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Abstract

In this response, we try to give a repair to our previous proof given
in Appendix of [9] by using orthogonal projection. Moreover, we answer
the question raised in [16]: If a centered Gaussian process Gt admits
two series expansions on different Riesz bases, we may possibly study the
asymptotic behavior of one eigenvalue sequence from the knowledge on
the asymptotic behaviors of another.

1 The Backgrounds

Many thanks to the note of Prof. Zanten [16], a flaw was found to lie in Appendix
of Li, et al. [9], which tries to give another proof for the asympotitics of the
eigenvalues for Karhunen-Loève expansion of fBm process. Fortunately, all the
theorems in the mainbody of [9] still holds, due to the nice proof of [7]-[8]. In
the rest of this response, we will try to fix our uncompleted proof in [9] and
answer a related question raised in [16].

Let us briefly recall some backgrounds of our discussions. Suppose B =
{Bt, t ≥ 0} is a standard fBm process within a finite time interval [0, 1] (can be
scaled to [0, T ], but it does not matter our proof) and with Hurst exponent H
(0 < H < 1).

The autocorrelation function of Bt can be written as [1]

Rb(s, t) = E [BsBt] =
1

2

(

s2H + t2H − |s− t|2H
)

(1)

According to Mercer’s theorem [2]-[3], we have

Rb(s, t) =
∞
∑

n=1

λnφn(s)φn(t) (2)

∫ 1

0

Rb(s, t)φn(t)dt = λnφn(s) (3)
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where {φn(t)}∞n=1 is a set of orthonormal functions in the interval [0, 1], where
λn are the corresponding eigenvalues of the nth orthonormal functions.

As shown in [4]-[9], Eq.(3) is the continuous Karhunen-Loève (K-L) expan-
sion for fBm process and λn is the associated eigenvalues. Our main problem
here is to discuss the asympotics of λn.

2 Prof. Bronski’s Proof

In [7]-[8], Prof. Bronski had showed that λn ∼ n−2H−1 as follows.

Clearly, from Eq.(2)-(3), we get a integral kernel [Tκφ] (x) =
∫ 1

0 Rb(x, y)φ(y)dy
on L2([0, 1] × [0, 1]). Moreover, this operator Tκ is a non-negative symmetric,
Hilbert-Schmidt and compact.

We can then prove the rigorous estimates of the eigenvalues by considering
the Nyström approximation of this kernel [10]-[12] on a special orthonormal
basis φn(x) = {

√
2 sin((n + 1

2 )πx)
∞

n=0}. Particularly in [7]-[8], the operator Tκ
is approximated by an operator A from the sequence space l2 to l2, which has
matrix elements

An,m = 〈φn(x)Aφm(y)〉 = 2

∫ 1

0

∫ 1

0

Rb(x, y) sin((n+
1

2
)πx) sin((m+

1

2
)πx)dxdy

(4)
We can also consider xTAy with the kernel matrix An,m as a n-degenerate

approximation of the Mercer kernel function Rb(x, y).
By examining the leading order diagonal piece D and the higher order off-

diagonal piece OD of A (A = D+OD), Bronski proved that ODn,m has higher
order and can be neglected with respect to Dn,m. Thus, the eigenvalues of A is
mainly determined by D.

In [7]-[8], Bronski further proved that

sin(πH)Γ(2H + 1)

n2H+1
+ ǫleft ≤ λn(A) ≤

sin(πH)Γ(2H + 1)

n2H+1
+ ǫright (5)

where ǫleft and ǫright are neglectable items.
Thus, we reach the conclusion we desired

λn(Tκ) ≈ λn(A) ∼ n−2H−1 (6)

3 Another Proof that Actually Detours

3.1 The Proof in Appendix of [9]

In [9], we consider the series expansion of the fBm process on a set of orthonor-
mal basis functions φn(t)

Bt =

∞
∑

n=1

cnφn(t) (7)
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where cn is the corresponding coefficient satisfying

E{cncm} = λnδ[n−m] (8)

If we can obtain the representation of cn, we can directly get λn via Eq.(5).
However, in [9] (or equivalently http://arxiv.org/abs/0805.3002v1), we

instead study another series expansion of the fBm process on a set of special
basis functions ψn(t) proposed in [13]-[15]

Bt =
∞
∑

n=1

bnψn(t) (9)

where {ψn(t)}∞n=1 is a set of linearly independent but not orthogonal basis func-
tions. Thus, the expansion coefficients bn is not equivalent to the eigenvalues of
the Karhunen-Loève expansion.

The Appendix of [9] proves the E{bn} ∼ n−2H−1. But as shown in [16], it
is just a intermediate result for our final goal.

3.2 A Remedy

Because the problem lies in the orthogonality, we will give a remedy for our
proof by orthogonal projection.

More precisely, we will project these functions {ψn(t)}∞n=1 to a set of or-
thonormal basis functions {φn(t)}∞n=1 as

ψn(t) =
∞
∑

k=1

µn,kφk(t) (10)

where µn,k = projφn(t)(ψk(t)) =
(

∫ 1

0
φn(t)ψk(t)dt

)

.

Based on Eq.(7), (9)-(10), we have

Bt =
∞
∑

n=1

cnφn(x) =
∞
∑

n=1

bnψn(x) =
∞
∑

n=1

(

∞
∑

k=1

µn,kbk

)

φn(x) (11)

Thus, we can study the eigenvalue asymptotics of cn from

cn =

∞
∑

k=1

µn,kbk (12)

This method is similar to what had been applied in [17]-[18]. We will discuss
when such projection is valid at the end of this response.

The success of Prof. Bronski [7]-[8] inspired us to choose the orthonormal
basis functions φn(t) = {

√
2 sin((n + 1

2 )πt)
∞

n=0}. Because the Karhunen-Loève
expansion for brownian motion H = 1

2 is well known [19], [13], we will focus on
the cases that H 6= 1

2 .
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As pointed out in [9]-[15], we can expand a standard fBm process Bt as

Bt =

∞
∑

n=1

(

zn
sin(xnt)

xn
+ wn

1− cos(ynt)

yn

)

(13)

where xn are the positive zeros of the Bessel function J−H of the first kind, yn
are the positive zeros of the Bessel function J1−H of the first kind. As shown in
[9], we have

xn = nπ + h1 +O(n−1), yn = nπ + h2 +O(n−1) (14)

where h1 and h2 are constants.
zn and wn are independent sequences of independent, centered Gaussian

random variables on a common probability space, with

E [zn] = E [wn] = 0 (15)

E
[

z2n
]

=
2c2H

x2Hn J2
1−H(xn)

, E
[

w2
n

]

=
2c2H

y2Hn J2
−H(yn)

(16)

where c2H = Γ(1+2H) sin(πH)
π .

Let us first examine the projection of { sin(xnt)
xn

}∞n=1. Given n, k ∈ N, we can
obtain the projection coefficients µ̂n,k as

µ̂n,k

=

∫ 1

0

sin(xkt)

xk

√
2 sin([n− 1

2
]πt)dt

=

√
2

2xk

[

sin(xk − [n− 1
2 ]π)

xk − [n− 1
2 ]π

− sin(xk + [n− 1
2 ]π)

xk + [n− 1
2 ]π

]

=

√
2d1
xk

(

(

xk + [n− 1
2 ]π
)

+
(

xk − [n− 1
2 ]π
)

x2k − [n− 1
2 ]

2π2
+O(n−2)

)

=
2
√
2d1

x2k − [n− 1
2 ]

2π2
+

√
2d1
xk

O(n−2) (17)

where d1 is a constant.
As shown in [9], we have

J1−H(xk) = d2x
−1/2
k + O(x

−3/2
k ) (18)

where d2 is a postiche constant.
Thus, based on Eq.(14) and (18), we have

∞
∑

k=1

E
[

z2k
]

µ̂2
n,k
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=

∞
∑

k=1

16c2Hd
2
1

x2Hk J2
1−H(xk)

[

x2k − [n− 1
2 ]

2π2
]2 +O(n−3)

= d3

∞
∑

k=1

x−2H+1
k

[

x2k − [n− 1
2 ]

2π2
]2 +O(n−3)

(19)

where d3 is a positive constant.
It is easy to show that

∞
∑

k=1

x−2H+1
k

[

x2k − [n− 1
2 ]

2π2
]2 >

x−2H+1
k

[

x2k − [n− 1
2 ]

2π2
]2

∣

∣

∣

∣

∣

k=n

= d3n
−2H−1 +O(n−3)

(20)

and

∞
∑

k=1

x−2H+1
k

[

x2k − [n− 1
2 ]

2π2
]2 < d3

∞
∑

k=1

x−2H+1
k

[(2k − 1)n]
2 +O(n−3) = d4n

−2H−1 +O(n−3)

(21)

where d3 and d4 are positive constants.

Noticing that
∑

∞

k=1
x−2H+1

k

[x2
k
−[n− 1

2
]2π2]2

converges, based on (13)-(15), we have

∞
∑

k=1

E
[

z2k
]

µ̂2
n,k = d5n

−2H−1 +O(n−3) ∼ n−2H−1 (22)

where d5 is a positive constant.

Similarly, we can prove that the projection coefficients of { 1−cos(ynt)
yn

}∞n=1

satisfies
∞
∑

k=1

E
[

w2
k

]

µ̃2
n,k ∼ n−2H−1 (23)

where µ̃n,k =
∫ 1

0
1−cos(ykt)

yk

√
2 sin([n− 1

2 ]πt)dt.
Due to the independence of zk and wk, we have

λn = E
[

c2n
]

=
∞
∑

k=1

(

E
[

z2k
]

µ̂2
n,k + E

[

w2
k

]

µ̃2
n,k

)

∼ n−2H−1 (24)

Therefore, our proof in [9] is repaired.
In summary, the nice proof given by Bronski in [7]-[8] is a direct attack on

the problem, and our proof detours. However, the appendix in [9] plus this
response gives another view on the asympotics of K-L expansion of fBm process
and meanwhile shows how the important results obtained in [7]-[8] and [13]-[15]
can be linked together.
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4 Some Discussions

Finally, we would like to discuss the interesting question raised in [16]: If a

centered Gaussian process Gt admits two different series expansions, under what

conditions do the two eigenvalue sequences have the same asymptotic behavior?

We think this question can be partly solved by evaluating the mapping op-
erator T between the two sets of basis functions. If the mapping T consists of
appropriate projection coefficients, the asymptotics of the eigenvalues can still
be held.

The general cases are obviously too difficult to solve in this short response.
In the follows, we will briefly discuss a special case: when one basis is a Riesz
basis and the other is a orthonormal basis.

Suppose we have a expansion of the integral kernel K is in L2([0, 1] ×
[0, 1]) on a Riesz basis {ψn(t)}∞n=1 (no need to be orthogonal) as K(s, t) =
∑

∞

n=1 τψn(s)ψn(t); and meanwhile we have the K-L expansion of K on a or-
thonormal basis {φn(t)}∞n=1 in the same space as K(s, t) =

∑

∞

n=1 λφn(s)φn(t).
Based on the property of Riesz basis [20]-[23], we can always find a linear

bounded bijective operator T satisfying {ψn(t)}∞n=1 = {Tφn(t)}∞n=1.
The basis function used in [13]-[15] can be viewed as a special Riesz basis,

which satisfying the above requirement. Thus, we can study the asymptotics of
K-L eigenvalues by using orthogonal projection.

Since {ψn(t)}∞n=1 is a Riesz basis, it will associate with a set of Riesz se-
quence. Hence, if A is the infinite matrix representing this bounded linear
operator T , the sequence {Ak,n}∞k=1 formed by the nth column of A is a Bessel
sequence in l2.

Assume that λn and τn have the same asymptotics. According to [24]-[29],
the upper bound for the decaying rate of the eigenvalues for a smooth Mercer
kernel is O(n−1). Thus, we have λn, τn ∼ n−p, p > 1.

Since {Ak,n}∞k=1 is a Bessel sequence,
∑

∞

k=1 A
2
k,nτk ≤ C1

∑

∞

k=1 τk = C2

when τn ∼ n−p, C1 and C2 are constants. Thus,
∑

∞

k=1 A
2
k,nτk converges. Based

on the mapping relation, we have

λn =

∞
∑

k=1

A2
k,nτk (25)

or equivalently

d6n
−p =

∞
∑

k=1

A2
k,nk

−p +O(n−p) (26)

which indicates that given a n ∈ N, the maximum value of Ak,n in terms of k
locates at a point k∗ that is approximately proportional to n (say, k∗ = ⌊d7n⌋).
Here d6 and d7 are two positive constants.

Similarly, if {ψn(t)}∞n=1 and {φn(t)}∞n=1 are two different Riesz bases, we
can always find two linear bounded bijective operators U and V satisfying
{Uψn(t)}∞n=1 = {V φn(t)}∞n=1. Thus, if Gt admits two series expansions on
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different Riesz bases, we may possibly study the asymptotic behavior on one
basis from the knowledge on the asymptotic behaviors of another.

Besides, when H → 0, the decaying rate of the eigenvalues will approach the
bound λn ∼ O(n−1) as λn ∼ n−2H−1. This can be another example in practice
supporting Weyl’s conclusion: the rate O(n−1) for the eigenvalues of a smooth
Mercer-like kernel cannot be improved in general [24]-[29].
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