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Stagewise Weak Gradient Pursuits
Thomas Blumensath, Member, IEEE, Mike E. Davies, Member, IEEE

Abstract— Finding sparse solutions to underdetermined inverse
problems is a fundamental challenge encountered in a wide
range of signal processing applications, from signal acquisition
to source separation. This paper looks at greedy algorithms that
are applicable to very large problems. The main contribution
is the development of a new selection strategy (called stagewise
weak selection) that effectively selects several elements in each
iteration. The new selection strategy is based on the realisation
that many classical proofs for recovery of sparse signals can be
trivially extended to the new setting. What is more, simulation
studies show the computational benefits and good performance
of the approach. This strategy can be used in several greedy
algorithms and we argue for the use within the gradient pursuit
framework in which selected coefficients are updated using a
conjugate update direction. For this update, we present a fast
implementation and novel convergence result.

Index Terms— Sparse Representations/Approximations, Or-
thogonal Matching Pursuit, Weak Matching Pursuit, Gradient
Pursuit, Stagewise Selection, Compressed Sensing.

I. INTRODUCTION

Sparse signal expansions are general signal models, appli-

cable to a wide range of signals, that approximate a signal

using a linear combination of a small number of elementary

waveforms selected from a large collection. These models have

over the last few years found applications in a wide range

of areas, from source coding [2] to de-noising [3], source

separation [4] and signal acquisition [5] (i.e. compressed

sensing).

A sparse signal model is specified by a matrix Φ ∈ R
M×N

with typically more columns than rows, that is with M < N .

Φ is often known as the dictionary or the measurement matrix,

depending on the application. The column vectors φi of Φ are

sometimes called atoms and are here assumed to be of unit

length unless stated otherwise. Given an observation x ∈ R
M ,

a sparse signal model approximates x using a small subset of

columns from Φ, i.e.

x̂ = Φŷ,

where ŷ is a vector with most of it’s elements being zero. If

we allow for a non-zero error n = x − x̂ we talk about a
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signal approximation, while if x̂ = x we have an exact signal

representation.

If M < N , then there are an infinite number of ŷ such that

x = Φŷ. The problem is then to find an estimate ŷ that is

sparse, such that the norm of n is small. Whilst there are a

range of ways in which sparsity could be measured, the most

typical is probably to count the number of elements of ŷ that

are non-zero.

The problem of finding a vector ŷ with the smallest number

of non-zero coefficients, under a constraint on ‖n‖2 is known

to be NP-hard in general [6], [7] and different sub-optimal

strategies are used in practise. Commonly used strategies

are typically based on convex relaxation, non-convex (often

gradient based) local optimisation or greedy search strategies.

Convex relaxation, one of the most popular strategies at the

moment, is used in approaches such as Basis Pursuit and

Basis Pursuit De-Noising [8], the Least Absolute Shrinkage

and Selection Operator (LASSO) and Least Angle Regression

(LARS) [9]. Recently, fast algorithms solving the LASSO or

the Basis Pursuit De-Noising problem have been suggested in

[10], [11], [12], [13] and [14]. Non-convex local optimisation

procedures include the Focal Underdetermined System Solver

FOCUSS [15] and re-weighted ℓ1 minimisation [16] while

Bayesian approaches include the Relevance Vector Machine,

also known as Sparse Bayesian Learning [17] [18] or Monte

Carlo based approaches such as those in [19], [20] and [21].

Another very popular approach is to use greedy algorithms,

the most important of which are Matching Pursuit (MP) [22],

Orthogonal Matching Pursuit (OMP) [23] and Orthogonal

Least Squares (OLS) [24], also often known as ORMP, OOMP

or, in the regression literature, as forward selection. Exten-

sions to more general cost functions and kernel dictionaries

are discussed in [25]. OMP typically shows greatly superior

performance to MP, however, OMP is more costly in both

computation time and storage requirements.

During the preparation of this article, another family of

greedy algorithms has been emerging. These algorithms not

only select new elements, but also include an element pruning

step. These algorithms include the Subspace Pursuit algorithm

[26], the Compressed Sensing Matching Pursuit (CoSaMP)

[27] and the Iterative Hard Thresholding algorithm [28].

In this paper we concentrate on OMP type algorithms and

their application to very large data sets. There are two main

problems associated with the application of OMP to large data

sets. On the one hand, the computation cost per iteration is

high, both in terms of storage and computation. This problem

was addressed in [29], where we have introduced a quite

general framework for greedy algorithms, called collectively

Gradient Pursuits. Based on this idea, we have developed two

particular algorithms, with the computational complexity of

MP, but with performance more akin to OMP. Compared to
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OMP, this has greatly reduced the computational and storage

requirements per iteration, making the method applicable to

large data sets.

However, another performance limitation of greedy methods

such as MP, OMP as well as the Gradient Pursuits algorithms

of [29], is that these methods select a single element per

iteration. They have therefore to be run for at least as many

iterations as there are non-zero elements in the solution. The

main contributions of this paper is therefore the development

of a novel Stagewise Weak selection procedure that will allow

several elements to be selected in each iteration. This new

selection strategy, combined with the strategies from [29], will

be shown to lead to very fast and efficient algorithms to solve

the sparse signal modelling problem.

A. Paper Overview

The algorithms developed in this paper fall into the category

of greedy pursuit algorithms which are discussed in Section

II. We here concentrate on the two main aspects of these al-

gorithms, element selection and coefficient update and review

the state of the art approaches currently in use. In Section III

we look at element selection and discuss several drawbacks

of current approaches. To overcome these, we devise a novel

Stagewise Weak selection strategy in Subsection III-A. Experi-

mental results in Subsection III-C highlight several advantages

of this new approach.

We then turn to the problem of efficient coefficient updating

in Section IV. We quickly review standard approaches and then

discuss the Gradient Pursuit algorithms and, in particular, the

(approximate) Conjugate Gradient Pursuit algorithm (CGP)

(Subsection IV-A). We here propose a novel fast implementa-

tion for this method and derive a novel convergence result for

this approach (Subsection IV-C).

In Section V we have then all ingredients for the Stagewise

Weak Gradient Pursuit algorithm which combines the new

Stagewise Weak selection strategy of Section III, with the

Conjugate Gradient Pursuit update of Section IV. Subsections

V-A and V-B present numerical results that demonstrate the

advantages of this approach, whilst theoretical properties of

the stagewise weak methods will be studied in Section VI.

B. Notation

The algorithms in this paper are iterative and the current

iteration will be iteration n. The algorithms will keep track of

a set Γ[n] of indices, that will be grown in each iteration.

These indices label a subset of columns from a matrix Φ

and, using the index set as a subscript, the matrix ΦΓ[n]

will be a sub-matrix of Φ containing only those columns

of Φ with indices in Γ[n]. The same convention is used for

vectors. In general, the superscript in the subscript of ŷΓ[n]

reminds us that we are in iteration n, on occasion, however,

we resort to using additional superscripts (e.g. ŷ[n]) to label

the iteration. The Gram matrix GΓ[n] = ΦT
Γ[n]ΦΓ[n] will also

be used frequently. In general, lower case bold face characters

represent vectors while upper case bold characters are used for

matrices. Individual elements from a vector will be in standard

type face with a subscript. For example g will be used to refer

to a negative gradient vector with gi denoting the ith element

of this vector. Inner products between vectors will often be

written using angled brackets, e.g. 〈x,y〉 = xTy. We will

further use the hat ·̂ to distinguish an estimated quantity from

the true quantity, which will be written without the hat.

II. GREEDY PURSUITS

The algorithms discussed and developed in this paper are all

part of a general family of iterative greedy pursuit algorithms.

Given a vector x and a matrix Φ, the aim of these algorithms

is to identify a ‘small’ set Γ and a vector ŷΓ to approximate

x using

x̂ = ΦΓŷΓ.

The algorithms are initialised by setting the first residual

r[0] = x, setting ŷ[0] = 0 and the set Γ[0] = ∅. Each iteration

then updates these three quantities. In general, this is done as

follows1:

1) Calculate g[n] = ΦT r[n] and select columns from Φ

based on the magnitude of the elements in g[n]. The

indices of the selected elements are added to Γ[n−1].

2) Calculate an estimate of ŷ
[n]

Γ[n] that reduces the cost ‖x−
ΦΓ[n]ŷΓ[n]‖2

2.

3) Update r[n+1] = x − Φŷ[n].

Different algorithms differ in steps (1) and (2). In step (1),

traditional approaches select a single element in each iteration,

however, it has been realised that this might be too slow in

many applications and recently methods have been put forward

that select several elements at a time. In step (2) an update

strategy is generally used that aims at reducing the cost ‖x−
ΦΓ[n]ŷΓ[n]‖2

2.

III. STAGEWISE WEAK ELEMENT SELECTION

This section looks at the element selection step and sug-

gests a novel selection strategy. However, to motivate the

introduction of our new approach, we first review some of

the currently used approaches. Possibly one of the simplest

selection strategies is the approach used in MP and OMP. Here,

a single element is selected in each iteration2. This selection

is based on the magnitude of the elements in g[n] and the

index of the element with the largest magnitude is added to

the index set

Γ[n] = Γ[n−1] ∪ argi max |g[n]
i |.

Another very simple selection strategies is thresholding. For

a given threshold λ one selects indices from the set

{i : |g[n]
i | ≥ λ},

where λ can either be a constant or can depend on other

quantities. For example, λ can depend on {gi} in such a way

1Note that depending on the detailed implementation of the algorithm, the
matrix vector product in step (3) can often be replaced by a fast recursion.

2In an exact implementation of OMP elements will only be selected once,
because the orthogonal projection used in the coefficient update (see below)
ensures that the residual r[n] is orthogonal to all columns in ΦΓ[n] . However,
if this orthogonalisation is only approximated as, for example, in the Stagewise
OMP (StOMP) algorithm [30] (discussed below) or in Gradient Pursuit [29],
it is advisable (both from theoretical arguments and empirical evidence) to
allow the algorithm to re-select elements.
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that the set of selected elements contains a specified number

of elements. In the simplest uses of thresholding, one does

not iterate3. Instead a single selection step is used followed

by optimisation as in step (2).

One of the first approaches that used thresholding ideas in

an iterative framework is that used in StOMP [30]. In this

approach a threshold is calculated depending on the current

residual r

λstomp = t‖r[n−1]‖2/
√

M,

where M is the dimension of x. The set of indices is then

updated as

Γ[n] = Γ[n−1]
⋃

{i : |gi| ≥ λstomp}. (1)

The selection strategy in StOMP was developed explicitly

for problems in which Φ has been generated from a Uniform

Spherical Ensemble, i.e. the columns of Φ are drawn uni-

formly from the unit sphere. Theoretical performance guaran-

tees for this method when applied to more general matrices Φ

are therefore not available. From a practical point of view, the

selection of the parameter t required in the method is critical

for its performance, but there do not seem to be any intuitive

guidelines available for this other than the suggestion in [30]

to use a value between 2 and 3. Furthermore, a problem we

encountered when using the residual to define a threshold is

that the algorithm might (and in our experience sometimes

does) get ‘stuck’ when all inner products fall below the

threshold. It would then be necessary to reduce the parameter

t. In many of our own experiments (see below), this approach

has therefore shown mixed results.

An alternative approach is used in the Regularised OMP

(ROMP) algorithm [31], [32] which groups the inner products

gi into sets Jk such that the elements in each set have a similar

magnitude, i.e. they satisfy

|gi| ≤
1

r
|gj |, for all i, j ∈ Jk.

ROMP then selects the set Jk for which ‖gJk
‖2 is largest.

For the ROMP selection strategy proposed in [31] and

[32], r was assumed to be 0.5. In this case, the algorithm

was shown to have uniform performance guarantees similar

to those of ℓ1 based methods. Whilst these results indicate

that, asymptotically for very large N , the performance of

ROMP should be better than that of OMP, the particular con-

stants involved in the theoretical guarantees are significantly

smaller than those in the equivalent statements for ℓ1 methods.

Unfortunately, practice is generally far from asymptotia and

one is often interested in applying the method to problems

in which the theoretic properties do not hold. Furthermore,

in many practical situations, one might be more interested

in average rather than worst case performance. In almost all

practical applications we have studied (see below), the average

performance of ROMP was notably worse than that of OMP

or StOMP.

3Note that methods such as Subspace Pursuit [26], CoSaMP [27] and
the Iterative Hard Thresholding [28] use thresholding ideas in an iterative
manner. These methods do however not fall into the greedy pursuit framework
discussed here as selected elements are not simply added to previously selected
elements, instead, thresholding is also used to prune out already selected
elements.

A. Stagewise Weak element selection

As discussed above, the selection strategies of StOMP and

ROMP have several drawbacks. We therefore suggest a new

selection step we call stagewise weak selection. The motiva-

tion for this is twofold. We show, using simulation studies, that

the proposed stagewise weak selection is preferable in many

respects to the other two methods. Furthermore, the stagewise

weak selection strategy allows us to extend many theoretical

results derived for MP and OMP to our new algorithms.

Instead of using the norm of the residual to define a thresh-

old for element selection as done in StOMP, we here propose

the use of a threshold based on the maximum of |gi|. This

idea is inspired by the Weak Matching Pursuit algorithm [33].

Weak Matching Pursuit is a method developed for large or

infinite dimensional problems in which not all inner products

can be evaluated explicitly. To accomplish this, a weakness

parameter α ∈ (0, 1] is introduced into the selection criterion.

Weak Matching Pursuit selects any one element such that

|gj | ≥ α max
i

|gi|.

Instead of selecting a single element satisfying the above

condition, we propose to select all element that satisfy this

condition. This selection strategy will be call stagewise weak

selection. Using this approach, the set of indices is updated as

Γ[n] = Γ[n−1]
⋃

{i : |gi| ≥ α max
j

|gj |}, (2)

that is, we select all elements that come within a factor of α
of the largest inner product (in magnitude).

B. Stagewise Weak vs. StOMP selection

Let us briefly consider the relationship between the StOMP

selection and the proposed stagewise weak selection. Both

algorithms select atoms by applying thresholding to |ΦT rn−1|.
For the stagewise weak selection we have:

λwss = α||ΦT rn−1||∞.

Using norm inequalities we can see that:

α
√

M

t
√

N
σM (Φ)λstomp ≤ λwss ≤ α

t

√
Mσ1(Φ)λstomp (3)

where σk(Φ) denotes the kth singular value of Φ. We thus see

that the two thresholds are similar, however the key difference

lies in the fact that the stagewise weak threshold is a function

of the correlation between the atoms and the residual rather

than only a function of the residual. This allows us to extend

OMP recovery results to stagewise weak algorithms.

C. Experimental Evaluation of the Stagewise Weak Selection

Strategy

We here study the performance of our new Stagewise Weak

selection strategy. To do this, we combine the new selection

step with the coefficient update of OMP. We will call this

combination Stagewise Weak OMP (SWOMP). An important

property of this strategy worth stressing is that by changing

α, SWOMP interpolates between two well known methods for

sparse approximation. A thresholding algorithm is obtained
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Figure 1: Normal distributed non-zero coefficients. Exact recovery performance (left) and average SNR of recovered coefficients

(right) for SWOMP, StOMP, ROMP, OMP, CoSaMP (with 3 conjugate gradient steps (solid) and full projection (dotted)) and

Lasso for different observation SNR values (from top right to bottom left in performance SNR = 120dB, 60dB, 30dB, 15dB

(Note, the 120dB result are the same as those found with no noise, i.e. ∞dB.)). The abscissa shows the ratio between non-zero

elements K and the observation dimension M . All results averaged over 10 000 realisations.

with small α, whilst for α = 1 SWOMP becomes standard

OMP.

In the first set of experiments we compare different greedy

element selection strategies. In particular, we compare OMP,

SWOMP (α = 0.7), ROMP (r = 0.5)4 and StOMP (t = 2.5).

These algorithms were run until they had selected twice as

many elements as were used to generate the observations5.

For comparison, we also used the CoSaMP algorithm of

[27] and optimised the LASSO cost function ‖y‖1 under the

constraint that ‖x − Φy‖2 ≤ ǫ using the homotopy based

algorithm of [9] as implemented in the SparseLab6 toolbox

(available at http://sparselab.stanford.edu/). For CoSaMP, two

implementations have been suggested in [27], the first of which

uses an orthogonal projection in each iteration, whilst the other

method replaces the projection by three conjugate gradient

steps. We here tried both approaches. The performance is

4Note that, in all of our experiments, we used the same selection strategy
for ROMP used in the code provided by the authors of [31] In line with
the theory developed in [31], this selection strategy only considers disjoint
subsets for elements selection and not all subsets. This is faster but reduces
the empirical performance of the method somewhat.

5Note that in the noiseless case and for random Φ, if there is a K-sparse
vector y, such that x = Φy and if K/M < 0.5, this vector will be unique
almost surely as any other vector y s.t. x = Φy will have more than 2K
non-zero elements. Therefore, any 2K-sparse vector that satisfies x = Φy
has to be equal to the unique K-sparse vector [31].

6Note also that the Lasso solution can also be found with the algorithm in
[13], which in our experience is faster than the SparseLab implementation.

significantly better when using the exact projection, however,

calculating the projection is very costly and only feasible for

relatively small problems.

Each problem instance was generated by drawing the

columns of Φ ∈ R
128×256 uniformly from the unit sphere

and drawing the first K elements of y from an i.i.d. normal

distribution. The observations were generated as x = Φy +n

where n was i.i.d. Gaussian noise. We varied the number of

non-zero elements K and the signal to noise ratio (SNR)

(∞dB, 120dB, 60dB, 30dB, and 15dB). All results were

averaged over 10 000 problem realisations.

In figure 1 we compare the performance in exactly identify-

ing the support of y (left) and in terms of signal to noise ratio

(SNR) of the estimate ŷ (right). The abscissa shows the ratio

between the number of non-zero elements K used to generate

the signal and the observation dimension M .

We classified the coefficients to be exactly recovered when-

ever the estimate was K-sparse and when the K non-zero

elements of the estimate were at the same locations as in the

original K-sparse vector. As most algorithms selected more

than K non-zero elements, we used a post-processing step that

pruned out all but the largest (in magnitude) K elements of ŷ

once the algorithms had terminated. Due to the selection crite-

rion in StOMP, this algorithm sometimes terminated before it

had selected K elements. Similarly, the Lasso algorithm also

on occasions selected less than K elements. In these cases,
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Figure 2: Bernoulli distributed non-zero coefficients. Exact recovery performance (left) and average SNR of recovered

coefficients (right) for SWOMP, StOMP, ROMP, OMP, CoSaMP (with 3 conjugate gradient steps (solid) and full projection

(dotted)) and Lasso for different observation SNR values (the top right curves in the left panels overlap and are the results

found for a SNR of ∞dB, 120dB, 60dB and 30dB, whilst the bottom left curve is the result for 15dB). The abscissa shows

the ratio between non-zero elements K and the observation dimension M . All results averaged over 10 000 realisations.

we classified the results as not exactly recovered.

It should be noted that the greedy algorithms require an esti-

mate of the expected number of significant non-zero elements,

while the Lasso requires an estimate of the noise. However,

many of the greedy algorithms could alternatively be stopped

depending on the error between x and x[n] relative to the

expected noise level. One of the reasons for here allowing the

greedy algorithms to select twice as many non-zero elements

as were used to generate the signal (followed by pruning to de-

termine whether elements were exactly classified) was to show

that it is often beneficial to let these algorithm select more

elements than expected, because wrongly selected elements

can often be pruned out later, either based on retaining a fixed

number of non-zero elements as done here, or, alternatively,

by only retaining element above some threshold. Using this,

it can be seen that OMP outperforms the Lasso algorithm,

at least for normally distributed non-zero coefficients (see

however the results below for Bernoulli coefficients). More

importantly, the SWOMP algorithm, with a weakness factor

of 0.7, also performs better than Lasso. Whilst the theoretical

results for greedy strategies are typically worse than those for

ℓ1 based approaches like Lasso, these results suggest that there

might be better results possible for greedy strategies at least on

average. However, it seems to help to allow the algorithm to

select several incorrect elements as done here, which are later

pruned out. When running the greedy algorithms until they had

selected as many elements as there were non-zero elements,

the performance was somewhat worse than those shown here,

however, OMP was still comparable in performance to the

Lasso method.

The CoSaMP implementations with exact projection (dotted

lines) and with three steps of conjugate gradient optimisation

(solid line) have similar theoretical performance guarantees

[27], however, in the regime in which the theory does not

hold7, CoSaMP seems to break down much faster if the fast

implementation is used.

We repeated the experiment using non-zero coefficients that

were either -1 or 1 with equal probability (referred to as

Bernoulli coefficients from now on). The results are shown

in figure 2. It is known that the ℓ1 methods are insensitive

to different distributions of the non-zero coefficients, whilst

greedy approaches such as OMP typically perform worse if

the non-zero coefficients are all of similar magnitude. This can

also be observed here. For Bernoulli coefficients, the recovery

performance of all approaches is much more robust against

noise, so much in fact that the curves for SNR values of

∞dB, 120dB, 60dB and 30dB basically lie on top of each

other, whilst only the curve for an observation SNR of 15dB

is markedly different.

7For the experiment shown here, it can be shown numerically, that the
theoretic conditions used in the theory typically break down for signals with
as few as 4 non-zero elements!
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Figure 3: Normal distributed non-zero coefficients without observation noise (left) and with 30dB SNR (right). Comparison

between SWOMP, StOMP, ROMP for different parameters. The parameters used are shown above each panel (for SWOMP,

α = 0.1, 0.3, 0.5, 0.7 and 0,9, for StOMP, t = 2, 2.5, 3, 3.5 and 4 and for ROMP, r = 0.1, 0.5, 0.9, 0.99 and 1). The abscissa

shows the average Signal to Noise ratio of the recovered signals. All results averaged over 10 000 realisations.

In a second set of experiments we evaluated the influence

of the parameters t, r and α on the performance of the fast

selection strategies. The experimental setup was here the same

as in the first experiment above (using no noise and a noise

level of 30dB SNR). The results (average SNR), are shown in

figures 3 for the noiseless experiment (left) and for the noisy

setting with 30dB SNR (right). The parameters are shown

above each of the panels as well as next to their corresponding

curves. For ROMP and SWOMP, a decrease in the parameter

leads to a decrease in performance whilst this is not true for

StOMP. Here, a parameter of 2.5 works better than larger or

smaller values in general. However, very sparse signals are

often not recovered with this parameter as the algorithm often

stopped before it had selected K elements.

Whilst StOMP and SWOMP can both perform well, the

influence of the parameter t in StOMP is more complicated

than the smooth decay in performance observed for SWOMP.

ROMP, even though it has certain nice theoretic properties

when r = 0.5, does show significantly worse average per-

formance. When increasing r and α to one, both ROMP and

SWOMP are effectively OMP, it is therefore not surprising

that they both have comparable performance in this limit.

However, the number of iterations both methods used when,

for example α = 0.5 and r = 0.99 (notice the performance

of these methods is similar in this case) were quite different.

In this case for a sparseness K/M = 0.2, ROMP used on

average nearly four times as many iterations as SWOMP.

The above results demonstrate several benefits of the Stage-

wise Weak selection strategy. On the one hand, we can often

choose a quite small value for α without significantly sacri-

ficing performance. For example, with α = 0.7 the SWOMP

algorithm performs similar to the OMP algorithm, but uses

fewer iterations. Comparing SWOMP, ROMP and StOMP, we

see that the decrease in performance of SWOMP with decreas-

ing α is much more controlled than for the other two methods,

making the choice of the parameter somewhat simpler. Finally,

comparing SWOMP and ROMP, we see that, if we adjust the

parameters such that both methods show similar performance,

SWOMP uses significantly fewer iterations.

IV. GRADIENT PURSUIT

Our new Stagewise Weak selection strategy can significantly

reduce the number of iterations required. We therefore now

turn to the problem of reducing the computational cost of

each iteration. Focussing on the coefficient update step, we

first discuss current approaches and review the gradient pursuit

update in somewhat more detail. For this update, we derive two

new results, firstly, a new recursion allows this method to be
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implemented more efficiently and secondly, a new convergence

theorem is stated.

Both OMP and ROMP update the coefficients ŷ[n] by

searching for the minimiser of ‖x − ΦΓ[n]ŷΓ[n]‖2
2. This is

done using an orthogonal projection, that is, by calculateing

ŷ
[n]

Γ[n] = Φ
†
Γ[n]x where Φ

†
Γ[n] is the pseudo inverse8 of ΦΓ[n] .

However, for applications in which Φ is large, two problems

arise. Firstly, storage of Φ can be problematic. Secondly, direct

matrix vector products involving Φ or its adjoint are costly.

Therefore, in many applications, Φ is designed with additional

structure such that Φ does not have to be stored explicitly and

that matrix vector products involving Φ and its adjoint can

be evaluated more efficiently. For example, if the fast Fourier

transform is used, the computation time can often be reduced

to be O(N log M) instead of the O(MN) for unstructured

matrices. In this regime, calculating ŷ[n] as done in OMP and

ROMP often becomes infeasible.

One approach to utilise this structure and to overcome com-

putational requirements associated with the exact calculation

of the orthogonal projection is that used in StOMP [30],

where instead of calculating ŷ[n] as in OMP or ROMP, ŷ[n]

is approximated using a few iterations of a conjugate gradient

solver.

Instead of using the approach used in StOMP, which starts

a new conjugate gradient solver in each iteration, we have

previously argued to approximate the orthogonal projection

of OMP using (a single) directional optimisation step, which

can be done much more efficiently [29]. This led to the

Gradient Pursuit family of algorithms which uses directional

optimisation to update ŷ[n−1] in each iteration. In particular

ŷ[n] = ŷ[n−1] + βd[n],

where, as shown in [34, pp. 521], the optimum step size is

β =
〈rn,ΦΓ[n]dn〉
‖ΦΓ[n]dn‖2

2

. (4)

Whilst the updates in MP and OMP also fall into this frame-

work, different directions d[n] might be beneficial. In [29],

the gradient and an (approximate)9 conjugate gradient method

were suggested. The update directions for the approximate

conjugate gradient method is calculated using

d
[n]

Γ[n] = g
[n]

Γ[n] + υd
[n−1]

Γ[n] , (5)

where υ = −
〈

(ΦΓndn−1
Γn ), (ΦΓngn

Γn)
〉

/‖ΦΓndn−1
Γn ‖2

2 ensures

that that 〈ΦΓ[n]d
[n]

Γ[n] ,ΦΓ[n]d
[n−1]

Γ[n] 〉 = 0, that is, consecutive

update directions are conjugate. It is important to note that

this strategy uses a single update direction after each element

selection step. This update direction is chosen to be conjugate

to the update step in the previous iteration. This is different

8In an efficient implementation, the pseudo inverse is in general not
calculated explicitly in each iteration. Instead, fast implementations of OMP
either keep track of a QR factorisation of ΦΓ[n] , which is updated efficiently
in each iteration or, alternatively, keep track of a Cholesky factorisation of the

Gram matrix G
[n]

Γ[n] = ΦT

Γ[n]ΦΓ[n] which is also updated from iteration to

iteration. More details on these methods can be found in, for example, [29].
9Approximate, because the method only guarantees conjugacy of the current

update direction to the previous update direction, but not to all previous update
directions [29].

from using a full conjugate gradient solver after each new

element selection. See [29] for a more detailed discussion.

In the next subsection we derive an additional recursion

that allows the approximate conjugate gradient to be calculated

with the same computational complexity as the gradient. What

is more, an approximate conjugate gradient step is guaranteed

to reduce the squared error more than a gradient step. We

therefore here endorse the approximate conjugate gradient ap-

proach, which for simplicity will be called Conjugate Gradient

Pursuit (CGP) throughout this paper.

A. Implementation

We here propose a new and efficient way to calculate the

conjugate gradient update, which is based on a novel recursion

to calculate the update direction and uses auxiliary vectors

v[n] = ΦΓ[n]d
[n]

Γ[n] (6)

w[n] = ΦΓ[n]g
[n]

Γ[n] . (7)

Because d
[n]

Γ[n] = g
[n]

Γ[n] + υ[n]d
[n−1]

Γ[n] , using w[n], v[n] can be

calculated recursively v[n] = w[n] + υ[n]v[n−1]. Furthermore,

using η[n] = ‖v[n]‖2
2, calculation of υ[n] and β[n] can now

be done efficiently υ[n] = −〈v[n−1],w[n]〉/η[n−1] and β[n] =
〈r[n−1],v[n]〉/η[n].

In summary, the algorithm is

• Input: x,Φ and stopping criterion

• Initialise: ŷ[0] = 0, Γ[0] = ∅, r[0] = x, n = 1
• iterate until stopping criterion is met:

1) g[n] = ΦT r[n−1]

2) Select a set of new elements I.

3) Γ[n] = Γ[n−1]
⋃ I

4) if n = 1

⋄ d
[n]

Γ[n] = g
[n]

Γ[n]

⋄ v[n] = ΦΓ[n]d
[n]

Γ[n]

else,

⋄ w[n] = ΦΓ[n]g
[n]

Γ[n]

⋄ υ[n] = −〈v[n−1],w[n]〉/η[n−1]

⋄ d
[n]

Γ[n] = g
[n]

Γ[n] + υ[n]d
[n−1]

Γ[n]

⋄ v[n] = w[n] + υ[n]v[n−1]

5) η[n] = ‖v[n]‖2
2

6) β[n] = 〈r[n−1],v[n]〉/η[n]

7) ŷ
[n]

Γ[n] = ŷ
[n−1]

Γ[n] + β[n]d
[n]

Γ[n]

8) r[n] = r[n−1] − βv[n]

9) n 7→ n + 1

• Output r[n−1], Γ[n−1] and ŷ[n−1]

Different stopping criteria can be used. For example, the

algorithm can be stopped whenever a desired number of

non-zero elements has been found or whenever the norm

of the error r[n] decreases below some threshold. Note also

that we have here deliberately left the element selection step

ambiguous. In [29] we used the same strategy as in MP and

OMP, however, the Stagewise Weak selection strategy of the

previous section can be used instead.
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B. Computation Cost per Iteration

An important property of the algorithm as outlined in

Subsection IV-A is that it only requires the storage of vectors

and scalars. The only exception is the required storage of the

mapping Φ. The storage requirements are therefore low.

The computational complexity is also low. The bottleneck

is the application of Φ and its adjoint, which are only

applied twice in each iteration. Due to the new recursion, the

computational requirements, which we summarise in table I,

are better than those reported in [29].

C. Convergence

Although the gradient based directional updates do not fully

minimise the residual, it can be shown that under certain

circumstances a single optimization step actually does a pretty

good job. In [29] we have shown that a Gradient Pursuit

algorithm with update d
[n]

Γ[n] = g
[n]

Γ[n] converges linearly. In

particular we had

Theorem 1: There exists a constant ω < 1, which only

depends on Φ, such that the residual calculated with the

gradient based Gradient Pursuit algorithm decays as

‖r[n]‖2
2 ≤ ω‖r[n−1]‖2

2.

The constant ω can be expressed in terms of the following

quantities of interest in the theoretical study of sparse sig-

nal recovery. The restricted isometry constant δK [35] is a

symmetric bound on the singular values of any sub-matrix of

Φ with K (or less) elements and is defined as the smallest

quantity such that

(1 − δK(Φ)) ≤ ‖Φy‖2
2

‖y‖2
2

≤ (1 + δK(Φ))

holds for all y with no more than K non-zero elements.

Using δK to bound the denominator on the right site of

Equation (29) in [29], it can be shown that

ω ≤
(

1 − ρ

1 + δK

)

, (8)

where ρ > 0 is such that ‖ΦTx‖2
∞ > ρ‖x‖2

2, for all x [33,

pp. 422].

An argument for the use of gradient based optimisation can

also be given based on the restricted isometry. If the dictio-

nary has a small restricted isometry constant δK , then every

subdictionary is very nearly orthogonal. Because eigenvalues

of sub-matrices are nested between those of the full matrix

[36, Theorem 7.3.9], for n ≤ K , the condition number, κ, of

the sub-dictionary’s Gram matrix, G
[n]
Γ is bounded by

κ(G
[n]
Γ ) ≤

(

1 + δK

1 − δK

)2

.

This can be used to explain the good performance of the

gradient based updates. Using

f(yΓn) = ‖x − ΦΓnyΓn‖2
2,

a worst case analysis of the gradient line search gives [37]:

f(ŷ
[n]
Γn) − f(y∗

Γn)

f(ŷ
[n−1]
Γn ) − f(y∗

Γn)
≤

(

κ − 1

κ + 1

)2

≤
(

2δK

(1 − δK)2

)2
(9)

where y∗
Γn denotes the least squares solution of f(yΓn).

Hence for small δK the convergence, even of a single gradient

iteration, is good.

The convergence of the CGP algorithm discussed above was

not derived in [29]. The following theorem shows that the

reduction in f(yΓn) is at least as good when using update (5)

than when using update d
[n]

Γ[n] = g
[n]

Γ[n] .

Theorem 2: Use ω and β as defined in Subsection IV-A.

In the Gradient Pursuit framework, using the update direction

(5) reduces the ℓ2 norm of the residual r[n] = x − Φŷ[n] =
x − Φ(ŷ[n−1] + βd[n]) at least as much as using the update

d
[n]

Γ[n] = g
[n]

Γ[n] . Therefore, the convergence for the algorithm

using the direction defined in (5) is at least as good as that in

theorem 1.

The proof is basically that of [38], but care has to be taken to

take account of the fact that the Gram matrix changes from

iteration to iteration.

V. STAGEWISE WEAK CONJUGATE GRADIENT PURSUIT:

FASTER AND GREEDIER

In this section we combine the developments of the previous

two sections and join the stagewise weak selection with the

conjugate gradient update. Whilst it might seem intuitive that

SWOMP will be faster than OMP as it uses fewer iterations,

this is not necessarily true. For example, in the fast imple-

mentations of OMP based on QR or Cholesky factorisation,

the QR or Cholesky factorisations have to be updated for

each of the newly selected elements. Overall, there will be as

many of these updates as there are elements to be selected. As

the updates dominate the computation cost, the computational

advantage of using stagewise selection strategies with OMP

are therefore small.

Instead, StOMP [30] used a small number of conjugate

gradient steps in each iteration to approximate the required

orthogonalisation. We promote the use of the CGP algorithm to

do the required approximate orthogonalisation. The selection

step in the CGP algorithm is replaced by the stagewise weak

selection step in (2) such that the overall number of iterations

is potentially reduced significantly, while the computational

complexity of each iterations remains the same as that of the

standard CGP method. This approach will be referred to as

a Stagewise Weak Conjugate Gradient algorithm (SWCGP).

The weak selection strategy has now been incorporated into

the implementation of CGP in the sparsify matlab toolbox

to be found on the first authors web-page. The algorithm is

accessible through the call to function greed nomp (nomp for

Nearly Orthogonal Matching Pursuit).

A. SWCGP vs OMP and MP

The next step is to evaluate the influence of replacing the

exact orthogonalisation with the conjugate gradient update in
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I: Computation and storage cost of CGP in iteration n ≥ 2.
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Figure 4: Comparison between Matching Pursuit (dotted), Or-

thogonal Matching Pursuit (dashed) and Stagewise Conjugate

Gradient Pursuit (solid) in terms of exactly recovering the

original coefficients. The ordinate shows the fraction of runs in

which the algorithms exactly recovered the index set Γ used to

generate the data while the abscissa shows the ratio of the size

of Γ to the dimension of x. Results averaged over 10 000 runs.

The solid lines correspond to (from left to right): α = 0.25 to

1.0 in steps of 0.05.

(5) and to evaluate the influence of varying α. We therefore

repeated the experiment of Section III (using the noiseless

setting) using the SWCGP algorithm. We here only run the

method until it had selected K elements. Figure 4 studies the

influence of the weakness parameter α. For α = 1, the method

is equivalent (up to ties) to CGP. For comparison, also shown

are the results obtained with OMP and MP.

It is clear that weakening the selection criterion reduces (in

a controlled manner) the recovery performance. The advantage

of this is a reduction in computational cost. This is shown in

figure 5. Here the curves correspond to (from top to bottom)

α decreasing from 1 in steps of 0.05. The top curve indicates

that the computational cost for CGP (SWCGP with α = 1.0)

grows linearly with the number of non-zero coefficients. In

contrast for α < 1.0 the computational cost grows much more

slowly. It should be noted here that these figures do not fully

capture the performance of SWCGP since the dictionaries used

do not have a fast implementation. However they do provide

a fair relative comparison between different values of α.

B. Medical Imaging example

This section demonstrates the applicability of the proposed

SWCGP algorithm to large sparse inverse problems. We here

study a Compressed sensing [5] problem. Compressed sensing

is a recent development based on sparse signal modelling

ideas. One particularly promising application domain of this

technique is Magnetic Resonance Imaging (MRI) [39] and we
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Figure 5: Comparison of the computation time for SWCGP

with the different values of alpha as in figure 4. The curves

correspond to (going from top to bottom): α = 1 to 0.25 in

steps of 0.05.

take our next example from this area using the Shepp-Logan

phantom.

Acquiring MRI images is equivalent to taking one dimen-

sional slices from the 2-dimension Fourier domain of the

image. For rapid MR imaging it is desirable to take only a

subset of these slices. For example one could take a reduced

number of radial lines of the Fourier domain data. In order

to reconstruct the original image, we utilize the fact that

the image has a sparse representation in the Haar wavelet

transform.10 For this particular image of size 256 × 256, it

was observed that the original image is well approximated

(over 300 dB peak signal to noise ratio) using only 4000 of

the wavelet coefficients.

In [29] the performance of Gradient Pursuit, OMP and

various L1 methods were reported for this problem. Here

we examine the speed and performance of SWCGP for α
between 0.5 and 1.0, to reconstruct the image from 15%
of the Fourier data. The results are presented in table II.

In each case the algorithm was stopped once at least 4000

atoms were selected.11 Notice that for this data it is possible

to obtain an approximate speed up of 80 times using the

stagewise algorithm instead of the stepwise version. Even

using a relatively conservative value for α, of 0.9, gave an

8 times reduction is computation time.

These improvements suggest that SWCGP should be a good

10It is important to note that we here use a Haar wavelet basis as our sparse
representation and not a total variation based constraint as used for example
in [5].

11These simulations were performed using Matlab running on a 2GHz
Pentium PC.
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II: Influence of α on: number of iterations; approximate

computation time and; PSNR performance (dB).
α 0.5 0.6 0.7 0.8 0.9 1.0

No. of iterations 51 81 214 293 474 4087
computation time (sec.) 19.4 33.3 82 114 182 1562

PSNR (dB) 59 79 311 311 309 301

candidate for tackling very large-scale problems such as those

encountered in dynamic MRI imaging.

To test the algorithm on an even larger and more realistic

problem, we used a subsampled version of a fully sampled

MRI image sequence of a beating mouse heart to simulate

rapid imaging. The sequence consisted of 8 consecutive 256×
256 images of the heart. We here used a 3-dimensional Haar

basis as the sparse representation. As in the previous example,

measurements were taken using radial lines in the spatial

Fourier domain for each image. To add a degree of randomness

the orientation of the lines was selected uniformly at random

for each image. We used SWCGP with α = 0.7 (stopped

after 20, 000 atoms were selected). The overall PSNR of the

reconstruction was 31.3dB. Furthermore the reconstruction

took 50 minutes (44 iterations), which is a speed up of

approximately 450 times (based on iteration count) compared

with the stepwise algorithm!

C. Evaluation on different signal processing problems

In order to compare and showcase the performance of

our proposed stagewise weak method on a set of dif-

ferent problems often addressed with sparse approxima-

tion techniques, we have chosen three different prob-

lems from the SPARCO matlab toolbox (available at

http://www.cs.ubc.ca/labs/scl/sparco/).

Problem 402 is a source separation problem. Three audio

sources are mixed using an instantaneous mixing system to

give two observations. To invert the underdetermined mixing

system and separate the sources, the original audio is assumed

to be sparse in a localised discrete cosine transform basis. The

problem size is M=29,166, N=86,016, K=14,583. Problem 701

is an image de-blurring example. The image is assumed to be

sparse in the wavelet domain. The problem size is M=65,536,

N=65,536, K=9,000. Problem 703 is a missing data problem

in which scratches are to be removed from a fingerprint image,

which is assumed to be sparse in the 2D curvelet domain.

For each problem, the observation (possibly mapped back

using a linear projection into the signal space), the signal

and the signal estimate calculated with the Stagewise Weak

Conjugate Gradient (SW) algorithm with α = 0.5 are shown

at the top of each panel in figure 6. Below this we show the

ratio between the true signal and the error in its estimate (SNR

in dB) above the computation time required by the different

methods in seconds (all simulations were run in matlab on a

Macintosh 2.5Ghz quad G5 computer). We here compare the

three different selection strategies Stagewise Weak (SW) (with

α ∈ {0.5, 0.8}), Stagewise (St) (with t ∈ {2.2, 2.5, 2.8})

and regularised (R) (with r ∈ {0.5, 0.8, 0.99}). In addition,

we also calculated the solution of the optimisation prob-

lem minx ‖y − Φx‖2 + λ‖x‖1 (L1) (using the TwIST al-
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gorithm [12] (http://www.lx.it.pt/ bioucas/TwIST/TwIST.htm))

and used CoSaMP. As we are here interested in methods that

can be applied to very large problems, we combined the three

greedy selection strategies with the fast conjugate gradient

putsuit update and used the fast implementation of CoSaMP

using three conjugate gradient iterations.

For all algorithms we selected the stopping criterion as well

as the regularisation parameter required in L1 optimisation by

trial and error until the observed SNR was optimal. Whilst

this is not possible in practice, it allows a more or less

fair comparison of the methods. All greedy algorithms used

the approximate conjugate gradient update step and differed

only in the element selection step. The difference in the

computation time observed with these methods is therefore

purely due to the different number of iterations used.

The matrices Φ available in the SPARCO toolbox have

columns of different norm. As the algorithms compared here

will favour columns of Φ that do have a larger ℓ2 norm, it is

in general desirable to design the measurement system with

equal norm columns. Otherwise, it is often possible to pre-

calculate the norm of the columns of Φ. However, if this

is also not feasible, a possibly sub-optimal approach would

ignore the difference in norm. To study the influence of this

normalisation, the results shown in figure 6 were therefore

calculated with (+) and without (o) normalisation.

Comparing the SNR results for the different greedy strate-

gies, it is evident that SWCGP performs consistently better

than the other greedy approaches. L1 optimisation on the other

hand can be seen to often rival SWCGP in terms of SNR as

well as computation time. The fast version of CoSaMP used

here did often not perform as well as the SWCGP approach.

SWCGP therefore seems to offer a competitive alternative to

ℓ1 based approaches as well as to CoSaMP and is applicable

in a diverse range of settings to solve a large range of signal

processing challenges.

VI. RECOVERY ANALYSIS

Several surprising results have been derived over the years

that give guarantees on the quality of the solutions to sparse

inverse problems calculated with different algorithms. For

example, the papers [40], [41], [42], [43], [44], [45], [5]

have shown that under certain conditions, solving a convex

ℓ1 problem will simultaneously solve the problem of finding a

vector with the minimal number of non-zero entries. Similar

guarantees also hold for the methods developed in [26], [27]

and [28]. Comparable results have also been derived for OMP

[46] and [47].

One important motivation for the development of our

new selection strategy was that it allows similar theoretical

statements to be derived for stagewise weak algorithms. For

example, nearly all results presented in, [46], [47] and [48] also

apply to our method, possibly with minor modifications that

take account of the stagewise weak selection. For example, we

have the following bound on the approximation error, which

we state in terms of the restricted isometry constant.

Theorem 3: (SWCGP recovery of general signals) For any

observation x = Φy + n, run the SWCGP algorithm until it

has selected K non-zero elements. If

δK+1 <
α√

K + α
, (10)

then the estimate x̂[n] = Φŷ[n] satisfies

‖x− x̂[n]‖2 ≤ c‖x− x̂⋆‖2, (11)

where

c =

√

√

√

√

1 +
1

(

α
√

(1 − δK)/K − δK+1/
√

1 − δK

)2 (12)

and where x̂⋆ = ΦΓ⋆ ŷΓ⋆ with ŷΓ⋆ = Φ
†
Γ⋆x and Γ⋆ is the

index set of the largest K elements in y.

The proof is similar to that in [46], but with the difference

that we derived the result in terms of the restricted isometry

constant δK+1. The changes to the proof in [46] required for

this setting are given in appendix I.

Whilst the above theorem bounds the approximation error

‖x− x̂[n]‖2, a simple argument (see appendix II) can be used

to also bound the estimation error ‖ŷ[n] − y‖2.

Theorem 4: For any y, let x = Φy + n and stop the

algorithm before it selects more than K non-zero elements. Let

the last iteration be iteration n⋆ and let ŷ[n⋆] be the estimation

of y calculated at this iteration. If

δK+1 <
α√

K + α
, (13)

then there exist a constant ĉ (depending on α and δ2K), such

that

‖ŷ[n⋆] − y‖2 ≤ ĉǫ, (14)

where

ǫ = ‖(y − yK)‖2 +
‖(y − yK)‖1√

K
+ ‖n‖2 (15)

and where yK is the best K-term approximation to y. For

example, if δ2K < α√
K+α

≤ 0.5, then ‖ŷ[n⋆] − y‖2 ≤ (3 +

6.5c)ǫ, where c is as in Theorem 3.

More generally, if δ2K < 1, then, whenever the algorithm

has calculated a K-sparse estimate ŷ[n⋆] with

‖Φŷ[n⋆]‖2

‖x‖2
= Ω, (16)

then we are guaranteed that

‖ŷ[n⋆] − y‖2 ≤ Ω√
1 − δ2K

‖x‖2 + c2ǫ, (17)

where c2 = 1 +
√

1+δK√
1−δ2K

.

It is important to note that a dependence on the error ǫ is

in-fact optimal up to the constant [28]. The above bound is

therefore similar to that derived for other methods such as ℓ1

based optimisation [49], CoSaMP [27], Subspace Pursuit [26]

and Iterative Hard thresholding [28]. However, for the above

bound to hold, we require that K0.5δ2K is small, which implies

that we required M = O(K2 log(N/K)), which is typical for

OMP type algorithms.

A better result can however be achieved if we take random

measurements and only require the algorithm to recover a
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single signal y [47]. For example, OMP was shown in [47] to

be able to recover the correct support of a K-sparse signal y

with high probability when M is of the order of K ln(N). The

proof in [47] can again be easily adapted to the weak setting

discussed here and the following result can be derived.

Theorem 5: (SWCGP with random measurements) Suppose

that y is an arbitrary K-sparse signal in R
N and draw a

random M × N matrix Φ with i.i.d. Gaussian or Bernoulli

entries, normalised so that the expected Euclidean column

norm is one. Given the data x = Φy and choosing M ≥
cα−2K log(N/

√
δ). If the SWCGP algorithm has selected K

atoms in at most K iterations, then it has found the support

of the signal y with probability at least 1 − δ.

VII. DISCUSSION AND CONCLUSION

Underdetermined inverse problems with a sparsity con-

straint on the solution are found in many areas of modern

signal processing. In this paper, we have introduced a novel

greedy strategy that in each iteration selects several new

elements. The coefficients are then updated using a directional

optimisation step in which the update direction is conjugate to

the previous update direction. This procedure addressed two

issues arising when OMP is applied to large scale problems.

On the one hand, the use of directional optimisation reduces

the computational cost of each iteration. On the other hand,

picking several elements in each iteration reduces the overall

number of iterations required.

The use of the conjugate update direction was introduced

in an earlier paper [29] and we have here derived a novel

recursion that allows a more efficient implementation of this

method. We have also given a new convergence guarantee.

The main focus was however on the new selection strategy.

We have discussed the prior art in this respect and highlighted

several disadvantages of current approaches. To overcome

these, we presented the new Stagewise Weak selection strategy.

This selection strategy has several desirable properties. These

are summarised in table III, where we also list advantages and

disadvantages of previously suggested approaches.

Using this strategy in OMP does not necessarily offer

computational advantages, which were achieved only when

combining the stagewise weak selection and the conjugate

gradient update. In this paper we presented a range of numer-

ical experiments. Synthetic data highlighted several properties

of the method and its good performance. In particular, the

weakness parameter allowed a smooth trade-off between the

sparsity K/M and computational complexity of the recovery

problem. The choice of alpha is therefore a trade-off between

performance and algorithm speed and ultimately depends on

the particular application. For example, we have demonstrated

the applicability of the algorithm to very large data-sets using

a dynamic MRI inversion problem, where significant speed

advantages were achieved with only minor sacrifices in terms

of performance.

Another important advantage of the novel selection step is

that it allows a simple extension of many of the theoretical

results derived for other OMP type algorithms to our new

setting. This was demonstrated here with the help of three

theorems that give performance guarantees for our SWCGP

algorithm.

APPENDIX I

PROOF OF THEOREM 3

Let Γ⋆ and y⋆
Γ⋆ = Φ

†
Γ⋆x be as in the theorem. In iteration

n, assume the algorithm has recovered Γ[n] ⊂ Γ⋆. Let the

residual be r[n] = x− x̂[n] and let x̂⋆ = ΦΓ⋆y⋆
Γ⋆ . Let the sets

G = Γ⋆ and B = {i : i /∈ G} be the good and bad sets. We

then have from [46]

‖ΦT
Br[n]‖∞

‖ΦT
Gr[n]‖∞

≤ ‖ΦT
B(x − x̂⋆)‖∞

‖ΦT
G(x̂⋆ − x̂[n])‖∞

+
‖ΦT

B(x̂⋆ − x̂[n])‖∞
‖ΦT

G(x̂⋆ − x̂[n])‖∞
(18)

where

‖ΦT
B(x̂⋆ − x̂[n])‖∞

‖ΦT
G(x̂⋆ − x̂[n])‖∞

≤ max
i∈B

‖Φ†
Gφi‖1

≤
√

K max
i∈B

‖Φ†
Gφi‖2

≤
√

K max
i∈B

‖(ΦT
GΦG)−1‖2‖ΦT

Gφi‖2

≤
√

K

1 − δK

δK+1, (19)

where the last inequality comes from standard properties of

the RIP constant (see [27] Proposition 3.1 and 3.2).

The other term can be bounded by (see [46])

‖ΦT
B(x − x̂⋆)‖∞

‖ΦT
G(x̂⋆ − x̂[n])‖∞

≤
√

K‖x− x̂⋆‖2√
1 − δK‖x̂⋆ − x̂[n]‖2

.

In iteration n, the algorithm therefore selects elements from

set G if
√

K‖x− x̂⋆‖2√
1 − δK‖x̂⋆ − x̂[n]‖2

+

√
KδK+1

1 − δK

< α, (20)

which (as both terms on the left need to be positive) is only

possible if δK+1 < α√
K+α

. Rewriting this and noting that due

to the optimality of x̂⋆, the error (x− x̂⋆) is orthogonal to all

elements in ΦG so that ‖x−x̂[n]‖2
2 = ‖x̂⋆−x̂[n]‖2

2+‖x−x̂⋆‖2
2,

we get
√

√

√

√

1 +
1

(

α
√

(1 − δK)/K − δK+1/
√

1 − δK

)2 ‖x− x̂⋆‖2

< ‖x− x̂[n]‖2. (21)

The same argument as used in the proof of Corollary 4.3 in

[46] then proofs the theorem.

APPENDIX II

PROOF OF THEOREM 4

For any y, let x = Φy + n. Let yK be the best K-term

approximation to y and note that x = ΦyK +Φ(y−yK)+n.

Let ñ = Φ(y − yK) + n. Note that by Lemma 6.1 in [27],

we have

‖Φ(y − yK) + n‖2 ≤
√

1 + δK

(

‖(y − yK)‖2 +
‖(y − yK)‖1√

K

)

+ ‖n‖2. (22)
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III: Comparision of selection strategies
Selection strategy Advantages Disadvantages

MP Fast to calculate Only selects a single element per iteration
Allows theoretical analysis for general Φ

ROMP Good theoretical guarantees Poor performance in practice
Selects several elements per iteration Somewhat more costly to calculate

Parameter r difficult to select

StOMP Fast to calculate Theory based on Gaussian matrices only
Selects several elements per iteration Can (and will) get stuck

Difficult to select parameter

Stagewise Weak Fast to calculate Theoretical bounds are somewhat weaker
Selects several elements per iteration than those for ROMP with r = 0.5 or
Shows good performance in practise StOMP for USE matrices.
Allows theoretical analysis for general Φ

Allows smooth tradeoff between speed and performance

We bound the error in iteration n using the triangle inequality

‖ŷ[n] − y‖2 ≤ ‖ŷ[n] − yK‖2 + ‖yK − y‖2. (23)

To bound the first term on the right we note that ŷ[n]−yK has

at most 2K non-zero elements so that by definition of δ2K :

‖ŷ[n] − yK‖2 ≤ 1√
1 − δ2K

‖Φ(ŷ[n] − yK)‖2

≤ 1√
1 − δ2K

‖Φ(ŷ[n] − yK) − ñ‖2

+
1√

1 − δ2K

‖ñ‖2

≤ 1√
1 − δ2K

‖x − x̂[n]‖2 +
1√

1 − δ2K

‖ñ‖2,

≤ c√
1 − δ2K

‖x − x̂⋆‖2 +
1√

1 − δ2K

‖ñ‖2,(24)

where we use the triangle inequality and the third line uses

x = ΦyK + ñ and the fourth line is theorem 3 (where c is

defined).

To bound ‖x − x̂⋆‖2 we have

‖x− x̂⋆‖2 = ‖Φy + n − ΦΓ⋆Φ
†
Γ⋆x‖2

≤ ‖ΦΓ⋆(yK − Φ
†
Γ⋆x)‖2 + ‖ñ‖2

≤
√

1 + δK‖(yK − Φ
†
Γ⋆x)‖2 + ‖ñ‖2.

Finally we bound ‖(yK − Φ
†
Γ⋆x)‖2 using [28]

‖y − Φ
†
Γ⋆x‖2 ≤

(

1 +

√
1 + δK√
1 − δK

)

‖ñ‖2 (25)

to get the constant in the theorem as

ĉ =
2 − δK + c

(

1 +
√

1 + δK + (1+δK)√
1−δK

)

√
1 − δ2K

, (26)

where c is again as in theorem 3.

For the second part of the theorem we use

‖Φŷ[n] − x‖2 = Ω‖x‖2.

in the third inequality in equality (24) to get the result.
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