interference.

Our work also reveals that when CSl is not available to seffetes, any achievable throughput
demands in the SINR capture model can be achieved by a Nadibegm point with its sum
of the transmission probabilities of different nodes naydarthan a constant which depends
only on the capture ratio. As for the power capture model,analysis shows that when CSlI is
not available to selfish nodes add= 0 or when perfect CSI is available to selfish nodes and
A< ﬁ wheren is the number of nodes in the network, there exists a unigush Mguilibrium
point for any achievable throughput demands. Wher- oo, the number of Nash equilibrium
points becomes exactly two.

The remainder of the paper is organized as follows. We foateubur random access game
in Sectiondl. The analysis of the Nash equilibrium pointsl ghe discussion of Braess-like
paradoxes are given under the SINR capture model in Sedii@md under the power capture
model in Sectiom IV. In SectionlV, we provide one distributedchanism which can make the

system converge to the Nash equilibrium. The paper is thesladed in Sectiof VI.
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[I. PROBLEM FORMULATION

We consider a wireless network wherenodes transmit at the same fixed power le¥el
to a BS over a shared channel. Time is slotted, and each trssiem attempt sends a packet
which occupies one time slot. The amount of information aoved in a packet is fixed and is
the same for all nodes. Thus, for the brevity of analysis,titreughput is defined in terms of
the average number of successfully received packets (whicbhmmonly used under the capture
or MPR model, e.g., [27]). All nodes are synchronized so dath transmission attempt starts
at the slot boundary.

At time slot k, the signaly, received by the BS is given by

Yi = Z i 1 Bi 1 d; o + 1 (1)
=1

where

5 1 if node: transmits in time slok
" 0 otherwise 7

hiy is the channel gain between nodeand the BS,d;; is the signal from node (with
transmission powerPr), andr, is the additive noise at the BS.

The channel gaing, ,, are assumed to be independent and identically distribuiestl)(among
all nodes, fixed within a time slot, and varying from time dlotime slot as in[[12[}i For clarity
of the analysis, the channel gain of any particular node ssimgd to be an i.i.d. process with
respect to time. Note that even if the channel gain of a nodeei®ly assumed to be a stationary

and ergodic process, the results of this paper derived lassttionary strategiesan be shown

1The assumption of independence among the channels ofatiffandes is justified if the nodes are located far apart, @mwh
the channels have many scatterers surrounding the nodgsifeurban areas). In addition, given that the nodes concating
with the same BS are usually in similar environments, theenmels have similar characteristics. If we further asstimag¢
there is open-loop power control to counter the long termramye of the channel effects (so the nodes can have fair cdiopet
with one another), the assumption of identical channetilligions is also justified. In that case, the transmissiower will be
different for different nodes. However, this will not affethe basic assumption of the system model, which is for enede

to individually maximize its utility, and the essence of thaealysis.

DRAFT



6

to hold. The readers are referred[tol[12, Section I1] for @sston on this assumptignt is further
assumed that, at the beginning of time glphodei; may be able to obtain its own instantaneous
CSI z, which provides an indication of the quality of the currehtannel between that node
and the BS. For a TDD system, the CSI may be measured by indivicdbdes based on the
signal from the BS (e.g., a periodic pilot signal) and thercte reciprocity. In an FDD system,
the knowledge of CSI may be obtained via feedback from the@®@8.model only assumes that
some sort of instantaneous CSI is available and does naictdsbw the CSI is obtained. In
practice, instantaneous CSI may be difficult to derive frtwe feedback from the BS due to the
busty nature of random access which may introduce a random lag between the time the
BS measures the CSI and the time of transmission of a nodes dilnusystem model is more
applicable to TDD systems. Assume the number of possibleesabfz; ;. is x;, andz; ;. belongs

to the set{z;1, i, ..., 2iz; } With z;1 < 252 < -+ < 2;,,. Here the assumption of finite discrete
(quantized) CSI is taken for convenience only, and can laxeel. For the analysis in this paper
to hold, the only required property of the mapping from tharohel gain to the CSI is that a
larger value of CSI corresponds to a higher range of abschaenel gainh; ;|. By excluding
the CSI values observed with probability zero, we can assinatethe probability of observing
each element in the sét;;, z;», ..., 2, } IS larger than zero. Note that the case where CSI is

not available can be seen as a special case with only onebj&X$I value.

A. Two Capture Models

1) The SINR capture model: in this model, nodke packet will be successfully received at
time slotk if SINR;;, > b, whereb is the capture ratio, and/NR, . is the SINR of
node: at time slotk given by

lg@k|h@k|2fzr
> jzi Bixlhjx|*Pr + No

SINR;, = (2)

The analysis in this paper focuses on the average perfoer(ama time slot). When CSl is not available, given the asgianp
of independence among the channels of the nodes, the ¢mmetd individual channels with respect to time does noeeifthe
average performance. When CSl is available, since we asthahéhe CSI is instantaneous for each time slot, and primpadt
to the absolute channel gain (as will be discussed lateg)irthccuracy of the CSI can be attributed mainly to the gmatitin
error but not the estimation error due to the time variatibthe channel. Thus the time correlation again does not taffex

average performance.

DRAFT



with N, being the power of the additive noise at the BS. If we 8gt= 0 and the capture
ratio b = oo, this capture model becomes the collision model.

2) The power capture model: in this model, natepacket is successfully received at time
slot £ if

Bilhixl* > max{(1+ A)Bjrlhyil’}, (3)

where A > 0. When A = oo, we have the collision model; and whex = 0, we have
the perfect power capture model for which the packet withhigiest received power is

always captured.

Throughout this paper, we will only consider that the chdmaee i.i.d.Rayleigh fadind28].
This is the most commonly used model in wireless commurtinatin urban areas. Hendé, ;|

are i.i.d.exponentiallandom variables.

B. Noncooperative Game Formulation

In the network, each node tries to minimize its average tréssion probability (or equiva-
lently, average power investment) and selfishly makes théside whether to transmit or not
according to the current CSI, while meeting theerage throughput deman@h packets per
slot), denotedp; for node:i. It is further assumed that all nodes always have packeferedf
for transmission at any time.

This system can be modeled as a noncooperative game wittraiots which are the average
throughput demands. The selfish nodes are the players, a&ndction of a player (node) at
every time slot is to transmit or not. For generality, in ardée meet any average throughput
demand while minimizing the average transmission prokighbihe decision whether to transmit
or not is relaxed from being deterministic to being prokiabd. To this end, an action is defined
as transmission with a certain probability. With the i.iathannel gain processes, we focus on
stationarytransmission strategies (as in_[12]) which depend oncilmeent CSI Thus, we let
S; = (81, Si2, - - -5 Siz;) € [0, 1]% denote node’s transmission strategy such that it transmits with
probability s;,, (the m-th entry ofs;)) when the CSI isz;,. {si1, iz, - -, sis, } also defines the
action space of nodé Besides the actions of transmission with certain prokas| the other
action of node: is to adjust its transmission strategy such that it can sustain the average

throughput demand while minimizing the average transmisgirobability denoted by;. The
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Nash equilibria of the stationary transmission strategied how the nodes can adjust their
transmission strategies in this noncooperative game ieeaat an equilibrium will be discussed
later.

Due to the constraints (average throughput demands), thia@e transmission probabilities
(power investments) of the nodes are nonzero (except fotrithial case with zero throughput
demand), and the interaction between nodes is through ringinal interference or competition
to have the highest received power. We now discuss the bgstmee strategies for each selfish
node in the network.

Definition 1: A stationarythreshold strategfor nodei has the forns; = (0,...,0, sy, 1...,1).
That is, the node always transmits when the CSI is larger thanthresholdz;,,, and never
transmits when the CSI is smaller thay),, while the transmission probability when the CSI is
Zim 1S Sim.

For examples; = (0,...,0,0.5,1) means that nodeé always transmits when the CSI is the
largest one, and transmits with probabilityp when the CSI is the second largest one. For the
other CSI values, nodedoes not transmit.

We have the following proposition as in [12] that the stagignthreshold strategy is the best
response transmission strategy for each node. The reasbat igansmitting at higher CSI will
result in higher probability of packet success (or higheotlghput), hence more power saving.
To be more specific, since the channels of different nodesiratependent, for a particular
node which does not know the CSI of the other nodes, no mattehat time slot this node
transmits and what the other nodes transmission strategéesthe packet success probability
of this node will be affected by the other nodes through theraye interferences they cause.
Thus, for the node in consideration, transmitting when &l @& higher will result in higher
average SINR and hence higher success probability in th&® Sipture model. With a similar
argument, transmitting at higher CSI will also result inleg success probability in the power
capture model. Since the proof is similar to that/of/ [L2mma ], we omit it.

Proposition 1: The best responsdransmission strategy for each selfish node in terms of
minimizing its average transmission probability (or aggrgower investment) while meeting
the average throughput demand, is a threshold strategyr tinelgopower capture and the SINR
capture models.

Remarks
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1) As a result ofProposition[] we have that a threshold strategy= (si1, si2, - . -, Siz;) =

(0,...,0,8m,1...,1) uniquely determines the average transmission probabilitf node
1 by
Pi = SimPi(m) + Z Pi(5) (4)
j=m+1

where P,(j) is the probability of occurrence af; for nodei. Therefore, we will analyze
the Nash equilibrium in terms af; (as in [12]) in the remainder of this paper.

2) The best response strategy for a node to adjust its avéagamission probability (hence
the corresponding stationary threshold strategy) in r@adb the given strategies of the
other nodes, is to equalize the throughput achieved by tbge transmission probability
with the average throughput demand (so the average trasismisrobability is minimized)
[12].

3) In the case when CSl is not available (equivalently, themnly one possible CSI value),
the threshold strategy of noddbecomes random transmission with probabilityat every
time slot. The action space in this case (with only one pdssalation) is apparently
smaller than that of the case when CSI is available. In théifimcase when perfect CSI
is available (e.g., the CSI takes the exact valug/gf,| for node: at time slotk, that
is, there are an infinite number of possible CSI values), lineshold strategy of node
becomes transmission only if the CSI is above the threshdlidhwis selected such that
the average transmission probabilityzis In the sequel, only the limiting cases without
CSI and with perfect CSI are considered for the brevity ofigmelly studying the Nash

equilibrium points and presenting the Braess-like paradox

C. Nash Equilibria

Let p_, represent the vector of the transmission probabilities Iohades except node,
andr;(p;, p_;) represent the average throughput of nedehen it transmits with probability;
given that the other nodes transmit with probability veqtof. For the noncooperative game
in consideration, we define the transmission probabilityteep = (py,...,p,) € [0,1]" as an
action profile. The utility function for nodg given that the other nodes transmit with probability

vectorp_,, is defined ad/;(p;, p_;) = 1 — p; (which may be seen as the power left for najle
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We give the definition of the (constrained) Nash equilibripont in our noncooperative game.

Definition 2: An action profilep is a (constrained) Nash equilibrium point if for all=

1,...,n, we have

ri(pi, P_;) > pi

(5)
Ui(pi, p_;) = Us(ps, P_;), Vpi € {pi - mi(Di, P_;) > pi},
wherep;, the average throughput demand, defines a constraint.
Equivalently,p is a Nash equilibrium point if
pi € arg min {p; : 73(pi,py) 2 pi}, Vi=1,....m. (6)

The above expression means that at a Nash equilibrium poieach node would not prefer
to deviate from its choice of transmission probability. hibsld be noted that our problem is a
noncooperative game with constraints, so there are additiconstraints in defining our Nash
equilibrium point that differs from the conventional Nastudibrium point

Since r;(p;, p_;) and the utility function are nondecreasing functions ppfwhen p_; is
given under both the power capture and the SINR capture rhdefollows that an average
transmission probability vectdp;, . . ., p,) (Wherep; € [0, 1], Vi) is a Nash equilibrium point for

the average throughput deman@s . . ., p,,) if and only if it is a solution to the set of equations

ri(piP_) = pis i =1,...,n. (7)

3The throughput constraint, which is a form of quality of sSeev(QoS) guarantee, can be incorporated into the utilibgfion
by a step function similar to the utility function represatiin of the QoS in[[29]. For example, we can let the utilitpdtion
be Ui(pi,p_;) = Qi(r:) - (1 — pi), whereQi(r:) = 1 if r; > p;, andQ;(r;) = 0 otherwise. With this utility function, a node
which can not meet its throughput demand has utility 0. Tiisomstrained model is more general because it can handle the
situation where the system can not sustain all nodes’ timougdemands and some nodes will have zero utility. On theroth
hand, its Nash equilibria are much more difficult to analyeeause for a node that can not meet its throughput demaridg tak
any transmission probability will result in zero utilitypbdifferent transmission probabilities will have diffateémpacts on the
other nodes’ throughputs and utilities. The constrainedehécuses on the case where all nodes’ throughput demamdbec

met, and is more straightforward to analyze.

“This is intuitive, and can be verified by the analytical esgiens ofr;(p;, p_;) in (@) and [I5) for SINR and power capture

cases, respectively, without CSI; and [n](13) dnd (19) [(d@),(®or homogeneous nodes) for the cases with perfect CSI.
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[1l. SINR CAPTURE MODEL
A. Equilibrium point analysis for SINR capture

We first consider the case without CSI. In a given time sloguasng thatn nodes simulta-

neously transmit to the BS, the probability that the packetnfa particular node (say, node 1)

1 \"" M
“(3) % ©

We first give the following lemma about the average throughpu

is successfully received is given by [30]

- N,
Prllh2>0Y  |h2 4+ 522
T\1I>;H+PT

Lemma 1:Under the SINR capture model with capture ratioand i.i.d. Rayleigh fading

channels between all nodes and the BS, we have the averameghiput of node when the

transmission probability vectqy = (py,...,p,) and no CSl is available to all nodes:
_pNo bpj
ri(pi, P_;) = e PTpi:jl;E (1 1 +b) : 9)

Proof: Let (xy,...,2) € I_gy, 4y denoter; < --- < x;, all belonging to the node

.....

.....

_pNo
ri(pi, P—;) =Di - H(l—p]) e Pr
Jjel—;
1 v Mo
+pl Z pj H (1 — pk) (1—_|_b) e Pp
.76171' k’e[,{h]‘}
1 2 —pNo
e Y (o T amm) ()
k)l 1S ST
4.
oo I ) () <"
Jel—;
—bp2 Pj
T [(2) + - n
LLINT+D
J#i
—bp bp;
= i 11— .
e 1;[( )
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Definition 3: An average throughput demand vectpr, . . ., p,) is calledachievablef there
is a Nash equilibrium point for it (i.e., satisfyirigefinition[2). The set of all achievable average
throughput demand vectors is called fleasiblethroughput region.

By Lemmé ] Definition[2and Definition[3 an average throughput demand vediar, . . ., p,,)
is achievable under the SINR capture model if there existaghMquilibrium pointp,, ..., p,)
such thatp, = e_bg_f?pz— [1.(1 - %),W. We observe that this expression is similar to that in
[12] for the collision model, thus the following result caa basily obtained with a proof similar
to that in [12,Theorem B The proof is omitted for conciseness.

Theorem 1:For the SINR capture model with capture ratiothere are at most two Nash
equilibrium points for any achievable throughput demafids. . ., p,,) when no CSl is available

to all nodes, and exactly one of the Nash equilibrium poimt ba achieved with

In the case when perfect CSl is ava;I_ealbIe, l.e., the CSI tdkegxact value of absolute channel
gain, the best response strategy (threshold strategy)dide nis to transmit only when its CSI
is larger than a threshold;. Assume that we have the Nash equilibrium pdint, .. ., p,) for
the throughput demandg., . .., p,,). ThenT; must satisfyf;O e %idr; = e~1i = p;. When there
are s nodes in the network and all of them have perfect CSl, the ghiiby that theses nodes
simultaneously transmit to the BS, and the packet from aiquéar node (say, nodé) gets

successfully received is

/ / / e Tide; | e ey - e da,, (10)
s T1 max{Ti, b<2§—1 rffg—ﬁ)}
Ve

This expression is very complicated due to thex{:,-} that accounts for the situation where
the thresholdrl; is already high enough to guarantee successful receptiorodé i's packet.

However, if we have

S NO

ADR AT B ay
j=1
JF#i

(@0) can be simplified to

S b+1
p; —b%
1T ( ) 1) e "Pr. (12)

j=1
i
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Note that in practical systems (e.g., narrowband systemsvfoch b > 1), (A1) is usually
true whens > 2. (11) is satisfied except there is one particdlamwhich is sufficiently larger
compared to the othéf,’s. Because the transmission probabilityis exponentially decreasing
in 7;, this implies thatp; is sufficiently small compared to the othgs’s, and the throughput
demand for node could be nearly zero. In that case, nadmuld be removed from the analysis
with little effect. Therefore, the extra conditions {11) @ys are usually satisfied. When= 1,

b (%0) > T; may not be true in many situations. Thus, using (12) onlysfor 2, the throughput

of nodei at the Nash equilibrium is equal to the demand

i (pis P_;) =pi

Jjel_; lEI,{Z]}
i ( )b—i-l (1 _ ) 1_ _b%
> | oim 11 b b+1) €
(g,)el_; lel_ g5
_|_ .
b+1
1 n »No
- H b <b+ 1)
Jel—;
b+1
Mo P; . —b30
—e Pr Jl;[l (bii-l +(1 —pj)> +J£[.(1 —pj)‘mlﬂ{pz —e fr, 0}7 (13)

where the last equality is obtained using an approach girdlghe proof ofLemmall

To analyze the Nash equilibrium when perfect CSI is ava@labl quite difficult due to the
complicated equation_(13), so we only show the existence aghNequilibra for the case with
homogeneous nodes. (That is, the throughput demand&are ., p,.) = (p, ..., p), the Nash
equilibrium point is(p1,...,p,) = (p,...,p), and the threshold i§" for all nodes such that
f,}’o e %idr; = e~ = p, Vi.) In this case, wheh > 1, the throughput of a particular node at the

Nash equilibrium point can be computed by|(13) as

No pNo

pb+1 n—1 b 1 N,
1 = = — P _ n—1 : P
ri(p,...,p) =p {(1 p)+ b—i—l} e Pr+(1-p) min {p e Pr, 0}. (14)
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Becausel: < 0 for p > e vPr and%: > 0 whenp is sufficiently small (i.e.Jim, o+ %% > 0),
there is a particulap* € [O, e_b%} achieving the maximum of (14), denoted hy,.. Therefore,
when perfect CSl is available to homogeneous nodes and tiieghroughput demand< p,,.q.,
there is at least one Nash equilibrium. Through simulati@resfound that there are at most two
Nash equilibria even in the case with heterogeneous nodesevér, we are not able to provide

a rigorous proof.

B. Braess-like paradox for SINR capture

In this subsection, we will present analytically a Bragks-paradox for the case with homo-
geneous nodes. We have the following theorem for the immtee limited situation, i.e.ﬁ—; is
sufficiently small:

Theorem 2:With the same average transmission probabjli{pr average power investment),
the throughput of homogeneous nodes with perfect CSI isargef than that of homogeneous
nodes with no CSI whef < b < oo and g—g is sufficiently small.

Proof: Sinceﬁ—ﬁ — 0, we havee_bg_c? — 1. By Lemmdland [14), we need to show that
for b > 1, we have

b n—1 pb+1 n—1
1—— > ((1- —(1—p)"
p( b+1p) _<( p)+b+1> (1-p)
b

b+1

Rewrite the left-hand side, and then apply Jensen’s inggual the convex function™ !, (z >

0), as follows:

p(1- o) 0

> {p (1 - Hilp) +(1-p —p)} -

- {(1 —p bszn_l

b+1 r—l

p
b+1

The last inequality comes from the facts that 1 and0 < p < 1.

> [(l—p)ﬂL
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This Braess-like paradox is illustrated in Fig. 1 whére- 5 and N,/ Pr — 0. As the figure

shows, with the same average transmission probabilitytit@mughput of homogeneous nodes

with perfect CSl is never larger than that of homogeneougsedth no CSI. This means that in

order to achieve the same average throughput demahdmogeneous nodes with perfect CSI

need to have the average transmission probabhil{the smaller solution) at the Nash equilibrium

point not smaller than that (the smaller solution) with nol @&enb > 1.

Discussion

1)

2)

3)

4)

This Braess-like paradox is clearly due to the fact thdijeMmproving a node’s received
power by transmitting when the channel is better, the tlolelsktrategy also increases
the average interference seen by each node. As a result]iis ®f the nodes are not
necessarily higher. Thus, if a node could refrain from tgkime best response strategy and
be less selfish (e.g., by ignoring the CSI and transmittinty Wie same probability at all
time slots), the other nodes would benefit. If all the nodaddcdo the same, every node
would benefit and the performance would improve. Howeverafparticular node, doing
so would be against its best interest given that it does nowkie channels of the other
nodes. In addition, an individual node would never be sutbefother nodes would also
be altruistic, unless a centralized regularization is i@gplThus, centralized control and/or
altruism (or cooperation) are necessary to improve theopmadnce. How the optimal
performance can be achieved by centralized control or aatipa is an interesting topic
that needs further investigation, but is beyond the scophisfpaper.

In general (whenN,/Pr is not sufficiently small), Theorem Rcannot be applied. The
throughput comparison given the same average transmigsabability depends on the
average transmission probability the total number of nodes, and the capture ratié.
Fig. [ shows the cases with= 5 and Pr/N, = 50. It can be seen that whem = 10
nodes, the throughput with perfect CSl is slightly higharthhe throughput without CSI
when the average transmission probability is smaller th@b.0rig.[3 is an example with
b= 0.8 and Pr/N, = 10. It is shown that there is no Braess-like paradox.

When Ny = 0 andb = oo, we have the collision model. In this case, the throughptits o
homogeneous nodes with perfect CSI and without CSI will bmh(1 — p)"~! when the
average transmission probability ps

For the case with heterogeneous nodes, the conditionthéooccurrence of Braess-like
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paradoxes are quite complicated and need to be analyzedygasese. Here, we present
a numerical example of a two-node network. Assume 5 andg—ﬁ = 0.01.

« Case ()p; = 0.52 and p, = 0.24: the throughput demands achievable for node 1
and node 2 without CSI availability arg = 0.3957, p, = 0.129, respectively. With
perfect CSI, the throughput demands achievable for nodel hade 2 arg, = 0.3952,
po = 0.118, respectively. A Braess-like paradox occurs.

« Case (ii))p; = 0.580 andp, = 0.088: the throughput demands achievable for node 1
and node 2 without CSI availability arg = 0.511, p, = 0.04325, respectively. With
perfect CSlI, the throughput demands achievable for nodelhade 2 arg; = 0.529,
p2 = 0.04300, respectively. The results show that it is possible thaenddains while

node 1 suffers when CSI is available.

V. POWER CAPTURE MODEL
A. Equilibrium point analysis for power capture

We first analyze the case when CSI is not available. Let the &mi~the cumulative density
function (CDF) of|h;|* be f(z) and F(x), respectively. The received powé of node: at
time k& is given by B, . Pr|h;x|* where B;;, = 1 if node i transmits at timek and B;;, = 0
otherwise. Then the average throughput of node given by

o) = Pr [ Badhial? > max {1+ DBl

r x;
—< 00

/0 IT| /[ e+ f(ﬂfj)dxj]f(xi)dxi

j#i L70 iy

[T (o ) o
ni () [ (i)
) Pl

() [0
o () [0 (55)) o)
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where the last equality is obtained by expanding the prod¢ierehs in the integral, and the
notation (y1, ye, ..., yx) € I_; means that; < y» < --- < y, all belonging to the node index

set/_; = {1,2,...,n}\ {i}.

For Rayleigh fading channelgz) is the exponential function, so we have

Therefore, if(py,...,p,) is @ Nash equilibrium point, we have the following set of apres

for the corresponding achievable average throughput désnan

1+ A 1+A
ri(pi,P_;) = pi =pi — ST A Z pipj + Z DiDiPk
Jel_; jk Yel_;

L+A L
— e n+AHp], Vi=1,. (15)

and the resultant total achievable average throughput niéma

n

sz’:ZPi—ZiFAA Z pipj+ 3+ A Z PiPiPk
i=1 i=1

(1,9)€ (ij‘ el
n+ nA
e (=) i) 16
Ml 1 (16)
where the notatiofy;, ys, ..., yx) € I means thay; < y, < --- < yy, all belonging to the node

index setl = {1,2,...,n}.

Example 1 A = o). The set of equations for a Nash equilibrium point became p; H#i(l—
p;), i.e., the case\ = oo corresponds to the collision model, and there exist exaatty Nash
equilibrium points for any throughput demands within thasile region([12].

Example 2 A = 0): For the special case where = 0, i.e., perfect power capture model, we

have

—t v (17)
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and the total achievable average throughput demand

Zpi - Zpi Z DiPj + Z PiPiPk
=1 =1

(i,9)el (3,9,k)eI

o (e o
1=1

=1-J[0-p). (18)

=1
The following theorem shows that there existaraqueNash equilibrium point:
Theorem 3:Under the perfect power capture modél (= 0) with no CSI available to
all nodes, there exists anique Nash equilibrium point for the average throughput demands
(p1y- -y pn), pi > 0,Vi, if and only if

sz’ <1
i=1
Proof: In Appendix[A.
[ |
In the case when perfect CSI is available to all nodes, aquéati nodei will transmit only
when its CSI is larger than a threshdl¢l 7; must satlsfyfT (2;)dx; = e~ Ti = p;, wherep;
is the average transmission probability of nadand f(-) is the exponential PDF for Rayleigh
fading channels. The average throughput of nodan be computed as

ri(pi, P_;) = /Too H [/Oij(ﬂfj)dxﬂL/%ax{li—iA’ Tj}f(%')dxj] f(@i)dz;

Ty
= /T:)O };[Z [max {1 —pj, 1— 6_1‘%}] S (@i)d;. (19)

This expression depends on the specific values of the tHoksfitence the average transmission
probabilities and the average throughput demands) of idaial nodes.

In the following, we will only consider the case with homogens nodes. Let the throughput
demands bép, ..., p) and the Nash equilibrium poirip,...,p,) = (p,...,p). When CSl is
not available to all nodes, from_(115) we have

o n—1\1+A , wq(n—1\1+A
ri(ps...,p) =p=0p < . )2+A +oo (1) (n_l)n+A (20)

In the case when perfect CSI is available to all nodes, a nadgransmit only when its

CSl is larger than a thresholfl. 7" must satisfyf:;’O f(x)dz = e=T = p, wherep is the average
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transmission probability. For this case, denote the aeetAgpughput demand achievable at the

Nash equilibrium pointp, ..., p) asp’. We have

(14A)T
ri(p,...,p) =p' :/T [ / flx; de] f(z;)dz;
f(z;) dx]] flz;)dx;

o
n—1>1+A 24

=[p(1 =)' (1 = p™)]+ [pHA - < 1 J2+A

b~ (n - 1) 1+ Apn+A:| (21)

JFi

n—1/n+A
The Nash equilibrium can be analyzed as follows when pe@&itis available to homoge-
neous nodes. From (1), we ha%;e =(1—-p"?[1—np+(n—1)p'*2], and

dip (I=np+(n—1p"2) = —n+(n—1)(1+A)p~. (22)

Note thatl —np+ (n — )p*2 =1if p=0,andl —np+ (n — )p**> =0 if p = 1. We
consider two case$l < A < ﬁ and A > ﬁ separately in the following.

« Case ()0 < A < —: From [22),1 — np + (n — 1)p'™ is a decreasing function for

p € 10,1], so d’" > 0 when0 < A < —. This means that; is an increasing function in
p, SO there eX|sts aniqueNash equmbrlum point if the throughput demand is achidzab

under the case < A < L.

D=

. Case (i)A > L 1 —np+ (n—1)p'** has a minimum ap* = [m] € (0,1),
and 1 — np + (n — 1)p'*2 is decreasing in0,p*) and increasing inp*, 1). Therefore,
1 —np+ (n— 1)p!*2 has exactly two zeros,, z(= 1) in [0, 1]. It follows that fl—?; >0
in [0, 2] and Cé—’; < 0 on [z, 1]. In other words,r; increases to the maximupj,,. when
the transmission probability is from p = 0 to p = z; and then decreases when> z;.
This means that there exist at most two Nash equilibriumtpafrnthe throughput demand

- . - 1
is achievable (i.e.p’ < p,,,) under the casé\ > —.

B. Braess-like paradox for power capture

We present analytically a Braess-like paradox for the casle momogeneous nodes by the

following theorem.
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Theorem 4:With the same average transmission probabjli{pr average power investment),
the achievable average throughput demand of homogenedeas moth perfect CSl is not larger
than that of homogeneous nodes without CSI under the powtureamodel.

Proof: We want to showy’ < p, wherep’ and p are given in[(2D) and_(21), respectively.

We have

P =(1—p*p(l—p)" ' +p°p
<max{p(l —p)"~", p}
<p,

where the first inequality is deduced from the convex contiinaof p(1 —p)”~! andp, and the
second inequality is due to the fact thet — p)"~! equals to the throughput fak = oo (when
CSl is not available) and the throughput decreaseA ascreases. The proof is complete.m

Similarly, this theorem implies a Braess-like paradox tfuatthe same achievable average
throughput demang, homogeneous nodes with perfect CSI have the average tissiem
probability p (or average power investment) at the Nash equilibrium pawit smaller than
that of the case without CSI.

V. DISTRIBUTED ALGORITHMS

In a network, each node can usually estimate its averagaghput through, for example, the
acknowledgement of successful packet reception from theLB&); denote nodé’s throughput
estimate. We can set nods initial (i.e., at the0th iteration) transmission probabiliy(0) = p;,
as the transmission probability needs to be at lgatst fulfill the throughput demand. We provide
one most common distributed mechanism converging to thé Kagsilibrium point. The readers
are referred tol [8][14][12] for more discussions on the us®asious distributed algorithms to
achieve the equilibrium points in random access games.

At the (m + 1)th iteration, each node updates its transmission probaby

pi(m + 1) = p;(m) + e(m) {min (1, %pl(m)) — pi(m)} ,
where the step sizgm) > 0. Usually,e(m) < 1, for examplee(m) = - and a smaller(m)
will more likely ensure the convergence to the better Nagkiliegium point (i.e.,> p; < %)

under the SINR capture model, and to the unique Nash equitibunder the power capture
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model. However, it also takes a longer time for convergeWieen CSI is available, the threshold
T;(m+1) can be uniquely determined from(m+1) and vice versa if the channel characteristics
are known. Note that the time between two consecutive iteratof a node does not have to
be the same as that of the other nodes. The nodes can updateahsmission probabilities
synchronously or asynchronously.

Issues such as infeasible throughput demands, and thend&sideoff of ¢(m) between
ensuring convergence and the convergence time, are beliergtope of this paper.

We present some simulation results in Fig. 4 and [Big. 5, wtierehannels are i.i.d. Rayleigh
fading, and the reception model is SINR capture. We cons&dé¢hree-node network with
throughput demandg, = 0.10, p; = 0.05, p3 = 0.01, the capture ratid = 5, and% = 10. The
cases with no CSI and perfect CSI are considered, and hedémates its; by the number
of successfully transmitted packets divided by number roktslots that have elapsed. For the
case with no CSI, the dynamic of the transmission probadslis plotted in Figl 4. For the case
with perfect CSI, we have the threshdlt{m + 1) = —Inp;(m + 1), and node; will transmit
only if its channel gain is larger than the thresh@ld The dynamic of the thresholds is plotted
in Fig.[8. Three realizations are shown for each case, anfighees illustrate that they indeed

converge to the same equilibrium.

VI. CONCLUSION

In this paper, we used a game-theoretic approach to stud\Wésk equilibrium point of
CSl-dependent transmission probabilities for selfish oamdaccess nodes in fading channels
with capture. The analysis revealed that under the powetusa@nd SINR capture models,
there are at most two Nash equilibrium points in the feasibgion of throughput demands.
For the collision channel, which is a special case of bothptnveer capture and SINR capture
models, there are exactly two Nash equilibrium points witthie feasible region. On the other
hand, there is one unique Nash equilibrium point under thieepepower capture model when
CSIl is not available to selfish nodes. Our work extends thetiexj works in the literature.
Moreover, we pointed out that, in some situations, perforteadegradation may occur when
CSIl is available to selfish random access nodes as compasedeto CSI is not available. We
called this phenomenon a Braess-like paradox. In particwa analytically showed that for

homogeneous nodes, Braess-like paradoxes occur in ther paywtire model and in the SINR
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capture model with the capture ratio larger than one ancdertoisignal ratio sufficiently small.
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APPENDIX
A. Proof of Theorem

We need to show that for any throughput demaads. . ., p,,) satisfyingp; > 0 and"" | p; <
1, there is auniquesolution (py, ..., p,) called the Nash equilibrium point. That is, the repre-
sentation[(1l7) is @ne-to-one and ontmapping from the unit.-cube () < p; < 1) to the unit
n-simplex (; > 0 and "  p; < 1).

In the following, we simply usé_, to denoted " | and a similar expression ftﬁj. Consider
the auxiliary functionG
1- pjx)] —1

X

da. (23)

G(pi,...,pn) = Zpi lnpi+Al [Hj(

It can be checked that the solution of the set of equatiodksi$ld critical point of this function.
We first show that the representatignl(17) maps the open cukiep{ < 1) one-to-one and onto
the open simplex/ > 0 and """, p; < 1), and then deal with the boundary.

Let p; = ¢'. We will show thatG is a strictly concave function of variablés as long as
all t; < 0 (correspondingly0) < p; < 1). This is equivalent to showing that the Hessian of

G is positive semi-definite (or nonnegative definite), thats, . D6 by < 0. Let d(x) =

DRAFT



23

[[;(1 = pjz) andyyi(z) = £

0*G
—— h;h;
— 0L:0L; !

:;atiat ihi Zaﬁ i

- /0 {(Z hi@bz-(x)) —Zh?w? (x)} r® () dx

+Z /0 (—h2y(z)®(z)) dx

:/01 [Z hﬂﬁi(x)lzx@ 2) d

- [ Erw) + et o) d (24)

By Cauchy-Schwarz inequality, we have

Hence, all we need is to show that
1

Zhif V;(x) Z%(x)] z®(z) dx

—Zh2/ 2) + 292(x)) d da < 0,

which is true if for allj we have

/ (o) [Z e

or, equivalently,

x®(x) dxﬁ/o (v (x) +av? (x)) (z) dz,

/Olw] [Z@bz ]xcp dx</¢j (26)

i#]
Let ®;(x) = [[;,,;(1 — piz) and @’ (z) = 4 d;(z). The inequality[[26) can be rewritten as
1

1
—x®(z) dx Spj/o Q;(x)dx

v, / ()
o p / £ (2) + @;(x) dir = p; 1D, ()]} = p;@;(1) > 0,
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which is obvious.

Hence, we know that the functio@ is strictly concave in; when allt; < 0. It follows that
there is at most one critical point in the open unit cube amad ploint is the point of maximum.
This takes care of the one-to-one part.

As for the onto part, we only need to show that fgr,...,p,) satisfyingp, > 0 and
>or, pi < 1, the maximum is attained inside the cube, not on the boun(lary somep; = 1).

Note that the maximum cannot be attained with anpy 0 (thenG = —o0). Hence,g—g >0
at the point of maximum whether it is on the boundary or nohdowise slightly shifting the
point to the left will result in a bigger value). Thus,

0G
Z Ip; =0

i

n

:>Zpi > 1 —H(l — i),
im1

i=1
where we have use the equalify 18). Since the left hand sidamialler thanl, we cannot
have anyp; = 1 at the point of maximum, and thereby we have proved that then aube is
one-to-one and onto mapped to the open simplex.

Now, we look at the boundary issue. The representafioh @3 ¢ontinuous function, and
the unit cube is compact, so the image has to be compact. Ttoectznm is done.

It is clear that ifp; = 0, we must havey; = 0. So, removing all zeroes, we can reduce the
problem to itself with fewer variables. That is, we only ndedconsider allp; > 0. Note that
in (25) we have the equality only when dl} are the same (the only direction in which we
may lack strict concavity). Hence, if there are two critipalints, both points cannot be on the
boundary simultaneously, and one has to be inside the culze @ne of them is inside the cube,
we immediately ged " | p; < 1, no critical point on the boundary at all then. In conclusion

we have at most one critical point. The one-to-one claim ised@nd the proof is complete.
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Fig. 1. n homogeneous nodes with perfect CSI and no CSI at the Nashbeigun point under the SINR capture model with
the capture rati@ = 5 and No/Pr — 0.
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Fig. 2. n homogeneous nodes with perfect CSI and no CSI at the Nashbeigun point under the SINR capture model with
the capture rati@ = 5 and Pr/Ny = 50.

capture ratio b=0.8, P1JN0=10
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Fig. 3. n homogeneous nodes with perfect CSI and no CSI at the Nashbeigun point under the SINR capture model with
the capture rati@ = 0.8 and Pr /Ny = 10.
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Fig. 4. Dynamic of transmission probabilities in a threg@metwork with no CSI under the SINR capture model. The captu

ratiob = 5, 1’3—70“ = 10, and the throughput demands are= 0.10, p2 = 0.05, p3 = 0.01.
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Fig. 5. Dynamic of thresholds in a three-node network witinfgzet CSI under the SINR capture model. The capture ratio
b=5, Z—TO = 10, and the throughput demands are= 0.10, p2 = 0.05, p3 = 0.01.
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