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AGA: An Accelerated Greedy Additional
Algorithm for Test Case Prioritization

Feng Li, Jianyi Zhou, Yinzhu Li, Dan Hao, Lu Zhang

Abstract—In recent years, many test case prioritization (TCP) techniques have been proposed to speed up the process of fault
detection. However, little work has taken the efficiency problem of these techniques into account. In this paper, we target the Greedy
Additional (GA) algorithm, which has been widely recognized to be effective but less efficient, and try to improve its efficiency while
preserving effectiveness. In our Accelerated GA (AGA) algorithm, we use some extra data structures to reduce redundant data
accesses in the GA algorithm and thus the time complexity is reduced from O(m2n) to O(kmn) when n > m, where m is the number
of test cases, n is the number of program elements, and k is the iteration number. Moreover, we observe the impact of iteration
numbers on prioritization efficiency on our dataset and propose to use a specific iteration number in the AGA algorithm to further
improve the efficiency. We conducted experiments on 55 open-source subjects. In particular, we implemented each TCP algorithm with
two kinds of widely-used input formats, adjacency matrix and adjacency list. Since a TCP algorithm with adjacency matrix is less
efficient than the algorithm with adjacency list, the result analysis is mainly conducted based on TCP algorithms with adjacency list.
The results show that AGA achieves 5.95X speedup ratio over GA on average, while it achieves the same average effectiveness as GA
in terms of Average Percentage of Fault Detected (APFD). Moreover, we conducted an industrial case study on 22 subjects, collected
from Baidu, and find that the average speedup ratio of AGA over GA is 44.27X, which indicates the practical usage of AGA in
real-world scenarios.
Note: This is a preprint of the accepted paper “Feng Li, Jianyi Zhou, Yinzhu Li, Dan Hao, and Lu Zhang. AGA: An Accelerated
Greedy Additional Algorithm for Test Case Prioritization. IEEE Transactions on Software Engineering, 2021”, which can be
accessed at https://ieeexplore.ieee.org/document/9662236.
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1 INTRODUCTION

Test case prioritization (abbreviated as TCP) [1], [2], [3], [4],
[5], [6], is proposed to schedule the execution order of test
cases so as to detect faults as early as possible. To address
this problem, a large number of TCP techniques have been
proposed in the literature.

Among these TCP techniques, the Greedy Additional
(GA) algorithm has received much attention since it was
proposed in 1999 [5] due to its widely recognized effect-
iveness [7], [8], [9], [10]. In particular, the GA algorithm
iteratively selects the next test case which covers the largest
number of elements (e.g., methods, branches, statements)
that have not been covered by previously selected test
cases. When the selected test cases cover all elements, this
GA algorithm deals with the remaining unselected test
cases with any prioritization technique (e.g., Greedy Total
algorithm [5], which schedules these test cases based on the
descendent order of the number of total covered program
elements). Later in 2002, Elbaum et al. [3] slightly modified
this algorithm by reordering the remaining test cases with
the GA strategy again after resetting all the elements to be
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“uncovered”. This GA algorithm repeats the GA strategy
until all the test cases are selected and thus its effectiveness
is no worse than that of the original GA algorithm [5]. There-
fore, the GA algorithm proposed by Elbaum et al. [3] is taken
as the default GA algorithm by most researchers in TCP and
in this paper1. Moreover, the original GA algorithm is called
the GA-first algorithm for distinction. Note that we target
GA rather than GA-first in this paper because the former
is more widely used in the literature. Although researchers
have put dedicated efforts in TCP and have proposed a large
number of TCP techniques since then, the GA approach [3]
remains one of the most effective strategies in terms of fault-
detection rate [7], [8], [10], which is usually measured by
the average percentage of faults detected (abbreviated as
APFD). In other words, none of the existing TCP techniques
can always outperform GA [3] in terms of effectiveness.

Besides effectiveness, time cost is widely recognized
as another important issue influencing the application of
an approach [11] [12], [13], [14], especially considering the
limited available time. In particular, the time cost of TCP,
called TCP efficiency in this paper, refers to how much time
a TCP approach consumes. As reported, Google [15] runs
800K builds and 150M tests every day (the same tests are
run many times). If a TCP approach consumes much more
time on prioritization, the time left for test running will
be reduced to a large extent. Furthermore, software modi-
fication occurs dramatically frequently so that regression

1 Without further clarification, the GA algorithm used in this paper refers
to the one proposed by Elbaum et al. [3].
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testing consumes about 80% testing cost [16]. For example,
Google developers modify source code one time per second
on average [15]. To improve the efficiency of regression
testing, it is necessary to apply TCP more than once because
frequent code modification may hamper the effectiveness
of TCP [17]. That is, considering the practical application
of TCP, including the GA algorithm, both effectiveness and
efficiency are important.

However, existing TCP approaches, including the GA
algorithm, suffer from the efficiency problem, e.g., the
previous work shows that most existing TCP approaches
cannot deal with large-scale application scenarios [13], [15],
[18]. Furthermore, some work [13], [15], [18] points out
that the GA algorithm spends dramatically long time on
prioritization. Note that in the 20-year history of GA, there
is no approach proposed to improve its efficiency while
preserving the high effectiveness.

In this paper, we make the first attempt to accelerate the
GA algorithm and maintain the effectiveness. In particular,
we analyze the efficiency problem of the GA algorithm
and propose to accelerate the GA algorithm through two
enhancements. The proposed algorithm is called the Accel-
erated Greedy Additional (abbreviated as AGA) algorithm.
First, many redundant data accesses occur during priorit-
ization in GA. Whenever a test case is selected, the GA
algorithm scans the coverage information of all test cases
to mark elements covered by this selected test case and
calculates the number of unmarked elements covered by
each unselected test case. Such scanning is less efficient and
may contain many redundant data accesses. Therefore, we
design some extra data structures (e.g., indices) to summar-
ize the coverage information of each test case in the AGA
algorithm. Supposed that m, n, k are the number of test
cases, the number of elements and the number of iterations
to repeat GA strategy (which is called iteration number in
this paper), and given n > m (which is true in most cases),
the time complexity of our AGA algorithm is O(kmn),
while the time complexity of the GA algorithm is O(m2n).
The value of k determines to what extent the former is
superior to the latter. In practice, k is usually much smaller
than m, and in our approach, k is fixed as a constant (by the
second part below), so, our O(kmn) is superior to O(m2n).
Second, the GA algorithm proposed by Elbaum et al. [3]
repeats the GA strategy multiple times in TCP and thus the
iteration number is usually larger than 1. Intuitively, when
an element is covered for enough times, the probability that
it still contains faults is low, so the remaining iterations may
not contribute to the effectiveness but only decrease TCP
efficiency. Therefore, we investigated their relation empiric-
ally and applied it to modify the GA algorithm to improve
efficiency but preserving effectiveness. To sum up, our AGA
algorithm consists of two parts, time complexity reduction
and iteration number reduction. Note that theoretical im-
provement is rather important and gives clear assurance for
high-efficiency under any situations (especially in the first
part of AGA). Also, our simple technique with theoretical
improvement is meaningful in practice and can illustrate
the simple nature of the problem.

We conducted controlled experiments by using 55 open-
source projects from GitHub (whose total lines of code
are from 1,621 to 177,546). Because the algorithm input

(program coverage) has two kinds of format, adjacency
matrix and adjacency list, we conduct our experiments on
both of them, which is discussed in Section 2.1. In the
experiments, we studied the contributions of the two parts
of AGA separately, and found that both of them improve the
efficiency to a large extent. Furthermore, we investigated the
effectiveness and efficiency of AGA by comparing it with
GA. The results showed that on average the speedup ratio
of AGA over GA is 5.95X and 27.72X on two input formats,
which is a very large improvement. We also find that the
average APFD of AGA and GA is the same, and Analysis of
Covariance (ANCOVA) [19] shows no significant difference
between them. Moreover, the effect size (Cohen’s d) also
indicates small effect.

We also empirically compared AGA with FAST [18],
which focuses on the TCP efficiency problem. As FAST [18]
targets a different problem, improving the time efficiency
by sacrificing effectiveness, such a comparison in terms
of efficiency may be a bit unfair to our AGA approach.
Surprisingly, the results showed that the average speedup
ratio of AGA over FAST is 4.29X (with significant difference
and medium effect), which means AGA even outperforms
the technique that sacrifices effectiveness to achieve high
efficiency. Also, the average APFD difference that AGA
exceeds FAST is 0.1702, and ANCOVA shows that the dif-
ference is statistically significant. Moreover, the effect size
(Cohen’s d) also indicates huge effect.

We further performed an industrial case study in Baidu,
a famous Internet service provider with over 600M monthly
active users. In particular, we compared the performance
of AGA and GA in 22 subjects of Baidu. In this industrial
case study, the average speedup ratio of AGA over GA is
44.27X and 61.43X on two input formats, which indicates
the usefulness of AGA in real-world large-scale scenarios.
Also, AGA is faster than FAST on all 22 subjects and
achieves 4.58X speedup ratio on average, and the difference
is statistically significant with very large effect. Due to the
commercial constraints, we cannot access the source code
of these projects, and the developers in Baidu also do not
record the fault positions in the history, which are necessary
to calculate the APFD results. So, we did not compare the
effectiveness of these approaches in this study.

The contributions of this work are summarized as below.
• The first attempt to improve the efficiency of GA while

preserving its effectiveness, since GA is believed to
have high effectiveness. In particular, we resolve the ef-
ficiency issue of GA through theoretical improvement,
which gives clear assurance for high-efficiency under
any situations.

• An approach to accelerating the widely-known GA al-
gorithm through two parts, including time complexity
reduction and iteration number reduction. With the
former, the complexity is reduced from O(m2n) to
O(kmn) given n > m, which is theoretically proved;
with the latter, the corresponding AGA algorithm is
more efficient and can be as competitive as GA regard-
ing to effectiveness, which is empirically shown. In fact,
although it seems like an easy-to-implement algorithm,
in the broad literature, nobody realizes this optimiza-
tion and the subsequent reduction of complexity. There-
fore, this paper is the first to systematically analyze this
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problem and propose and evaluate the optimization
approach, which is helpful for the community.

• Large scale experiments on 55 open-source projects
demonstrating the effectiveness and efficiency of our
AGA approach, compared with the GA algorithm.

• An empirical comparison of AGA with FAST, which
improves time efficiency but decreases effectiveness.

• An industrial case study on 22 subjects from Baidu,
which indicates the practical usage of AGA in real-
world scenarios.

2 TIME COMPLEXITY REDUCTION

In this section, we review the Greedy Additional (GA)
algorithm by an example (in Section 2.1). By analyzing its
time complexity (in Section 2.2), we propose to accelerate
GA through extra-defined data structures (in Section 2.3).
Such modification improves the efficiency of GA so that the
time complexity becomes O(kmn) (given n > m), whereas
the complexity of GA is O(m2n), where n is the number
of program elements (e.g., statements, branches, methods)
covered by the test suite, m is the number of test cases in
the test suite, and k is the iteration number.

2.1 Example

Table 1 presents an example showing the coverage inform-
ation of a test suite. This test suite consists of five test
cases (i.e., T1, T2, . . . , and T5) and the test suite covers
five program elements (i.e., E1, E2, . . . , and E5). A common
representation form of coverage information is adjacency
matrix, which is shown in Table 1(a). © represents that the
test case covers the corresponding program element, while
× represents the opposite. Another representation form of
coverage information is adjacency list, which is shown in
Table 1(b). In our example, the two forms represent totally
the same information.

Table 1: An Example

(a) Adjacency Matrix

Cover or Not Elements
E1 E2 E3 E4 E5

Test Cases

T1 © © © × ×
T2 × × © © ©

T3 © © × × ×
T4 × × © © ×
T5 × × × × ©

(b) Adjacency List

Test Cases Covered Elements

T1 E1 E2 E3
T2 E3 E4 E5
T3 E1 E2
T4 E3 E4
T5 E5

If we take the adjacency matrix as input, the GA al-
gorithm runs as follow. First, no element has been covered
before and this algorithm scans the whole table to calculate
the number of elements covered by each test case. Then
it chooses T1 or T2 since both of them cover the most

elements. Supposed that this algorithm chooses T1, then
T2, T3, T4, and T5 remain unselected. As the selected test
case T1 covers elements E1, E2, and E3, the rest elements E4
and E5 remain uncovered. The algorithm scans the whole
table again to find that T2, T3, T4, and T5 covers 2, 0, 1,
and 1 of the 2 uncovered elements, respectively. So, the GA
algorithm chooses T2 as the next test case. Now, all elements
have been covered and the GA algorithm [3] starts another
iteration by resetting all elements to “uncovered”. Finally,
the test execution sequence produced by the GA algorithm
is “T1, T2, T3, T4, T5”. On the other hand, provided the
adjacency list as input, GA runs similarly and produces the
same output.

2.2 Analysis of the GA Algorithm

In this section, we analyze the time complexity of the GA
algorithm through its general implementation. Suppose the
coverage information is recorded in a table like Table 1(a),
the GA algorithm first scans the whole table to find the line
with the most “©” entries and selects the corresponding
test case into the prioritized sequence. When a test case
is selected and added to the sequence, the GA algorithm
scans the whole table to find the “©”s whose corresponding
element is covered by the latest selected test case. These
“©”s are replaced by “×”s. The GA algorithm repeats the
proceeding process until all the entries in the table are “×”s
or all the test cases have been selected. In the latter case
the termination condition is satisfied and the GA algorithm
ends by producing a prioritized test suite; otherwise, GA
reuses the initial table by replacing “©”s with “×”s for each
selected test case and repeats the proceeding process again.

Supposed that there are m test cases in the given test
suite to be prioritized and n program elements are covered
by the test suite, the GA algorithm needs to scan the whole
table for m times and thus the time complexity is O(m2n),
as shown by previous work [3], [7], [8]. However, lots of
accesses of the table are redundant. First and the most
importantly, every time the coverage table is updated, the
GA algorithm recalculates the total “©” entries of each
unselected test case, without reusing previous calculation.
Second, none of the accesses to “×”s in the table is necessary
because the GA algorithm does not want to update them in
the process. Third, in order to find the elements covered
by the latest selected test case, the GA algorithm scans all
elements in the table, which is also unnecessary. Let us
illustrate the preceding redundant accesses by the example.
When T1 is selected first, the GA algorithm scans Row T1
and finds three “©”s. Among the five accesses (i.e., E1, E2,
. . ., E5), the accesses of E4 and E5 are redundant. Then, the
GA algorithm changes the state of E1, E2, and E3 in other
four test cases from “©” to “×”. During this process, it is
also not necessary to access the state “×”. Then, the GA
algorithm scans the whole table to select the next test case,
but this process can be optimized by analyzing updated
columns and the previous calculation on total number of
“©” covered by each test case. To sum up, due to such a
large number of redundant accesses in the GA algorithm, it
is possible to reduce its time cost and improve its efficiency.

If we take the adjacency list as input, similar analysis
can be done. First, the accesses of “×”s to find covered
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elements in one row is reduced, while more time is spent on
finding all test cases that cover a specific element (through
scanning of the whole list). As a result, the overall time
complexity remains O(m2n). Second, lots of accesses of the
list are redundant, too. Following our previous analysis,
the time efficiency can be improved through reducing the
unnecessary operations.

2.3 Improvement of Time Complexity

To reduce such redundant accesses, we propose the AGA C
approach that defines extra data structures, which reuse
previous information collected during its execution. In par-
ticular, we use a list to record the total number of elements
covered by each test case and dynamically update it during
prioritization, in order to alleviate the scanning of the cover-
age table. We also use forward and inverted indices to save
the data accesses of “×” entries in the table.

Our AGA C algorithm is shown in Algorithm 1. Line 1
initializes several data structures. TC is a list of length
m recording the number of elements covered by each test
case. In our example, TC is [3, 3, 2, 2, 1] from Table 1 by
definition. HS is a list of length n recording whether each
test case has been selected. HC is a list of length n record-
ing whether each element has been covered by previous
test cases. FI are forward indices that index all elements
covered by each test case, while II are inverted indices that
index all test cases that cover each element. From Table 1,
in our example, FI records that T1 covers [E1, E2, E3], T2
covers [E3, E4, E5], etc. II records that E1 is covered by [T1,
T3], E2 is covered by [T1, T3], etc. Line 2 initializes P as
the empty list. Then, in Line 3 to Line 21, the algorithm
selects m test cases in turn. First, it chooses the largest
value in TC whose test case t is marked unselected in HS.
The algorithm adds t to the prioritized list P and marks
it in HS. In our example, in the first loop, T1 is selected
(since it covers the most program elements), marked in HS,
and added to P. Then, for every element j in FI[t] that is
marked uncovered in HC , the algorithm marks it as covered
and for every test case i in II[j], the algorithm substracts
TC[i] by 1. In our example, in the first loop, E1 and E2
are marked covered and the updated TC is [0, 2, 0, 1, 1]
Finally, the algorithm continues to select the next test case
by repeating the process. As shown from Line 5 to Line 9,
if all elements have been covered by selected test cases,
the algorithm completes current iteration and restores the
original TC to start the next iteration. In our example, after
T1 and T2 are selected, the original TC is restored. The total
number of iterations is called iteration number.

Furthermore, we analyze the time complexity of our
AGA C algorithm. All initialization operations consume
O(mn) time. Each calculation of maximum value in TC
consumes O(m) time, which leads to O(m2) time in total.
The number of times to update TC is equal to the elements
in FI (also equal to the test cases in II) in an iteration,
which is the number of “©” entries in the coverage mat-
rix. So, in each iteration, the algorithm updates TC for
up to O(mn) times, and the total time for updating TC
is O(kmn), where k is the iteration number. Generally
speaking, the number of elements is often larger than the
number of test cases, which means n > m. So, according

Algorithm 1: AGA C algorithm
Input: Coverage information M;
Output: Prioritized test cases P;

1 Initialize TC, HS, HC , FI , and II from M, t = 0;
2 Set P as empty list;
3 while t < m do
4 Find the largest value in TC that the

corresponding test case t has not been selected
(take the use of HS);

5 if No test case can be selected then
6 Change TC to the original value;
7 Change HC to the original value;
8 Continue;
9 end

10 Add t into P;
11 Mark t as selected in HS;
12 forall j in FI[t] do
13 if HC[j] is “uncovered” then
14 Mark j as “covered” in HC ;
15 forall i in II[j] do
16 Decrease TC[i] by 1;
17 end
18 end
19 end
20 t = t+ 1;
21 end
22 Return P;

to the definition of Big O notation, the total time complex-
ity O(kmn + m2) can be simplified as O(kmn + m2) =
O(kmn+mn) = O((k + 1)mn) = O(kmn), where k is the
iteration number. Note that in most cases, n > m obviously
holds, and can also be verified by the subject statistics in this
paper (given by Table 6). For other special cases, the original
time complexity O(kmn+m2) is still a large improvement.

In addition, in our algorithm, we use more storage space
to maintain the extra data structures in order to improve
time complexity. So, it is necessary to analyze the space
complexity, too. In GA, the coverage information (adjacency
matrix/list) takes O(mn) space, and additional O(1) space
is used to store temporary variables in the algorithm, which
means the overall space complexity of GA is O(mn). In
AGA, the same O(mn) space is used to store the coverage
table, while TC, HS, HC , FI , and II need O(m), O(m),
O(n),O(mn), andO(mn) spaces, respectively. So, the over-
all space complexity of AGA is O(mn), which is the same
as GA, with the only difference lying in the constant factor.

3 ITERATION NUMBER REDUCTION

From Section 2, we obtain a new approach with time com-
plexityO(kmn), where k is the iteration number. In practice,
k is often much smaller than m in most projects because
usually many test cases are needed to cover all elements in
an iteration. However, in the worst case, k may be equal
to m, indicating the worst time complexity of our AGA
algorithm is still the same as that of the GA algorithm.

To further improve the efficiency of the GA algorithm,
especially in the worst case, in this section, we discuss
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the impact of the iteration number and introduce another
modification adopted in our AGA algorithm. Finally, we
present an experiment to evaluate the impact of iteration
number on the GA algorithm.

3.1 Modification with Iteration Number Reduction

Let us re-examine the definition of “an iteration”. In
this paper, the process of selecting some test cases from
covering 0 element to covering all possible elements and
then resetting them to be “uncovered” is called “an iter-
ation”. Intuitively, the iteration number may have large
impact on time cost of the GA algorithm. The difference
between the GA-first algorithm [5] and the GA algorithm [3]
also indicates the influence of such an iteration number.
Moreover, between these two algorithms, there exist many
other potential algorithms, depending how many times
the GA strategy is used (i.e., iteration number of the GA
strategy) and what strategy is used to deal with the remain-
ing unselected test cases (e.g., Greedy Total strategy, which
schedules test cases based on the descendent order of the
number of total covered program elements).

n = k × l (1)

Here, we define the average number of test cases selected
in one iteration as l, so we can deduce Formula (1). Accord-
ing to Formula (1), if a large number of test cases are selected
in one iteration, the total iteration number of this project is
small; if few test cases are selected in one iteration, the total
iteration number of this project is large. As our goal is to
improve efficiency while preserving effectiveness, projects
with small iteration number have already been efficient
enough, and the time complexityO(kmn) can be reduced to
O(mn). For those projects with large iteration number, it is
necessary to optimize the iteration number to some extent.

In fact, everytime a program element is covered, the
probability that it still contains faults decreases. After many
iterations, all elements have been covered for enough times.
On one hand, if all faults have been revealed after these
iterations, the remaining iterations are useless for detecting
faults but only increase the time cost. On the other hand,
if there are still several faults existed after many iterations,
they are supposed to be hard to reveal and the remaining
iterations may only reveal them by chance, intuitively. So,
we conjecture that after some iterations, the effectiveness of
GA just fluctuates along with the remaining iterations.

Based on the above reasoning, we introduce another
component of the proposed AGA algorithm, AGA I.
AGA I reduces the time cost by reducing the iteration
number. Different from the GA algorithm, AGA I does not
repeat applying the GA strategy until all the test cases are
prioritized, but stops when the specified iteration number is
achieved. Regarding to the remaining unselected test cases,
AGA I applies other less costly techniques (e.g., the Greedy
Total technique (GT) [5], which is usually used in previous
work and also in this paper). Take Table 1 as an example, the
original iteration number is 2. If we reduce it to be 1, AGA I
does not repeat the additional strategy after selecting T1 and

T2 and prioritizes the remaining test cases using GT.
3.2 Experiment
We conjecture that AGA I does not influence the effective-
ness (e.g., APFD) much but can improve efficiency (i.e., time
cost) a lot. To verify our conjecture, we design an experiment
to investigate how the iteration number impacts TCP in
terms of both effectiveness and efficiency.

Specifically, we use the same setup as the comprehensive
experiments in Section 5. More details about the subjects,
faults, implementation and supporting tools, and measure-
ment are given in Section 5.

We applied the GA algorithm to all subjects, and recor-
ded the total number of iterations the GA strategy is applied
during the process for each project, which is denoted as k.
Then we applied to each project k modified GA algorithms,
each of which is denoted as algorithm algoi (1 ≤ i ≤ k),
recording their APFD values and time spent during pri-
oritization. In particular, algorithm algoi repeats the GA
strategy i times and prioritizes the remaining unselected test
cases by the Greedy Total strategy [5]. Note that algorithm
algo1 is actually the GA-first algorithm, whereas algorithm
algok is actually the GA algorithm.

Due to space limit, we only present some statistics of the
experimental results in Table 2, that is minimum, maximum,
average, quartiles (Q1, Q2, Q3), and the detailed results
are given on the website of this project. From the eighth
column, the average iteration number among all open-
source subjects is 29.20. The ninth to the fourteenth columns
present the ratio between the time cost of the GA approach
and that of the GA-first approach [5]. The big gap between
the maximal and minimal time ratio indicates the influence
of the iteration number. To better analyze the relationship
between iteration number and time cost, we put detailed
results in Appendix A. We draw a line chart of iteration
number and time cost for each project. Note that in order to
see the trend, we only present the projects whose iteration
number is no less than 20 (k ≥ 20). The plots also support
our claim that the iteration number contributes much to
the time cost. As k is the coefficient of time complexity, it
largely determines the actual efficiency in practice, so, we
think there is a large space to reduce time complexity.

The last six columns in Table 2 present the APFD ranges
of each project with different iteration numbers, that is,
the highest APFD value minus the lowest APFD value.
From the quartiles, we conclude that although some outliers
exist, most of the APFD ranges are very small. And the
average APFD range is only 0.0085 among all open-source
subjects, indicating that little fluctuation of APFD occurs as
the iteration number varies.

To sum up, we have two main observations. First, along
with the increase of the iteration number, the time cost also
increases, indicating that the iteration number contributes
much to the time cost. Second, the APFD value varies a little
when the iteration number varies, which means a too large
iteration number contributes little to the APFD value. These
two observations also verify our conjectures in Section 3.

As we discuss in Section 3, projects with small iteration
numbers are efficient enough by using AGA C, so, we need
to decide a proper reduced iteration number for projects
with a large iteration number. In fact, this reduced iteration
number is not fixed, which means it can be adjusted for
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Table 2: Statistics of the Impact of Iteration Number

Subjects #Projects Iteration Number Time GA / Time GA-first * APFD range **

min. Q1 Q2 Q3 max. ave. min. Q1 Q2 Q3 max. ave. min. Q1 Q2 Q3 max. ave.

Open-Source 55 1 6 10 16.5 679 29.20 1.00 1.21 1.57 1.84 17.56 2.14 0.0000 0.0004 0.0013 0.0039 0.1328 0.0085
* The time ratio between the GA algorithm and the GA-first algorithm.
** The highest APFD subtracts the lowest APFD among all iteration numbers.

specific usage. In this papar, we determine this value from
some heuristics. On one hand, although we conjecture that
there is no need to conduct too many iterations to detect
faults, we still prefer to choose a relatively high value to en-
sure the effectiveness. On the other hand, if we assume that
every time an element is covered, the probability that it still
contains faults decreases to half of the original probability,
given that the initial probability is 1, we need to cover an
element 10 times to reduced the probability to be less than
1‰ ((1/2)10 = 1/1024). As a result, in the remaining of this
paper, we implement our AGA approach by using 10 as the
reduced iteration number.

Finding: The iteration number has large influence
on the efficiency of the GA algorithm, while it im-
pacts little on effectiveness. In this paper we set the
iteration number to be 10 in implementing the AGA
approach.

Note that this finding is confirmed on our dataset empir-
ically and may have bias considering the diversity of differ-
ent datasets. However, the constraint on k does reduce the
overall time complexity fromO(kmn+m2) toO(mn+m2).
When n > m, which is general in most cases, the reduction
is from O(kmn) to O(mn).

3.3 Discussion on the Chosen Iteration Number

In this paper, we set the iteration number to be 10 in im-
plementing AGA through some heuristics. Here we discuss
the influence of this choice. First, we analyzed the APFD
results of the GA algorithm with various iteration number
(i.e., algorithm algo1 (1 ≤ i ≤ k) in Section 6.1). In partic-
ular, for each project we recorded the highest APFD value
(denoted as APFDmax) among these algorithms, and found
the smallest iteration number r whose corresponding APFD
value is no smaller than AFPDmax ∗ 99%. Surprisingly, the
smallest iteration number r for all projects are no larger than
10, which indicates that only several iterations is enough
for maintaining original effectiveness, even in projects with
the iteration number up to 679. Second, although we set the
iteration number to be 10 in this paper, it may not be the best
choice. We respectively applied algo8, algo9, algo10, algo11,
and algo12 to all projects with k > 8 as Section 6.1, and
found that the gap between the maximum and minimum
APFD value of these algos is 0.0006 on average, which
means that there might be many possible choices of the
reduced iteration number in practice. In other words, the
value of k in our evaluation is decided by reasoning, but
it can have various values, depending on the choices of
developers. For example, they can use historical faults or
seeded faults to empirically decide the value of k.

4 RESEARCH METHOD

To investigate the performance of our proposed AGA ap-
proach, we design comprehensive experiments. In this sec-
tion, we briefly introduce each component of our experi-
ments and their intentions.

1) The main experiment of this paper is designed to
confirm the contributions of our approach, and thus we in-
vestigate the improvement of AGA and its component (i.e.,
AGA I and AGA C) over the GA algorithm. In particular,
this experiment is conducted on 55 open-source subjects.
Details of this experiment are referred to Sections 5 and 6.
Note that the experiment in Section 3.2 also shares the same
setup and RQ1 complements the experiment in Section 3.2.
This part of experiment can show the superiority of AGA in
widely-used open-source subjects.

2) Although we aim to improve the efficiency of GA, we
are also curious about how AGA performs compared with
other TCP techniques. Specifically, FAST targets the TCP
efficiency problem and its goal is close to ours. Therefore,
we first compare AGA with FAST, and then with other
representative TCP techniques, including ART-D, GA-S, and
GE. This experiment is in Section 7. This part of experiment
can show that AGA even outperforms techniques that aim
to reduce TCP time cost while sacrificing effectiveness.

3) To show the practical usage of our approach, we
conduct an industrial case study on Baidu, which is a
famous Internet service providers with over 600M monthly
active users. Specifically, we compare AGA with GA, FAST,
ART-D, GA-S, and GE, respectively and the experiment is
in Section 8. This part of experiment can show that AGA
works also well in real-world industrial applications and
we receive positive feedback from Baidu.

5 EVALUATION DESIGN

We conducted experiments to evaluate our AGA approach.
The experiments was performed on a server whose CPU is
Intel(R) Xeon(R) E5-2683 2.10GHz with 132GB memory and
whose operating system is Ubuntu 16.04.5 LTS. To make a
fair comparison of time cost, we conducted all experiments
on a single thread without parallel execution.

In order to make our results more reliable and let readers
reuse the artefacts, we share our data, analysis scripts, and
detailed data tables online. They are publicly available on
our website: https://github.com/Spiridempt/AGA, and also
on figshare: https://figshare.com/s/cf8cc6ba9259c0e0754d.

5.1 Research Questions

As our AGA approach consists of two parts, time com-
plexity reduction (AGA C) and iteration number reduction
(AGA I), the first two research questions are to investig-
ate their impacts, separately. Note that the first research
question also complements the experiment in Section 3.2.

https://github.com/Spiridempt/AGA
https://figshare.com/s/cf8cc6ba9259c0e0754d
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The third research question is designed to investigate the
performance of the whole AGA approach by comparing
it with the GA algorithm. To investigate the influence of
coverage type, the fourth research question is designed to
investigate whether AGA can also improve the efficiency of
GA with method coverage.

To sum up, this experiment is to answer the following
three research questions.
RQ1: How does our reduction of iteration number perform
compared with the GA algorithm in terms of efficiency?
RQ2: How does our reduction of the time complexity per-
form compared with the GA algorithm in terms of effi-
ciency?
RQ3: How does our AGA approach perform compared with
the GA algorithm in terms of effectiveness and efficiency?
RQ4: Can our AGA approach also improve the efficiency
when method coverage is used?

5.2 Subjects and Faults
Subjects. In this work, we use 55 open-source projects in
total. Among these projects, 33 are widely used in prior
work [17], [20], [21], the others are the most popular subjects
selected from GitHub according to the number of stars.
Specifically, we target Github subjects whose primary pro-
gramming language is Java and order them according to
the number of stars in Jan 2019. Then, we check the first
100 subjects and keep only the ones that are code repository
and the required tools (e.g., Maven, Clover, PIT, which is
explained in Section 5.3) could work. All the open-source
projects used in this work are written in Java, whose number
of lines of code is from 1,621 to 254,284. Each of these pro-
jects has a test suite written in JUnit Testing Framework. The
detailed information is given in Appendix B (Table 6). It is
worth noting that compared with the experimental dataset
used in recent TCP work [18], [22], [23], our dataset is larger
and contains more large-scale projects, which can make our
experimental results more reliable and convincing.
Faults. As existing work [24], [25], [26] have demonstrated
mutation faults to be suitable for software testing exper-
imentation and mutation faults are widely used in prior
work [7], [17], [22], [27], [28], [29], [30], [31] to evaluate
test case prioritization, we use a widely-used mutation
testing tool PIT [32] to generate mutants for all open-source
subjects. In particular, for each subject, first, we generate all
mutants. Second, we keep the mutants that are killed by at
least one failing test case2. Third, we construct one mutation
group for each subject by containing all the remaining muta-
tion faults, which is also consistent with previous work [12].

5.3 Implementation and Supporting Tools
We used Clover [33] to collect code coverage information
including both statement coverage and method coverage for
each open-source subject. In this work, most experiments are
conducted on statement coverage because it is the mostly
studied test case prioritization granularity and its low-
efficiency problem is severe. In other word, the number
of statements is larger than the number of methods and

2 That is, the subject and the mutant produce different outputs on at least
one test case

branches. Additionally, we also design a research question
to investigate whether AGA still improves efficiency in the
scenario of method coverage. The implementation code and
all scripts used in this work are written with Python.

In prior work on coverage based test case prioritization,
some takes the adjacency matrix as input [12], while some
uses the adjacency list [18]. In this work, in order to make
a more general comparison, on one hand, we utilize the
GA implementation in [18], which is a relatively efficient
implementation and uses adjacency list as input, and we
implement AGA based on adjacency list. On the other hand,
we implement GA and AGA based on adjacency matrix, too.
Due to the space limit, in the experimental results, we only
report the results based on adjacency list [18], which can be
more reliable, and the detailed results based on adjacency
matrix are put on the website.

It is worth mentioning that in our experiments, when ties
happen (i.e., more than one test case has the same number
of covered elements), AGA/GA selects the topmost test case
in the test-list (given by developers).

5.4 Compared Prioritization Approaches
Besides the proposed AGA approach and the GA ap-
proach [3], in this study we also implemented the GA-
first approach proposed by Rothermel et al. [5]. The GA-
first approach [5] applies the greedy additional strategy
only in the first iteration, and deals with the remaining test
cases by other prioritization approach, e.g., the Greedy Total
approach in this paper, which schedules these test cases
based on the descendent order of the number of covered
program elements.

5.5 Measurement
In this study, similar to existing work [3], [5], we used the
Average Percentage of Fault Detected (APFD) to measure
the effectiveness of TCP approaches. Formula (2) presents
how to calculate APFD values for a subject with n tests
and m faults. Typically, TFi represents the first test case’s
position in the test suite that detects the ith fault.

APFD = 1− TF1 + TF2 + ...+ TFm

nm
+

1

2n
(2)

Besides, we used the total time spent during the TCP
process to measure the efficiency of a TCP approach. For
fair comparison, we included the preparation time for a
TCP approach, i.e., the time spent in constructing extra data
structures in the AGA approach.

5.6 Threats
The internal threats to validity mainly lie in the imple-
mentation of studied approaches and scripts used in the
experiments. To reduce this threat, the first two authors
reviewed all the implementation and scripts used in this
work. Also, to improve the reliability of our work, we reuse
some implementation code in previous work [18] to reduce
the threats.

The external threats to validity mainly lie in the subjects
and faults. To reduce the former threat, we used 55 widely
used open-source subjects in our study, which consist of 33
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previously used subjects [17], [20] and 22 popular subjects
selected from GitHub. At the same time, as AGA is a general
approach, it is not biased towards the chosen projects. Note
that because the second part of our approach (iteration
number reduction) is empirically verified on our dataset,
the large dataset itself also addresses the threat that our
approach may be biased. Also, some prior work [34], [35]
shows that the relative performance of different test case pri-
oritization techniques on mutation faults may not strongly
correlate with the performance on real faults, depending
upon the attributes of the studied subjects, but we follow
the common practice to use mutation faults for open-source
projects following the preceding TCP work [7], [17], [22],
[27], [28], [29], [30], [31]. Additionally, to complement this
experiment, in Section 7, we also evaluate our approach on
real faults. In the future, we plan to conduct an extensive
study by using more projects with more real faults. In
addition, in this paper, we only target the GA algorithm and
compare AGA with it. On one hand, it is widely accepted
that GA remains one of the most effective strategies in terms
of fault-detection rate [7], [8], [10]. On the other hand, the
results of a recent work [12] shows that other black-box
techniques that do not use coverage information (e.g., [36],
[37]) are often less effective than GA. At the same time,
we also design another experiment in Section 7 to compare
AGA with other representative prioritization techniques.
Additionally, most of our experiments are conducted on
statement coverage because its wide usage and severe low-
efficiency problem. In fact, our analysis of AGA is regardless
of the scale of coverage matrix, and our theoretical improve-
ment is general for all types of coverage. We also include
RQ4 to empirically verify our improvement on method
coverage. Another minor threat is induced by the diversity
of used subjects, which may lead to misleading statistics
of our results. To address this threat, besides reporting the
mean and median values, we also draw violin plots to learn
the data distribution, which are shown on our website.

6 RESULTS AND ANALYSIS

In this section, we analyze the experimental results on open-
source projects and answer the four research questions.

6.1 RQ1: Efficiency of Iteration Number Reduction
In this section, we further investigate the efficiency im-
provement of the iteration number reduction. According
to Section 3.2, we implement our approach with iteration
number reduction alone by setting k = 10 and call this
implementation AGA I. In other words, in this subsection,
we assess the contribution of iteration number reduction
alone (without the time complexity reduction).

The results on the 55 open-source projects are given in
Table 7 (Appendix C)3, where the projects are sorted in
ascending order of source lines of code (SLOC) and the
first two columns present the results for RQ1. TimeGA

presents the time cost of the GA approach, whereas TimeI
represents that of AGA I. The speedup ratio of AGA I over
GA is 1.08X. It is apparent that most subjects have a small

3 Due to the space limit, we put the results of several research questions
into one table and put the table in Appendix C.

iteration number in GA (less than or slightly more than
10). Therefore, AGA I does not improve the efficiency much
for them. However, for those subjects with a large iteration
number, AGA I could reduce their time cost.

To statistically check the differences between AGA I and
GA, we adopt hypothesis test. We first use Shapiro-Wilk
test [38] to check the normality of residuals, and the p-
value in AGA I and GA is 9.416 ∗ 10−16 and 5.239 ∗ 10−16,
which reject the hypothesis that they are normally distrib-
uted. Therefore, we need to adopt a non-parametric test.
As we need to include project size as a control variable,
Wilcoxon rank sum test [39] cannot be used. We seek for
the proportional odds regression [40], which is a class of
generalized linear models and is equivalent to Wilcoxon
rank sum test when there is a single binary covariate.
We introduce a variable “group” representing AGA I and
GA and take project size as a control variable. The results
show that the p-value of “group” is 1.380 ∗ 10−6, indicating
significant difference between AGA I and GA, and the effect
size (Cohen’s d [41]) is 0.274 (medium effect). Here, because
statistical tests of normality (e.g., Shapiro-Wilk test) might
be impacted by characteristics of the data, we draw the
normal probability plots additionally and put them on our
website. Note that this applies to all normality checks in the
following of the paper.

6.2 RQ2: Efficiency of Time Complexity Reduction

The extra data structures defined in our AGA C approach
do not affect the prioritization results, but reduce the time
complexity of prioritization. In this section, we compared
AGA C with GA only in terms of time cost. Note that we
did not implement AGA I in this research question.

The results are given by the first five columns (except
the third column) of Table 7 (Appendix C), where TimeGA

presents the time cost of the GA approach and TimeC
represents that of AGA C. Moreover, we mark the results
of TimeC with X only if TimeC < TimeGA.

The last row summarizes the total number of subjects
where AGA C outperforms the GA approach. The res-
ults show that in most projects (48 out of 55 open-source
subjects), the time cost of AGA C is lower than the GA
approach [3], which confirms our previous theoretical ana-
lysis in Section 2. As we can see, in smaller subjects, the
differences between GA and AGA C are very small, which
may be caused by precision errors resulting from calculation
or the operating system. In larger subjects, their differences
are very large, which indicates the efficiency of AGA C.

In order to make our experiments comprehensive, we
compared AGA C with the GA-first approach, whose time
cost is given by the fourth column TimeGAF of Table 7
(Appendix C). In 36 open-source subjects, AGA C is even
more efficient than the GA-first approach, which applies the
time-consuming additional strategy for only one iteration.

In general, the efficiency improvement of AGA C is usu-
ally very large. In particular, if we define TimeGA/TimeC
as the speedup ratio of AGA C over GA for a project, the
average speedup ratio is 4.37X. As small time cost may yield
biased speedup ratio, also in order to show the perform-
ance of AGA in projects with different sizes, we classify
all 55 projects into small-size, middle-size, and large-size,
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according to the SLOC. The small-size projects (S1 to S22
in Table 7 (Appendix C)) all have less than 5,000 SLOC, the
middle-size projects (S23 to S41) all have 5,000-20,000 SLOC,
and the other large-size projects have more than 20,000
SLOC. The results show that the average speedup ratio in
the three categories is 2.16X, 4.65X, and 7.44X, respectively.
So, the reduction of time complexity (AGA C) performs
well, especially in projects with large sizes. In order to
give a more deep view into the distribution and variation
of speedup ratios, we further present the violin plot with
included box plot in Figure 1. The X-axis represents all
projects and projects in three categories, respectively. We
put the violin plots and box plots together to better present
the distributions. From the plots, the speedup ratio of large-
size projects tends to be slightly larger than that of small-
size projects. Moreover, from the plot of large-size projects,
several projects have very large speedup ratio because their
scale is also large.
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Figure 1: Speedup Ratios Distribution of AGA C over GA
on Open-Source Projects

To statistically check the differences between AGA C
and GA, we perform hypothesis testing similar to the above.
We first use Shapiro-Wilk test [38] to check the normality of
residuals, and the p-value in AGA C and GA is 4.207∗10−15

and 5.239 ∗ 10−16, which reject the hypothesis that they
are normally distributed. We also use the proportional odds
regression [40] and include project size as a control variable.
The results show that the p-value of “group” is 0.038, indic-
ating significant difference between AGA C and GA, and
the effect size (Cohen’s d [41]) is 0.234 (medium effect).

Besides, we also calculate the speedup ratios of AGA C
over GA-first for a more complete comparison. The average
speedup ratio is 3.01X, and the average speedup ratio in the
three categories is 1.26X, 3.31X, and 5.35X, respectively. This
shows our AGA approach is also superior to GA-first.

To statistically check the differences between AGA C
and GA-first, we perform the similar procedure as above.
We first use Shapiro-Wilk test to check the normality of
residuals, and the p-value in AGA C and GA-first is 4.207 ∗
10−15 and 3.828 ∗ 10−16, which reject the hypothesis that
they are normally distributed. We also use the proportional
odds regression [40] and include project size as a control

variable. The results show that the p-value of “group” is
0.399, indicating no significant difference between AGA C
and GA-first, and the effect size (Cohen’s d) is 0.208 (me-
dium effect).

Provided adjacency matrix as input, we also implemen-
ted GA and AGA C, and the detailed results are on our
website. Specifically, the average speedup ratio of AGA C
over GA is 24.18X, and the average speedup ratio in the
three categories is 5.47X, 28.16X, and 48.19X, respectively.

Besides, the speedup ratios of the AGA C approach
vary a lot in different projects. On 19 open-source subjects
AGA C is less efficient than GA-first. On the one hand, the
iteration numbers of these projects are high so that AGA C
becomes a bit costly. On the other hand, in the only iteration
of GA-first, few test cases are needed to cover all statements
and they are selected fast so that GA-first is efficient on these
projects.

To sum up, AGA C addresses the high-complexity prob-
lem of GA well and successfully reduces its time complexity.
For any project, any scale of coverage matrix, our approach
could improve the efficiency a lot.

Conclusion to RQ2: The time complexity reduction
strategy used in our AGA approach demonstrates
great efficiency improvement compared to GA. Spe-
cifically, the average speedup ratio of AGA C over
GA is 4.37X/24.18X on two types of input.

6.3 RQ3: Comparison with Greedy Additional Ap-
proaches
In this section, we compare the effectiveness and efficiency
between the proposed AGA approach and two Greedy
Additional approaches (including both GA and GA-first),
whose results are given by the first ninth columns (except
the third and fifth column) of Table 7 (Appendix C), where
APFDAGA and TimeAGA represent the APFD results and
time cost of the AGA approach whose iteration number
is set to be 10. Moreover, when the GA approach [3] does
not outperform the corresponding AGA approach [3], i.e.,
APFDAGA ≥ APFDGA or TimeAGA < TimeGA, the corres-
ponding results of the AGA approach is marked with X.

6.3.1 Effectiveness
The proposed AGA approach has the same or better APFD
performance as the GA approach in 51 out of 55 open-source
subjects, and the average APFD value of AGA is 0.8870,
which is the same as GA. On some subjects (e.g., the open-
source project whose ID is S44), the AGA approach does
not outperform the GA approach, but their APFD difference
is usually very small (e.g., 0.0021 for this subject). We also
make extra comparisons of AGA and GA-first and find that
AGA has the same or better APFD performance as GA-
first in 45 out of 55 open-source subjects and their average
APFD values are the same. On 14 projects, neither the
AGA approach nor the GA approach outperforms the GA-
first approach, but their differences are small. Through our
analysis, we suspect that after the first iteration, although all
elements have been covered, the numbers of times that each
element is covered still differ. This means test cases with a
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small number of times being covered should have higher
priority, but in later iterations, this information is ignored.

Moreover, we statistically analyze whether the AGA
approach and the Greedy Additional approaches have sig-
nificant difference on their APFD values. First, we conduct
the Shapiro-Wilk test to check the normality of residuals.
The p-value of AGA, GA, and GAF is 0.328, 0.298, and 0.283,
indicating we cannot reject the hypothesis that they are
normally distributed. We additionally perform Shapiro-Wilk
test to check the normality of residuals, and the p-value of
AGA, GA, and GAF is 0.328, 0.298, and 0.283, indicating we
cannot reject the hypothesis that they are normally distrib-
uted. Therefore, we can use parametric test in the following.
We use Bartlett’s test [42] to check the homogeneity of
variance, and the p-value is 0.880, indicating we cannot reject
the hypothesis that they have equal variance. Then, as we
need to take project size as a control variable (covariate), we
use Analysis of Covariance (ANCOVA) [19], a parametric
test that works on two or more groups to check whether
different groups have the same means. The p-value is 0.641,
indicating we cannot reject that they have the same means.
Then, pairwise ANCOVA tests show that the p-values of
AGA vs. GA, AGA vs. GAF, and GA vs. GAF are 0.981,
0.427, and 0.414. In other words, the probability that AGA
is as competitive as GA is more than 98%. Then, we employ
Cohen’s d [41] to compute the effect size (ES), and the results
in AGA vs. GA, AGA vs. GAF, and GA vs. GAF are 0.005,
0.151, and 0.156, which are all small effects. Furthermore, we
conduct Tukey’s range test [43] to check the 95% confidence
intervals for all pairwise differences, and the results are
[-0.022, 0.022], [-0.030, 0.015], and [-0.030, 0.014].

6.3.2 Efficiency
According to Table 7 (Appendix C), in almost all subjects
(i.e., 44 out of 55), the time cost of AGA is much lower than
the GA approach. On average, the speedup ratio of AGA
over GA is 5.95X. Moreover, the speedup ratios in small-size,
middle-size, large-size projects are 2.26X, 6.69X, and 10.76X,
respectively. To learn the distribution of speedup ratios in
small-size, middle-size, large-size projects, we also present
the violin plot with included box plot in Figure 2. From this
figure, most medium-size and large-size projects achieve
higher speedup ratios than small-size projects. Moreover,
AGA achieves very large speedup ratios on some large-
size projects. So, AGA scales up well in large-size projects.
Furthermore, we compared the time cost of the AGA ap-
proach with the GA-first approach, which requires less time
than the GA approach, and find that the AGA approach
even outperforms the GA-first approach in 37 open-source
subjects. The average speedup ratio is 3.95X, and the av-
erage speedup ratio in the three categories is 1.36X, 4.39X,
and 7.44X, respectively. Here, we notice that the speedup
ratio of AGA over other approaches is sometimes less than
1 (e.g., S3, S4, S7). In fact, the overall time complexity
analysis is meaningful only when the parameters are large
enough. In our dataset, some projects have a relatively small
m value. In this case, although O(mn) seems to be small, its
coefficient is not negligible compared to m. In other words,
the preliminary data structure setup consumes much time
and it impacts the overall running time in some cases. This is
also consistent with the empirical results that AGA performs

better on large projects. On the other hand, the adjacency
lists in some projects are very dense, which takes much time
in the preparation of data structure, and further leads to a
large coefficient. For example, S7 and S42 have relatively
small m values (45 and 34) and dense adjacency lists.
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Figure 2: Speedup Ratios Distribution of AGA over GA on
Open-Source Projects

Provided adjacency matrix as input, we also implemen-
ted GA and AGA. The average speedup ratio of AGA over
GA is 27.72X, and the average speedup ratio in the three
categories is 5.84X, 35.47X, and 51.59X, respectively.

To sum up, not surprisingly, the speedup ratio of AGA
is higher than AGA C and AGA I. After combining AGA I
and AGA C, our whole AGA approach obtains more ef-
ficient results while preserving high effectiveness. At the
same time, the proposed AGA approach is demonstrated
to be efficient especially on large-scale projects. In fact,
the surprisingly high efficiency of the AGA approach also
indicates the existence of many redundant accesses of data
and it is ubiquitous in most projects.

Conclusion to RQ3: The AGA approach requires
much less time in prioritization than the GA ap-
proach and the average speedup ratio is 5.95X and
27.72X on two types of input. Also, AGA is as
competitive as the latter in terms of APFD values
(with no significant difference). This means that we
achieve our goal in this paper and it has promising
use in practice.

6.4 RQ4: Performance on Method Coverage
In previous research questions, we focus on statement-

level coverage because it is the mostly studied coverage
criterion and its low-efficiency problem is more severe than
other granularities. In this section, we collect the method-
level coverage for each of our 55 subjects and compare the
efficiency of AGA and GA. The results are shown in Table 3.
For each subject, we report the running time (in seconds) of
GA and AGA.

According to Table 3, in almost all subjects, the time
cost of AGA is much lower than GA. On average, the
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speedup ratio of AGA over GA is 6.02X. Moreover, the
speedup ratios in small-size, middle-size, large-size projects
are 2.28X, 7.32X, and 10.13X, respectively. Compared to the
results on statement coverage in Section 6.3, the speedup
ratios are almost the same for all projects and projects in
different sizes. This confirms that AGA also works well on
method coverage.

In fact, the complexity analysis of GA and our AGA
approach is based on a general (0,1) matrix, regardless of
the meaning behind it. In other words, the type of program
element (e.g., statement, method) does not affect any aspect
of AGA, which means our approach works on any coverage
and has a stable improvement.

Conclusion to RQ4: The AGA approach also works
on method-level coverage. Specifically, the average
speedup ratio of AGA over GA is 6.02X.

7 EMPIRICAL COMPARISON WITH REPRESENTAT-
IVE PRIORITIZATION TECHNIQUES

In this section, we present an experiment comparing AGA
with some representative prioritization techniques. In par-
ticular, as FAST targets the TCP efficiency problem and
thus is closet to our goal, we first present the comparison
study with FAST in Section 7.1. Then we present the com-
parison study with other representative TCP techniques in
Section 7.2.

7.1 Comparison with FAST
In this section, we investigate the performance of AGA
with its most related work FAST [18]. In particular, FAST
is proposed as a TCP approach to address the general
TCP efficiency problem by sacrificing the TCP effective-
ness, and it is shown to be more efficient than other TCP
techniques [18]. Note that there is no other work in the
literature focusing on the same objective as ours, and thus
we compare AGA against FAST. However, AGA and FAST
target at slightly different goals: FAST approach focuses on
the efficiency problem of test prioritization, not specific to
GA approaches. Although FAST targets a different goal, it is
still interesting to learn how AGA performs compared with
FAST in terms of time cost since both AGA and FAST can be
viewed as addressing the efficiency problem. However, as
FAST improves efficiency while sacrifices effectiveness, the
comparison in terms of time cost is a bit “unfair” for AGA.

In this study, we compare the performance of AGA and
FAST on both the 55 open-source projects used in Section 5
and Defects4J [44], which is the largest real-fault benchmark
(i.e., a set of projects with reproducible real bugs) widely
used in test case prioritization [35], [45], [46], [47], [48]
and fault localization [49], [50], [51], [52], [53]. For ease of
understanding, we present the results of the former subjects
with seeded faults and the results of the latter subjects with
real faults separately.

The FAST approach borrows algorithms commonly used
in the big data domain to find similar items and con-
tains a family of similarity-based test case prioritization
approaches. In general, the authors proposed two categories
of FAST, While-box (WB) and Black-box (BB). BB approaches
take test code as input, while WB approaches take program

coverage as input. As WB approaches have the same input
as us and are much faster than BB approaches, we compare
our work with WB approaches [18]. WB approaches include
five algorithms FAST-pw, FAST-all, FAST-1, FAST-log, and
FAST-sqrt, whose difference lies in how many test cases are
randomly selected for prioritization at a time. In this section,
we implemented this family, and for each subject, we com-
pared the best results of this family with AGA. Specifically,
according to prior work [18], none of the algorithms in FAST
family always performs the best. Therefore, to show the
superiority of our approach, we run all FAST algorithms
and select the best one for each project. In other words,
when comparing APFD, we keep the highest APFD, and
when comparing time cost, we keep the lowest time cost.
Moreover, due to the randomness in FAST, for each subject
we applied each of these approaches 10 times and used their
median effectiveness and efficiency results. Regarding the
time cost, the same as Section 5, we measure the efficiency
of a TCP approach by including its preparation time, i.e., the
preparation time used in FAST4.

7.1.1 FAST Results on Seeded Faults

The results of FAST are shown by the tenth and twelfth
columns in Table 7 (Appendix C). Due to space limit, we
do not present the results of all the five FAST algorithms,
but the largest APFD value and smallest time cost among
them for each subject. Note that usually a FAST algorithm
cannot achieve both the largest APFD value and the smallest
time cost. As the APFD results and time cost of AGA is
already given by the eighth and ninth columns, we use
column WinAPFD and column WinTime to show whether
APFDAGA ≥ APFDFAST and TimeAGA < TimeFAST,
respectively.

Regarding to APFD values, the AGA approach is much
better than FAST in all subjects. More specifically, the differ-
ences between them are from 0.0456 to 0.3039, and 0.1702 on
average. To statistically check their differences, we follow
the similar procedure as above. We first use Shapiro-Wilk
test to check the normality of residuals, and the p-value in
AGA and FAST is 0.328 and 0.137, which cannot reject the
hypothesis that they are normally distributed. Then, taken
project size as a control variable, the Analysis of Covariance
(ANCOVA) shows that p-value < 2 ∗ 10−16, indicating the
statistically significant difference between AGA and FAST.
Moreover, the effect size (Cohen’s d) is 2.96 (huge effect) and
Tukey’s range test shows that the 95% confidence interval
of their difference is [0.149, 0.192]. To sum up, AGA signi-
ficantly outperforms FAST in terms of APFD because FAST
algorithms are designed to sacrifice prioritization accuracy
to achieve high efficiency by using hash signatures.

Regarding to the time cost, the time cost of AGA outper-
forms FAST on 52 out of 55 open-source subjects, and the
speedup ratio of AGA over FAST is 4.29X. To statistically

4 The previous work FAST [18] separated their total running time into
preparation time and prioritization time in their evaluation. However,
preparation happens only once in BB approaches while not in WB
approaches, because the input of BB approaches is test code. Given
updated source code but out-of-date coverage information (from the
previous version), we need not prioritize again and TCP results will
not change. Otherwise, with updated coverage information, the whole
process (including preparation) has to be repeated.
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Table 3: Results of Open-Source Subjects (Method-Level)

Project TimeGA TimeAGA Project TimeGA TimeAGA Project TimeGA TimeAGA

S1 0.0030 0.0031 S2 0.0011 0.0010 S3 0.0014 0.0013
S4 0.0021 0.0116 S5 0.0051 0.0014 S6 0.0019 0.0007
S7 0.0007 0.0012 S8 0.0032 0.0028 S9 0.2587 0.0504
S10 0.0145 0.0081 S11 0.0158 0.0080 S12 0.0027 0.0020
S13 0.0068 0.0048 S14 0.0158 0.0076 S15 0.0036 0.0008
S16 0.0106 0.0024 S17 0.0741 0.0146 S18 0.0047 0.0013
S19 0.2907 0.1007 S20 0.0024 0.0023 S21 0.0098 0.0064
S22 0.0111 0.0055 S23 0.0502 0.0147 S24 0.0035 0.0031
S25 1.1046 0.1654 S26 0.0131 0.0043 S27 0.0041 0.0020
S28 0.1945 0.0347 S29 1.2958 0.3499 S30 0.0624 0.0177
S31 0.4390 0.0495 S32 0.3495 0.0589 S33 0.1714 0.0162
S34 0.8556 0.0824 S35 0.2642 0.0330 S36 31.6469 3.8975
S37 0.7977 0.0594 S38 0.5507 0.0445 S39 6.6268 0.3601
S40 0.6570 0.0963 S41 0.3203 0.0463 S42 0.0011 0.0006
S43 0.2057 0.0211 S44 1.3687 0.1088 S45 0.0202 0.0034
S46 0.0182 0.0044 S47 0.0183 0.0045 S48 0.0010 0.0003
S49 0.0230 0.0183 S50 0.0011 0.0007 S51 1.0812 0.0883
S52 0.2423 0.0652 S53 0.1631 0.0369 S54 15.7745 1.1856
S55 190.9669 2.9963

check their differences, we follow the similar procedure as
above. We first use Shapiro-Wilk test to check the normality
of residuals, and the p-value in AGA and FAST is 4.92∗10−15

and 4.05 ∗ 10−15, which reject the hypothesis that they are
normally distributed. Therefore, we use the proportional
odds regression [40] and include project size as a control
variable. The results show that the p-value of “group” is
4.250 ∗ 10−4, indicating significant difference between AGA
and FAST, and the effect size (Cohen’s d) is 0.286 (medium
effect). That is, the proposed AGA is more efficient to
FAST (with 4.29X speedup ratio). This is a surprising result
because AGA can even be faster than a technique that
is designed to sacrifice effectiveness to reduce time cost.
We also present the violin plot with included box plot in
Figure 3. On larger projects, the speedup ratios are smaller,
which means FAST also scales up well on large-size projects,
whereas it is less efficient than AGA.

7.1.2 FAST Results on Real Faults

Besides, as FAST is evaluated by some subjects of De-
fects4J [44] in the previous work [18], we apply the AGA
approach to these subjects by reusing their artifact package
(including subjects and code) for fair comparison. Moreover,
we add the experiment on Mockito, which is also in De-
fects4J but does not appear in the experiment of FAST. De-
fects4J is the largest real-fault benchmark, so this experiment
complements the previous experiments on seeded faults and
can evaluate AGA on real faults. The comparison results
are given by Table 4, where WinAPFD and WinTime show
whether the proposed AGA approach outperforms FAST in
terms of APFD and time cost, respectively. From this table,
AGA is more effective than FAST algorithms on 5 out of 6
projects and it achieves better time efficiency on all 6 projects
(with 5.24X as average speedup ratio), which indicates the
superiority of AGA. Also, from this experiment, we show
that AGA is superior on real faults, too.
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Figure 3: Speedup Ratios Distribution of AGA over FAST on
Open-Source Projects

Actually, it is worth pointing out that as the authors
of FAST [18] stated, no single FAST algorithm can be the
best, which means the most effective algorithm in FAST may
lead to somewhat higher time cost and the most efficient al-
gorithm in FAST may lead to somewhat lower APFD value.
That is, the results of FAST in Table 7 (Appendix C) and
Table 4 are not results of one FAST algorithm, but the best
results of all FAST algorithms. Moreover, even compared
with these results, AGA is still promising considering both
effectiveness and efficiency.

Considering the advantageous of AGA over FAST, it is
interesting to analyze the secrets behind the observation.
FAST approach achieves the efficiency improvement by
using the algorithms used in big data domain to summar-
ize the key information in coverage, but suffers from the
effectiveness loss to some extent because some information



TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH YEAR 13

Table 4: Results of Some Defects4J Projects

Projects FAST AGA APFD range GAF
APFD Time APFD WinAPFD Time WinTime APFD Time

Closure 0.5219 11.7302 0.4347 2.0408 X 0.0006 0.4354 9.4078
Math 0.5471 5.2600 0.6992 X 0.9586 X 0.0000 0.6992 7.4710
Lang 0.5627 0.4280 0.6094 X 0.1513 X 0.0000 0.6094 0.2150
Time 0.5463 2.8633 0.5469 X 0.5042 X 0.0034 0.5436 0.9870
Chart 0.5264 5.1456 0.7128 X 0.9030 X NA 0.7128 5.0767

Mockito 0.5197 2.7311 0.5975 X 0.4537 X 0.0014 0.5961 2.7539

Total 5 6

is missing in the summarization. AGA consists of two parts,
time complexity reduction and iteration number reduction.
In particular, the former part is to use some extra data struc-
tures (e.g., indices) to summarize the coverage information
of each test case, i.e., the statements covered by each test.
With these data structures, AGA does not need to scan the
coverage table whenever a test case is selected, and thus the
time cost of AGA reduces but its effectiveness maintains. To
sum up, FAST suffers from effectivness loss because it uses
simplified information, while AGA does not because it uses
the same information as before but in an easy-to-access way.

Moreover, similar to Table 2, we compute the gaps
between the highest and lowest APFD among all iteration
numbers for Defects4J subjects, which are shown in Column
“APFD range” of Table 4. The range of “Chart” is marked
as “NA” because it has only one iteration. As we can
see, the gaps are extremely small, which also confirms the
conclusion in Section 3.

Additionally, Column “GAF” of Table 4 shows the res-
ults of GA-first. AGA is much more efficient than GAF
while achieves larger APFD, which is consistent with the
conclusion in Section 6.3.

Conclusion: Surprisingly, AGA can achieve 4.29X
speedup ratio compared to FAST, which targets im-
proving time efficiency while sacrificing effective-
ness. At the same time, the experimental results
show that AGA is significantly better than FAST in
terms of APFD values, and the average difference
between them is 0.1702.

7.2 Comparison with other TCP Techniques
Although only FAST has a close goal to ours, to better evalu-
ate AGA, we also compare it with more representative TCP
techniques. In particular, in this study we use the following
TCP techniques whose input is only coverage information
and which have been widely used in the literature [18], [31].

• ART-D [10] is a family of adaptive random-based TCP
techniques guided by coverage information. At each
iteration, a candidate set is dynamically created by
randomly picking test cases from the set of not-yet-
prioritized test cases as long as they can increase cover-
age. The test case in the candidate set that is the farthest
away from the set of prioritized test cases is selected.

• GA-S (Additional Spanning) [54] is a variant of GA
that at each iteration picks the test case that covers the

largest number of uncovered elements among those in
the “spanning set”. Here, an element subsumes another
if covering the former guarantees covering the latter:
The notion of a spanning set denotes the subset of non-
subsumed elements.

• GE [8] is a genetic algorithm, which is a represent-
ative of search-based prioritization techniques and is
evaluated to be effective. In each iteration, it uses a
fitness function to select individuals and then applies
crossover and mutation operators to generate new in-
dividuals. Specifically, an individual (a sequence) is
encoded as an array where each value indicates the
position of a test case; The fitness function is defined by
Baker’s linear ranking algorithm [55]; The crossover op-
erator selects two parents and each of the two offspring
is formed by combining the first several values in one
parent and the remaining values in the other parent;
The mutation operator randomly selects two values in
an individual and exchanges their positions.

In this section, we reuse the implementation of ART-D,
GA-S, and GE in [18], [22] and compare them with AGA on
the 55 open-source projects. Considering the randomness
of these techniques, each of them is run 10 times. The
remaining setting of this experiment is the same as Section 5.
Due to the space limit of Table 7 (Appendix C), we put the
results in Table 5. In Table 5, each row represents one project,
and the running time and APFD of AGA, ART-D, GA-S, and
GE are shown separately.

The average speedup ratio of AGA over ART-D is
144.58X. Moreover, in all 55 projects, the APFD values of
AGA are larger than ART-D, and the average APFD dif-
ference is 0.1384. That is, AGA always outperforms ART-D
in terms of both effectiveness and efficiency. The average
speedup ratio of AGA over GA-S is 182.27X. In 54 out of 55
projects, the APFD values of AGA is larger than GA-S, and
the average APFD difference is 0.0708. The average speedup
ratio of AGA over GE is 285.91X. In 50 out of 55 projects,
the APFD values of AGA are larger than GE, and the
average APFD difference is 0.0459. That is, compared with
the three TCP techniques, our proposed AGA achieves both
effectiveness and efficiency. Moreover, the time cost and
APFD values of the compared TCP techniques distribute
in a larger range than AGA, indicating that the latter can
achieve stably promising performance.
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Conclusion: As AGA aims to largely improve
the TCP efficiency while preserving the high-
effectiveness of GA, it outperforms ART-D, GA-S,
and GE in terms of both efficiency and effectiveness.

8 INDUSTRIAL CASE STUDY

To show the practical usage of our approach, we then
conducted an industrial case study as follows.

Baidu is a famous Internet service provider with over
600M monthly active users. In their regression testing infra-
structure, test case prioritization is frequently needed and
they have been adopting Greedy Additional (GA) strategy
for a long time because of its simple idea and relatively
high effectiveness. However, they often complain about the
long running time of GA, which deviates from the original
intention of test case prioritization, that is to accelerate the
process of detecting faults.

To check the performance of our AGA approach in real-
world scenarios, we collected 22 versions of five industrial
projects from Baidu, each of which is taken as a subject
in this study. More specifically, these subjects are collected
from Dec. 2017 to Feb. 2018 and Oct. 2018 to Nov. 2018,
and all of them are written in C. As shown in the first three
columns in Table 8 (Appendix D), we summarize the SLOC
and number of test cases of each subject. The SLOCs range
from 20K to 500K while the numbers of test cases range
from 202 to 4,246. Besides, we used C-Cover [56] to collect
statement coverage for each industrial subject.

In Table 8 (Appendix D), we report the time cost of GA,
AGA, and FAST, respectively. When the time cost of AGA
is less than GA, we mark it with X. As we can see, in all 22
subjects, the time cost of AGA is much lower than that of
GA, and the speedup ratio is 44.27X on average. In general,
our AGA approach is demostrated to be efficient on indus-
trial subjects from Baidu. For example, for the subject I1,
its original prioritization time is larger than 29,000 seconds,
which may be unbearable in practice. However, through
AGA, the prioritization time is reduced to less than 360
seconds. On the other hand, the surprisingly high efficiency
of AGA also indicates the ubiquitous existence of many
redundant accesses of data in industrial projects. We also
present the violin plot with included box plot in Figure 4 to
show the distribution and variation. As we can see, on most
projects, AGA has a large improvement compared to GA.

Provided adjacency matrix as input, the average spee-
dup ratio of AGA over GA is 61.43X.

After we report the results, developers in Baidu verified
(1) the time cost of our implementation of GA is close
to their inner implementations, and (2) the speedup ratio
is significant and our technique improves their prioritiza-
tion efficiency, because their implementation only works on
small projects, not large projects.

In addition, we also compared our approach with FAST,
and the experimental setup is the same with Section 7. Sur-
prisingly, AGA outperforms FAST again. Specifically, on all
22 subjects, AGA is faster than FAST and the average spee-
dup ratio is 4.58X. To statistically check their differences, we
follow the similar procedure as above. We first use Shapiro-
Wilk test to check the normality of residuals, and the p-value
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Figure 4: Speedup Ratios Distribution of AGA over GA and
FAST on Industrial Projects

in AGA and FAST is 5 ∗ 10−4 and 2.5 ∗ 10−3, which reject
the hypothesis that they are normally distributed. Similary
to the above, proportional odds regression [40] is used and
we introduce a variable “group” representing AGA and
FAST and take project size as a control variable. The results
show that the p-value of “group” is 1.35 ∗ 10−6, indicating
significant difference between AGA and FAST, and the effect
size (Cohen’s d) is 1.28 (very large effect). We also present
the violin plot with included box plot in Figure 4. Again, we
find that on most projects, AGA has a large improvement
than FAST. In [18], the authors proposed FAST to solve
the scalability problem of TCP techniques with the decrease
of effectiveness. Their approach is evaluated to be efficient
when the project size grows up rapidly. However, our AGA
approach is even more efficient than FAST, and this means
AGA may scale up better and is practical in real-world
scenarios. Also, recall that when we compare AGA with
FAST on open-source projects, the p-value is larger and the
effect size is smaller than here, and we conjecture that this
is due to the relatively small sizes of open-source projects.

Additionally, besides FAST, which targets the TCP ef-
ficiency problem, we also compare AGA with other more
general TCP techniques as we have done in Section 7.
Specifically, we run ART-D, GA-S, and GE on the 22 subjects.
Considering the randomness of these techniques, each of
them is run 10 times. The results are shown in Table 8
(Appendix D). As we can see, these techniques are much
slower than AGA, even GA. The average speedup ratio of
AGA over ART-D, GA-S, and GE is 993.37X, 4230.53X, and
123.25X, respectively.

It is worth noting that on one hand, Baidu is sensitive
to the positions of detected faults in history, thus these
positions are not available to us. On the other hand, they
only provide coverage data after desensitization and we
do not have access to the source code of these subjects (to
create mutants) due to the confidential policy. As a result, we
cannot compare the effectiveness of the three approaches in
terms of APFD in industrial subjects.
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Table 5: Comparison with Other TCP Techniques on Open-Source Subjects

AGA ART-D GA-S GEProject Time APFD Time APFD Time APFD Time APFD

S1 0.0157 0.9070 0.0832 0.8440 0.5878 0.8812 0.0650 0.8747
S2 0.0058 0.8380 0.0224 0.7508 0.3312 0.7870 0.0660 0.8373
S3 0.0222 0.8848 0.0196 0.7681 0.1593 0.8108 0.0900 0.8705
S4 0.0789 0.8509 0.0478 0.5933 0.1079 0.6555 0.4440 0.8061
S5 0.0089 0.8527 0.1361 0.7405 0.6358 0.7662 0.9430 0.8310
S6 0.0046 0.8101 0.0957 0.6909 0.2560 0.6800 0.9140 0.7935
S7 0.0076 0.9059 0.0150 0.7711 0.1116 0.8255 0.0970 0.8855
S8 0.0180 0.8898 0.0752 0.7459 2.7672 0.8153 0.1160 0.8985
S9 0.3363 0.9144 53.9033 0.8821 33.7447 0.8995 38.4580 0.8949
S10 0.0247 0.9518 0.5895 0.8009 0.9681 0.9017 0.8060 0.9172
S11 0.0553 0.8766 0.4818 0.7640 10.6250 0.7950 0.4070 0.8501
S12 0.0106 0.8864 0.0708 0.7589 0.3043 0.8375 0.2970 0.8667
S13 0.0385 0.8615 0.1763 0.7816 2.0406 0.7667 0.2000 0.7783
S14 0.0385 0.9188 0.6426 0.7800 0.8556 0.8779 0.6880 0.9011
S15 0.0055 0.8582 0.1225 0.7285 0.2513 0.7117 0.7360 0.8470
S16 0.0152 0.8031 0.3687 0.6578 0.9745 0.6509 3.0660 0.7760
S17 0.1317 0.9183 7.8831 0.8316 7.8195 0.8893 2.7440 0.8785
S18 0.0226 0.9028 0.1431 0.7783 1.5687 0.8039 0.3120 0.8950
S19 0.6995 0.9033 34.4428 0.7553 374.3919 0.8381 4.1710 0.8528
S20 0.0469 0.8013 0.2180 0.7021 36.2190 0.7293 0.3410 0.8185
S21 0.0248 0.8328 0.4520 0.7156 1.5459 0.7676 1.5660 0.7899
S22 0.0215 0.8642 0.2999 0.7660 0.8994 0.8151 0.5080 0.8570
S23 0.0962 0.8198 4.8919 0.6979 4.2931 0.7782 3.6190 0.7866
S24 0.0187 0.9858 0.0420 0.9213 12.3507 0.9857 0.1230 0.9860
S25 1.0579 0.8401 70.1140 0.8099 387.4319 0.8426 3.5190 0.8283
S26 0.0294 0.8339 0.4066 0.6026 0.3047 0.6927 2.6380 0.7833
S27 0.0303 0.9614 0.0254 0.7695 0.2441 0.8579 0.2200 0.9501
S28 0.1132 0.9164 11.6980 0.7642 4.6810 0.8734 8.5760 0.8534
S29 2.3900 0.9490 130.3359 0.8254 7955.7540 0.9180 3.7060 0.9131
S30 0.1804 0.9617 6.9994 0.8572 28.4835 0.9202 1.6830 0.9285
S31 0.3170 0.9426 46.5734 0.8342 15.9675 0.9191 11.7620 0.9065
S32 0.1270 0.8911 22.8351 0.7165 3.1369 0.8231 53.4990 0.7696
S33 0.0921 0.8662 11.0712 0.6612 5.5717 0.7356 23.6020 0.7568
S34 0.7903 0.9328 120.8907 0.8271 128.1646 0.8861 21.5730 0.8780
S35 0.3631 0.9467 32.4553 0.7277 20.0292 0.8694 5.1690 0.9105
S36 23.7849 0.9371 2,397.2400 0.8207 1,976.4397 0.8597 11.6880 0.8570
S37 0.3582 0.8507 33.6262 0.6876 23.6568 0.7621 1,979.6000 0.7165
S38 0.2794 0.8657 115.8419 0.7753 35.4853 0.7747 337.0780 0.8072
S39 2.2078 0.9545 1,114.6899 0.7931 265.5048 0.9289 168.0300 0.7733
S40 0.5942 0.9244 118.3193 0.7621 17.4111 0.8672 112.3900 0.8156
S41 0.1562 0.9106 19.2647 0.7195 4.2101 0.8454 40.8410 0.8116
S42 0.0287 0.8569 0.0123 0.7409 0.2401 0.8176 0.1300 0.8649
S43 0.2558 0.8924 32.1075 0.7331 38.5073 0.7915 24.0450 0.8208
S44 0.8465 0.9240 162.8027 0.8437 147.3191 0.9090 34.0820 0.8864
S45 0.0597 0.8464 0.8793 0.6822 7.4841 0.7811 4.6150 0.7918
S46 0.0858 0.8656 3.7066 0.6834 17.5147 0.7494 4.0400 0.8003
S47 0.0629 0.8750 0.7825 0.6884 1.0181 0.7588 3.6900 0.8225
S48 0.0025 0.7939 0.0095 0.6455 0.0386 0.7089 0.0790 0.7873
S49 0.1120 0.8009 0.8459 0.6463 5.6348 0.7600 4.3070 0.7884
S50 0.0047 0.8517 0.0164 0.5108 0.0585 0.6855 0.1830 0.8559
S51 1.1036 0.8671 203.2114 0.6595 505.1426 0.8080 61.9450 0.7261
S52 0.4052 0.9542 26.1336 0.8454 200.9616 0.8889 20.1360 0.9233
S53 0.2298 0.8710 13.8199 0.6956 32.9077 0.8101 33.7620 0.7768
S54 2.6648 0.9089 3,373.5142 0.7578 252.3093 0.8478 13,384.3880 0.7902
S55 18.1040 0.9544 55,120.6523 0.8613 4536.0047 0.9292 13,516.8050 0.8747
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Conclusion: Our AGA approach achieves 44.27X
speedup ratio compared to GA. AGA even outper-
forms FAST in terms of time efficiency (4.58X), and
the difference is statistically significant. This indic-
ates that AGA is practical in real-world scenarios.

9 DISCUSSION

Space comparison. From the space complexity analysis in
Section 2, AGA consumes at most twice more space than
GA, which is acceptable in practice. Moreover, AGA does
not require high performance servers, e.g., the time cost of
AGA on the two largest open-source projects (i.e., commons-
math & camel-core) is only 153.42s and 187.82s (on a per-
sonal computer whose Intel Core-i5 with 8GB memory),
almost the same as Table 7 (Appendix C)).
Impact of seeded faults and real faults. Previous work [24],
[57], [58] has explored the relationship between seeded
faults and real faults and they may have different charac-
teristics, which has potential influence on the evaluation on
test case prioritization, fault localization, etc. In this paper,
we evaluate our approach on both 55 open-source subjects
with seeded faults and Defects4J dataset with real faults. The
high performance of AGA on both of them can illustrate its
superiority well.
Discussion on other TCP approaches. Researchers have put
dedicated efforts in TCP and have proposed a large number
of TCP techniques since then. Many approaches take other
information rather than coverage information (e.g., test in-
puts, test outputs, mutants) as input, so they are in different
dimensions. However, even taken all kinds of approaches
into consideration, the GA approach remains one of the
most effective strategies in terms of fault-detection rate [7],
[8], [10], [18]. So, we target GA in this paper and AGA can
be better than other approaches.

10 RELATED WORK

Test case prioritization attracts much attention since this
problem was raised at the end of the 20th century, and the
work on test case prioritization can be classified into prior-
itization algorithms [8], [10], [59], [60], [61], [62], coverage
criteria used in prioritization [3], [5], [28], [63], [64], [65],
[66], [67], [68], measurement used to estimate prioritization
effectiveness [2], [5], [69], and empirical studies [1], [3], [5],
[12], [31], [70], [71], [72], [73], [74]. Moreover, a number of
surveys on test case prioritization are also given in the liter-
ature [75], [76], [77]. For example, Catal et al. [76] conducted
a systematic study of TCP techniques in 2001-2011 including
120 papers published in that time period. Due to the space
limit, we do not list all the prioritization work here, but
introduce some very recently published work. Di et al. [78]
proposed Hypervolume-based Genetic Algorithm to prior-
itize test cases using multiple test coverage criteria. Azizi
et al. [79] proposed a graph-based framework to map the
prioritization problem to a graph traversal algorithm. Chen
et al. [80] gave an adaptive random sequences approach
based on clustering techniques using black-box information.
Different from them, our work targets the effective GA
algorithm and attempts to solve its efficiency problem.

Moreover, some researchers noticed the efficiency prob-
lem of TCP and began to work on it. Henard et al. [12]
said, “if prioritization takes too long, then it eats into the
time available to run the prioritized test suite.” That is, for
large software, it is necessary to take the scalability of TCP
into consideration. Marijan et al. [81] proposed ROCKET to
prioritize test cases based on historical failure data, test ex-
ecution time and domain-specific heuristics to improve the
efficiency in the scenario of continuous integration. Knauss
et al. [82] proposed to analyze the correlation between test
failures and source code changes to rapidly prioritize test
cases. Elbaum et al. [13] introduced two techniques that use
readily available test execution history data to determine
what test cases are worth executing and execute them with
higher priority. Recently, Miranda et al. [18] introduced
the FAST techniques to provide similarity-based test case
prioritization techniques with scalable improvements. Our
work is related to the above work because all of them
target TCP efficiency problem. However, the above work
either does not take advantage of the coverage information
which results in lower effectiveness or addresses the effi-
ciency problem alone without balancing or even sacrificing
the effectiveness. That is, to our best knowledge, none of
the existing work can improve the efficiency of GA while
maintaining its widely-recognized effectiveness. Our work
achieves this goal and AGA is particularly advantageous for
large-scale industrial projects.

11 CONCLUSIONS

In this paper, we make a deep analysis of the Greedy
Additional algorithm (GA) for test case prioritization (TCP)
problem and propose AGA to improve its efficiency while
preserving effectiveness. On one hand, we find the redund-
ant data accesses in GA and take the use of extra data
structures to cut down them, which leads to an optimized
time complexity from O(m2n) to O(kmn) given n > m,
where m is the number of test cases, n is the number of
program elements, and k is the iteration number. On the
other hand, we notice the impacts of iteration numbers on
the effectiveness and efficiency of GA and propose to reduce
it to a relatively small value to improve efficiency while
preserving effectiveness. Overall, we achieve an O(mn)
algorithm for prioritization.

We performed comprehensive experiments on 55 open-
source projects to show the effectiveness and efficiency of
AGA. On one hand, AGA can achieve the same average
effectiveness as the GA approach, whose performance is
considered to be high, and at the same time, the efficiency
of AGA is much higher than GA. Specifically, our AGA
approach can achieve 5.95X/27.72X speedup ratio over GA
on average on two input formats. On the other hand,
compared with FAST, which was recently proposed to solve
the TCP efficiency problem while sacrificing effectiveness to
some extent, AGA achieves 0.1702 higher APFD values on
average and surprisingly the average speedup ratio of AGA
over FAST is 4.29X.

Additionally, we conducted an industrial case study on
22 industrial subjects, collected from Baidu, which is a
famous Internet service provider with over 600M monthly
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active users. The experimental results show that the av-
erage speedup ratios of AGA over GA and FAST are
44.27X/61.43X and 4.58X (with significant difference and
very large effect), respectively.

To the best of our knowledge, this is the first attempt
to alleviating the efficiency problem of the Greedy Addi-
tional TCP approach while maintaining its effectiveness.
It is worth noting that the efficiency of TCP algorithm is
especially important when software becomes larger, that
is to say, in real-world scenarios. Our empirical evidence
indicates that AGA is particularly more advantageous for
large-scale industrial projects.
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APPENDIX A
CHARTS OF ITERATION NUMBER AND TIME COST

To better analyze the relationship between iteration number
and time cost, we put detailed results in Section 6.1 here.
We draw a line chart of iteration number and time cost for
each project. Note that in order to see the trend, we only
present the projects whose iteration number is no less than
20 (k ≥ 20). As we can see, all projects follow a similar
trend. In some projects, the first several iterations cost more
time than other iterations. It is reasonable because along
with the decrease of the number of remaining test cases (n),
prioritization also becomes faster. The plots also support
our claim that the iteration number contributes much to
the time cost. As k is the coefficient of time complexity, it
largely determines the actual efficiency in practice, so, we
think there is a large space to reduce time complexity.
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APPENDIX B
BASIC INFORMATION OF OPEN-SOURCE SUBJECTS

Table 6 shows some basic information of our 55 open-source
subjects. Specifically, for each subject, we present the source
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lines of code (SLOC), test lines of code (TLOC), number of
test cases (#Test cases), and number of mutants (#Mutants),
respectively. The projects are sorted in ascending order of
source lines of code.

APPENDIX C
RESULTS OF OPEN-SOURCE SUBJECTS

Due to space limit, we show the complete results on open-
source subjects in Table 7. The subjects are sorted in ascend-
ing order of source lines of code (SLOC). The first three
columns present the results for RQ1, the first five columns
present the results for RQ2, the first nine columns present
the results of RQ3, and the last four columns present the
comparison results with FAST. The detailed analysis can be
found in Sections 6 and 7.

APPENDIX D
RESULTS OF INDUSTRIAL SUBJECTS

Due to space limit, we present the complete results on
industrial subjects in Table 8. For each subject, we present
its SLOC, #Test cases, and the time cost of GA, AGA, FAST,
ART-D, GA-S, and GE, respectively. The detailed analysis
can be found in Section 8.
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Table 6: Basic Information for Open-Source Subjects

ID Subjects SLOC TLOC #Test Cases #Mutants

S1 DiskLruCache 780 1,030 61 152
S2 gson-fire 895 726 36 520
S3 gson-fire-v2 1,178 952 47 202
S4 jumblr 1,489 1,243 103 167
S5 java-apns 1,503 1,724 87 412
S6 jasmine-maven-plugin 1,671 1,931 102 561
S7 java-uuid-generator 1,790 2,388 45 346
S8 gdx-artemis-master 1,851 1,492 35 961
S9 jopt-simple 1,924 5,903 727 1,677
S10 protoparser 2,153 3,227 171 864
S11 jackson-datatype-guava 2,217 1,035 73 845
S12 jackson-datatype-guava-v2 2,366 1,327 80 320
S13 JActor 2,542 4,418 65 56
S14 spring-retry 2,765 3,419 185 351
S15 scribe-java 2,808 2,536 99 563
S16 metrics-core 2,835 2,194 150 1,656
S17 javapoet 2,986 4,399 332 973
S18 low-gc-membuffers 3,184 9,782 51 780
S19 lambdaj-master 3,634 4,914 265 3,399
S20 LastCalc-0.1 4,522 581 32 2,499
S21 stream-lib 4,835 3,806 141 3,811
S22 webbit 4,914 8,463 131 349
S23 commons-pool 5,206 8,232 272 633
S24 redline-smalltalk-master 5,648 480 43 3,450
S25 la4j 7,086 4,050 625 5,023
S26 redline-smalltalk 7,212 2,414 240 833
S27 nv-websocket-client 7,351 657 73 277
S28 joss 8,078 6,035 531 1,289
S29 raml-java-parser-master 8,696 3,005 192 4,506
S30 raml-java-parser 8,788 5,061 197 1,288
S31 la4j-v2 9,272 4,035 799 3,141
S32 commons-io 9,980 19,189 1,081 7,773
S33 streamex 10,427 7,906 450 3,958
S34 jsoup 10,507 12,037 666 3,157
S35 commons-dbcp 11,592 8,752 560 2,601
S36 rome-1.5.0 11,647 2,705 475 4,929
S37 assertj-core 13,361 53,059 2,470 4,571
S38 vraptor-archive 16,910 16,213 1,130 7,245
S39 mapdb-mapdb-1.0.9 17,589 35,873 1,776 876
S40 RoaringBitmap 17,807 21,494 1,148 21,319
S41 blueflood 19,517 15,774 961 1,854
S42 lanterna 20,682 7,724 34 344
S43 jackson-core 21,320 10,924 376 6,215
S44 jsprit 23,073 18,373 1,250 12,350
S45 hivemall 28,569 3,975 150 6,557
S46 asterisk-java 30,495 4,263 217 3,226
S47 asterisk-java-v2 31,074 4,258 217 921
S48 restcountries 31,324 468 40 113
S49 chukwa 32,654 8,051 131 569
S50 ews-java-api 45,313 1,328 90 1,782
S51 languagetool 47,589 20,778 719 26,662
S52 OpenTripPlanner-otp-0.20.0 64,718 14,207 379 7,325
S53 hbase-1.2.2 66,630 17,385 434 1,781
S54 commons-math 86,748 90,798 5,082 84,476
S55 camel-core 120,248 134,036 5,623 13,005

Total 912,045 633,085 31,454 262,295
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Table 7: Results of Open-Source Subjects

RQ1 RQ2 RQ3 Comparison with FASTProject
TimeGA TimeI TimeGAF TimeC APFDGAF APFDGA APFDAGA TimeAGA APFDFAST WinAPFD TimeFAST WinTime

S1 0.0197 0.0197 0.0069 0.0157 X 0.8809 0.9070 0.9070 X 0.0157 X 0.8164 X 0.0717 X
S2 0.0072 0.0072 0.0030 0.0058 X 0.8369 0.8380 0.8380 X 0.0058 X 0.7164 X 0.0348 X
S3 0.0074 0.0074 0.0038 0.0222 0.8868 0.8848 0.8848 X 0.0222 0.6916 X 0.0228 X
S4 0.0140 0.0140 0.0058 0.0789 0.8505 0.8509 0.8509 X 0.0789 0.7183 X 0.0140
S5 0.0314 0.0314 0.0163 0.0089 X 0.8527 0.8527 0.8527 X 0.0089 X 0.7285 X 0.0542 X
S6 0.0115 0.0115 0.0149 0.0046 X 0.8101 0.8101 0.8101 X 0.0046 X 0.6731 X 0.0315 X
S7 0.0045 0.0045 0.0027 0.0076 0.9045 0.9059 0.9059 X 0.0076 0.7531 X 0.0163 X
S8 0.0202 0.0202 0.0092 0.0180 X 0.8913 0.8898 0.8898 X 0.0180 X 0.6771 X 0.1102 X
S9 1.7455 1.7105 1.7891 0.5288 X 0.9144 0.9144 0.9144 X 0.3363 X 0.8688 X 1.8445 X
S10 0.0871 0.0871 0.0471 0.0247 X 0.9514 0.9518 0.9518 X 0.0247 X 0.7639 X 0.1326 X
S11 0.0975 0.0975 0.0464 0.0553 X 0.8741 0.8766 0.8766 X 0.0553 X 0.6758 X 0.3315 X
S12 0.0243 0.0243 0.0090 0.0108 X 0.8854 0.8864 0.8864 X 0.0106 X 0.6693 X 0.0452 X
S13 0.0383 0.0383 0.0158 0.0385 0.8500 0.8615 0.8615 X 0.0385 0.7584 X 0.1346 X
S14 0.0876 0.0870 0.0327 0.0407 X 0.9188 0.9188 0.9188 X 0.0385 X 0.6149 X 0.1315 X
S15 0.0221 0.0221 0.0117 0.0055 X 0.8582 0.8582 0.8582 X 0.0055 X 0.7052 X 0.0381 X
S16 0.0723 0.0723 0.0357 0.0152 X 0.8010 0.8031 0.8031 X 0.0152 X 0.6293 X 0.0793 X
S17 0.3706 0.3693 0.2144 0.1357 X 0.9114 0.9183 0.9183 X 0.1317 X 0.7128 X 0.7061 X
S18 0.0323 0.0323 0.0167 0.0226 X 0.9026 0.9028 0.9028 X 0.0226 X 0.7688 X 0.1115 X
S19 1.9204 1.9201 1.5941 0.7017 X 0.9003 0.9033 0.9033 X 0.6995 X 0.6955 X 3.6103 X
S20 0.0655 0.0655 0.0336 0.0469 X 0.8014 0.8013 0.8013 X 0.0469 X 0.6636 X 0.3444 X
S21 0.0942 0.0942 0.0416 0.0248 X 0.8353 0.8328 0.8328 X 0.0248 X 0.6847 X 0.1313 X
S22 0.0413 0.0413 0.0217 0.0215 X 0.8642 0.8642 0.8642 X 0.0215 X 0.7375 X 0.1019 X
S23 0.3202 0.3202 0.2099 0.0962 X 0.8189 0.8198 0.8198 X 0.0962 X 0.6742 X 0.4346 X
S24 0.0239 0.0217 0.0079 0.0198 X 0.9850 0.9858 0.9858 X 0.0187 X 0.9143 X 0.0919 X
S25 6.9852 2.7593 1.0409 4.1901 X 0.7135 0.8450 0.8401 1.0579 X 0.7500 X 5.7828 X
S26 0.0786 0.0786 0.0397 0.0294 X 0.8322 0.8339 0.8339 X 0.0294 X 0.6079 X 0.0435 X
S27 0.0095 0.0095 0.0041 0.0331 0.9614 0.9614 0.9614 X 0.0303 0.6707 X 0.0201
S28 0.5833 0.5819 0.3976 0.1179 X 0.9153 0.9164 0.9164 X 0.1132 X 0.7159 X 0.5634 X
S29 8.5669 8.5669 5.0644 2.3900 X 0.9482 0.9490 0.9490 X 2.3900 X 0.7234 X 14.0143 X
S30 0.4128 0.4128 0.2461 0.1804 X 0.9620 0.9617 0.9617 X 0.1804 X 0.7599 X 0.9181 X
S31 2.0359 1.9270 0.9671 0.4384 X 0.9511 0.9426 0.9426 X 0.3170 X 0.6473 X 1.5359 X
S32 1.0693 1.0649 0.8031 0.1415 X 0.8889 0.8911 0.8911 X 0.1270 X 0.7007 X 0.3410 X
S33 0.6033 0.6033 0.5780 0.0921 X 0.8659 0.8662 0.8662 X 0.0921 X 0.6105 X 0.4881 X
S34 5.7624 5.6923 6.0388 0.8250 X 0.9277 0.9328 0.9328 X 0.7903 X 0.7515 X 4.2321 X
S35 1.5128 1.3176 0.6824 0.5911 X 0.9163 0.9473 0.9467 0.3631 X 0.7872 X 1.5940 X
S36 210.0549 123.6547 32.9429 46.6052 X 0.8644 0.9418 0.9371 23.7849 X 0.8092 X 129.8628 X
S37 5.2729 3.2186 4.6264 2.4364 X 0.8508 0.8507 0.8507 X 0.3582 X 0.6925 X 1.0458 X
S38 3.6650 3.6650 3.9989 0.2794 X 0.8657 0.8657 0.8657 X 0.2794 X 0.7608 X 1.2374 X
S39 42.3862 35.0646 17.5059 5.1276 X 0.8679 0.9545 0.9545 X 2.2078 X 0.8279 X 11.6840 X
S40 4.0109 4.0064 3.0029 0.6129 X 0.9198 0.9244 0.9244 X 0.5942 X 0.6993 X 1.6539 X
S41 0.9968 0.9890 0.7100 0.1797 X 0.9040 0.9106 0.9106 X 0.1562 X 0.7181 X 0.3880 X
S42 0.0034 0.0034 0.0035 0.0287 0.8574 0.8569 0.8569 X 0.0287 0.6954 X 0.0267
S43 1.4103 1.4103 1.4142 0.2558 X 0.8913 0.8924 0.8924 X 0.2558 X 0.6681 X 1.5863 X
S44 7.2241 5.9892 4.4672 1.7918 X 0.9159 0.9261 0.9240 0.8465 X 0.7696 X 4.2414 X
S45 0.1297 0.1297 0.1095 0.0597 X 0.8466 0.8464 0.8464 X 0.0597 X 0.6643 X 0.2205 X
S46 0.2842 0.2842 0.2118 0.0858 X 0.8648 0.8656 0.8656 X 0.0858 X 0.6642 X 0.5231 X
S47 0.1310 0.1310 0.0754 0.0629 X 0.8751 0.8750 0.8750 X 0.0629 X 0.7217 X 0.1188 X
S48 0.0025 0.0025 0.0016 0.0025 0.7939 0.7939 0.7939 X 0.0025 0.6446 X 0.0064 X
S49 0.1545 0.1545 0.0867 0.1120 X 0.7997 0.8009 0.8009 X 0.1120 X 0.6620 X 0.2295 X
S50 0.0071 0.0070 0.0029 0.0049 X 0.8476 0.8517 0.8517 X 0.0047 X 0.7722 X 0.0069 X
S51 8.5532 8.4018 8.6768 1.2770 X 0.8571 0.8671 0.8671 X 1.1036 X 0.6025 X 5.8874 X
S52 1.5933 1.5887 1.5922 0.4241 X 0.9530 0.9542 0.9542 X 0.4052 X 0.7708 X 1.8314 X
S53 1.0478 1.0459 0.9088 0.2427 X 0.8673 0.8710 0.8710 X 0.2298 X 0.6630 X 0.8469 X
S54 100.2525 98.7254 78.0955 3.5015 X 0.9089 0.9089 0.9089 X 2.6648 X 0.7524 X 7.8017 X
S55 1,288.1519 1,236.9016 734.9618 32.4581 X 0.9516 0.9544 0.9544 X 18.1040 X 0.8269 X 88.3705 X

Total 48 0.8870 0.8870 51 48 55 52

Table 8: Results of Industrial Subjects

Basic Information Time cost (s)
Subject*

SLOC** #Test Cases GA AGA FAST ART-D GA-S GE

I1 >500K 4,246 29,278.9102 359.9679 X 1,860.1473 543,106.2852 2,680,036.2615 54,969.0830
I2 >200K 2,546 3,018.6473 89.9239 X 398.8814 32,938.6045 315,888.7090 13,887.3160
I3 >200K 2,566 3,228.2772 86.0066 X 417.8356 30,458.8672 304,555.6710 14,124.1435
I4 >200K 2,550 2,833.4841 80.5940 X 383.9494 24,944.4404 265,881.1139 19,345.1543
I5 >200K 2,556 3,289.5958 94.0641 X 428.5125 31,799.7539 366,902.7648 8,424.3798
I6 >500K 4,123 22,118.0296 329.4710 X 1,439.6848 402,039.4240 1,766,206.5003 49,274.3782
I7 >500K 4,139 21,963.5968 336.3432 X 1,600.3634 411,725.1937 2,390,410.2541 54,897.2351
I8 >200K 2,529 4,250.2729 89.2680 X 446.4625 36,610.5757 461,096.5509 3,857.2345
I9 >500K 4,134 22,057.8564 335.8682 X 1,450.5679 28,328.2207 2,091,910.4123 37,817.4141
I10 >200K 2,542 3,238.5423 96.6740 X 418.7254 769,960.0223 265,087.9653 7,134.1514
I11 >500K 4,133 23,749.9149 348.1437 X 1,531.0934 398,946.3216 2,537,854.1564 39,417.0345
I12 >500K 4,137 22,194.6776 342.6023 X 1,466.4241 398,254.6365 2,016,031.3451 38,741.9410
I13 >500K 4,128 22,545.8684 362.5389 X 1,470.3869 446,056.7049 2,018,768.3295 49,287.1451
I14 >200K 2,234 571.9417 22.2583 X 85.0108 4,999.5140 37,081.3254 487.0905
I15 >500K 2,201 6,517.1065 190.7537 X 926.5795 71,541.1456 513,769.5738 19,481.4108
I16 >20K 202 7.4382 3.5816 X 9.7204 87.4167 601.2848 42.7104
I17 >200K 2,216 599.1948 16.0822 X 85.3307 12,411.9608 32,268.7012 7,015.4581
I18 >20K 299 11.6980 2.2721 X 10.5942 83.9378 988.3095 38.6094
I19 >500K 3,993 21,482.4772 335.6216 X 1,750.2093 444,997.4857 2,295,089.0447 64,510.4519
I20 >200K 2,206 586.5093 18.7069 X 87.0280 6,905.6778 75,574.2453 1,048.8951
I21 >20K 281 8.0470 1.8397 X 9.1955 34.1523 610.4776 19.9627
I22 >500K 4,034 24,446.3671 335.9041 X 1,778.7107 466,512.4680 2,636,222.8890 52,941.8715

Total >6,860K 61,995 22
* We hide project names for the confidential policy.
** We report rough scale of SLOC due to the confidential policy.
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