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An Improved Approximation for Scheduling
Malleable Tasks with Precedence Constraints
via lterative Method

Chi-Yeh Chen

Abstract—The problem of scheduling malleable tasks with precedence constraints is one of the most important strongly A’P-hard
problems, given m identical processors and n tasks. A malleable task is one that runs in parallel on a varying number of processors. In
addition, the processing sequences of tasks are constrained by the precedence constraints. The goal is to find a feasible schedule that
minimizes the makespan (maximum completion time). This article presents an iterative method for improving the performance ratio of
scheduling malleable tasks. The proposed algorithm achieves an approximation ratio of 4.4841 after 2 iterations. This improves the so
far best-known factor of 4.7306 due to Jansen and Zhang. For a large number of iterations (> 100), the approximation ratio of the

proposed algorithm is tends toward 2 4 /2 ~ 3.4143.

Index Terms—Approximation algorithms, scheduling, malleable tasks, precedence constraints

1 INTRODUCTION

SYSTEMS with a large number of standard units are widely
used for processing parallel programs. A parallel pro-
gram can be represented as a set of generic malleable tasks
in which each one may link to others by precedence con-
straints. A computational model called malleable tasks was
proposed by Turek et al. [29]. A malleable task is one that
runs in parallel on a varying number of processors in which
processor allocation cannot change during the task execu-
tion. Many applications can be represented on malleable
tasks, such as big-data analytics [3], cloud computing [4],
[30], MapReduce [7], Cosmos [5], etc. The processing time
of a malleable task depends on the number of allocated pro-
cessors. The influence of communications, synchronization,
and other overhead is taken into account in the processing
time. In addition, the tasks’ processing sequences are con-
strained by the precedence constraints. Scheduling tasks
with numerous variants in precedence constraint structure
(e.g., tree, series-parallel and arbitrary structure) have been
studied in many papers [6], [16], [17], [21], [22].

The scheduling problem is an important issue in mini-
mizing the makespan (maximum completion time). The
problem of scheduling malleable tasks with precedence con-
straints is one of the most important strongly AP-hard
problems [9]. Hence, an efficient approximation algorithm
with a small and provable guarantee is sought instead of an
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exact algorithm. The problem of scheduling malleable tasks
can be considered as two problems: the allotment problem
and the makespan problem. The allotment problem seeks a
feasible allotment that minimizes the execution cost on a
multiprocessor system. The makespan problem asks for a
feasible schedule that minimizes the makespan. Many effec-
tive heuristic scheduling algorithms have been proposed
for directed acyclic graph scheduling such as the Dynamic
Critical Path algorithm [18], the heterogeneous earliest-fin-
ish-time (HEFT) algorithm [27], [28] and the Critical-Path-
on-a-Machine (CPOP) algorithm [28]. A comprehensive
review and classification of deterministic or static schedul-
ing algorithms can be found in [19].

Du and Leung [9] demonstrated that the problem of
scheduling independent malleable tasks (without prece-
dence constraints) is strongly A’P-hard when the number of
processors is 5. An approximation algorithm with a ratio of 2
for scheduling independent malleable tasks was developed
by Garey and Graham [10]. Ludwig and Tiwari [23] also
developed an approximation algorithm for scheduling inde-
pendent malleable tasks with a ratio of 2 in an improved run-
ning time. In a series of papers, the ratio was further
improved from 2 to 3/2 by Mounié et al. [24], [25]. Jansen [13]
presented an (1.5 + €) approximation algorithm for schedul-
ing malleable parallel tasks in time O(nlogn)+ f(1/e).
Decker et al. [8] considered the problem of finding a schedule
for n-independent identical malleable tasks on m identical
processors and presented a 1.25-approximation algorithm
for this problem. Jansen and Porkolab [14] proposed a poly-
nomial time approximation scheme (PTAS) when the num-
ber of processors is constant. For an arbitrary number m of
processors and p(l) <1,l€{l,...,m}, Jansen [12] devel-
oped an asymptotic fully polynomial time approximation
scheme (AFPTAS). Jansen and Thole [15] proposed a PTAS
for scheduling independent malleable tasks in which the
number of processors is polynomially bounded in the
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Fig. 1. A directed acyclic graph G = (V,E): V ={1,2,3,4} and

E={(1,2),(1,3),(2,4),(3,4)}.

number of tasks. In addition, Barketau et al. [1] proposed
polynomial time algorithms for strictly increasing convex
and concave processing speed functions. They also proposed
a combinatorial exponential algorithm for arbitrary strictly
increasing functions in which the processing speed functions
depend on the number of allocated processors.

The problem of scheduling malleable tasks with arbitrary
precedence constraints is strongly A’P-hard when the num-
ber of processors is greater than or equal to 2 (Du and
Leung [9]). This problem cannot be approximated within a
factor of 4/3 unless P = NP [20]. When the work function is
convex in processing time and the processing time is strictly
decreasing in the number of allocated processors, Jansen
and Zhang [17] devised a 3.292-approximation algorithm.
Chen and Chu [6] improved the ratio of this problem to
2.9549. They also proposed an algorithm that achieves an
approximation ratio of 2+ /2= 3.4143 when the work
function is convex in processing time. For tree-structured
precedence constraints, the best scheduling approximation
ratio was improved from 4 to 2.6181 in a series of
papers [21], [22]. For general precedence constraints, a two-
phase algorithm with a ratio of 5.2361 was proposed by
Lepére et al. [22]. Still, Jansen and Zhang [16] devised the
best-known approximation algorithm with a ratio of 4.7306.

This article develops an iterative method for improving
the performance ratio of scheduling malleable tasks. A
novel linear programming formulation and a rounding pro-
cedure is presented. The concept of the proposed algorithm
is to reduce the gap between the fractional optimal solution
and the integral optimal solution. The proposed algorithm
achieves an approximation ratio of 4.4841 after 2 iterations.
This improves the so far best-known factor of 4.7306 from
Jansen and Zhang [16]. For a large number of iterations
(> 100), the approximation ratio of the proposed algorithm
tends toward 2 + /2 ~ 3.4143.

The rest of this article is organized as follows. Section 2
introduces basic definitions, notations, and assumptions.
Section 3 reviews the previous method. Section 4 presents
the proposed algorithms. Section 5 presents an approxima-
tion ratio analysis. Section 6 summarizes results concerning
the approximation ratio. Section 7 draws conclusions.

2 ASSUMPTIONS AND NOTATIONS

A parallel program can be represented as a set of generic mal-
leable tasks in which each task may link to the others through
precedence constraints. Let G = (V, E) be a directed acyclic
graph (DAG), in which V' is the set of malleable tasks and E is
the set of precedence constraints among the tasks (see Fig. 1).
For a situation in which an arc (i, j) € E, task J; cannot be
processed before the finish time of task .J;. Task J; is called a
predecessor of J;, whereas task J; is a successor of J;. The
malleable task is one that can be executed in parallel on any
integer number [ € {1,2,...,m} of identical processors, and
the corresponding discrete positive processing time is p(l) :
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! — R*. The problem of scheduling malleable tasks with arbi-
trary precedence constraints requires a feasible schedule of
minimum makespan (maximum completion time).

Blayo et al. [2] showed the monotonous penalty assumptions
to be a realistic model of malleable tasks:

Assumption 1. The processing time p(l) of a malleable task is
non-increasing in the number | of the allocated processors:

p(l) <p(l) , forl =1

Assumption 2. The work W () = w(p(l)) =1 - p(l) of a mallea-
ble task is non-decreasing in the number [ of the allocated pro-
cessors: W(I) <W(') fori <1’

Assumption 1 indicates that increasing the number of
processors to execute a malleable task never increases the
execution time. Assumption 2 indicates that increasing the
number of processors to execute a malleable task leads to an
increase in total overhead for communication, synchroniza-
tion and scheduling.

A schedule specifies two associated values to each task
Jj: the starting time 7; and the number of allocated process-
ors l;. A task J; is active during the time interval from its
starting time t; to its completion time C; = t; 4+ p;(l;). A
schedule is said to be feasible if, at any time ¢, the number of
active processors is at most the total number of processors
> jiel0p i < m and if the precedence constraints t;+
pi(l;) < t; are satisfied for all i € I'" (j), where I'" (j) is the
set of predecessors of task J;.

Table 1 presents the notation and terminology that are
used herein.

3 THE PREVIOUS ALGORITHM

Jansen and Zhang [16] devised the best-known approxima-
tion algorithm for scheduling malleable tasks with prece-
dence constraints. The algorithm develops a linear program
to solve the allotment problem and then runs LIST to schedule
tasks. Based on the approximation algorithm for discrete
time-cost tradeoff problems in Skutella [26], Jansen and

Zhang [16] constructed virtual tasks Jj,, Jj,, ..., Jj, for each
task .J;. Let z;, indicate the virtual processing time of virtual
task Jj,. For each virtual task J;,,i = 1,...,m — 1, the virtual

processing time x;, is between p;(i) and 0, and the corre-
sponding virtual work w;, (z;,) is between 0 and W;(i + 1)—
W;(4). The processing time of virtual task J;,, is p;(m), and its
virtual work w;,, (z;,,) is zero. The following linear program
is formulated to solve the allotment problem.

min C
st. 0<C <L, Vi
Cj + xp < Cy, vj and kel (5);
Tj < pj(l)7 Vi
zj < xj, vjand i=1,-m;
0 < =, < p;(i), vjand i=1,-m;
Zj, = p,(m), Vg;
m
wj(x)) =Y wj(wj,), M
i=1

n
P=> pi(1);
1

> wi(z) + P <W;

=1
L<C,
W/m < C;
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TABLE 1
Notation and Terminology

n, m The number of tasks and the number of pro-
cessors.

p;(1) The processing time of a malleable task J; in
the number [ of the allocated processors.

wi(1) The work of a malleable task .J; in the number [
of the allocated processors.

wj(x;) The work of a malleable task .J; in the process-
ing time x;.

I'"(j),I"(j) The set of predecessors of task .J; and the set of
direct successors of task J;.

z; The processing time of task .J;.

x, The virtual processing time of virtual task Jj,.

zi, wy The upper bound of processing time and the
upper bound of work for the virtual tasks .J;;.

wj, (xj,) The virtual work of virtual task Jj, in the vir-
tual processing tlme T, where w;, (J’ ) = (W;(i+
1) - W}(Z))(l - ( ) in (1) and w, (x;;) = wj,
( ) in (2).
wj(z;) ﬂ)j(z\,) =>"", wj,(x;) is the reduced work of
~ task J; in the processing time x;.

W, w; The total work and the work of task .J; that is
from the linear program solution in the previ-
ous iteration.

] The processing time of task J; that is from the
linear program.

z; The processing time of task J; that is from the
work of task .J; in the linear program.

P Pi The rounding parameter and the rounding
parameter at the iteration k.

" The allotment parameter.

t The number of iterations.

o, o The allotment in the first phase and the allot-
ment in the second phase.

Ly, Wi The optimal critical path lengths and the opti-
mal total work obtained by the linear program
at the iteration k.

L, W*, Cioe " =max{L;}, W* = max;{W; } and
Ct . = max{L", W*/m}.

OPT, Cax The overall integral optimal makespan and the
makespan of the final schedule.

L,w The critical path lengths and the total work
that are obtained by the first phase.

LW The critical path lengths and the total work
that are obtained by using the proposed algo-
rithm.

p P =377 pj(1) is the sum of processing times

of all tasks that are executed on a processor.

where w;(-) represents the reduced work, and wj, (-) is the vir-

tual work function for the fractional solution:

a3 = Wi+ 1) = w30 (1= %)

for all j.

p;(i)

However, the linear program (1) underestimates the frac-
tional work. For example, one solution is p;(i +2) < z; <
p;(i + 1) which means that the program allotted more than
i+ 1 processors to the task J;. The virtual work of virtual
task Jj, should be W;(i + 1) — W;(i). But, since z;, may not
be  zero, iy ;) = (Wy(i-+1) - Wi(0)(1~ 45) < Wi+
1) — W;(4) in the linear program (1). The virtual work of vir-
tual task .J;; is underestimated. Hence, this article proposes
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an iterative method to reduce the gap between the fractional
optimal solution and the integral optimal solution.

4 APPROXIMATION ALGORITHM

This section develops a two-phase approximation algorithm.
The first phase uses a linear program to solve the allotment
problem. Let o : V — [1, m] be an allotment in the first phase
that decides how many processors are allotted to execute the
tasks. By rounding the fractional solution of the linear pro-
gram with the parameter p € [0,0.5], a feasible allotment o
can be obtained such that each task J; is allotted the number
I of processors. The rounding procedure is described in
detailin page 5. Let L' and T’ denote the critical path lengths
and the total work obtained by the first phase, respectively.
The first phase runs Algorithm A (Allotment) to provide a
feasible allotment for a given instance.

Algorithm. A (n,m)

1: forj — 1ton do

2: fori«+— ltom—1do

3 ot p(i)

4 wy — Wj(i+1) — W;(i);
5:af p7( )yand W’ « oc;

6: for j — 1ton do

7: w, —p;(1);

8: W3 0 pi(1)

9: fork — 1totdo
10:  Compute the linear program (2);
11:  Use the rounding procedure with the rounding parame-

ter p;, to obtain an allotment & and the corresponding
total work W;

12:  if W < W' then

13: W — Wand ¢ — &;

14:  forj« 1ton do

15 wy(a) = Y ()

16: Find a processing time &; such that w;(#)) = @;(z}) + i;;
17: fori — 1tom —1do

18: if p;j(i) > &; then

19: ifpj(l, + 1) < :ﬁj then

20: m}’i — Iy

21: wi — Wj(i+ 1) —w;(z}) — iy;
22: else

23: m}’i — 0;

24: w} — 0;

25: forj«<— ltondo

26: Ay — wji(w]) + 1y

27: W 30 iy
28: return the allotment o’.

Let W and i, be the total work of the linear program
solution and the work of the linear program solution for the
task J;, in which the linear program solution is from the pre-
vious iteration. Based on the approximation algorithm for
the discrete time-cost tradeoff problem in Skutella [26] and
Jansen and Zhang’s [16] idea, this article constructs virtual
tasks J;,, Jj,, ..., Jj, for each task J;. The linear program (2)
is a formulatlon of the allotment problem Let 2 be the
upper bound of processing time and wj, be the upper bound
of work for the virtual tasks Jj;. Recall ‘that z; j; indicates the
virtual processing time of Vlrtual task .J;,. For each virtual
task J;,i=1,...,m — 1, the virtual processing time xz;, is



1940

between z% and 0, and the corresponding virtual work
wj,(x;,) is between 0 and w . The processing time of virtual
task Jj, is z} =p;(m), and its virtual work w;,(z;,) is

Jm

zero. The goal is to find an allotment that minimizes the

cost ¢(o) = max{L', W’/m}. Therefore, the following linear
program must be solved.
min C
st. 0<C; <L, Vi
Cj+xp < C, vj and kel (j);
Tj < pj(1)7 3
xj, < xj, vjand i=1,-m;
0 <y <af, vjand i=1,--m;
Tj, = Tj Vi 2)
wj(x;) ijl xj), Vi
Zﬂ)j(ﬂc‘,-) +W<W;
=1
L <,
W/m < C,

where @;(-) represents the reduced work, and @, (-) is the vir-
tual work function for the fractional solution:

for all j.

According to the slope formula, the following steps define
a piecewise work function w;(x) in fractional processing
time x; for task J;. If z; = p;(k) for some k € {1,...,m}, then
wj(x;) = Ip;(l), in which [ = mln{k|k e{l,...,m}, pj(k) = x;}.
Otherwise, wefind [ € {1,...,m —é}and § € {1,...,m — 1}
such thatp;({ - 1) > p;(l)=--- :pj(l +8—-1) > x; > pi(l+96)
for I > 1 or pj(l)=...=pj(l+8—-1) > z; > p;(I+6) for
l=1.Wehave

wj(z;) = 2Pl +9)
P i) — pi(L+8)

(4 8)pi(L+8) —Ip;(D) .
pi) —pil+8)

In the initialization, z is p;(i ) and wj, is Wj(i + 1) — W;(i)
forallje{1,...,n}andi € {1,...,m—1}. Thevalue of:z:
is pj(m). The 1n1t1a1 value of W is Z =1 pj(1), and the 1n1t1a1
value of ; is p;(1). Hence, in the first iteration, the linear
program (2) is the same as that of Jansen and Zhang [16].

Since the linear program (1) underestimates the fractional
work, the concept of Algorithm A is to reduce the gap
between the fractional optimal solution and the integral
optimal solution. Since the optimal total work is at least W,
Algorithm A sets W as the lower bound of total work. Let ¢
be the number of iterations. Algorithm A finds a minimal
total work rounding solution (lines: 12-13).

Let z; be the solution of linear program (2). Let Z; be the
processmg time in which w;(%;) = w;(z}) + ;. The process-
ing time #; can be obtained by the followmg steps. For any
task J;, we set | = m if w;(z}) + @; = W;(m). Otherwise, we
find le{1,...,m—1} and §e{l,...,m—1} such that
W}(l) < 'LI)J(LC;) =+ ’LU; < VV](Z + 6) where pj(l — 1) > p]'(l) =

o=pil+8—-1) > pj(l+8) forl > 1lorp;(I) =... =p;(l+
§—1) > p;(I+ ) for I = 1. We have

. pj(m),
Ty = (%) 4+t —W(1)
pj(lHJ(Hsij

ifl=m

(p](lJr(S —pj l)) if [ 7'é m.
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After computing the linear program (2), we update z
and wj (lines: 14-24). We find a processing time &; such that
w](x]) = wj(z}) + ;. For each i€ {l,. —1} and
8 €{0,. m72},ifpj(i+1)<af:j<pj(7i):~~~:pj(i—8)<
p;(i — 8) for i — § = 1, then the lower bound of work for task
Jj is in the range [W(i — &), W,(i + 1)] and the number of
allocated processors for the task J; is at least i. We set
zf =i, wi =W; (z +1) — wj(x;) — ;. We also set 2§ =0
and wj, = 0 for all i< . Fmally, we set a new lower bound
of total work (lines: 25-27).

Let p € [0,0.5] be the rounding parameter and p;, be the
rounding parameter for the fractional solution at the itera-
tion k. The rounded solution can be obtained by the follow-
ing rounding procedure. For any solution z, € [0,z ],

0, ifat =0
zj; =4 0, if a:;fL < pj- T
p;(i), otherwise.

The rounded solution is z; = maxi<j<pj € {pj(m),...,

pj(1)}, which can identify the allotted processors I’ such
that p;j(l}) = z;. In the iteration £, allotment & and the corre-
spondmg total work W can be obtained by the rounding
procedure with the rounding parameter p,. Thus, ¢ round-
ing solutions can be obtained. The allotment ¢’ is a minimal
total work rounding solution in the ¢ rounding solutions.
Weset py = pand p, =2pfork=2,...,t

The second phase first generates a novel allotment «,
which is based on the resulting allotment &’ and the allot-
ment parameter p € [1, (m + 1)/2]. Each task J; is allotted a
number, /; = min{l}, 1}, of processors. The second phase
then runs LIST (as developed in Graham [11], Lepére et al.
[22], and Jansen and Zhang [16]) and a feasible scheduling
is provided for a given instance. Let L, W, C,,x denote the
critical path lengths, the total work, and the makespan of
the final schedule obtained by the proposed algorithm.

Algorithm. LIST (J,m, &, )

1: Initialization: allot /; = min{/}, 1} processors to task J;, for

2: SCHEDULED = §);

3: for SCHEDULED ;é J do

4:  READY={J;|I" (j) C SCHEDULED};

5:  compute the earhest possible starting time under « for all
tasks in READY;

6: schedule the task J; €READY with the smallest earliest

starting time;
7:  SCHEDULED = SCHEDULED U {J;};

Example. Assume we have a DAG in Fig. 1. The process-
ing times of task J; are p;(1) =34, p;(2) =20, p;(3) =14,
p;(4) =12, and p;(5) = 10 for j = 1,2, 3, 4. The works of task
Jj are W;(1) = 34, W;(2) = 40, W;(3) = 42, W;(4) = 48, and
W,( ) =50 for j = 1,2,3,4. In the initialization of Algorithm
A,z is set to p;(i) and wy, is set to Wj(i + 1) — W;(i) for all
je{l,..., 4t and i € {1,...,4} (lines: 1-4). The value of z.
is p;(5) and the value of W’ is infinity. The initial value of W
is 3%, pj(1), and the initial value of ii; is p;(1) (lines: 6-8 in
Algorithm A).
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Fig. 2. The solution of task .J; in k = 1; the upper bounds are represented
in dashed lines.

Algorithm A iteratively solves the linear program (2),
and updates the parameters of tasks (lines: 9-27). By com-
puting the linear program (2), a fractional solution can be
obtained. Fig. 2 shows the solution of task .J, in k= 1. By
using the rounding procedure with p; = p =04, x5, =0
since zj =12.257 < p; -xj =13.6. Also, we can obtain
To, = p2(2), x2, = p2(3), 2, = p2(4), and x, = ps(5). The
rounding solution for the processing time is ;=
max;<;j<5®2;, = 20. The rounding solution of other tasks also
can be obtained. Thus, the rounding solution for total work
is W =160 and & = {1}, zg,zg,z/} ={2,2,2,2}.Since W < W/,
we have W’ = W and o = & (lines: 10-13 in Algorithm A).

Algorithm A finds the value of Z; for j=1,2,3,4 and
updates the parameters of tasks (lines: 14-24). Since the
parameters of tasks are all updated in the same way, we
only show the updating steps of task J, as example. The
work of task J, in the linear program is wa(a})+
iy = 5.359 + 34 = 39.350. Since Wa(1) < 39.359 < W (2),
By = pa(1) + T AT (2(2) — pa(1)) = 21.497. Since po(2) <
Ty < pa(1), we update zj =21.497 and wy = W>(2)—
Wo(z3) — Wy = 40 — 39.359 = 0.641. In the end of the first
iteration, we set w; = 41.283, Wy = wo(z}) + We = 39.359,
iy = 39.359, iy = 41.283 and W = 31| 4 = 161.283 (lines:
25-27 in Algorithm A).

We then run the second iteration. Since the parameters of
tasks have been updated in the first iteration, a new frac-
tional solution can be obtained by computing the linear pro-
gram (2). Fig. 3 shows the solution of task J; in k = 2. By
using the rounding procedure with py =2-p=10.8, x5, =0
since z3 =13.603 < p, -3 =17.2. We also can obtain
xg, = 0, T2, = pa(3), T2, = p2(4) and 2, = p2(5). The round-
ing solution for the processing time is x» = 14. The round-
ing solution of other tasks also can be obtained. Thus, the
rounding solution for total work is W =180 and
a={4,3,3,4}. Algorithm A finds a minimal total work
rounding solution (lines: 12-13), which is the solution in the
first iteration.

5 ANALYSIS OF THE APPROXIMATION ALGORITHM

This section analyzes the approximation algorithm. The
method of analysis follows Jansen and Zhang [16]. The fol-
lowing steps analyze the complexity of the proposed algo-
rithm. The first phase runs ¢ iterations. In each iteration, the
linear program (2) has O(mn) variables and O(n? + mn)

Fig. 3. The solution of task .J; in k = 2; the upper bounds are represented
in dashed lines.

constraints, and the rounding step requires, at most, O(mn)
time. The updating z} and wj require, at most, O(mn) time.
In the second phase algorithm LIST has a complexity of
O(mn). Thus, the total runtime is O(tmn +t - LP(mn,n*+
mn)), where LP(p, q) is the time to solve a linear program
with p variables and ¢ constraints. The major space com-
plexity is the size of the matrix in the linear program (2),
which is the number of variables times the number of con-
straints. Thus, the space complexity of the proposed algo-
rithm is O(mn?® + m?n?). Both the time complexity and the
space complexity are polynomial in the number of tasks
and the number of processors.

Let L; and W} be optimal critical path lengths and the
optimal total work obtained by the linear program (2) at
iteration k. Let L*=max;{L;}, W*=max,{W;} and
Ct . = max{L*, W*/m}. Let OPT be the overall integral

max
optimal makespan. Let w; be the work of task .J; obtained
by the linear program (2). Since the work of task in the linear
program (2) is underestimated, there exists a fractional opti-
mal solution between the solution of linear program (2) and
the integral optimal solution. For each task .J;, the work of
task J; is at least w;f in the fractional optimal solution, other-
wise it results a contradiction that the solution of linear pro-
gram (2) is optimal. Then, the work of task J; in the
fractional optimal solution is between w; and W;(m), and
the processing time of task J; in the fractional optimal solu-
tion is between p;(m) and ;. The solution of linear pro-
gram (2) in the next iteration is less than OFI'. Therefore,

OPT should be bound by the fractional optimal solution:
max{L*, W* /m} < Ci, < OPT. @

In the case of W*/m > L*, the processing time of virtual
task Jj, is equal to min{z},z} } for obtaining the minimum
total work. In the case of W* / m < L*, the processmg time
of virtual task J;, may not be equal to mm{x], 4 }. How-
ever, the solutlon can be adjusted to x} = min{z}, 2}, in
which the solution C} == max{L*, W* / m} is not changed.
Hence, we can assume that z; = min{z},z} } for all virtual
tasks. The following property therefore can be obtained.
If B<0,1],

Ji
B- i, forany k > i.

Lemma 5.1. then

> B
x]l. -

>B-x

4 for  some

Proof. For any k > iand some g € [0,1], if 2} > B- 2% and

Ji
z; < B-zj, the work of zj is not less ‘than another
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solution 7 = p-zj. Since zj > Bz} > f- z;, T <
r; <} j can be obtamed The solution 1 % has less work
than 7, in which the critical path length is not changed.
This results in a contradiction where z7, is optimal. ]

Let P = 3" p;(1) be the sum of processing times of all
tasks that are executed on a processor. The bounds on L'
and W’ are as follows:
2t71p7‘,

Lemma 5.2. I/ < L and W' < we T_2—1,0
— ot

S ToETy P.

Proof. Based on the rounding procedure, if z; < p -z}
then z;, = 0, which implies that its processing time is not
increasing while the work may increase. On the other
hand, if =} > ,ok ., then z;, = p;(i). In the first iteration
k=1, x] > pr - @t = pp - pj(i) = py - z;,. The critical path
length increases by a factor of ,; at most by rounding. In
the other 1terat10n k#1, «i = p -2 = pp- p,(z—i—l)
Py pi() = pp & -pi(i), where p(i+1) > - pi(i) is
according to Assumption 2. The critical path length
increases with a factor of 2 at most by rounding. We have
L’<L fork—landL’<2L* r k # 1. Since p; = p and
Or = 2,0 fork#1,L < L can be obtained.

We now prove the upper bound of W' If 2} > p;. -

then x;, = p;(4). Smce pi(i) > i, w; (.Z‘JL) ]/,’(1—

())<0 If 27 < p, -z}, then acjl—Oand wj, (z5,) = wj.
/7

Thus, the followmg cham of inequalities can be obtained:

. w’“
> ! (1 - pk_f) 5)
Zj;

According to Lemma 5.1,7 € {1,...,m} and x;, = 0 for
all © < [ and z;, = p;(i) exist for all i > 1. Let W/, and W}
be the total works of rounding solution and the fractlonal
optimal total works in the linear program (2), respec-
tively, at iteration k. For each iteration k, it can be
obtained that z; = max;{z; } = p;(l) and Y., w;(x;) =
Z]:l >y Wy (z5,) = 2171 Ipj(l) = Wiy = WA W1
Based on Eq. (5), the upper bound of W}, is as follows:

Wk - Wk—l = Zﬂ;j(x )
=1

n

> (1= pp) ) wj(z))
J=1
= (1= p) (W} = W)
which yields
(1= p)Wi + pp - Wiy < Wi (6)
for k=1,...,t. Based on Eq. (6), since W, < W+, W' =

ming{W;}, Wy =P, p, = p and p;, =2p for k=2,....t,
the following inequality can be obtained
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W < wr __ PP p
“l=pipype L=pipaopy
_ W* B 2t—1pt
1—2t-1pt 1 —2t-1pt
The Lemma is as follows. O

As in Lepére et al. [22], the time interval of the final
schedule [0, Cy.x] is partitioned into three types of time
slots. During the first type of time slot, at most u — 1 pro-
cessors are busy. During the second type of time slot, at
least 1« and at most m — j processors are busy. During the
third type of time slot, at least m — 4 1 processors are
busy. Let 77,75 and T3 be the corresponding sets of time
slots, respectively. Let |T;| be the overall length of the time
slots in set T; for ¢ € {1,2,3}. The bound of |T1| and |T5| are
obtained as follows.

Lemma 5.3. p|T| + min{p, £}|T5| < C;

max’

Proof. The proof is given in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2018.2813387.0

The following Lemma shows that the length of any
schedule is bounded on P.

Lemma 5.4. |T\| + |T»| + |T5| < P.

Proof. When all the tasks are scheduled on the same proces-
sor, the makespan is P = > p;(1), which is equal to or
larger than any feasible schedule without idle time
between tasks. The inequality is proven. 0

The upper bound on W is as follows.

* t—1 t

Lemma 5.5. W < - ,—inl’plP.

Proof. For each task .J;, the allotment o' allots I, processors
to task J; and the allotment « allots /; = min{l}, 1} pro-
cessors to task J;. By Assumption 2, the work of allotment
o does not increase. We have W < W’. By Lemma 5.2,

W<W < % 122_,—1HP can be obtained. 0
Let y; = |T;|/C . be the normalized overall length of the
ith type of time slot for i = 1,2,3. Also, let y, = P/C% . be

max

the normalized overall length of P. Therefore, we can obtain
a min-max nonlinear program to find the optimal approxi-
mation ratio of our algorithm.

Lemma 5.6. The optimal approximation ratio of our algorithm is
bounded by the following min-max non-linear program.

min max
WP Y1,Y2:Y3Yp

sty +y2 +ys < Yps
Y1+ puys + (m —p+1)ys
- m B 2t—1ptyp .
- 1— 2t—1pt 1— 2t71pt ? )
Py + min{p,ﬁ}yz <1
m
y17y27y37yp Z 07
p € [0,0.5];
wed{l,...,

Y1 +Yy2+ Y3

L(m +1)/2]}.
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Proof. The first and third constraints are obtained by normal-
izing the inequalities in Lemma 54 and Lemma 5.3.
According to the number of busy processors in each type
of time slot, we have W > |T1| + u|Ta| + (m — u + 1)|T5].
Thus, the second constraint can be obtained by Lemma 5.5.
The remaining constraints are obtained from the parame-
ter definitions. According to inequality (4), the approxima-
tion ratio is 7 = sup{Cax/OPT'} < sup{Crax/Ci .} = sup
{1 ] + Tl + ‘TBD/C;MX} = maxthyzs{yl + yo + y3}, which
is our objective function. The goal is to minimize the
approximation ratio over all feasible ; and p. The Lemma
is therefore proven. 0

5.1 Approximation Ratio of the Proposed Algorithm
This section analyzes the min-max nonlinear program (7) to
obtain an approximation ratio. The following property is
used in the approximation ratio analysis.

Proposition 5.1. Suppose that x; is the largest real root to the
equation  f(z) =" a;z' =0(a, #0). If a, > 0, then
flz) >0 for z € (x1,00). If a, <0, then f(z) < 0 for
z € (z1,00).

The min-max nonlinear program (7) can be simplified as
follows.

Lemma 5.7. The min-max nonlinear program (7) can be simpli-
fied to the following nonlinear program:

i max 07— W= 27000 + (1 =27 ) (m = 2u 4 1) +m
(m—p)(1=21p) +1

Hah YLY2
. |2
s.t. py1 + ming p,— ryp < 1;
m

y +ya(u(l =271 o) + 2071t <y

Y1, y2 = 05
p €[0,0.5];
we{l . |(m+1)/2]}
®
Proof. The proof is given in Appendix B, available in the
online supplemental material. ]

According to Lemma 5.7, two cases p < u/m and
p > /m, must be considered. When ¢ = 1, our algorithm is
the same as Jansen and Zhang [16]. Therefore, as with the
analysis in [16], the following bound holds.

Lemma 5.8. When t =1 and p < p/m, our algorithm has an
approximation ratio r < m.

We then consider the case p > u/m. The following min-
max nonlinear program must be solved:
yi(m—p)(1—2""p") +yp(1 —2""p")(m —2u + 1)+ m
(m—p)(1—2"1p") +1
st Clipyr + 2y <1
m

min max
P Y1:Y2

C2:y1 +ya(u(1 =270 ) +27p ) <m
C3:y1,42,0 20

pe L0
wedl,....[(m+1)/2]}.

In a fixed pair p and p, the values of y; and y, for maximiz-
ing the objective value need to be found. The three extreme
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points  Ei: (y1,42) = (0,0), B> : (y1,42) = (1/p,0),  and
Es : (y1,y2) = (0,m/n) are obtained by C; and Cj. The three
extreme points Ej : (y1,42) = (0,0), Ey : (y1,92) = (m,0),
and Es : (y1,y2) = (0,m/(u(1 — 2171 p") + 2171 p")) are obtained
by Cg and 03.

Since u>1 and p>pu/m, we have p>u/m>1/m,
which yields 1/p < m. Therefore, point E, is in the polytope
defined by Ei, F;, and FEs. Since 27!p" > 0 and n > 1,
2071t < u2t=1p!, which yields p(1—2"1p") + 2171 pf < .
We have m/p < m/(u(1 — 271 pl) + 2171 p"). Thus, point Fj
is in the polytope defined by £, E4, and Ej5. Constraint C
can therefore be removed. The following min-max nonlin-
ear program needs to be considered.

yi(m — ) (1 =271 + o (1 =271 ) (m — 2 + 1) +m
(m—p)(1=21pt) +1

min max
P YLY2

s.t. py1 +ﬁy2 <1
m
Y1,42,0 > 0
"
pE {_705},
m

9)

Obviously, the maximum value is not at the extreme point
E,. Substituting F> and Es into the objective function yields

m—1

— 1 o
A T ey
and
o1 =21 (m —2u +1
B(M,p):”( em —2u +1) +m (11)

(m—p)(1—=2"1p") +1

Function A(u,p) increases in pu. Function B(u,p)
decreases in  in the case of 2!!p’ € (0,1/2). Thus, only one
feasible root to the equation A(u,p)= B(u,p) can be
obtained (as the other exceeds (m + 1)/2):

_ 2 2 _
= m(1 + 2p) \/(12+ 4p2)ym?2 Amp. (12)

The analysis of A(u, p) and B(u, p) is given in Appendix C,
available in the online supplemental material.

The following lemma verifies that the constraints
a* < (m+1)/2and p > i*/m are satisfied for p € [1/3,1/2]
and m > 3.

Lemma 5.9. For a fixed rounding parameter p € [1/3,1/2] and
m>3, u* <(m+1)/2 and p> pu*/m where pu* =m(1l+

2p)/2 — /(1 + 4p*)m? — dmp/2.

Proof. Since u* increases in p, we only need to show
(2m —v2m? — 2m)/2 < (m + 1)/2, which is equivalent to

m—1<vV2m?2 —2m.

Since m — 1 and v2m? — 2m are positive for m > 1, the
square of both sides yields m?>1. The roots to
m? —1=0 are +1. The inequality (13) holds if m > 1,
according to Proposition 5.1.

Now, we show that p>u/m=m(1+2p)/2m—
V(1 +4p%)m? — 4mp/2m, which is equivalent to

(13)
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TABLE 2
The Rounding Parameter p* for Some ¢

! (1) ! P (1)

1 0.4310 100 0.4818
10 0.4314 200 0.4891
20 0.4501 300 0.4920
30 0.4601 400 0.4937
40 0.4665 500 0.4947
50 0.4709 1000 0.4970
m < /(14 402)m? — 4mp. (14)

The square of both sides yields m >1/p. Since
p € [1/3,1/2], the inequality (14) holds for m > 3. The
Lemma is proven. 0

According to Lemma 5.9, the following lemma is obtained.

Lemma 5.10. For a fixed rounding parameter p € [1/3,1/2] and
m > 3, the optimal objective value of Eq. (9) is bounded by the
optimal objective value for fixed u = p* in (12).

A specific value of p can be obtained in Appendix D,
available in the online supplemental material. Let p*(t) be
the optimum value of p for ¢ iterations. The value of p*(t)
for t is as shown in Table 2.

Let 4*(t) be the optimum value of p for t iterations.
Replacing p*(t) into Eq. (12) yields

o m(1+ 20" (1) — /(1 J; 4 1)y — dmp (1)

The following bound of approximation ratio holds.

(15)

Lemma 5.11. In the case m > 3, our algorithm has an approxi-
mation ratio r bounded by

1 2m —
P o
() (m

2
O
—2mpr (1) + VA)(L - p5 (1)) + 25(0)

(1 +4p*(£)*)m? — 4mp*(t) and p(t) = 21 p*(t)".

Proof. Since i* is a fractional number, two integer values
[4*] and |4*| need to be considered. Since A(p,u)
increases in u and B(p, ) decreases in u, the approxima-
tion ratio is r < min{ A(p*(¢), [*(¢)]), B(p*(t), [&a*(t)])} <
A(p*(t),*(t) +1). Therefore, substituting n*(t) from
Eq. (152 i§1 A(pH(t), a*(t) +1) gives r<- (t>+
0]

)+\/5)(1(*)i>§(t))+2i)§(f) ’ -

Corollary 5.12. For all m € N and m > 2, the approximation
ratio

where A =

(m—2mp*(t

2, if m=2;

r< {3 if m = 3,4,
_1 otherwise
0] (1-2p%( +\/1+-1p )(1-p% @)

where pr(t) = 271 p* (1)

Proof. The proof is given in Appendix B, available in the
online supplemental material. 0

Corollary 5.13. Given 0 < ¢ < 0.1 and p=1/2—¢/4, the
approximation ratio of our algorithm is tends to 2 + /2 if
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TABLE 3

The Approximation Ratios of the Proposed Algorithm for ¢ = 100
m Iz 14 r mo P r

2 1 0.5000 2.0000 14 5 0.4830 2.8177
3 1 0.3333  3.0000 15 5 04829  3.0170
4 2 0.5000 3.0000 16 5 0.4828 3.2164
5 2 0.4853 2.5161 17 6 0.4828 2.8512
6 3 0.4846 2.0224 18 6 0.4827 3.0173
7 3 0.4842 2.3524 19 6 0.4827 3.1835
8 3 0.4839 2.6836 20 7 0.4826 2.8752
9 3 0.4836 3.0156 21 7 0.4826 3.0175
10 4 0.4834 2.5187 22 7 0.4825 3.1599
11 4 0.4833 2.7674 23 7 0.4825 3.3024
12 4 0.4832 3.0165 24 8 0.4825 3.0177
13 5 0.4830 26186 25 8 0.4825  3.1423

In M
t> e, where

. 12
2 <2+\/— P 172p+\/1+4p2+€>

M =
2+\/_—l+e
Proof. Let p, = 2! p’. According to Corollary 5.12, we must
show: given 0 < € < 0.1, |2+\f*—7+|<6

P (1=2p+4/14+4p2) (1-py)

for ¢>>1. Since 1+ >2++v2, we only

/’ (1— 2p+\/1+4p)1 ps)

need to show 1+ — 2 < ¢ which
. . p(1- 2p+\/1+4p2) 1-ps)
is equivalent to
2. <2+\/—717++e)
P 1 apin 11402
M= 1=2p++/1+4p > (Qp)t.

2+\/_—lp+e

Since 2p < 1, the inequality holds if ¢ > {231 To ensure

In M is meaningful, we need to show that M is positive.

Since 2+\/_*1+6>0 for p=1/2—¢/4 and
0<e<01 we only need to show 2+\/—f;f
. M +e>0 which is equivalent to show

2—(1-2p)2+V2-1+6<(2+v2-L1+0y1+40%
Since the both sides of above inequality is positive, we
can take the square of both sides of the inequality which
yield 2+V2-1+’(1+40%) - (2-(1-20)2+V2 -1+

€) > 0 After 51mphf1cat10n the inequality becomes:
E=—¢ —2.8284- ¢ +0.8284-¢ > 0. Solving E = 0, the
roots are —3.0960, 0 and 0.2676. The equality M is posi-
tive in € € (0,0.2676). Thus, the corollary is proven. O

According to Corollary 5.13, when p=1/2—¢/4, ¢ = 0
and t — oo, our algorithm is bounded by 2 + /2 ~ 3.4143.
For example, when ¢ = 1000 and p*(¢) = 0.4970, the approxi-
mation ratio is 3.4262, which is very close to 3.4143.

6 RESULTS AND DISCUSSION

This section compares the approximation ratio of the pro-
posed algorithm to that of the algorithm in Jansen and Zhang
[16]. When m — oo, Table 2 shows some rounding parame-
ter. In fact, the approximation ratio r can be improved by
choosing a rounding parameter of p for a fixed m. The round-
ing parameter is the root of 37 ¢;m’, where ¢; is defined in
Appendix D, available in the online supplemental material.
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TABLE 4
The Approximation Ratios of the Algorithm
in Jansen and Zhang [16]

m.o o r mou p r

2 1 0500 20000 14 4 0430  4.1739
3 1 0333 30000 15 5 0430 42173
4 2 0.500 3.0000 16 5 0.430 4.2065
5 2 0430 33125 17 5 0430 41973
6 2 0.430 3.4458 18 6 0.430 4.3249
7 3 0430 37507 19 6 0430  4.3083
8 3 0.430 3.7995 20 6 0.430 4.2938
9 3 0430 38356 21 6 0430  4.2880
10 3 0.430 3.9078 22 7 0.430 4.3857
11 4 0430 40639 23 7 0430 43685
12 4 0430 40656 24 7 0430 43531
13 4 0430 40669 25 7 0430 43897

Since fi* is a fractional number, two integer values [/1*]
and [/t*| need to be considered. The approximation ratio
obtained using the proposed algorithm is bounded by
min{A(p*(t), [a*(t)]), B(p*(t), [a*(t)])}. Table 3 lists the val-
ues of the bounds on the proposed algorithm under Assump-
tions 1 and 2 for ¢ = 100. Table 4 lists the approximation
ratios obtained using Jansen and Zhang’s [16] algorithm
under the same assumptions. The proposed algorithm obvi-
ously improves on Jansen and Zhang’s [16] results..

Table 5 lists the values of the bounds on the proposed
algorithm for m = 25. Note that, when ¢ = 1, our algorithm
is the same as Jansen and Zhang [16]. However, the first line
of Table 5 is not consistent with the last line of Table 4
because the rounding parameter in Table 4 is obtained by
setting m — oo, and the rounding parameter in Table 5 is
obtained by setting m = 25. The rounding parameter p
increases in t > 3, and the approximation ratio decreases in
t. As the number of iterations increases, the rounding
parameter is tended to 0.49, and the approximation ratio is
tended to 3.1267. According to Corollary 5.12, Table 6 lists
the values of the bounds on the proposed algorithm for any
m. As the number of iterations increases, the approximation
ratio r is improved from 4.7306 to 3.4143. In the iteration 1
to 50, the proposed algorithm significantly improves the
approximation ratio r. For a large number of iterations

TABLE 5
The Approximation Ratios of the Proposed
Algorithms for m = 25

t " P r t n P r

1 8 0.4512 4.0807 60 8 0.4752 3.1542
2 8 0.4215 3.7747 70 8 0.4776 3.1499
3 7 0.4179 4.0267 80 8 0.4795 3.1467
4 7 0.4194 3.9360 90 8 0.4811 3.1443
5 8 0.4221 3.4517 100 8 0.4825 3.1423
6 8 0.4251 3.4044 200 8 0.4894  3.1335
7 8 0.4281 3.3687 300 8 0.4923 3.1307
8 8 0.4309 3.3409 400 8 0.4938 3.1292
9 8 0.4335 3.3187 500 8 0.4948 3.1284
10 8 0.4360 3.3005 600 8 0.4955 3.1278
20 8 0.4527 3.2142 700 8 0.4961 3.1274
30 8 0.4620 3.1843 800 8 0.4965 3.1271
40 8 0.4679 3.1692 900 8 0.4968 3.1269
50 8 0.4720 3.1602 1000 8 0.4971 3.1267
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TABLE 6

The Approximation Ratios of the Proposed Algorithms for any m
t 0 T t P r

1 0.4310 4.7306 60 0.4742 3.5373
2 0.4083 4.4841 70 0.4767 3.5233
3 0.4077 43131 80 0.4788 3.5124
4 0.4108 4.1931 90 0.4804 3.5036
5 0.4147 4.1043 100 0.4818 3.4964
6 0.4185 4.0358 200 0.4891 3.4610
7 0.4222 3.9811 300 0.4920 3.4476
8 0.4255 3.9362 400 0.4937 3.4405
9 0.4286 3.8987 500 0.4947 3.4360
10 0.4314 3.8668 600 0.4954 3.4328
20 0.4501 3.6955 700 0.4960 3.4305
30 0.4601 3.6233 800 0.4964 3.4288
40 0.4665 3.5826 900 0.4967 3.4274
50 0.4709 3.5561 1000 0.4970 3.4262

(> 100), the approximation ratio of the proposed algorithm
is tended to 2 + /2 = 3.4143.

7 CONCLUDING REMARKS

This article developed a polynomial-time approximation
algorithm to solve the problem of scheduling malleable
tasks with precedence constraints and presented an iterative
method for improving the performance ratio of scheduling
malleable tasks. The concept of the proposed algorithm is to
reduce the gap between the fractional optimal solution and
the integral optimal solution. The proposed algorithm
achieves an approximation ratio of 4.4841 after 2 iterations,
thus improving on the best-known factor of 4.7306 from
Jansen and Zhang [16]. For a large number of iterations
(> 100), the approximation ratio of the proposed algorithm
is tended to 2 + v/2 ~ 3.4143.
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